51
|
VanLeeuwen JE, Petzinger GM, Walsh JP, Akopian GK, Vuckovic M, Jakowec MW. Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci Res 2010; 88:650-68. [PMID: 19746427 DOI: 10.1002/jnr.22216] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Dopamine depletion leads to impaired motor performance and increased glutamatergic-mediated hyperexcitability of medium spiny neurons in the basal ganglia. Intensive treadmill exercise improves motor performance in both saline treatment and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. In the present study, we investigated the effect of high-intensity treadmill exercise on changes in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit expression, because these receptor channels confer the majority of fast excitatory neurotransmission in the brain, and their subunit composition provides a key mechanism for regulating synaptic strength and synaptic neuroplasticity and is important in modulating glutamatergic neurotransmission. Within the dorsolateral striatum of MPTP mice, treadmill exercise increased GluR2 subunit expression, with no significant effect on GluR1. Furthermore, neurophysiological studies demonstrated a reduction in the size of excitatory postsynaptic currents (EPSCs) in striatal medium spiny neurons (as determined by the input-output relationship), reduced amplitude of spontaneous EPSCs, and a loss of polyamine-sensitive inward rectification, all supportive of an increase in heteromeric AMPAR channels containing the GluR2 subunit. Phosphorylation of GluR2 at serine 880 in both saline-treated and MPTP mice suggests that exercise may also influence AMPAR trafficking and thus synaptic strength within the striatum. Finally, treadmill exercise also altered flip isoforms of GluR2 and GluR1 mRNA transcripts. These findings suggest a role for AMPARs in mediating the beneficial effects of exercise and support the idea that adaptive changes in GluR2 subunit expression may be important in modulating experience-dependent neuroplasticity of the injured basal ganglia.
Collapse
Affiliation(s)
- Jon-Eric VanLeeuwen
- Department of Neurology, The George and MaryLou Boone Center for Parkinson's Disease Research, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
52
|
Zhou R, Holmes A, Du J, Malkesman O, Yuan P, Wang Y, Damschroder-Williams P, Chen G, Guitart X, Manji HK. Genome-wide gene expression profiling in GluR1 knockout mice: key role of the calcium signaling pathway in glutamatergically mediated hippocampal transmission. Eur J Neurosci 2009; 30:2318-26. [PMID: 20092574 DOI: 10.1111/j.1460-9568.2009.07022.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) convey fast synaptic transmission in the CNS and mediate various forms of hippocampal plasticity. Disruption of glutamate receptor type 1 (GluR1), a member of the AMPAR family, causes synaptic alterations and learning/memory deficits in mice. To gain mechanistic insight into the synaptic and behavioral changes associated with GluR1 deletion, hippocampal genome-wide expression profiling was conducted using groups of GluR1 knockout (KO) mice and their wild-type littermates. Regulation of 38 genes was found to be altered more than 30% (P < 0.01, n = 8), and seven of these genes were studied with additional quantitative experiments. A large portion of the altered genes encoded molecules involved in calcium signaling, including calcium channel components, calcium-binding proteins and calcium-calmodulin-dependent protein kinase II subunits. At the protein level, we further evaluated some genes in the calcium pathway that were altered in GluR1 KO mice. Protein levels of two key molecules in the calcium pathway - GluR, ionotropic, N-methyl-d-aspartate-1 and calcium/calmodulin-dependent protein kinase II alpha - showed similar changes to those observed in mRNA levels. These findings raise the possibility that calcium signaling and other plasticity molecules may contribute to the hippocampal plasticity and behavioral deficits observed in GluR1 KO mice.
Collapse
Affiliation(s)
- Rulun Zhou
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Liu W, Dou F, Feng J, Yan Z. RACK1 is involved in β-amyloid impairment of muscarinic regulation of GABAergic transmission. Neurobiol Aging 2009; 32:1818-26. [PMID: 19954860 DOI: 10.1016/j.neurobiolaging.2009.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 10/19/2009] [Accepted: 10/29/2009] [Indexed: 12/21/2022]
Abstract
RACK1 (receptor for activated C-kinase 1), an anchoring protein that shuttles activated PKC to cellular membranes, plays an important role in PKC-mediated signal transduction pathways. A significant loss of RACK1 has been found in the brain of aging animals and Alzheimer's disease (AD) patients, which implicates the potential involvement of RACK1 in altered PKC activation associated with dementia. Our previous studies have demonstrated that GABAergic inhibition in prefrontal cortex, which is important for cognitive processes like "working memory", is regulated by muscarinic receptors via a PKC-dependent mechanism, and this effect is impaired by β-amyloid peptide (Aβ). In this study, we found that Aβ oligomers decreased RACK1 distribution in the membrane fraction of cortical neurons. Moreover, overexpression of RACK1 rescued the effect of muscarinic receptors on GABAergic transmission in Aβ-treated cortical cultures in vitro and Aβ-injected cortical neurons in vivo. These results suggest that the Aβ-induced loss of RACK1 distribution in the cell membrane may underlie the Aβ impairment of muscarinic regulation of PKC and GABAergic transmission. Thus, RACK1 provides a potential therapeutic target that can restore some of the impaired cellular processes by Aβ.
Collapse
Affiliation(s)
- Wenhua Liu
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
54
|
Sima AAF, Zhang W, Muzik O, Kreipke CW, Rafols JA, Hoffman WH. Sequential abnormalities in type 1 diabetic encephalopathy and the effects of C-Peptide. Rev Diabet Stud 2009; 6:211-22. [PMID: 20039010 DOI: 10.1900/rds.2009.6.211] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diabetic encephalopathy is a recently recognized complication in type 1 diabetes. In this review, we summarize a series of experimental results obtained longitudinally in the spontaneously type 1 diabetic BB/Wor-rat, and bringing out the beneficial effects of C-peptide replacement. It is increasingly clear that lack of insulin and C-peptide, and perturbations of their signaling cascades in type 1 diabetes are detrimental to the regulation of neurotrophic factors and their receptors. Other consequences of such deficits and perturbations are innate inflammatory responses with effects on synaptogenesis, neurite degeneration, and early behavioral abnormalities. Replacement of C-peptide, which does not effect hyperglycemia, has beneficial effects on a variety of pro-apoptotic stressors, oxidative stressors, and finally on apoptosis. Eventually, this cascade of events leads to neuronal loss and decreased densities of white matter myelinating cells, with more profound deficits in behavioral and cognitive function. Such changes are likely to underlie gray and white matter atrophy in type 1 diabetes, and are significantly prevented by full C-peptide replacement. Present data demonstrate that C-peptide replacement has beneficial effects on numerous sequential and partly interrelated pathogenetic mechanisms, resulting in prevention of neuronal and oligodendroglial cell loss, with significant prevention of neurobehavioral and cognitive functions.
Collapse
Affiliation(s)
- Anders A F Sima
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
55
|
Phylogenetic analysis of the NEEP21/calcyon/P19 family of endocytic proteins: evidence for functional evolution in the vertebrate CNS. J Mol Evol 2009; 69:319-32. [PMID: 19760447 DOI: 10.1007/s00239-009-9273-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/29/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
Endocytosis and vesicle trafficking are required for optimal neural transmission. Yet, little is currently known about the evolution of neuronal proteins regulating these processes. Here, we report the first phylogenetic study of NEEP21, calcyon, and P19, a family of neuronal proteins implicated in synaptic receptor endocytosis and recycling, as well as in membrane protein trafficking in the somatodendritic and axonal compartments of differentiated neurons. Database searches identified orthologs for P19 and NEEP21 in bony fish, but not urochordate or invertebrate phyla. Calcyon orthologs were only retrieved from mammalian databases and distant relatives from teleost fish. In situ localization of the P19 zebrafish ortholog, and extant progenitor of the gene family, revealed a CNS specific expression pattern. Based on non-synonymous nucleotide substitution rates, the calcyon genes appear to be under less intense negative selective pressure. Indeed, a functional group II WW domain binding motif was detected in primate and human calcyon, but not in non-primate orthologs. Sequencing of the calcyon gene from 80 human subjects revealed a non-synonymous single nucleotide polymorphism that abrogated group II WW domain protein binding. Altogether, our data indicate the NEEP21/calcyon/P19 gene family emerged, and underwent two rounds of gene duplication relatively late in metazoan evolution (but early in vertebrate evolution at the latest). As functional studies suggest NEEP21 and calcyon play related, but distinct roles in regulating vesicle trafficking at synapses, and in neurons in general, we propose the family arose in chordates to support a more diverse range of synaptic and behavioral responses.
Collapse
|
56
|
Papale A, Cerovic M, Brambilla R. Viral vector approaches to modify gene expression in the brain. J Neurosci Methods 2009; 185:1-14. [PMID: 19699233 DOI: 10.1016/j.jneumeth.2009.08.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 12/31/2022]
Abstract
The use of viral vectors as gene transfer tools for the central nervous system has seen a significant growth in the last decade. Improvements in the safety, efficiency and specificity of vectors for clinical applications have proven to be beneficial also for basic neuroscience research. This review will discuss the viral systems currently available to neuroscientists and some of the recent achievements in the study of synaptic function, memory and drug addiction.
Collapse
Affiliation(s)
- Alessandro Papale
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Foundation and University, Milano, Italy
| | | | | |
Collapse
|
57
|
Zhu JJ. Activity level-dependent synapse-specific AMPA receptor trafficking regulates transmission kinetics. J Neurosci 2009; 29:6320-35. [PMID: 19439609 PMCID: PMC2734326 DOI: 10.1523/jneurosci.4630-08.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 02/26/2008] [Accepted: 04/09/2009] [Indexed: 01/11/2023] Open
Abstract
Central glutamatergic synapses may express AMPA-sensitive glutamate receptors (AMPA-Rs) with distinct gating properties and exhibit different transmission dynamics, which are important for computing various synaptic inputs received at different populations of synapses. However, how glutamatergic synapses acquire AMPA-Rs with distinct kinetics to influence synaptic integration remains poorly understood. Here I report synapse-specific trafficking of distinct AMPA-Rs in rat cortical layer 4 stellate and layer 5 pyramidal neurons. The analysis indicates that in single layer 4 stellate neurons thalamocortical synapses generate faster synaptic responses than intracortical synapses. Moreover, GluR1-containing AMPA-Rs traffic selectively into intracortical synapses, and this process requires sensory experience-dependent activity and slows down transmission kinetics. GluR4-containing AMPA-Rs traffic more heavily into thalamocortical synapses than intracortical synapses, and this process requires spontaneous synaptic activity and speeds up transmission kinetics. GluR2-containing AMPA-Rs traffic equally into both thalamocortical and intracortical synapses, and this process requires no synaptic activity and resets transmission kinetics. Notably, synaptic trafficking of distinct AMPA-Rs differentially regulates synaptic integration. Thus, synapse-specific AMPA-R trafficking coarsely sets and synaptic activity finely tunes transmission kinetics and integration properties at different synapses in central neurons.
Collapse
Affiliation(s)
- J Julius Zhu
- Departments of Pharmacology and Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
58
|
Kielland A, Bochorishvili G, Corson J, Zhang L, Rosin DL, Heggelund P, Zhu JJ. Activity patterns govern synapse-specific AMPA receptor trafficking between deliverable and synaptic pools. Neuron 2009; 62:84-101. [PMID: 19376069 PMCID: PMC2682220 DOI: 10.1016/j.neuron.2009.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 10/30/2008] [Accepted: 03/03/2009] [Indexed: 12/13/2022]
Abstract
In single neurons, glutamatergic synapses receiving distinct afferent inputs may contain AMPA receptors (-Rs) with unique subunit compositions. However, the cellular mechanisms by which differential receptor transport achieves this synaptic diversity remain poorly understood. In lateral geniculate neurons, we show that retinogeniculate and corticogeniculate synapses have distinct AMPA-R subunit compositions. Under basal conditions at both synapses, GluR1-containing AMPA-Rs are transported from an anatomically defined reserve pool to a deliverable pool near the postsynaptic density (PSD), but further incorporate into the PSD or functional synaptic pool only at retinogeniculate synapses. Vision-dependent activity, stimulation mimicking retinal input, or activation of CaMKII or Ras signaling regulated forward GluR1 trafficking from the deliverable pool to the synaptic pool at both synapses, whereas Rap2 signals reverse GluR1 transport at retinogeniculate synapses. These findings suggest that synapse-specific AMPA-R delivery involves constitutive and activity-regulated transport steps between morphological pools, a mechanism that may extend to the site-specific delivery of other membrane protein complexes.
Collapse
MESH Headings
- Anesthetics, Local/pharmacology
- Animals
- Animals, Newborn
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Enzyme Inhibitors/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/genetics
- Excitatory Postsynaptic Potentials/physiology
- Geniculate Bodies/cytology
- Green Fluorescent Proteins/genetics
- Hippocampus/cytology
- In Vitro Techniques
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Knockout
- Microscopy, Immunoelectron/methods
- Models, Neurological
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Protein Subunits/metabolism
- Protein Transport/genetics
- Protein Transport/physiology
- Rats
- Receptors, AMPA/deficiency
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, AMPA/ultrastructure
- Signal Transduction/genetics
- Signal Transduction/physiology
- Statistics, Nonparametric
- Synapses/drug effects
- Synapses/physiology
- Synapses/ultrastructure
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Tetrodotoxin/pharmacology
- Transduction, Genetic/methods
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Anders Kielland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, N-0317, Norway
| | | | - James Corson
- Department of Psychology, University of Virginia, Charlottesville, VA 22908
| | - Lei Zhang
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Diane L. Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Paul Heggelund
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, N-0317, Norway
| | - J. Julius Zhu
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
59
|
Abstract
The ability to change behavior likely depends on the selective strengthening and weakening of brain synapses. The cellular models of synaptic plasticity, long-term potentiation (LTP) and depression (LTD) of synaptic strength, can be expressed by the synaptic insertion or removal of AMPA receptors (AMPARs), respectively. We here present an overview of studies that have used animal models to show that such AMPAR trafficking underlies several experience-driven phenomena-from neuronal circuit formation to the modification of behavior. We argue that monitoring and manipulating synaptic AMPAR trafficking represents an attractive means to study cognitive function and dysfunction in animal models.
Collapse
Affiliation(s)
- Helmut W Kessels
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
60
|
Park JS, Voitenko N, Petralia RS, Guan X, Xu JT, Steinberg JP, Takamiya K, Sotnik A, Kopach O, Huganir RL, Tao YX. Persistent inflammation induces GluR2 internalization via NMDA receptor-triggered PKC activation in dorsal horn neurons. J Neurosci 2009; 29:3206-19. [PMID: 19279258 PMCID: PMC2664544 DOI: 10.1523/jneurosci.4514-08.2009] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 02/04/2009] [Accepted: 02/09/2009] [Indexed: 01/23/2023] Open
Abstract
Spinal cord GluR2-lacking AMPA receptors (AMPARs) contribute to nociceptive hypersensitivity in persistent pain, but the molecular mechanisms underlying this event are not completely understood. We report that complete Freund's adjuvant (CFA)-induced peripheral inflammation induces synaptic GluR2 internalization in dorsal horn neurons during the maintenance of CFA-evoked nociceptive hypersensitivity. This internalization is initiated by GluR2 phosphorylation at Ser(880) and subsequent disruption of GluR2 binding to its synaptic anchoring protein (GRIP), resulting in a switch of GluR2-containing AMPARs to GluR2-lacking AMPARs and an increase of AMPAR Ca(2+) permeability at the synapses in dorsal horn neurons. Spinal cord NMDA receptor-mediated triggering of protein kinase C (PKC) activation is required for the induction and maintenance of CFA-induced dorsal horn GluR2 internalization. Moreover, preventing CFA-induced spinal GluR2 internalization through targeted mutation of the GluR2 PKC phosphorylation site impairs CFA-evoked nociceptive hypersensitivity during the maintenance period. These results suggest that dorsal horn GluR2 internalization might participate in the maintenance of NMDA receptor/PKC-dependent nociceptive hypersensitivity in persistent inflammatory pain.
Collapse
Affiliation(s)
- Jang-Su Park
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Nana Voitenko
- Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Ronald S. Petralia
- Laboratory of Neurochemistry, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Xiaowei Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Ji-Tian Xu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | - Andrij Sotnik
- Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Olga Kopach
- Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Richard L. Huganir
- Departments of Neuroscience and
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Yuan-Xiang Tao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
61
|
Park JS, Yaster M, Guan X, Xu JT, Shih MH, Guan Y, Raja SN, Tao YX. Role of spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors in complete Freund's adjuvant-induced inflammatory pain. Mol Pain 2008; 4:67. [PMID: 19116032 PMCID: PMC2628655 DOI: 10.1186/1744-8069-4-67] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 12/30/2008] [Indexed: 11/10/2022] Open
Abstract
Spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) mediate acute spinal processing of nociceptive and non-nociceptive information, but whether and how their activation contributes to the central sensitization that underlies persistent inflammatory pain are still unclear. Here, we examined the role of spinal AMPARs in the development and maintenance of complete Freund's adjuvant (CFA)-induced persistent inflammatory pain. Intrathecal application of two selective non-competitive AMPAR antagonists, CFM-2 (25 and 50 microg) and GYKI 52466 (50 microg), significantly attenuated mechanical and thermal hypersensitivities on the ipsilateral hind paw at 2 and 24 h post-CFA injection. Neither CFM-2 nor GYKI 52466 affected the contralateral basal responses to thermal and mechanical stimuli. Locomotor activity was not altered in any of the drug-treated animals. CFA-induced inflammation did not change total expression or distribution of AMPAR subunits GluR1 and GluR2 in dorsal horn but did alter their subcellular distribution. The amount of GluR2 was markedly increased in the crude cytosolic fraction and decreased in the crude membrane fraction from the ipsilateral L4-5 dorsal horn at 24 h (but not at 2 h) post-CFA injection. Conversely, the level of GluR1 was significantly decreased in the crude cytosolic fraction and increased in the crude membrane fraction from the ipsilateral L4-5 dorsal horn at 24 h (but not at 2 h) post-CFA injection. These findings suggest that spinal AMPARs might participate in the central spinal mechanism of persistent inflammatory pain.
Collapse
Affiliation(s)
- Jang-Su Park
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Rakhade SN, Zhou C, Aujla PK, Fishman R, Sucher NJ, Jensen FE. Early alterations of AMPA receptors mediate synaptic potentiation induced by neonatal seizures. J Neurosci 2008; 28:7979-90. [PMID: 18685023 PMCID: PMC2679369 DOI: 10.1523/jneurosci.1734-08.2008] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 01/13/2023] Open
Abstract
The highest incidence of seizures during lifetime is found in the neonatal period and neonatal seizures lead to a propensity for epilepsy and long-term cognitive deficits. Here, we identify potential mechanisms that elucidate a critical role for AMPA receptors (AMPARs) in epileptogenesis during this critical period in the developing brain. In a rodent model of neonatal seizures, we have shown previously that administration of antagonists of the AMPARs during the 48 h after seizures prevents long-term increases in seizure susceptibility and seizure-induced neuronal injury. Hypoxia-induced seizures in postnatal day 10 rats induce rapid and reversible alterations in AMPAR signaling resembling changes implicated previously in models of synaptic potentiation in vitro. Hippocampal slices removed after hypoxic seizures exhibited potentiation of AMPAR-mediated synaptic currents, including an increase in the amplitude and frequency of spontaneous and miniature EPSCs as well as increased synaptic potency. This increased excitability was temporally associated with a rapid increase in phosphorylation at GluR1 S845/S831 and GluR2 S880 sites and increased activity of the protein kinases CaMKII (calcium/calmodulin-dependent protein kinase II), PKA, and PKC, which mediate the phosphorylation of these AMPAR subunits. Postseizure administration of AMPAR antagonists NBQX (2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline), topiramate, or GYKI-53773 [(1)-1-(4-aminophenyl)-3-acetyl-4-methyl-7,8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine] attenuated the AMPAR potentiation, phosphorylation, and kinase activation and prevented the concurrent increase in in vivo seizure susceptibility. Thus, the potentiation of AMPAR-containing synapses is a reversible, early step in epileptogenesis that offers a novel therapeutic target in the highly seizure-prone developing brain.
Collapse
Affiliation(s)
- Sanjay N. Rakhade
- Department of Neurology, Division of Neuroscience, Children's Hospital, Boston, Massachusetts 02115, and
- Department of Neurology and
| | - Chengwen Zhou
- Department of Neurology, Division of Neuroscience, Children's Hospital, Boston, Massachusetts 02115, and
- Department of Neurology and
| | - Paven K. Aujla
- Department of Neurology, Division of Neuroscience, Children's Hospital, Boston, Massachusetts 02115, and
| | - Rachel Fishman
- Department of Neurology, Division of Neuroscience, Children's Hospital, Boston, Massachusetts 02115, and
| | - Nikolaus J. Sucher
- Department of Neurology, Division of Neuroscience, Children's Hospital, Boston, Massachusetts 02115, and
- Department of Neurology and
| | - Frances E. Jensen
- Department of Neurology, Division of Neuroscience, Children's Hospital, Boston, Massachusetts 02115, and
- Department of Neurology and
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
63
|
Hu H, Qin Y, Bochorishvili G, Zhu Y, van Aelst L, Zhu JJ. Ras signaling mechanisms underlying impaired GluR1-dependent plasticity associated with fragile X syndrome. J Neurosci 2008; 28:7847-62. [PMID: 18667617 PMCID: PMC2553221 DOI: 10.1523/jneurosci.1496-08.2008] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 05/21/2008] [Accepted: 06/23/2008] [Indexed: 01/05/2023] Open
Abstract
Fragile X syndrome, caused by the loss of FMR1 gene function and loss of fragile X mental retardation protein (FMRP), is the most commonly inherited form of mental retardation. The syndrome is characterized by associative learning deficits, reduced risk of cancer, dendritic spine dysmorphogenesis, and facial dysmorphism. However, the molecular mechanism that links loss of function of FMR1 to the learning disability remains unclear. Here, we report an examination of small GTPase Ras signaling and synaptic AMPA receptor (AMPA-R) trafficking in cultured slices and intact brains of wild-type and FMR1 knock-out mice. In FMR1 knock-out mice, synaptic delivery of GluR1-, but not GluR2L- and GluR4-containing AMPA-Rs is impaired, resulting in a selective loss of GluR1-dependent long-term synaptic potentiation (LTP). Although Ras activity is upregulated, its downstream MEK (extracellular signal-regulated kinase kinase)-ERK (extracellular signal-regulated kinase) signaling appears normal, and phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB; or Akt) signaling is compromised in FMR1 knock-out mice. Enhancing Ras-PI3K-PKB signaling restores synaptic delivery of GluR1-containing AMPA-Rs and normal LTP in FMR1 knock-out mice. These results suggest aberrant Ras signaling as a novel mechanism for fragile X syndrome and indicate manipulating Ras-PI3K-PKB signaling to be a potentially effective approach for treating patients with fragile X syndrome.
Collapse
Affiliation(s)
| | - Yi Qin
- Departments of Pharmacology and
- Center for Cancer Research, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | | | | | - Linda van Aelst
- Center for Cancer Research, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - J. Julius Zhu
- Departments of Pharmacology and
- Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia 22908, and
| |
Collapse
|
64
|
Yao Y, Kelly MT, Sajikumar S, Serrano P, Tian D, Bergold PJ, Frey JU, Sacktor TC. PKM zeta maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J Neurosci 2008; 28:7820-7. [PMID: 18667614 PMCID: PMC2597488 DOI: 10.1523/jneurosci.0223-08.2008] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 05/15/2008] [Accepted: 06/11/2008] [Indexed: 01/21/2023] Open
Abstract
Although the maintenance mechanism of late long-term potentiation (LTP) is critical for the storage of long-term memory, the expression mechanism of synaptic enhancement during late-LTP is unknown. The autonomously active protein kinase C isoform, protein kinase Mzeta (PKMzeta), is a core molecule maintaining late-LTP. Here we show that PKMzeta maintains late-LTP through persistent N-ethylmaleimide-sensitive factor (NSF)/glutamate receptor subunit 2 (GluR2)-dependent trafficking of AMPA receptors (AMPARs) to the synapse. Intracellular perfusion of PKMzeta into CA1 pyramidal cells causes potentiation of postsynaptic AMPAR responses; this synaptic enhancement is mediated through NSF/GluR2 interactions but not vesicle-associated membrane protein-dependent exocytosis. PKMzeta may act through NSF to release GluR2-containing receptors from a reserve pool held at extrasynaptic sites by protein interacting with C-kinase 1 (PICK1), because disrupting GluR2/PICK1 interactions mimic and occlude PKMzeta-mediated AMPAR potentiation. During LTP maintenance, PKMzeta directs AMPAR trafficking, as measured by NSF/GluR2-dependent increases of GluR2/3-containing receptors in synaptosomal fractions from tetanized slices. Blocking this trafficking mechanism reverses established late-LTP and persistent potentiation at synapses that have undergone synaptic tagging and capture. Thus, PKMzeta maintains late-LTP by persistently modifying NSF/GluR2-dependent AMPAR trafficking to favor receptor insertion into postsynaptic sites.
Collapse
Affiliation(s)
- Yudong Yao
- The Robert F. Furchgott Center for Neural and Behavioral Science, Departments of Physiology, Pharmacology, and Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York 11203, and
| | - Matthew Taylor Kelly
- The Robert F. Furchgott Center for Neural and Behavioral Science, Departments of Physiology, Pharmacology, and Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York 11203, and
| | - Sreedharan Sajikumar
- Leibniz Institute for Neurobiology, Department of Neurophysiology, D-39118 Magdeburg, Germany
| | - Peter Serrano
- The Robert F. Furchgott Center for Neural and Behavioral Science, Departments of Physiology, Pharmacology, and Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York 11203, and
| | - Dezhi Tian
- The Robert F. Furchgott Center for Neural and Behavioral Science, Departments of Physiology, Pharmacology, and Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York 11203, and
| | - Peter John Bergold
- The Robert F. Furchgott Center for Neural and Behavioral Science, Departments of Physiology, Pharmacology, and Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York 11203, and
| | - Julietta Uta Frey
- Leibniz Institute for Neurobiology, Department of Neurophysiology, D-39118 Magdeburg, Germany
| | - Todd Charlton Sacktor
- The Robert F. Furchgott Center for Neural and Behavioral Science, Departments of Physiology, Pharmacology, and Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York 11203, and
| |
Collapse
|
65
|
Earnshaw BA, Bressloff PC. Modeling the role of lateral membrane diffusion in AMPA receptor trafficking along a spiny dendrite. J Comput Neurosci 2008; 25:366-89. [PMID: 18320299 DOI: 10.1007/s10827-008-0084-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/02/2008] [Accepted: 02/01/2008] [Indexed: 11/28/2022]
Abstract
AMPA receptor trafficking in dendritic spines is emerging as a major postsynaptic mechanism for the expression of plasticity at glutamatergic synapses. AMPA receptors within a spine are in a continuous state of flux, being exchanged with local intracellular pools via exo/endocytosis and with the surrounding dendrite via lateral membrane diffusion. This suggests that one cannot treat a single spine in isolation. Here we present a model of AMPA receptor trafficking between multiple dendritic spines distributed along the surface of a dendrite. Receptors undergo lateral diffusion within the dendritic membrane, with each spine acting as a spatially localized trap where receptors can bind to scaffolding proteins or be internalized through endocytosis. Exocytosis of receptors occurs either at the soma or at sites local to dendritic spines via constitutive recycling from intracellular pools. We derive a reaction-diffusion equation for receptor trafficking that takes into account these various processes. Solutions of this equation allow us to calculate the distribution of synaptic receptor numbers across the population of spines, and hence determine how lateral diffusion contributes to the strength of a synapse. A number of specific results follow from our modeling and analysis. (1) Lateral membrane diffusion alone is insufficient as a mechanism for delivering AMPA receptors from the soma to distal dendrites. (2) A source of surface receptors at the soma tends to generate an exponential-like distribution of receptors along the dendrite, which has implications for synaptic democracy. (3) Diffusion mediates a heterosynaptic interaction between spines so that local changes in the constitutive recycling of AMPA receptors induce nonlocal changes in synaptic strength. On the other hand, structural changes in a spine following long term potentiation or depression have a purely local effect on synaptic strength. (4) A global change in the rates of AMPA receptor exo/endocytosis is unlikely to be the sole mechanism for homeostatic synaptic scaling. (5) The dynamics of AMPA receptor trafficking occurs on multiple timescales and varies according to spatial location along the dendrite. Understanding such dynamics is important when interpreting data from inactivation experiments that are used to infer the rate of relaxation to steady-state.
Collapse
Affiliation(s)
- B A Earnshaw
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
66
|
Abstract
The stabilization of long-term memories requires de novo protein synthesis. How can proteins, synthesized in the soma, act on specific synapses that participate in a given memory? We studied the dynamics of newly synthesized AMPA-type glutamate receptors (AMPARs) induced with learning using transgenic mice expressing the GluR1 subunit fused to green fluorescent protein (GFP-GluR1) under control of the c-fos promoter. We found learning-associated recruitment of newly synthesized GFP-GluR1 selectively to mushroom-type spines in adult hippocampal CA1 neurons 24 hours after fear conditioning. Our results are consistent with a "synaptic tagging" model to allow activated synapses to subsequently capture newly synthesized receptor and also demonstrate a critical functional distinction in the mushroom spines with learning.
Collapse
Affiliation(s)
- Naoki Matsuo
- Department of Cell Biology and Institute for Childhood and Neglected Diseases, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
67
|
Medvedev NI, Rodríguez-Arellano JJ, Popov VI, Davies HA, Tigaret CM, Schoepfer R, Stewart MG. The glutamate receptor 2 subunit controls post-synaptic density complexity and spine shape in the dentate gyrus. Eur J Neurosci 2008; 27:315-25. [DOI: 10.1111/j.1460-9568.2007.06005.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
68
|
Differential trafficking of AMPA and NMDA receptors during long-term potentiation in awake adult animals. J Neurosci 2008; 27:14171-8. [PMID: 18094256 DOI: 10.1523/jneurosci.2348-07.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite a wealth of evidence in vitro that AMPA receptors are inserted into the postsynaptic membrane during long-term potentiation (LTP), it remains unclear whether this occurs in vivo at physiological concentrations of receptors. To address the issue of whether native AMPA or NMDA receptors undergo such trafficking during LTP in the adult brain, we examined the synaptic and surface expression of glutamate receptor subunits during the early induction phase of LTP in the dentate gyrus of awake adult rats. Induction of LTP was accompanied by a rapid NMDA receptor-dependent increase in surface expression of glutamate receptor 1-3 (GluR1-3) subunits. However, in the postsynaptic density fraction only GluR1 accumulated. GluR2/3-containing AMPA receptors, in contrast, were targeted exclusively to extrasynaptic sites in a protein synthesis-dependent manner. NMDA receptor subunits exhibited a delayed accumulation, both at the membrane surface and in postsynaptic densities, that was dependent on protein synthesis. These data suggest that trafficking of native GluR1-containing AMPA receptors to synapses is important for early-phase LTP in awake adult animals, and that this increase is followed homeostatically by a protein synthesis-dependent trafficking of NMDA receptors.
Collapse
|
69
|
Developmental expression of Ca2+-permeable AMPA receptors underlies depolarization-induced long-term depression at mossy fiber CA3 pyramid synapses. J Neurosci 2007; 27:11651-62. [PMID: 17959808 DOI: 10.1523/jneurosci.2671-07.2007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Many central excitatory synapses undergo developmental alterations in the molecular and biophysical characteristics of postsynaptic ionotropic glutamate receptors via changes in subunit composition. Concerning AMPA receptors (AMPARs), glutamate receptor 2 subunit (GluR2)-containing, Ca2+-impermeable AMPARs (CI-AMPARs) prevail at synapses between mature principal neurons; however, accumulating evidence indicates that GluR2-lacking, Ca2+-permeable AMPARs (CP-AMPARs) contribute at these synapses early in development. Here, we used a combination of imaging and electrophysiological recording techniques to investigate potential roles for CP-AMPARs at developing hippocampal mossy fiber-CA3 pyramidal cell (MF-PYR) synapses. We found that transmission at nascent MF-PYR synapses is mediated by a mixed population of CP- and CI-AMPARs as evidenced by polyamine-dependent inwardly rectifying current-voltage (I-V) relationships, and partial philanthotoxin sensitivity of synaptic events. CP-AMPAR expression at MF-PYR synapses is transient, being limited to the first 3 postnatal weeks. Moreover, the expression of CP-AMPARs is regulated by the PDZ (postsynaptic density-95/Discs large/zona occludens-1) domain-containing protein interacting with C kinase 1 (PICK1), because MF-PYR synapses in young PICK1 knock-out mice are philanthotoxin insensitive with linear I-V relationships. Strikingly, MF-PYR transmission via CP-AMPARs is selectively depressed during depolarization-induced long-term depression (DiLTD), a postsynaptic form of MF-PYR plasticity observed only at young MF-PYR synapses. The selective depression of CP-AMPARs during DiLTD was evident as a loss of postsynaptic CP-AMPAR-mediated Ca2+ transients in PYR spines and reduced rectification of MF-PYR synaptic currents. Preferential targeting of CP-AMPARs during DiLTD is further supported by a lack of DiLTD in young PICK1 knock-out mice. Together, these findings indicate that the transient participation of CP-AMPARs at young MF-PYR synapses dictates the developmental window to observe DiLTD.
Collapse
|
70
|
Age-dependent requirement of AKAP150-anchored PKA and GluR2-lacking AMPA receptors in LTP. EMBO J 2007; 26:4879-90. [PMID: 17972919 DOI: 10.1038/sj.emboj.7601884] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 09/19/2007] [Indexed: 11/08/2022] Open
Abstract
Association of PKA with the AMPA receptor GluR1 subunit via the A kinase anchor protein AKAP150 is crucial for GluR1 phosphorylation. Mutating the AKAP150 gene to specifically prevent PKA binding reduced PKA within postsynaptic densities (>70%). It abolished hippocampal LTP in 7-12 but not 4-week-old mice. Inhibitors of PKA and of GluR2-lacking AMPA receptors blocked single tetanus LTP in hippocampal slices of 8 but not 4-week-old WT mice. Inhibitors of GluR2-lacking AMPA receptors also prevented LTP in 2 but not 3-week-old mice. Other studies demonstrate that GluR1 homomeric AMPA receptors are the main GluR2-lacking AMPA receptors in adult hippocampus and require PKA for their functional postsynaptic expression during potentiation. AKAP150-anchored PKA might thus critically contribute to LTP in adult hippocampus in part by phosphorylating GluR1 to foster postsynaptic accumulation of homomeric GluR1 AMPA receptors during initial LTP in 8-week-old mice.
Collapse
|
71
|
Abstract
Synaptic modification of transmission is a general phenomenon expressed at almost every excitatory synapse in the mammalian brain. Over the last three decades, much has been discovered about the cellular, synaptic, molecular, and signaling mechanisms responsible for controlling synaptic transmission and plasticity. Here, we present a brief review of these mechanisms with emphasis on the current understanding of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPA-R) trafficking and Ras-mitogen-activated protein kinase (MAPK) signaling events involved in controlling synaptic transmission.
Collapse
Affiliation(s)
- Yun Gu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
72
|
Hu XD, Huang Q, Yang X, Xia H. Differential regulation of AMPA receptor trafficking by neurabin-targeted synaptic protein phosphatase-1 in synaptic transmission and long-term depression in hippocampus. J Neurosci 2007; 27:4674-86. [PMID: 17460080 PMCID: PMC6672995 DOI: 10.1523/jneurosci.5365-06.2007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Filamentous actin binding protein neurabin I (NrbI) targets protein phosphatase-1 (PP1) to specific postsynaptic microdomains, exerting critical control over AMPA receptor (AMPAR)-mediated synaptic transmission. NrbI-targeted synaptic PP1, which promotes synaptic depression upon long-term depression (LTD) stimuli, serves to prevent synaptic depression under basal conditions. The present studies investigate this opposite regulation of AMPAR trafficking during basal synaptic transmission and LTD by expressing NrbI or NrbI mutant, which is defective in PP1 binding, in hippocampal slice or neuron cultures. We find that expression of the NrbI mutant to interfere with PP1 targeting dramatically reduces basal synaptic transmission, which is correlated with the reduction in surface expression of AMPA subtype glutamate receptor (GluR) 1 and GluR2 subunits. Biochemical analysis demonstrates that the NrbI mutant selectively increases the phosphorylation of GluR2 at C-terminal consensus PKC site, serine 880, which is known to favor GluR2 interaction with PDZ (postsynaptic density 95/Discs large/zona occludens 1) protein PICK1 (protein interacting with C kinase-1). Inhibition of PKC activity or GluR2-PICK1 interaction completely reverses the synaptic depression in neurons expressing the NrbI mutant, suggesting that NrbI-targeted synaptic PP1 stabilizes the basal transmission by negatively controlling PKC phosphorylation of GluR2 and the subsequent PICK1-mediated decrease in GluR2-containing AMPAR surface expression. Distinct from basal transmission, blocking GluR2-PICK1 interaction or PKC activity produces minimal effects on LTD in NrbI-expressing neurons. Instead, NrbI-targeted PP1 facilitates LTD by dephosphorylating GluR1 at both serine 845 and serine 831, with GluR2 serine 880 phosphorylation unaltered. Our studies thus elucidate that NrbI-targeted PP1, in response to distinct synaptic activities, regulates the synaptic trafficking of specific AMPAR subunits.
Collapse
Affiliation(s)
- Xiao-dong Hu
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Qing Huang
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Xian Yang
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Houhui Xia
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
73
|
Ehlers MD, Heine M, Groc L, Lee MC, Choquet D. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 2007; 54:447-60. [PMID: 17481397 PMCID: PMC1993808 DOI: 10.1016/j.neuron.2007.04.010] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 01/21/2007] [Accepted: 04/10/2007] [Indexed: 11/25/2022]
Abstract
Synaptic activity regulates the postsynaptic accumulation of AMPA receptors over timescales ranging from minutes to days. Indeed, the regulated trafficking and mobility of GluR1 AMPA receptors underlies many forms of synaptic potentiation at glutamatergic synapses throughout the brain. However, the basis for synapse-specific accumulation of GluR1 is unknown. Here we report that synaptic activity locally immobilizes GluR1 AMPA receptors at individual synapses. Using single-molecule tracking together with the silencing of individual presynaptic boutons, we demonstrate that local synaptic activity reduces diffusional exchange of GluR1 between synaptic and extraynaptic domains, resulting in postsynaptic accumulation of GluR1. At neighboring inactive synapses, GluR1 is highly mobile with individual receptors frequently escaping the synapse. Within the synapse, spontaneous activity confines the diffusional movement of GluR1 to restricted subregions of the postsynaptic membrane. Thus, local activity restricts GluR1 mobility on a submicron scale, defining an input-specific mechanism for regulating AMPA receptor composition and abundance.
Collapse
Affiliation(s)
- Michael D Ehlers
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
74
|
Jörntell H, Hansel C. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 2007; 52:227-38. [PMID: 17046686 DOI: 10.1016/j.neuron.2006.09.032] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Information storage in neural circuits depends on activity-dependent alterations in synaptic weights, such as long-term potentiation (LTP) and long-term depression (LTD). Bidirectional synaptic plasticity endows synapses with mechanisms for rapid reversibility, but it remains unclear how it correlates with reversibility in behavioral learning and whether there is a universal synaptic memory mechanism that operates similarly at all types of synapses. A recently discovered postsynaptic form of LTP at cerebellar parallel fiber (PF)-Purkinje cell (PC) synapses provides a reversal mechanism for PF-LTD and enables a fresh look at the implications of bidirectional plasticity in a brain structure that is particularly suitable to correlate cellular to behavioral learning events. Here, we will review recent studies that reveal unique properties of bidirectional cerebellar plasticity and suggest that the induction cascades for cerebellar LTP and LTD provide a mirror image of their counterparts at hippocampal synapses. We will also discuss how PF-LTP helps to explain reversibility observed in cerebellar motor learning.
Collapse
Affiliation(s)
- Henrik Jörntell
- Department of Experimental Medical Science, Section for Neuroscience, Lund University, BMC F10 Tornavägen 10, SE-221 84 Lund, Sweden
| | | |
Collapse
|
75
|
Earnshaw BA, Bressloff PC. Biophysical model of AMPA receptor trafficking and its regulation during long-term potentiation/long-term depression. J Neurosci 2006; 26:12362-73. [PMID: 17122061 PMCID: PMC6675437 DOI: 10.1523/jneurosci.3601-06.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AMPA receptors mediate the majority of fast excitatory synaptic transmission in the CNS, and evidence suggests that AMPA receptor trafficking regulates synaptic strength, a phenomenon implicated in learning and memory. There are two major mechanisms of AMPA receptor trafficking: exocytic/endocytic exchange of surface receptors with intracellular receptor pools, and the lateral diffusion or hopping of surface receptors between the postsynaptic density and the surrounding extrasynaptic membrane. In this paper, we present a biophysical model of these trafficking mechanisms under basal conditions and during the expression of long-term potentiation (LTP) and depression (LTD). We show how our model reproduces a wide range of physiological data, and use this to make predictions regarding possible targets of second-messenger pathways activated during the induction phase of LTP/LTD.
Collapse
Affiliation(s)
- Berton A. Earnshaw
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
| | - Paul C. Bressloff
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
76
|
Lai C, Xie C, McCormack SG, Chiang HC, Michalak MK, Lin X, Chandran J, Shim H, Shimoji M, Cookson MR, Huganir RL, Rothstein JD, Price DL, Wong PC, Martin LJ, Zhu JJ, Cai H. Amyotrophic lateral sclerosis 2-deficiency leads to neuronal degeneration in amyotrophic lateral sclerosis through altered AMPA receptor trafficking. J Neurosci 2006; 26:11798-806. [PMID: 17093100 PMCID: PMC2556290 DOI: 10.1523/jneurosci.2084-06.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/31/2006] [Accepted: 10/04/2006] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease is caused by a selective loss of motor neurons. One form of juvenile onset autosomal recessive ALS (ALS2) has been linked to the loss of function of the ALS2 gene. The pathogenic mechanism of ALS2-deficiency, however, remains unclear. To further understand the function of alsin that is encoded by the full-length ALS2 gene, we screened proteins interacting with alsin. Here, we report that alsin interacted with glutamate receptor interacting protein 1 (GRIP1) both in vitro and in vivo, and colocalized with GRIP1 in neurons. In support of the physiological interaction between alsin and GRIP1, the subcellular distribution of GRIP1 was altered in ALS2(-/-) spinal motor neurons, which correlates with a significant reduction of AMPA-type glutamate receptor subunit 2 (GluR2) at the synaptic/cell surface of ALS2(-/-) neurons. The decrease of calcium-impermeable GluR2-containing AMPA receptors at the cell/synaptic surface rendered ALS2(-/-) neurons more susceptible to glutamate receptor-mediated neurotoxicity. Our findings reveal a novel function of alsin in AMPA receptor trafficking and provide a novel pathogenic link between ALS2-deficiency and motor neuron degeneration, suggesting a protective role of alsin in maintaining the survival of motor neurons.
Collapse
Affiliation(s)
- Chen Lai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Chengsong Xie
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Stefanie G. McCormack
- Department of Pharmacology and Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | | | - Marta K. Michalak
- Department of Pharmacology and Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia 22908
- Biotechnology Graduate Program, Technical University of Łódź, 90-924 Łódź, Poland
| | - Xian Lin
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Jayanth Chandran
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Hoon Shim
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Mika Shimoji
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| | - Richard L. Huganir
- Neuroscience, and
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | | | | | | | | | - J. Julius Zhu
- Department of Pharmacology and Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Huaibin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|