51
|
Micheli L, D'Andrea G, Creanza TM, Volpe D, Ancona N, Scardigli R, Tirone F. Transcriptome analysis reveals genes associated with stem cell activation by physical exercise in the dentate gyrus of aged p16Ink4a knockout mice. Front Cell Dev Biol 2023; 11:1270892. [PMID: 37928906 PMCID: PMC10621069 DOI: 10.3389/fcell.2023.1270892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Throughout adulthood neural stem cells divide in neurogenic niches-the dentate gyrus of the hippocampus and the subventricular zone-producing progenitor cells and new neurons. Stem cells self-renew, thus preserving their pool. Furthermore, the number of stem/progenitor cells in the neurogenic niches decreases with age. We have previously demonstrated that the cyclin-dependent kinase inhibitor p16Ink4a maintains, in aged mice, the pool of dentate gyrus stem cells by preventing their activation after a neurogenic stimulus such as exercise (running). We showed that, although p16Ink4a ablation by itself does not activate stem/progenitor cells, exercise strongly induced stem cell proliferation in p16Ink4a knockout dentate gyrus, but not in wild-type. As p16Ink4a regulates stem cell self-renewal during aging, we sought to profile the dentate gyrus transcriptome from p16Ink4a wild-type and knockout aged mice, either sedentary or running for 12 days. By pairwise comparisons of differentially expressed genes and by correlative analyses through the DESeq2 software, we identified genes regulated by p16Ink4a deletion, either without stimulus (running) added, or following running. The p16Ink4a knockout basic gene signature, i.e., in sedentary mice, involves upregulation of apoptotic, neuroinflammation- and synaptic activity-associated genes, suggesting a reactive cellular state. Conversely, another set of 106 genes we identified, whose differential expression specifically reflects the pattern of proliferative response of p16 knockout stem cells to running, are involved in processes that regulate stem cell activation, such as synaptic function, neurotransmitter metabolism, stem cell proliferation control, and reactive oxygen species level regulation. Moreover, we analyzed the regulation of these stem cell-specific genes after a second running stimulus. Surprisingly, the second running neither activated stem cell proliferation in the p16Ink4a knockout dentate gyrus nor changed the expression of these genes, confirming that they are correlated to the stem cell reactivity to stimulus, a process where they may play a role regulating stem cell activation.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Daniel Volpe
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- European Brain Research Institute (EBRI), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| |
Collapse
|
52
|
Brugmans AK, Walter C, Moreno N, Göbel C, Holdhof D, de Faria FW, Hotfilder M, Jeising D, Frühwald MC, Skryabin BV, Rozhdestvensky TS, Wachsmuth L, Faber C, Dugas M, Varghese J, Schüller U, Albert TK, Kerl K. A Carboxy-terminal Smarcb1 Point Mutation Induces Hydrocephalus Formation and Affects AP-1 and Neuronal Signalling Pathways in Mice. Cell Mol Neurobiol 2023; 43:3511-3526. [PMID: 37219662 PMCID: PMC10477118 DOI: 10.1007/s10571-023-01361-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
The BAF (BRG1/BRM-associated factor) chromatin remodelling complex is essential for the regulation of DNA accessibility and gene expression during neuronal differentiation. Mutations of its core subunit SMARCB1 result in a broad spectrum of pathologies, including aggressive rhabdoid tumours or neurodevelopmental disorders. Other mouse models have addressed the influence of a homo- or heterozygous loss of Smarcb1, yet the impact of specific non-truncating mutations remains poorly understood. Here, we have established a new mouse model for the carboxy-terminal Smarcb1 c.1148del point mutation, which leads to the synthesis of elongated SMARCB1 proteins. We have investigated its impact on brain development in mice using magnetic resonance imaging, histology, and single-cell RNA sequencing. During adolescence, Smarcb11148del/1148del mice demonstrated rather slow weight gain and frequently developed hydrocephalus including enlarged lateral ventricles. In embryonic and neonatal stages, mutant brains did not differ anatomically and histologically from wild-type controls. Single-cell RNA sequencing of brains from newborn mutant mice revealed that a complete brain including all cell types of a physiologic mouse brain is formed despite the SMARCB1 mutation. However, neuronal signalling appeared disturbed in newborn mice, since genes of the AP-1 transcription factor family and neurite outgrowth-related transcripts were downregulated. These findings support the important role of SMARCB1 in neurodevelopment and extend the knowledge of different Smarcb1 mutations and their associated phenotypes.
Collapse
Affiliation(s)
- Aliska K Brugmans
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Carolin Walter
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Natalia Moreno
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Carolin Göbel
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Dörthe Holdhof
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Flavia W de Faria
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Marc Hotfilder
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Daniela Jeising
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, Paediatrics and Adolescent Medicine, University Medical Center Augsburg, 86156, Augsburg, Germany
| | - Boris V Skryabin
- Medical Faculty, Core Facility TRAnsgenic Animal and Genetic Engineering Models (TRAM), University of Münster, 48149, Münster, Germany
| | - Timofey S Rozhdestvensky
- Medical Faculty, Core Facility TRAnsgenic Animal and Genetic Engineering Models (TRAM), University of Münster, 48149, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, 48149, Münster, Germany
| | - Cornelius Faber
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, 48149, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
- Institute of Medical Informatics, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Ulrich Schüller
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Thomas K Albert
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Kornelius Kerl
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
53
|
Kuwahara Y, Iehara T, Matsumoto A, Okuda T. Recent insights into the SWI/SNF complex and the molecular mechanism of hSNF5 deficiency in rhabdoid tumors. Cancer Med 2023; 12:16323-16336. [PMID: 37317642 PMCID: PMC10469780 DOI: 10.1002/cam4.6255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Genetic information encoded by DNA is packaged in the nucleus using the chromatin structure. The accessibility of transcriptional elements in DNA is controlled by the dynamic structural changes of chromatin for the appropriate regulation of gene transcription. Chromatin structure is regulated by two general mechanisms, one is histone modification and the other is chromatin remodeling in an ATP-dependent manner. Switch/sucrose nonfermentable (SWI/SNF) complexes utilize the energy from ATP hydrolysis to mobilize nucleosomes and remodel the chromatin structure, contributing to conformational changes in chromatin. Recently, the inactivation of encoding genes for subunits of the SWI/SNF complexes has been documented in a series of human cancers, accounting for up to almost 20% of all human cancers. For example, human SNF5 (hSNF5), the gene that encodes a subunit of the SWI/SNF complexes, is the sole mutation target that drives malignant rhabdoid tumors (MRT). Despite remarkably simple genomes, the MRT has highly malignant characteristics. As a key to understanding MRT tumorigenesis, it is necessary to fully examine the mechanism of chromatin remodeling by the SWI/SNF complexes. Herein, we review the current understanding of chromatin remodeling by focusing on SWI/SNF complexes. In addition, we describe the molecular mechanisms and influences of hSNF5 deficiency in rhabdoid tumors and the prospects for developing new therapeutic targets to overcome the epigenetic drive of cancer that is caused by abnormal chromatin remodeling.
Collapse
Affiliation(s)
- Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Akifumi Matsumoto
- Department of Ophthalmology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
54
|
Padilla-Benavides T, Olea-Flores M, Sharma T, Syed SA, Witwicka H, Zuñiga-Eulogio MD, Zhang K, Navarro-Tito N, Imbalzano AN. Differential Contributions of mSWI/SNF Chromatin Remodeler Sub-Families to Myoblast Differentiation. Int J Mol Sci 2023; 24:11256. [PMID: 37511016 PMCID: PMC10378909 DOI: 10.3390/ijms241411256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Mammalian SWI/SNF (mSWI/SNF) complexes are ATP-dependent chromatin remodeling enzymes that are critical for normal cellular functions. mSWI/SNF enzymes are classified into three sub-families based on the presence of specific subunit proteins. The sub-families are Brm- or Brg1-associated factor (BAF), ncBAF (non-canonical BAF), and polybromo-associated BAF (PBAF). The biological roles for the different enzyme sub-families are poorly described. We knocked down the expression of genes encoding unique subunit proteins for each sub-family, Baf250A, Brd9, and Baf180, which mark the BAF, ncBAF, and PBAF sub-families, respectively, and examined the requirement for each in myoblast differentiation. We found that Baf250A and the BAF complex were required to drive lineage-specific gene expression. KD of Brd9 delayed differentiation. However, while the Baf250A-dependent gene expression profile included myogenic genes, the Brd9-dependent gene expression profile did not, suggesting Brd9 and the ncBAF complex indirectly contributed to differentiation. Baf180 was dispensable for myoblast differentiation. The results distinguish between the roles of the mSWI/SNF enzyme sub-families during myoblast differentiation.
Collapse
Affiliation(s)
- Teresita Padilla-Benavides
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA; (M.O.-F.); (M.D.Z.-E.); (K.Z.)
| | - Monserrat Olea-Flores
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA; (M.O.-F.); (M.D.Z.-E.); (K.Z.)
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (T.S.); (S.A.S.); (H.W.)
| | - Tapan Sharma
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (T.S.); (S.A.S.); (H.W.)
| | - Sabriya A. Syed
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (T.S.); (S.A.S.); (H.W.)
| | - Hanna Witwicka
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (T.S.); (S.A.S.); (H.W.)
| | - Miriam D. Zuñiga-Eulogio
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA; (M.O.-F.); (M.D.Z.-E.); (K.Z.)
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, GRO, Mexico;
| | - Kexin Zhang
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA; (M.O.-F.); (M.D.Z.-E.); (K.Z.)
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, GRO, Mexico;
| | - Anthony N. Imbalzano
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (T.S.); (S.A.S.); (H.W.)
| |
Collapse
|
55
|
Soto-Castillo JJ, Llavata-Marti L, Fort-Culillas R, Andreu-Cobo P, Moreno R, Codony C, García Del Muro X, Alemany R, Piulats JM, Martin-Liberal J. SWI/SNF Complex Alterations in Tumors with Rhabdoid Features: Novel Therapeutic Approaches and Opportunities for Adoptive Cell Therapy. Int J Mol Sci 2023; 24:11143. [PMID: 37446319 DOI: 10.3390/ijms241311143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex is one of the most remarkably altered epigenetic regulators in cancer. Pathogenic mutations in genes encoding SWI/SNF-related proteins have been recently described in many solid tumors, including rare and aggressive malignancies with rhabdoid features with no standard therapies in advanced or metastatic settings. In recent years, clinical trials with targeted drugs aimed at restoring its function have shown discouraging results. However, preclinical data have found an association between these epigenetic alterations and response to immune therapy. Thus, the rationale for immunotherapy strategies in SWI/SNF complex alteration-related tumors is strong. Here, we review the SWI/SNF complex and how its dysfunction drives the oncogenesis of rhabdoid tumors and the proposed strategies to revert this alteration and promising novel therapeutic approaches, including immune checkpoint inhibition and adoptive cell therapy.
Collapse
Affiliation(s)
- Juan José Soto-Castillo
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Lucía Llavata-Marti
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 17007 Girona, Spain
| | - Roser Fort-Culillas
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 17007 Girona, Spain
| | - Pablo Andreu-Cobo
- Medical Oncology Department, Parc Tauli Hospital Universitari, 08208 Sabadell, Spain
| | - Rafael Moreno
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Carles Codony
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Xavier García Del Muro
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Ramon Alemany
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Josep M Piulats
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
56
|
Reddy D, Bhattacharya S, Workman JL. (mis)-Targeting of SWI/SNF complex(es) in cancer. Cancer Metastasis Rev 2023; 42:455-470. [PMID: 37093326 PMCID: PMC10349013 DOI: 10.1007/s10555-023-10102-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
The ATP-dependent chromatin remodeling complex SWI/SNF (also called BAF) is critical for the regulation of gene expression. During the evolution from yeast to mammals, the BAF complex has evolved an enormous complexity that contains a high number of subunits encoded by various genes. Emerging studies highlight the frequent involvement of altered mammalian SWI/SNF chromatin-remodeling complexes in human cancers. Here, we discuss the recent advances in determining the structure of SWI/SNF complexes, highlight the mechanisms by which mutations affecting these complexes promote cancer, and describe the promising emerging opportunities for targeted therapies.
Collapse
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| |
Collapse
|
57
|
Zhu Z, Chen X, Guo A, Manzano T, Walsh PJ, Wills KM, Halliburton R, Radko-Juettner S, Carter RD, Partridge JF, Green DR, Zhang J, Roberts CWM. Mitotic bookmarking by SWI/SNF subunits. Nature 2023; 618:180-187. [PMID: 37225980 PMCID: PMC10303083 DOI: 10.1038/s41586-023-06085-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
For cells to initiate and sustain a differentiated state, it is necessary that a 'memory' of this state is transmitted through mitosis to the daughter cells1-3. Mammalian switch/sucrose non-fermentable (SWI/SNF) complexes (also known as Brg1/Brg-associated factors, or BAF) control cell identity by modulating chromatin architecture to regulate gene expression4-7, but whether they participate in cell fate memory is unclear. Here we provide evidence that subunits of SWI/SNF act as mitotic bookmarks to safeguard cell identity during cell division. The SWI/SNF core subunits SMARCE1 and SMARCB1 are displaced from enhancers but are bound to promoters during mitosis, and we show that this binding is required for appropriate reactivation of bound genes after mitotic exit. Ablation of SMARCE1 during a single mitosis in mouse embryonic stem cells is sufficient to disrupt gene expression, impair the occupancy of several established bookmarks at a subset of their targets and cause aberrant neural differentiation. Thus, SWI/SNF subunit SMARCE1 has a mitotic bookmarking role and is essential for heritable epigenetic fidelity during transcriptional reprogramming.
Collapse
Affiliation(s)
- Zhexin Zhu
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Xiaolong Chen
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ao Guo
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Trishabelle Manzano
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick J Walsh
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kendall M Wills
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rebecca Halliburton
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sandi Radko-Juettner
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Raymond D Carter
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Janet F Partridge
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
58
|
Singh A, Modak SB, Chaturvedi MM, Purohit JS. SWI/SNF Chromatin Remodelers: Structural, Functional and Mechanistic Implications. Cell Biochem Biophys 2023:10.1007/s12013-023-01140-5. [PMID: 37119511 DOI: 10.1007/s12013-023-01140-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
The nuclear events of a eukaryotic cell, such as replication, transcription, recombination and repair etc. require the transition of the compactly arranged chromatin into an uncompacted state and vice-versa. This is mediated by post-translational modification of the histones, exchange of histone variants and ATP-dependent chromatin remodeling. The SWI/SNF chromatin remodeling complexes are one of the most well characterized families of chromatin remodelers. In addition to their role in modulating chromatin, they have also been assigned roles in cancer and health-related anomalies such as developmental, neurocognitive, and intellectual disabilities. Owing to their vital cellular and medical connotations, developing an understanding of the structural and functional aspects of the complex becomes imperative. However, due to the intricate nature of higher-order chromatin as well as compositional heterogeneity of the SWI/SNF complex, intra-species isoforms and inter-species homologs, this often becomes challenging. To this end, the present review attempts to present an amalgamated perspective on the discovery, structure, function, and regulation of the SWI/SNF complex.
Collapse
Affiliation(s)
- Abhilasha Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Madan M Chaturvedi
- Department of Zoology, University of Delhi, Delhi, 110007, India
- SGT University, Gurugram (Delhi-NCR), Haryana, 122505, India
| | | |
Collapse
|
59
|
Porter RS, Iwase S. Modulation of chromatin architecture influences the neuronal nucleus through activity-regulated gene expression. Biochem Soc Trans 2023; 51:703-713. [PMID: 36929379 PMCID: PMC10959270 DOI: 10.1042/bst20220889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
The disruption of chromatin-regulating genes is associated with many neurocognitive syndromes. While most of these genes are ubiquitously expressed across various cell-types, many chromatin regulators act upon activity regulated genes (ARGs) that play central roles in synaptic development and plasticity. Recent literature suggests a link between ARG expression disruption in neurons with the human phenotypes observed in various neurocognitive syndromes. Advances in chromatin biology have demonstrated how chromatin structure, from nucleosome occupancy to higher-order structures such as topologically associated domains, impacts the kinetics of transcription. This review discusses the dynamics of these various levels of chromatin structure and their influence on the expression of ARGs.
Collapse
Affiliation(s)
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
60
|
Ke NY, Zhao TY, Wang WR, Qian YT, Liu C. Role of brahma-related gene 1/brahma-associated factor subunits in neural stem/progenitor cells and related neural developmental disorders. World J Stem Cells 2023; 15:235-247. [PMID: 37181007 PMCID: PMC10173807 DOI: 10.4252/wjsc.v15.i4.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Different fates of neural stem/progenitor cells (NSPCs) and their progeny are determined by the gene regulatory network, where a chromatin-remodeling complex affects synergy with other regulators. Here, we review recent research progress indicating that the BRG1/BRM-associated factor (BAF) complex plays an important role in NSPCs during neural development and neural developmental disorders. Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation, which can also lead to various diseases in humans. We discussed BAF complex subunits and their main characteristics in NSPCs. With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs, we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs. Considering recent progress in these research areas, we suggest that three approaches should be used in investigations in the near future. Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders. More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications.
Collapse
Affiliation(s)
- Nai-Yu Ke
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Tian-Yi Zhao
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Wan-Rong Wang
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Yu-Tong Qian
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Chao Liu
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China.
| |
Collapse
|
61
|
Boulasiki P, Tan XW, Spinelli M, Riccio A. The NuRD Complex in Neurodevelopment and Disease: A Case of Sliding Doors. Cells 2023; 12:cells12081179. [PMID: 37190088 DOI: 10.3390/cells12081179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The Nucleosome Remodelling and Deacetylase (NuRD) complex represents one of the major chromatin remodelling complexes in mammalian cells, uniquely coupling the ability to "open" the chromatin by inducing nucleosome sliding with histone deacetylase activity. At the core of the NuRD complex are a family of ATPases named CHDs that utilise the energy produced by the hydrolysis of the ATP to induce chromatin structural changes. Recent studies have highlighted the prominent role played by the NuRD in regulating gene expression during brain development and in maintaining neuronal circuitry in the adult cerebellum. Importantly, components of the NuRD complex have been found to carry mutations that profoundly affect neurological and cognitive development in humans. Here, we discuss recent literature concerning the molecular structure of NuRD complexes and how the subunit composition and numerous permutations greatly determine their functions in the nervous system. We will also discuss the role of the CHD family members in an array of neurodevelopmental disorders. Special emphasis will be given to the mechanisms that regulate the NuRD complex composition and assembly in the cortex and how subtle mutations may result in profound defects of brain development and the adult nervous system.
Collapse
Affiliation(s)
- Paraskevi Boulasiki
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Xiao Wei Tan
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Matteo Spinelli
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Neuroscience Department, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Antonella Riccio
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
62
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
63
|
Otto JE, Ursu O, Wu AP, Winter EB, Cuoco MS, Ma S, Qian K, Michel BC, Buenrostro JD, Berger B, Regev A, Kadoch C. Structural and functional properties of mSWI/SNF chromatin remodeling complexes revealed through single-cell perturbation screens. Mol Cell 2023; 83:1350-1367.e7. [PMID: 37028419 DOI: 10.1016/j.molcel.2023.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/07/2023] [Accepted: 03/10/2023] [Indexed: 04/09/2023]
Abstract
The mammalian SWI/SNF (mSWI/SNF or BAF) family of chromatin remodeling complexes play critical roles in regulating DNA accessibility and gene expression. The three final-form subcomplexes-cBAF, PBAF, and ncBAF-are distinct in biochemical componentry, chromatin targeting, and roles in disease; however, the contributions of their constituent subunits to gene expression remain incompletely defined. Here, we performed Perturb-seq-based CRISPR-Cas9 knockout screens targeting mSWI/SNF subunits individually and in select combinations, followed by single-cell RNA-seq and SHARE-seq. We uncovered complex-, module-, and subunit-specific contributions to distinct regulatory networks and defined paralog subunit relationships and shifted subcomplex functions upon perturbations. Synergistic, intra-complex genetic interactions between subunits reveal functional redundancy and modularity. Importantly, single-cell subunit perturbation signatures mapped across bulk primary human tumor expression profiles both mirror and predict cBAF loss-of-function status in cancer. Our findings highlight the utility of Perturb-seq to dissect disease-relevant gene regulatory impacts of heterogeneous, multi-component master regulatory complexes.
Collapse
Affiliation(s)
- Jordan E Otto
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Oana Ursu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander P Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evan B Winter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Sai Ma
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kristin Qian
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Brittany C Michel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Bonnie Berger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, UA.
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Chemical Biology Program, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, UA.
| |
Collapse
|
64
|
Păun O, Tan YX, Patel H, Strohbuecker S, Ghanate A, Cobolli-Gigli C, Llorian Sopena M, Gerontogianni L, Goldstone R, Ang SL, Guillemot F, Dias C. Pioneer factor ASCL1 cooperates with the mSWI/SNF complex at distal regulatory elements to regulate human neural differentiation. Genes Dev 2023; 37:218-242. [PMID: 36931659 PMCID: PMC10111863 DOI: 10.1101/gad.350269.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
Pioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression, though mechanisms through which pioneer transcription factors remodel chromatin remain unclear. Here, using single-cell transcriptomics, we show that endogenous expression of neurogenic transcription factor ASCL1, considered a classical pioneer factor, defines a transient population of progenitors in human neural differentiation. Testing ASCL1's pioneer function using a knockout model to define the unbound state, we found that endogenous expression of ASCL1 drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a nonpioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. ASCL1 interacts with BAF SWI/SNF chromatin remodeling complexes, primarily at targets where it acts as a nonpioneer factor, and we provide evidence for codependent DNA binding and remodeling at a subset of ASCL1 and SWI/SNF cotargets. Our findings provide new insights into ASCL1 function regulating activation of long-range regulatory elements in human neurogenesis and uncover a novel mechanism of its chromatin remodeling function codependent on partner ATPase activity.
Collapse
Affiliation(s)
- Oana Păun
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Yu Xuan Tan
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Harshil Patel
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephanie Strohbuecker
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Avinash Ghanate
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Clementina Cobolli-Gigli
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Miriam Llorian Sopena
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Lina Gerontogianni
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Robert Goldstone
- Bioinformatics and Biostatistics Science and Technology Platform, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Siew-Lan Ang
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Cristina Dias
- Neural Stem Cell Biology Laboratory, the Francis Crick Institute, London NW1 1AT, United Kingdom;
- Medical and Molecular Genetics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| |
Collapse
|
65
|
Chohra I, Chung K, Giri S, Malgrange B. ATP-Dependent Chromatin Remodellers in Inner Ear Development. Cells 2023; 12:cells12040532. [PMID: 36831199 PMCID: PMC9954591 DOI: 10.3390/cells12040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
During transcription, DNA replication and repair, chromatin structure is constantly modified to reveal specific genetic regions and allow access to DNA-interacting enzymes. ATP-dependent chromatin remodelling complexes use the energy of ATP hydrolysis to modify chromatin architecture by repositioning and rearranging nucleosomes. These complexes are defined by a conserved SNF2-like, catalytic ATPase subunit and are divided into four families: CHD, SWI/SNF, ISWI and INO80. ATP-dependent chromatin remodellers are crucial in regulating development and stem cell biology in numerous organs, including the inner ear. In addition, mutations in genes coding for proteins that are part of chromatin remodellers have been implicated in numerous cases of neurosensory deafness. In this review, we describe the composition, structure and functional activity of these complexes and discuss how they contribute to hearing and neurosensory deafness.
Collapse
|
66
|
SMARCA4: Current status and future perspectives in non-small-cell lung cancer. Cancer Lett 2023; 554:216022. [PMID: 36450331 DOI: 10.1016/j.canlet.2022.216022] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
SMARCA4, also known as transcription activator, is an ATP-dependent catalytic subunit of SWI/SNF (SWItch/Sucrose NonFermentable) chromatin-remodeling complexes that participates in the regulation of chromatin structure and gene expression by supplying energy. As a tumor suppressor that has aberrant expression in ∼10% of non-small-cell lung cancers (NSCLCs), SMARCA4 possesses many biological functions, including regulating gene expression, differentiation and transcription. Furthermore, NSCLC patients with SMARCA4 alterations have a weak response to conventional chemotherapy and poor prognosis. Therefore, the mechanisms of SMARCA4 in NSCLC development urgently need to be explored to identify novel biomarkers and precise therapeutic strategies for this subtype. This review systematically describes the biological functions of SMARCA4 and its role in NSCLC development, metastasis, functional epigenetics and potential therapeutic approaches for NSCLCs with SMARCA4 alterations. Additionally, this paper explores the relationship and regulatory mechanisms shared by SMARCA4 and its mutually exclusive catalytic subunit SMARCA2. We aim to provide innovative treatment strategies and improve clinical outcomes for NSCLC patients with SMARCA4 alterations.
Collapse
|
67
|
Chen PM, Wong CN, Wong CN, Chu PY. Actin-like Protein 6A Expression Correlates with Cancer Stem Cell-like Features and Poor Prognosis in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24032016. [PMID: 36768349 PMCID: PMC9916576 DOI: 10.3390/ijms24032016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecological cancers, often diagnosed at the late stage and lacking an effective targeted therapy. Although the study of malignant features of cancer, considered to be cancer stem cells (CSCs), is emerging, the aim of this study was to predict and explore the possible mechanism and clinical value of genetic markers in the development of ovarian cancer from a combined database with CSCs features. The common differentially expressed genes (DEGs) were selected in GSE185833 and GSE176246 datasets from the Gene Expression Omnibus (GEO). The GSE185833 dataset was created to reveal gene expression profiles of peritoneal metastasis tissues using single-cell sequencing, and the GSE176246 dataset was determined from gene expression profiles of chemotherapy-refractory ovarian cancer cell lines compared with ovarian cancer cell lines by RNA-seq analysis. By analyzing the correlation between common DEGs and prognosis of ovarian cancer and its possible pathways and functions were predicted by The Cancer Genome Atlas (TCGA) database. The expression levels of 11 genetic markers were significantly elevated in highly invasive and chemoresistant ovarian cancer. The expression of Actin-like protein 6A (ACTL6A) was found to be correlated with survival prognosis, and the total survival time of the patients with high expression of ACTL6A was shorter than those with low expression. Gene set enrichment analysis (GSEA) showed that ACTL6A positively enriched the gene set of 'Cell cycle' and ACTL6A negatively enriched the gene set of focal adhesion. CP724714, a human epidermal growth factor receptor 2 (HER2) inhibitor, could serve as a therapeutic option when ACTL6A levels are high in ovarian cancer cells. The high expression of ACTL6A is a poor prognostic factor in ovarian cancer and may serve as an effective biomarker for predicting treatment-refractory, metastasis, and prognosis of patients with ovarian cancer. The use of HER2 inhibitors is a promising therapeutic strategy against chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Po-Ming Chen
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Chui-Nguk Wong
- Department of Obstetrics and Gynecology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Chui-Na Wong
- Department of Obstetrics and Gynecology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan
- National Institute of Cancer Research, National Health Research Institute, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-4-7256166
| |
Collapse
|
68
|
Agbo L, Loehr J, Kougnassoukou Tchara PE, Lambert JP. Characterization of the Functional Interplay between the BRD7 and BRD9 Homologues in mSWI/SNF Complexes. J Proteome Res 2023; 22:78-90. [PMID: 36484504 DOI: 10.1021/acs.jproteome.2c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bromodomains (BRDs) are a family of evolutionarily conserved domains that are the main readers of acetylated lysine (Kac) residues on proteins. Recently, numerous BRD-containing proteins have been proven essential for transcriptional regulation in numerous contexts. This is exemplified by the multi-subunit mSWI/SNF chromatin remodeling complexes, which incorporate up to 10 BRDs within five distinct subunits, allowing for extensive integration of Kac signaling to inform transcriptional regulation. As dysregulated transcription promotes oncogenesis, we sought to characterize how BRD-containing subunits contribute molecularly to mSWI/SNF functions. By combining genome editing, functional proteomics, and cellular biology, we found that loss of any single BRD-containing mSWI/SNF subunit altered but did not fully disrupt the various mSWI/SNF complexes. In addition, we report that the downregulation of BRD7 is common in invasive lobular carcinoma and modulates the interactome of its homologue, BRD9. We show that these alterations exacerbate sensitivities to inhibitors targeting epigenetic regulators─notably, inhibitors targeting the BRDs of non-mSWI/SNF proteins. Our results highlight the interconnections between distinct mSWI/SNF complexes and their far-reaching impacts on transcriptional regulation in human health and disease. The mass spectrometry data generated have been deposited to MassIVE and ProteomeXchange and assigned the identifiers MSV000089357, MSV000089362, and PXD033572.
Collapse
Affiliation(s)
- Lynda Agbo
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| | - Jérémy Loehr
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| |
Collapse
|
69
|
Semprich CI, Davidson L, Amorim Torres A, Patel H, Briscoe J, Metzis V, Storey KG. ERK1/2 signalling dynamics promote neural differentiation by regulating chromatin accessibility and the polycomb repressive complex. PLoS Biol 2022; 20:e3000221. [PMID: 36455041 PMCID: PMC9746999 DOI: 10.1371/journal.pbio.3000221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/13/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
Fibroblast growth factor (FGF) is a neural inducer in many vertebrate embryos, but how it regulates chromatin organization to coordinate the activation of neural genes is unclear. Moreover, for differentiation to progress, FGF signalling must decline. Why these signalling dynamics are required has not been determined. Here, we show that dephosphorylation of the FGF effector kinase ERK1/2 rapidly increases chromatin accessibility at neural genes in mouse embryos, and, using ATAC-seq in human embryonic stem cell derived spinal cord precursors, we demonstrate that this occurs genome-wide across neural genes. Importantly, ERK1/2 inhibition induces precocious neural gene transcription, and this involves dissociation of the polycomb repressive complex from key gene loci. This takes place independently of subsequent loss of the repressive histone mark H3K27me3 and transcriptional onset. Transient ERK1/2 inhibition is sufficient for the dissociation of the repressive complex, and this is not reversed on resumption of ERK1/2 signalling. Moreover, genomic footprinting of sites identified by ATAC-seq together with ChIP-seq for polycomb protein Ring1B revealed that ERK1/2 inhibition promotes the occupancy of neural transcription factors (TFs) at non-polycomb as well as polycomb associated sites. Together, these findings indicate that ERK1/2 signalling decline promotes global changes in chromatin accessibility and TF binding at neural genes by directing polycomb and other regulators and appears to serve as a gating mechanism that provides directionality to the process of differentiation.
Collapse
Affiliation(s)
- Claudia I. Semprich
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Lindsay Davidson
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | - Adriana Amorim Torres
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
| | | | | | - Vicki Metzis
- The Francis Crick Institute, London, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (VM); (KGS)
| | - Kate G. Storey
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Scotland, United Kingdom
- * E-mail: (VM); (KGS)
| |
Collapse
|
70
|
Wischhof L, Lee H, Tutas J, Overkott C, Tedt E, Stork M, Peitz M, Brüstle O, Ulas T, Händler K, Schultze JL, Ehninger D, Nicotera P, Salomoni P, Bano D. BCL7A-containing SWI/SNF/BAF complexes modulate mitochondrial bioenergetics during neural progenitor differentiation. EMBO J 2022; 41:e110595. [PMID: 36305367 PMCID: PMC9713712 DOI: 10.15252/embj.2022110595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 01/15/2023] Open
Abstract
Mammalian SWI/SNF/BAF chromatin remodeling complexes influence cell lineage determination. While the contribution of these complexes to neural progenitor cell (NPC) proliferation and differentiation has been reported, little is known about the transcriptional profiles that determine neurogenesis or gliogenesis. Here, we report that BCL7A is a modulator of the SWI/SNF/BAF complex that stimulates the genome-wide occupancy of the ATPase subunit BRG1. We demonstrate that BCL7A is dispensable for SWI/SNF/BAF complex integrity, whereas it is essential to regulate Notch/Wnt pathway signaling and mitochondrial bioenergetics in differentiating NPCs. Pharmacological stimulation of Wnt signaling restores mitochondrial respiration and attenuates the defective neurogenic patterns observed in NPCs lacking BCL7A. Consistently, treatment with an enhancer of mitochondrial biogenesis, pioglitazone, partially restores mitochondrial respiration and stimulates neuronal differentiation of BCL7A-deficient NPCs. Using conditional BCL7A knockout mice, we reveal that BCL7A expression in NPCs and postmitotic neurons is required for neuronal plasticity and supports behavioral and cognitive performance. Together, our findings define the specific contribution of BCL7A-containing SWI/SNF/BAF complexes to mitochondria-driven NPC commitment, thereby providing a better understanding of the cell-intrinsic transcriptional processes that connect metabolism, neuronal morphogenesis, and cognitive flexibility.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Hang‐Mao Lee
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Janine Tutas
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Eileen Tedt
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Miriam Stork
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Michael Peitz
- Institute of Reconstructive NeurobiologyUniversity of Bonn Medical Faculty and University Hospital BonnBonnGermany
- Cell Programming Core FacilityUniversity of Bonn Medical FacultyBonnGermany
| | - Oliver Brüstle
- Institute of Reconstructive NeurobiologyUniversity of Bonn Medical Faculty and University Hospital BonnBonnGermany
| | - Thomas Ulas
- PRECISE Platform for Single Cell Genomics and EpigenomicsGerman Center for Neurodegenerative Diseases (DZNE) and the University of BonnBonnGermany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and EpigenomicsGerman Center for Neurodegenerative Diseases (DZNE) and the University of BonnBonnGermany
| | - Joachim L Schultze
- PRECISE Platform for Single Cell Genomics and EpigenomicsGerman Center for Neurodegenerative Diseases (DZNE) and the University of BonnBonnGermany
- Department for Genomics and Immunoregulation, LIMES InstituteUniversity of BonnBonnGermany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Paolo Salomoni
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| |
Collapse
|
71
|
Multiprotein GLI Transcriptional Complexes as Therapeutic Targets in Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121967. [PMID: 36556332 PMCID: PMC9786339 DOI: 10.3390/life12121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The Hedgehog signaling pathway functions in both embryonic development and adult tissue homeostasis. Importantly, its aberrant activation is also implicated in the progression of multiple types of cancer, including basal cell carcinoma and medulloblastoma. GLI transcription factors function as the ultimate effectors of the Hedgehog signaling pathway. Their activity is regulated by this signaling cascade via their mRNA expression, protein stability, subcellular localization, and ultimately their transcriptional activity. Further, GLI proteins are also regulated by a variety of non-canonical mechanisms in addition to the canonical Hedgehog pathway. Recently, with an increased understanding of epigenetic gene regulation, novel transcriptional regulators have been identified that interact with GLI proteins in multi-protein complexes to regulate GLI transcriptional activity. Such complexes have added another layer of complexity to the regulation of GLI proteins. Here, we summarize recent work on the regulation of GLI transcriptional activity by these novel protein complexes and describe their relevance to cancer, as such GLI regulators represent alternative and innovative druggable targets in GLI-dependent cancers.
Collapse
|
72
|
Yamamoto T, Kohashi K, Yamada Y, Kawata J, Sakihama K, Matsuda R, Koga Y, Aishima S, Nakamura M, Oda Y. Relationship between cellular morphology and abnormality of SWI/SNF complex subunits in pancreatic undifferentiated carcinoma. J Cancer Res Clin Oncol 2022; 148:2945-2957. [PMID: 34817661 DOI: 10.1007/s00432-021-03860-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/14/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Pancreatic undifferentiated carcinoma (UDC) is a rare tumor with a worse prognosis than pancreatic ductal adenocarcinoma (PDAC). Recent study showed that UDC exhibits loss of SMARCB1, which is one of the subunits of the SWI/SNF complex. However, whether there are abnormalities of other SWI/SNF complex subunits in UDC has remained unknown. In this study, we attempted to clarify whether the loss of SWI/SNF complex subunits is related to the pathogenesis of UDC by comparing undifferentiated component (UC) and ductal adenocarcinoma component (DAC). METHODS Genetic analysis of the ten UCs and six DACs was performed. The expression of ARID1A, SMARCA2, SMARCA4, SMARCB1, SMARCC1, and SMARCC2 in formalin-fixed, paraffin-embedded tumor tissues collected by surgical resection from 18 UDC patients was evaluated immunohistochemically. Moreover, two pancreatic cell lines were evaluated for the effects of siARID1A on the mRNA and protein expression of E-cadherin, vimentin, and epithelial-mesenchymal transition (EMT)-related markers by qRT-PCR, western blotting, and immunofluorescence staining. RESULTS UCs tended to have a higher frequency of mutation in ARID1A, SMARCA4, and SMARCC2 than DACs. Immunohistochemically, UCs revealed reduced/lost expression of ARID1A (72%), SMARCB1 (44%), SMARCC1 (31%), and SMARCC2 (67%). Reduced/lost expression of ARID1A, SMARCB1, and SMARCC2 was significantly more frequently observed in UCs than in DACs. In the pancreatic cell lines, western blotting and qRT-PCR showed that the downregulation of ARID1A increased the expression of vimentin and EMT-related markers. CONCLUSION Our results suggest that the abnormality of SWI/SNF complex subunits, especially ARID1A, is one of the factors behind the morphological change of UDC.
Collapse
Affiliation(s)
- Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Kawata
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kukiko Sakihama
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Matsuda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Koga
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
73
|
Fulton SL, Wenderski W, Lepack AE, Eagle AL, Fanutza T, Bastle RM, Ramakrishnan A, Hays EC, Neal A, Bendl J, Farrelly LA, Al-Kachak A, Lyu Y, Cetin B, Chan JC, Tran TN, Neve RL, Roper RJ, Brennand KJ, Roussos P, Schimenti JC, Friedman AK, Shen L, Blitzer RD, Robison AJ, Crabtree GR, Maze I. Rescue of deficits by Brwd1 copy number restoration in the Ts65Dn mouse model of Down syndrome. Nat Commun 2022; 13:6384. [PMID: 36289231 PMCID: PMC9606253 DOI: 10.1038/s41467-022-34200-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/17/2022] [Indexed: 12/25/2022] Open
Abstract
With an incidence of ~1 in 800 births, Down syndrome (DS) is the most common chromosomal condition linked to intellectual disability worldwide. While the genetic basis of DS has been identified as a triplication of chromosome 21 (HSA21), the genes encoded from HSA21 that directly contribute to cognitive deficits remain incompletely understood. Here, we found that the HSA21-encoded chromatin effector, BRWD1, was upregulated in neurons derived from iPS cells from an individual with Down syndrome and brain of trisomic mice. We showed that selective copy number restoration of Brwd1 in trisomic animals rescued deficits in hippocampal LTP, cognition and gene expression. We demonstrated that Brwd1 tightly binds the BAF chromatin remodeling complex, and that increased Brwd1 expression promotes BAF genomic mistargeting. Importantly, Brwd1 renormalization rescued aberrant BAF localization, along with associated changes in chromatin accessibility and gene expression. These findings establish BRWD1 as a key epigenomic mediator of normal neurodevelopment and an important contributor to DS-related phenotypes.
Collapse
Affiliation(s)
- Sasha L Fulton
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford Medical School, Palo Alto, CA, 94305, USA
- Department of Genetics, Stanford Medical School, Palo Alto, CA, 94305, USA
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Ashley E Lepack
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew L Eagle
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Tomas Fanutza
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ryan M Bastle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emma C Hays
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arianna Neal
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jaroslav Bendl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Disease Neuroepigenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lorna A Farrelly
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Amni Al-Kachak
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yang Lyu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bulent Cetin
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tina N Tran
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Rachael L Neve
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departments of Psychiatry and Genetics, Wu Tsai Institute, Yale School of Medicine, New Haven, CT, 065109, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Disease Neuroepigenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- J.J. Peters Veterans Affairs Hospital, Bronx, NY, 10468, USA
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Allyson K Friedman
- Department of Biological Sciences, City University of New York-Hunter College, New York, NY, 10065, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert D Blitzer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford Medical School, Palo Alto, CA, 94305, USA
- Department of Genetics, Stanford Medical School, Palo Alto, CA, 94305, USA
- Department of Developmental Biology, Stanford Medical School, Palo Alto, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
74
|
Ge T, Gu X, Jia R, Ge S, Chai P, Zhuang A, Fan X. Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1049-1082. [PMID: 36266736 PMCID: PMC9648395 DOI: 10.1002/cac2.12374] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
Abstract
Reversible, spatial, and temporal regulation of metabolic reprogramming and epigenetic homeostasis are prominent hallmarks of carcinogenesis. Cancer cells reprogram their metabolism to meet the high bioenergetic and biosynthetic demands for vigorous proliferation. Epigenetic dysregulation is a common feature of human cancers, which contributes to tumorigenesis and maintenance of the malignant phenotypes by regulating gene expression. The epigenome is sensitive to metabolic changes. Metabolism produces various metabolites that are substrates, cofactors, or inhibitors of epigenetic enzymes. Alterations in metabolic pathways and fluctuations in intermediate metabolites convey information regarding the intracellular metabolic status into the nucleus by modulating the activity of epigenetic enzymes and thus remodeling the epigenetic landscape, inducing transcriptional responses to heterogeneous metabolic requirements. Cancer metabolism is regulated by epigenetic machinery at both transcriptional and post‐transcriptional levels. Epigenetic modifiers, chromatin remodelers and non‐coding RNAs are integral contributors to the regulatory networks involved in cancer metabolism, facilitating malignant transformation. However, the significance of the close connection between metabolism and epigenetics in the context of cancer has not been fully deciphered. Thus, it will be constructive to summarize and update the emerging new evidence supporting this bidirectional crosstalk and deeply assess how the crosstalk between metabolic reprogramming and epigenetic abnormalities could be exploited to optimize treatment paradigms and establish new therapeutic options. In this review, we summarize the central mechanisms by which epigenetics and metabolism reciprocally modulate each other in cancer and elaborate upon and update the major contributions of the interplays between epigenetic aberrations and metabolic rewiring to cancer initiation and development. Finally, we highlight the potential therapeutic opportunities for hematological malignancies and solid tumors by targeting this epigenetic‐metabolic circuit. In summary, we endeavored to depict the current understanding of the coordination between these fundamental abnormalities more comprehensively and provide new perspectives for utilizing metabolic and epigenetic targets for cancer treatment.
Collapse
Affiliation(s)
- Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| |
Collapse
|
75
|
Sharma V, Nehra S, Do LH, Ghosh A, Deshpande AJ, Singhal N. Biphasic cell cycle defect causes impaired neurogenesis in down syndrome. Front Genet 2022; 13:1007519. [PMID: 36313423 PMCID: PMC9596798 DOI: 10.3389/fgene.2022.1007519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Impaired neurogenesis in Down syndrome (DS) is characterized by reduced neurons, increased glial cells, and delayed cortical lamination. However, the underlying cause for impaired neurogenesis in DS is not clear. Using both human and mouse iPSCs, we demonstrate that DS impaired neurogenesis is due to biphasic cell cycle dysregulation during the generation of neural progenitors from iPSCs named the “neurogenic stage” of neurogenesis. Upon neural induction, DS cells showed reduced proliferation during the early phase followed by increased proliferation in the late phase of the neurogenic stage compared to control cells. While reduced proliferation in the early phase causes reduced neural progenitor pool, increased proliferation in the late phase leads to delayed post mitotic neuron generation in DS. RNAseq analysis of late-phase DS progenitor cells revealed upregulation of S phase-promoting regulators, Notch, Wnt, Interferon pathways, and REST, and downregulation of several genes of the BAF chromatin remodeling complex. NFIB and POU3F4, neurogenic genes activated by the interaction of PAX6 and the BAF complex, were downregulated in DS cells. ChIPseq analysis of late-phase neural progenitors revealed aberrant PAX6 binding with reduced promoter occupancy in DS cells. Together, these data indicate that impaired neurogenesis in DS is due to biphasic cell cycle dysregulation during the neurogenic stage of neurogenesis.
Collapse
Affiliation(s)
| | | | - Long H. Do
- Department of Neuroscience, University of California, San Diego, San Diego, CA, United States
| | - Anwesha Ghosh
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | | | - Nishant Singhal
- National Centre for Cell Science, Pune, India
- *Correspondence: Nishant Singhal,
| |
Collapse
|
76
|
Diego-Martin B, Pérez-Alemany J, Candela-Ferre J, Corbalán-Acedo A, Pereyra J, Alabadí D, Jami-Alahmadi Y, Wohlschlegel J, Gallego-Bartolomé J. The TRIPLE PHD FINGERS proteins are required for SWI/SNF complex-mediated +1 nucleosome positioning and transcription start site determination in Arabidopsis. Nucleic Acids Res 2022; 50:10399-10417. [PMID: 36189880 PMCID: PMC9561266 DOI: 10.1093/nar/gkac826] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/14/2022] Open
Abstract
Eukaryotes have evolved multiple ATP-dependent chromatin remodelers to shape the nucleosome landscape. We recently uncovered an evolutionarily conserved SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeler complex in plants reminiscent of the mammalian BAF subclass, which specifically incorporates the MINUSCULE (MINU) catalytic subunits and the TRIPLE PHD FINGERS (TPF) signature subunits. Here we report experimental evidence that establishes the functional relevance of TPF proteins for the complex activity. Our results show that depletion of TPF triggers similar pleiotropic phenotypes and molecular defects to those found in minu mutants. Moreover, we report the genomic location of MINU2 and TPF proteins as representative members of this SWI/SNF complex and their impact on nucleosome positioning and transcription. These analyses unravel the binding of the complex to thousands of genes where it modulates the position of the +1 nucleosome. These targets tend to produce 5′-shifted transcripts in the tpf and minu mutants pointing to the participation of the complex in alternative transcription start site usage. Interestingly, there is a remarkable correlation between +1 nucleosome shift and 5′ transcript length change suggesting their functional connection. In summary, this study unravels the function of a plant SWI/SNF complex involved in +1 nucleosome positioning and transcription start site determination.
Collapse
Affiliation(s)
- Borja Diego-Martin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Jaime Pérez-Alemany
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Joan Candela-Ferre
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Antonio Corbalán-Acedo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Juan Pereyra
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
77
|
Jiménez C, Antonelli R, Nadal-Ribelles M, Devis-Jauregui L, Latorre P, Solé C, Masanas M, Molero-Valenzuela A, Soriano A, Sánchez de Toledo J, Llobet-Navas D, Roma J, Posas F, de Nadal E, Gallego S, Moreno L, Segura MF. Structural disruption of BAF chromatin remodeller impairs neuroblastoma metastasis by reverting an invasiveness epigenomic program. Mol Cancer 2022; 21:175. [PMID: 36057593 PMCID: PMC9440539 DOI: 10.1186/s12943-022-01643-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/24/2022] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Epigenetic programming during development is essential for determining cell lineages, and alterations in this programming contribute to the initiation of embryonal tumour development. In neuroblastoma, neural crest progenitors block their course of natural differentiation into sympathoadrenergic cells, leading to the development of aggressive and metastatic paediatric cancer. Research of the epigenetic regulators responsible for oncogenic epigenomic networks is crucial for developing new epigenetic-based therapies against these tumours. Mammalian switch/sucrose non-fermenting (mSWI/SNF) ATP-dependent chromatin remodelling complexes act genome-wide translating epigenetic signals into open chromatin states. The present study aimed to understand the contribution of mSWI/SNF to the oncogenic epigenomes of neuroblastoma and its potential as a therapeutic target. METHODS Functional characterisation of the mSWI/SNF complexes was performed in neuroblastoma cells using proteomic approaches, loss-of-function experiments, transcriptome and chromatin accessibility analyses, and in vitro and in vivo assays. RESULTS Neuroblastoma cells contain three main mSWI/SNF subtypes, but only BRG1-associated factor (BAF) complex disruption through silencing of its key structural subunits, ARID1A and ARID1B, impairs cell proliferation by promoting cell cycle blockade. Genome-wide chromatin remodelling and transcriptomic analyses revealed that BAF disruption results in the epigenetic repression of an extensive invasiveness-related expression program involving integrins, cadherins, and key mesenchymal regulators, thereby reducing adhesion to the extracellular matrix and the subsequent invasion in vitro and drastically inhibiting the initiation and growth of neuroblastoma metastasis in vivo. CONCLUSIONS We report a novel ATPase-independent role for the BAF complex in maintaining an epigenomic program that allows neuroblastoma invasiveness and metastasis, urging for the development of new BAF pharmacological structural disruptors for therapeutic exploitation in metastatic neuroblastoma.
Collapse
Affiliation(s)
- Carlos Jiménez
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roberta Antonelli
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mariona Nadal-Ribelles
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Devis-Jauregui
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain
| | - Pablo Latorre
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carme Solé
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Masanas
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Adrià Molero-Valenzuela
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Aroa Soriano
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Catalan Institute of Oncology, L'Hospitalet de Llobregat, Spain
| | - David Llobet-Navas
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain.,Low Prevalence Tumors. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Roma
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eulàlia de Nadal
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Soledad Gallego
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Paediatric Oncology and Haematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lucas Moreno
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Paediatric Oncology and Haematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Miguel F Segura
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| |
Collapse
|
78
|
The SWI/SNF chromatin remodeling factor DPF3 regulates metastasis of ccRCC by modulating TGF-β signaling. Nat Commun 2022; 13:4680. [PMID: 35945219 PMCID: PMC9363427 DOI: 10.1038/s41467-022-32472-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/02/2022] [Indexed: 12/23/2022] Open
Abstract
DPF3, a component of the SWI/SNF chromatin remodeling complex, has been associated with clear cell renal cell carcinoma (ccRCC) in a genome-wide association study. However, the functional role of DPF3 in ccRCC development and progression remains unknown. In this study, we demonstrate that DPF3a, the short isoform of DPF3, promotes kidney cancer cell migration both in vitro and in vivo, consistent with the clinical observation that DPF3a is significantly upregulated in ccRCC patients with metastases. Mechanistically, DPF3a specifically interacts with SNIP1, via which it forms a complex with SMAD4 and p300 histone acetyltransferase (HAT), the major transcriptional regulators of TGF-β signaling pathway. Moreover, the binding of DPF3a releases the repressive effect of SNIP1 on p300 HAT activity, leading to the increase in local histone acetylation and the activation of cell movement related genes. Overall, our findings reveal a metastasis-promoting function of DPF3, and further establish the link between SWI/SNF components and ccRCC. The functional role of DPF3, a component of the SWI/SNF chromatin remodelling complex associated with clear cell renal cell carcinoma (ccRCC), remains unknown. Here, the authors characterise the mechanism by which DPF3 promotes metastasis via the activation of the TGF-β signalling pathway in ccRCC.
Collapse
|
79
|
Schoenfeld DA, Zhou R, Zairis S, Su W, Steinbach N, Mathur D, Bansal A, Zachem AL, Tavarez B, Hasson D, Bernstein E, Rabadan R, Parsons R. Loss of PBRM1 Alters Promoter Histone Modifications and Activates ALDH1A1 to Drive Renal Cell Carcinoma. Mol Cancer Res 2022; 20:1193-1207. [PMID: 35412614 PMCID: PMC9357026 DOI: 10.1158/1541-7786.mcr-21-1039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/22/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
Subunits of SWI/SNF chromatin remodeling complexes are frequently mutated in human malignancies. The PBAF complex is composed of multiple subunits, including the tumor-suppressor protein PBRM1 (BAF180), as well as ARID2 (BAF200), that are unique to this SWI/SNF complex. PBRM1 is mutated in various cancers, with a high mutation frequency in clear cell renal cell carcinoma (ccRCC). Here, we integrate RNA-seq, histone modification ChIP-seq, and ATAC-seq data to show that loss of PBRM1 results in de novo gains in H3K4me3 peaks throughout the epigenome, including activation of a retinoic acid biosynthesis and signaling gene signature. We show that one such target gene, ALDH1A1, which regulates a key step in retinoic acid biosynthesis, is consistently upregulated with PBRM1 loss in ccRCC cell lines and primary tumors, as well as non-malignant cells. We further find that ALDH1A1 increases the tumorigenic potential of ccRCC cells. Using biochemical methods, we show that ARID2 remains bound to other PBAF subunits after loss of PBRM1 and is essential for increased ALDH1A1 after loss of PBRM1, whereas other core SWI/SNF components are dispensable, including the ATPase subunit BRG1. In total, this study uses global epigenomic approaches to uncover novel mechanisms of PBRM1 tumor suppression in ccRCC. IMPLICATIONS This study implicates the SWI/SNF subunit and tumor-suppressor PBRM1 in the regulation of promoter histone modifications and retinoic acid biosynthesis and signaling pathways in ccRCC and functionally validates one such target gene, the aldehyde dehydrogenase ALDH1A1.
Collapse
Affiliation(s)
| | - Royce Zhou
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sakellarios Zairis
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - William Su
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole Steinbach
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deepti Mathur
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ankita Bansal
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexis L. Zachem
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bertilia Tavarez
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Ramon Parsons
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
80
|
Jones CA, Tansey WP, Weissmiller AM. Emerging Themes in Mechanisms of Tumorigenesis by SWI/SNF Subunit Mutation. Epigenet Insights 2022; 15:25168657221115656. [PMID: 35911061 PMCID: PMC9329810 DOI: 10.1177/25168657221115656] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The SWI/SNF chromatin remodeling complex uses the energy of ATP hydrolysis to alter contacts between DNA and nucleosomes, allowing regions of the genome to become accessible for biological processes such as transcription. The SWI/SNF chromatin remodeler is also one of the most frequently altered protein complexes in cancer, with upwards of 20% of all cancers carrying mutations in a SWI/SNF subunit. Intense studies over the last decade have probed the molecular events associated with SWI/SNF dysfunction in cancer and common themes are beginning to emerge in how tumor-associated SWI/SNF mutations promote malignancy. In this review, we summarize current understanding of SWI/SNF complexes, their alterations in cancer, and what is known about the impact of these mutations on tumor-relevant transcriptional events. We discuss how enhancer dysregulation is a common theme in SWI/SNF mutant cancers and describe how resultant alterations in enhancer and super-enhancer activity conspire to block development and differentiation while promoting stemness and self-renewal. We also identify a second emerging theme in which SWI/SNF perturbations intersect with potent oncoprotein transcription factors AP-1 and MYC to drive malignant transcriptional programs.
Collapse
Affiliation(s)
- Cheyenne A Jones
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|
81
|
Mignon J, Mottet D, Leyder T, Uversky VN, Perpète EA, Michaux C. Structural characterisation of amyloidogenic intrinsically disordered zinc finger protein isoforms DPF3b and DPF3a. Int J Biol Macromol 2022; 218:57-71. [PMID: 35863661 DOI: 10.1016/j.ijbiomac.2022.07.102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022]
Abstract
Double PHD fingers 3 (DPF3) is a zinc finger protein, found in the BAF chromatin remodelling complex, and is involved in the regulation of gene expression. Two DPF3 isoforms have been identified, respectively named DPF3b and DPF3a. Very limited structural information is available for these isoforms, and their specific functionality still remains poorly studied. In a previous work, we have demonstrated the first evidence of DPF3a being a disordered protein sensitive to amyloid fibrillation. Intrinsically disordered proteins (IDPs) lack a defined tertiary structure, existing as a dynamic conformational ensemble, allowing them to act as hubs in protein-protein interaction networks. In the present study, we have more thoroughly characterised DPF3a in vitro behaviour, as well as unravelled and compared the structural properties of the DPF3b isoform, using an array of predictors and biophysical techniques. Predictions, spectroscopy, and dynamic light scattering have revealed a high content in disorder: prevalence of random coil, aromatic residues partially to fully exposed to the solvent, and large hydrodynamic diameters. DPF3a appears to be more disordered than DPF3b, and exhibits more expanded conformations. Furthermore, we have shown that they both time-dependently aggregate into amyloid fibrils, as revealed by typical circular dichroism, deep-blue autofluorescence, and amyloid-dye binding assay fingerprints. Although spectroscopic and microscopic analyses have unveiled that they share a similar aggregation pathway, DPF3a fibrillates at a faster rate, likely through reordering of its C-terminal domain.
Collapse
Affiliation(s)
- Julien Mignon
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
| | - Denis Mottet
- University of Liège, GIGA-Molecular Biology of Diseases, Gene Expression and Cancer Laboratory, B34, Avenue de l'Hôpital, 4000 Liège, Belgium.
| | - Tanguy Leyder
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium.
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - Eric A Perpète
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium; Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium.
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, University of Namur, 61 rue de Bruxelles, 5000 Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, Namur, Belgium; Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
| |
Collapse
|
82
|
Schauperl M, Denny RA. AI-Based Protein Structure Prediction in Drug Discovery: Impacts and Challenges. J Chem Inf Model 2022; 62:3142-3156. [PMID: 35727311 DOI: 10.1021/acs.jcim.2c00026] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins are the molecular machinery of the human body, and their malfunctioning is often responsible for diseases, making them crucial targets for drug discovery. The three-dimensional structure of a protein determines its biological function, its conformational state determines substrates, cofactors, and protein binding. Rational drug discovery employs engineered small molecules to selectively interact with proteins to modulate their function. To selectively target a protein and to design small molecules, knowing the protein structure with all its specific conformation is critical. Unfortunately, for a large number of proteins relevant for drug discovery, the three-dimensional structure has not yet been experimentally solved. Therefore, accurately predicting their structure based on their amino acid sequence is one of the grant challenges in biology. Recently, AlphaFold2, a machine learning application based on a deep neural network, was able to predict unknown structures of proteins with an unprecedented accuracy. Despite the impressive progress made by AlphaFold2, nature still challenges the field of structure prediction. In this Perspective, we explore how AlphaFold2 and related methods help make drug design more efficient. Furthermore, we discuss the roles of predicting domain-domain orientations, all relevant conformational states, the influence of posttranslational modifications, and conformational changes due to protein binding partners. We highlight where further improvements are needed for advanced machine learning methods to be successfully and frequently used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Michael Schauperl
- Department of Computational Sciences HotSpot Therapeutics 50 Milk Street, Boston, Massachusetts 02110, United States
| | - Rajiah Aldrin Denny
- Department of Computational Sciences HotSpot Therapeutics 50 Milk Street, Boston, Massachusetts 02110, United States
| |
Collapse
|
83
|
Hernández-García J, Diego-Martin B, Kuo PH, Jami-Alahmadi Y, Vashisht AA, Wohlschlegel J, Jacobsen SE, Blázquez MA, Gallego-Bartolomé J. Comprehensive identification of SWI/SNF complex subunits underpins deep eukaryotic ancestry and reveals new plant components. Commun Biol 2022; 5:549. [PMID: 35668117 PMCID: PMC9170682 DOI: 10.1038/s42003-022-03490-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/16/2022] [Indexed: 01/19/2023] Open
Abstract
Over millions of years, eukaryotes evolved from unicellular to multicellular organisms with increasingly complex genomes and sophisticated gene expression networks. Consequently, chromatin regulators evolved to support this increased complexity. The ATP-dependent chromatin remodelers of the SWI/SNF family are multiprotein complexes that modulate nucleosome positioning and appear under different configurations, which perform distinct functions. While the composition, architecture, and activity of these subclasses are well understood in a limited number of fungal and animal model organisms, the lack of comprehensive information in other eukaryotic organisms precludes the identification of a reliable evolutionary model of SWI/SNF complexes. Here, we performed a systematic analysis using 36 species from animal, fungal, and plant lineages to assess the conservation of known SWI/SNF subunits across eukaryotes. We identified evolutionary relationships that allowed us to propose the composition of a hypothetical ancestral SWI/SNF complex in the last eukaryotic common ancestor. This last common ancestor appears to have undergone several rounds of lineage-specific subunit gains and losses, shaping the current conformation of the known subclasses in animals and fungi. In addition, our results unravel a plant SWI/SNF complex, reminiscent of the animal BAF subclass, which incorporates a set of plant-specific subunits of still unknown function.
Collapse
Affiliation(s)
- Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
- Laboratory of Biochemistry, Wageningen University & Research, 6703 WE, Stippeneng 4, Wageningen, The Netherlands
| | - Borja Diego-Martin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Peggy Hsuanyu Kuo
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, 90095, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, CA, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, 90095, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, CA, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, 90095, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, CA, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, 90095, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California at Los Angeles, Los Angeles, 90095, CA, USA
- Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, 90095, CA, USA
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain.
| |
Collapse
|
84
|
Jin Y, Gao X, Lu M, Chen G, Yang X, Ren N, Song Y, Hou C, Li J, Liu Q, Gao J. Loss of BAF (mSWI/SNF) chromatin-remodeling ATPase Brg1 causes multiple malformations of cortical development in mice. Hum Mol Genet 2022; 31:3504-3520. [PMID: 35666215 DOI: 10.1093/hmg/ddac127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/12/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in genes encoding subunits of the BAF (BRG1/BRM-associated factor) complex cause various neurodevelopmental diseases. However, the underlying pathophysiology remains largely unknown. Here, we analyzed the function of Brg1, a core ATPase of BAF complexes, in the developing cerebral cortex. Loss of Brg1 causes several morphological defects resembling human malformations of cortical development (MCDs), including microcephaly, cortical dysplasia, cobblestone lissencephaly, and periventricular heterotopia. We demonstrated that neural progenitor cell (NPC) renewal, neuronal differentiation, neuronal migration, apoptotic cell death, pial basement membrane, and apical junctional complexes, which are associated with MCD formation, were impaired after Brg1 deletion. Furthermore, transcriptome profiling indicated that a large number of genes were deregulated. The deregulated genes were closely related to MCD formation, and most of these genes were bound by Brg1. Cumulatively, our study indicates an essential role of Brg1 in cortical development and provides a new possible pathogenesis underlying Brg1-based BAF complex-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yecheng Jin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaotong Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Miaoqing Lu
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Ge Chen
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Xiaofan Yang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Naixia Ren
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Yuning Song
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, Shandong 250100, China
| | - Congzhe Hou
- Department of Reproductive medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Jiangxia Li
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiangang Gao
- School of Laboratory Animal Science, Shandong First Medical University, Jinan, Shandong 250117, China
| |
Collapse
|
85
|
Kuvaeva EE, Kulikova DA, Simonova OB, Mertsalov IB. Studying the Specific Localization of Toothrin Protein from Related D4 Family in Drosophila melanogaster. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
86
|
Park HJ, Tsai E, Huang D, Weaver M, Frick L, Alcantara A, Moran JJ, Patzig J, Melendez-Vasquez CV, Crabtree GR, Feltri M, Svaren J, Casaccia P. ACTL6a coordinates axonal caliber recognition and myelination in the peripheral nerve. iScience 2022; 25:104132. [PMID: 35434551 PMCID: PMC9010646 DOI: 10.1016/j.isci.2022.104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/29/2022] [Accepted: 03/17/2022] [Indexed: 11/12/2022] Open
Abstract
Cells elaborate transcriptional programs in response to external signals. In the peripheral nerves, Schwann cells (SC) sort axons of given caliber and start the process of wrapping their membrane around them. We identify Actin-like protein 6a (ACTL6a), part of SWI/SNF chromatin remodeling complex, as critical for the integration of axonal caliber recognition with the transcriptional program of myelination. Nuclear levels of ACTL6A in SC are increased by contact with large caliber axons or nanofibers, and result in the eviction of repressive histone marks to facilitate myelination. Without Actl6a the SC are unable to coordinate caliber recognition and myelin production. Peripheral nerves in knockout mice display defective radial sorting, hypo-myelination of large caliber axons, and redundant myelin around small caliber axons, resulting in a clinical motor phenotype. Overall, this suggests that ACTL6A is a key component of the machinery integrating external signals for proper myelination of the peripheral nerve.
Collapse
Affiliation(s)
- Hye-Jin Park
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
| | - Eric Tsai
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
- Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dennis Huang
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
- Graduate Program in Biology, Graduate Center of CUNY, New York, NY 10016, USA
| | - Michael Weaver
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Luciana Frick
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ace Alcantara
- Graduate Program in Biology, Graduate Center of CUNY, New York, NY 10016, USA
- Hunter College, Department of Biological Sciences, New York, NY 10065, USA
| | - John J. Moran
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
| | - Julia Patzig
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
| | - Carmen V. Melendez-Vasquez
- Graduate Program in Biology, Graduate Center of CUNY, New York, NY 10016, USA
- Hunter College, Department of Biological Sciences, New York, NY 10065, USA
| | - Gerald R. Crabtree
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - M.L. Feltri
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
| | - Patrizia Casaccia
- Advanced Science Research Center (ASRC) at The Graduate Center of the City University of New York (CUNY), New York, NY 10031, USA
- Graduate Program in Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate Program in Biology, Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
87
|
Feoktistov AV, Georgieva SG, Soshnikova NV. Role of the SWI/SNF Chromatin Remodeling Complex in Regulation of Inflammation Gene Expression. Mol Biol 2022. [DOI: 10.1134/s0026893322020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
88
|
Valencia FP, Marino AF, Noutsos C, Poon K. Concentration-dependent change in hypothalamic neuronal transcriptome by the dietary fatty acids: oleic and palmitic acids. J Nutr Biochem 2022; 106:109033. [DOI: 10.1016/j.jnutbio.2022.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
|
89
|
Sokpor G, Brand-Saberi B, Nguyen HP, Tuoc T. Regulation of Cell Delamination During Cortical Neurodevelopment and Implication for Brain Disorders. Front Neurosci 2022; 16:824802. [PMID: 35281509 PMCID: PMC8904418 DOI: 10.3389/fnins.2022.824802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical development is dependent on key processes that can influence apical progenitor cell division and progeny. Pivotal among such critical cellular processes is the intricate mechanism of cell delamination. This indispensable cell detachment process mainly entails the loss of apical anchorage, and subsequent migration of the mitotic derivatives of the highly polarized apical cortical progenitors. Such apical progenitor derivatives are responsible for the majority of cortical neurogenesis. Many factors, including transcriptional and epigenetic/chromatin regulators, are known to tightly control cell attachment and delamination tendency in the cortical neurepithelium. Activity of these molecular regulators principally coordinate morphogenetic cues to engender remodeling or disassembly of tethering cellular components and external cell adhesion molecules leading to exit of differentiating cells in the ventricular zone. Improper cell delamination is known to frequently impair progenitor cell fate commitment and neuronal migration, which can cause aberrant cortical cell number and organization known to be detrimental to the structure and function of the cerebral cortex. Indeed, some neurodevelopmental abnormalities, including Heterotopia, Schizophrenia, Hydrocephalus, Microcephaly, and Chudley-McCullough syndrome have been associated with cell attachment dysregulation in the developing mammalian cortex. This review sheds light on the concept of cell delamination, mechanistic (transcriptional and epigenetic regulation) nuances involved, and its importance for corticogenesis. Various neurodevelopmental disorders with defective (too much or too little) cell delamination as a notable etiological underpinning are also discussed.
Collapse
Affiliation(s)
- Godwin Sokpor
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Godwin Sokpor,
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Tran Tuoc,
| |
Collapse
|
90
|
Lindén M, Vannas C, Österlund T, Andersson L, Osman A, Escobar M, Fagman H, Ståhlberg A, Åman P. FET fusion oncoproteins interact with BRD4 and SWI/SNF chromatin remodeling complex subtypes in sarcoma. Mol Oncol 2022; 16:2470-2495. [PMID: 35182012 PMCID: PMC9251840 DOI: 10.1002/1878-0261.13195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/25/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
FET fusion oncoproteins containing one of the FET (FUS, EWSR1, TAF15) family proteins juxtaposed to alternative transcription‐factor partners are characteristic of more than 20 types of sarcoma and leukaemia. FET oncoproteins bind to the SWI/SNF chromatin remodelling complex, which exists in three subtypes: cBAF, PBAF and GBAF/ncBAF. We used comprehensive biochemical analysis to characterize the interactions between FET oncoproteins, SWI/SNF complexes and the transcriptional coactivator BRD4. Here, we report that FET oncoproteins bind all three main SWI/SNF subtypes cBAF, PBAF and GBAF, and that FET oncoproteins interact indirectly with BRD4 via their shared interaction partner SWI/SNF. Furthermore, chromatin immunoprecipitation sequencing and proteomic analysis showed that FET oncoproteins, SWI/SNF components and BRD4 co‐localize on chromatin and interact with mediator and RNA Polymerase II. Our results provide a possible molecular mechanism for the FET‐fusion‐induced oncogenic transcriptional profiles and may lead to novel therapies targeting aberrant SWI/SNF complexes and/or BRD4 in FET‐fusion‐caused malignancies.
Collapse
Affiliation(s)
- Malin Lindén
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| | - Christoffer Vannas
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| | - Tobias Österlund
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
| | - Lisa Andersson
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| | - Ayman Osman
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| | - Mandy Escobar
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| | - Henrik Fagman
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Pierre Åman
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Box 425, 40530, Gothenburg, Sweden
| |
Collapse
|
91
|
Lo T, Kushima I, Aleksic B, Kato H, Nawa Y, Hayashi Y, Otgonbayar G, Kimura H, Arioka Y, Mori D, Ozaki N. Sequencing of selected chromatin remodelling genes reveals increased burden of rare missense variants in ASD patients from the Japanese population. Int Rev Psychiatry 2022; 34:154-167. [PMID: 35699097 DOI: 10.1080/09540261.2022.2072193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chromatin remodelling is an important process in neural development and is related to autism spectrum disorder (ASD) and schizophrenia (SCZ) aetiology. To further elucidate the involvement of chromatin remodelling genes in the genetic aetiology of ASD and SCZ in the Japanese population, we performed a case-control study. Targeted sequencing was conducted on coding regions of four BAF chromatin remodelling complex genes: SMARCA2, SMARCA4, SMARCC2, and ARID1B in 185 ASD, 432 SCZ patients, and 517 controls. 27 rare non-synonymous variants were identified in ASD and SCZ patients, including 25 missense, one in-frame deletion in SMRACA4, and one frame-shift variant in SMARCC2. Association analysis was conducted to investigate the burden of rare variants in BAF genes in ASD and SCZ patients. Significant enrichment of rare missense variants in BAF genes, but not synonymous variants, was found in ASD compared to controls. Rare pathogenic variants indicated by in silico tools were significantly enriched in ASD, but not statistically significant in SCZ. Pathogenic-predicted variants were located in disordered binding regions and may confer risk for ASD and SCZ by disrupting protein-protein interactions. Our study supports the involvement of rare missense variants of BAF genes in ASD and SCZ susceptibility.
Collapse
Affiliation(s)
- Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
92
|
Rowland ME, Jajarmi JM, Osborne TSM, Ciernia AV. Insights Into the Emerging Role of Baf53b in Autism Spectrum Disorder. Front Mol Neurosci 2022; 15:805158. [PMID: 35185468 PMCID: PMC8852769 DOI: 10.3389/fnmol.2022.805158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Accurate and precise regulation of gene expression is necessary to ensure proper brain development and plasticity across the lifespan. As an ATP-dependent chromatin-remodeling complex, the BAF (Brg1 Associated Factor) complex can alter histone-DNA interactions, facilitating dynamic changes in gene expression by controlling DNA accessibility to the transcriptional machinery. Mutations in 12 of the potential 29 subunit genes that compose the BAF nucleosome remodeling complex have been identified in several developmental disorders including Autism spectrum disorders (ASD) and intellectual disability. A novel, neuronal version of BAF (nBAF) has emerged as promising candidate in the development of ASD as its expression is tied to neuron differentiation and it’s hypothesized to coordinate expression of synaptic genes across brain development. Recently, mutations in BAF53B, one of the neuron specific subunits of the nBAF complex, have been identified in patients with ASD and Developmental and epileptic encephalopathy-76 (DEE76), indicating BAF53B is essential for proper brain development. Recent work in cultured neurons derived from patients with BAF53B mutations suggests links between loss of nBAF function and neuronal dendritic spine formation. Deletion of one or both copies of mouse Baf53b disrupts dendritic spine development, alters actin dynamics and results in fewer synapses in vitro. In the mouse, heterozygous loss of Baf53b severely impacts synaptic plasticity and long-term memory that is reversible with reintroduction of Baf53b or manipulations of the synaptic plasticity machinery. Furthermore, surviving Baf53b-null mice display ASD-related behaviors, including social impairments and repetitive behaviors. This review summarizes the emerging evidence linking deleterious variants of BAF53B identified in human neurodevelopmental disorders to abnormal transcriptional regulation that produces aberrant synapse development and behavior.
Collapse
|
93
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D Wilson
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth G Porter
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| |
Collapse
|
94
|
Differential requirements for different subfamilies of the mammalian SWI/SNF chromatin remodeling enzymes in myoblast cell cycle progression and expression of the Pax7 regulator. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194801. [PMID: 35217218 PMCID: PMC8948540 DOI: 10.1016/j.bbagrm.2022.194801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
Abstract
The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) families of ATP-dependent chromatin remodeling enzymes are established co-regulators of gene expression. mSWI/SNF complexes can be assembled into three major subfamilies: BAF (BRG1 or BRM-Associated Factor), PBAF (Polybromo containing BAF), or ncBAF (non-canonical BAF) that are distinguished by the presence of mutually exclusive subunits. The mechanisms by which each subfamily contributes to the establishment or function of specific cell lineages are poorly understood. Here, we determined the contributions of the BAF, ncBAF, and PBAF complexes to myoblast proliferation via knock down (KD) of distinguishing subunits from each complex. KD of subunits unique to the BAF or the ncBAF complexes reduced myoblast proliferation rate, while KD of PBAF-specific subunits did not affect proliferation. RNA-seq from proliferating KD myoblasts targeting Baf250A (BAF complex), Brd9 (ncBAF complex), or Baf180 (PBAF complex) showed mis-regulation of a limited number of genes. KD of Baf250A specifically reduced the expression of Pax7, which is required for myoblast proliferation, concomitant with decreased binding of Baf250A to and impaired chromatin remodeling at the Pax7 gene promoter. Although Brd9 also bound to the Pax7 promoter, suggesting occupancy by the ncBAF complex, no changes were detected in Pax7 gene expression, Pax7 protein expression or chromatin remodeling at the Pax7 promoter upon Brd9 KD. The data indicate that the BAF subfamily of the mSWI/SNF enzymes is specifically required for myoblast proliferation via regulation of Pax7 expression.
Collapse
|
95
|
Hota SK, Rao KS, Blair AP, Khalilimeybodi A, Hu KM, Thomas R, So K, Kameswaran V, Xu J, Polacco BJ, Desai RV, Chatterjee N, Hsu A, Muncie JM, Blotnick AM, Winchester SAB, Weinberger LS, Hüttenhain R, Kathiriya IS, Krogan NJ, Saucerman JJ, Bruneau BG. Brahma safeguards canalization of cardiac mesoderm differentiation. Nature 2022; 602:129-134. [PMID: 35082446 PMCID: PMC9196993 DOI: 10.1038/s41586-021-04336-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Differentiation proceeds along a continuum of increasingly fate-restricted intermediates, referred to as canalization1,2. Canalization is essential for stabilizing cell fate, but the mechanisms that underlie robust canalization are unclear. Here we show that the BRG1/BRM-associated factor (BAF) chromatin-remodelling complex ATPase gene Brm safeguards cell identity during directed cardiogenesis of mouse embryonic stem cells. Despite the establishment of a well-differentiated precardiac mesoderm, Brm-/- cells predominantly became neural precursors, violating germ layer assignment. Trajectory inference showed a sudden acquisition of a non-mesodermal identity in Brm-/- cells. Mechanistically, the loss of Brm prevented de novo accessibility of primed cardiac enhancers while increasing the expression of neurogenic factor POU3F1, preventing the binding of the neural suppressor REST and shifting the composition of BRG1 complexes. The identity switch caused by the Brm mutation was overcome by increasing BMP4 levels during mesoderm induction. Mathematical modelling supports these observations and demonstrates that Brm deletion affects cell fate trajectory by modifying saddle-node bifurcations2. In the mouse embryo, Brm deletion exacerbated mesoderm-deleted Brg1-mutant phenotypes, severely compromising cardiogenesis, and reveals an in vivo role for Brm. Our results show that Brm is a compensable safeguard of the fidelity of mesoderm chromatin states, and support a model in which developmental canalization is not a rigid irreversible path, but a highly plastic trajectory.
Collapse
Affiliation(s)
- Swetansu K Hota
- Gladstone Institutes, San Francisco, CA, USA.
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
| | - Kavitha S Rao
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | | - Ali Khalilimeybodi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kevin M Hu
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | | - Kevin So
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Vasumathi Kameswaran
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Jiewei Xu
- Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Benjamin J Polacco
- Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | | | | | - Austin Hsu
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | | - Aaron M Blotnick
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Sarah A B Winchester
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Leor S Weinberger
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Irfan S Kathiriya
- Gladstone Institutes, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA, USA.
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
96
|
Azieva AM, Sheynov AA, Kirillova DA, Tatarskiy EV, Georgieva SG, Soshnikova NV. PHF10, a Subunit of the PBAF Chromatin Remodeling Complex, Changes Its Localization and Interacts with c-FOS during the Initiation of Long-Term Potentiation in Neuronal Culture. Mol Biol 2021. [DOI: 10.1134/s0026893321050034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
97
|
Chang CY, Shipony Z, Lin SG, Kuo A, Xiong X, Loh KM, Greenleaf WJ, Crabtree GR. Increased ACTL6A occupancy within mSWI/SNF chromatin remodelers drives human squamous cell carcinoma. Mol Cell 2021; 81:4964-4978.e8. [PMID: 34687603 PMCID: PMC8761479 DOI: 10.1016/j.molcel.2021.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
Mammalian SWI/SNF (BAF) chromatin remodelers play dosage-sensitive roles in many human malignancies and neurologic disorders. The gene encoding the BAF subunit actin-like 6a (ACTL6A) is amplified early in the development of many squamous cell carcinomas (SCCs), but its oncogenic role remains unclear. Here we demonstrate that ACTL6A overexpression leads to its stoichiometric assembly into BAF complexes and drives their interaction and engagement with specific regulatory regions in the genome. In normal epithelial cells, ACTL6A was substoichiometric to other BAF subunits. However, increased ACTL6A levels by ectopic expression or in SCC cells led to near saturation of ACTL6A within BAF complexes. Increased ACTL6A occupancy enhanced polycomb opposition genome-wide to activate SCC genes and facilitated the co-dependent loading of BAF and TEAD-YAP complexes on chromatin. Both mechanisms appeared to be critical and function as a molecular AND gate for SCC initiation and maintenance, thereby explaining the specificity of the role of ACTL6A amplification in SCCs.
Collapse
Affiliation(s)
- Chiung-Ying Chang
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zohar Shipony
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sherry G Lin
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ann Kuo
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiaochen Xiong
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Gerald R Crabtree
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
98
|
Laubscher D, Gryder BE, Sunkel BD, Andresson T, Wachtel M, Das S, Roschitzki B, Wolski W, Wu XS, Chou HC, Song YK, Wang C, Wei JS, Wang M, Wen X, Ngo QA, Marques JG, Vakoc CR, Schäfer BW, Stanton BZ, Khan J. BAF complexes drive proliferation and block myogenic differentiation in fusion-positive rhabdomyosarcoma. Nat Commun 2021; 12:6924. [PMID: 34836971 PMCID: PMC8626462 DOI: 10.1038/s41467-021-27176-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric malignancy of skeletal muscle lineage. The aggressive alveolar subtype is characterized by t(2;13) or t(1;13) translocations encoding for PAX3- or PAX7-FOXO1 chimeric transcription factors, respectively, and are referred to as fusion positive RMS (FP-RMS). The fusion gene alters the myogenic program and maintains the proliferative state while blocking terminal differentiation. Here, we investigated the contributions of chromatin regulatory complexes to FP-RMS tumor maintenance. We define the mSWI/SNF functional repertoire in FP-RMS. We find that SMARCA4 (encoding BRG1) is overexpressed in this malignancy compared to skeletal muscle and is essential for cell proliferation. Proteomic studies suggest proximity between PAX3-FOXO1 and BAF complexes, which is further supported by genome-wide binding profiles revealing enhancer colocalization of BAF with core regulatory transcription factors. Further, mSWI/SNF complexes localize to sites of de novo histone acetylation. Phenotypically, interference with mSWI/SNF complex function induces transcriptional activation of the skeletal muscle differentiation program associated with MYCN enhancer invasion at myogenic target genes, which is recapitulated by BRG1 targeting compounds. We conclude that inhibition of BRG1 overcomes the differentiation blockade of FP-RMS cells and may provide a therapeutic strategy for this lethal childhood tumor.
Collapse
Affiliation(s)
- Dominik Laubscher
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Berkley E. Gryder
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA ,grid.67105.350000 0001 2164 3847Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH USA
| | - Benjamin D. Sunkel
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA
| | - Thorkell Andresson
- grid.418021.e0000 0004 0535 8394Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Marco Wachtel
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Sudipto Das
- grid.418021.e0000 0004 0535 8394Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Bernd Roschitzki
- grid.7400.30000 0004 1937 0650Functional Genomics Center, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Witold Wolski
- grid.7400.30000 0004 1937 0650Functional Genomics Center, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Xiaoli S. Wu
- grid.225279.90000 0004 0387 3667Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - Hsien-Chao Chou
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Young K. Song
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Chaoyu Wang
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Jun S. Wei
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Meng Wang
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA
| | - Xinyu Wen
- grid.48336.3a0000 0004 1936 8075Genetics Branch, NCI, NIH, Bethesda, MD USA
| | - Quy Ai Ngo
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Joana G. Marques
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Christopher R. Vakoc
- grid.225279.90000 0004 0387 3667Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724 USA
| | - Beat W. Schäfer
- grid.412341.10000 0001 0726 4330Department of Oncology and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Benjamin Z. Stanton
- grid.240344.50000 0004 0392 3476Nationwide Children’s Hospital, Center for Childhood Cancer and Blood Diseases, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Biological Chemistry & Pharmacology, The Ohio State University College of Medicine, Columbus, OH USA
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
99
|
Wang A, Wang J, Tian K, Huo D, Ye H, Li S, Zhao C, Zhang B, Zheng Y, Xu L, Hua X, Wang K, Wu QF, Wu X, Zeng T, Liu Y, Zhou Y. An epigenetic circuit controls neurogenic programs during neocortex development. Development 2021; 148:273471. [PMID: 35020876 DOI: 10.1242/dev.199772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
The production and expansion of intermediate progenitors (IPs) are essential for neocortical neurogenesis during development and over evolution. Here, we have characterized an epigenetic circuit that precisely controls neurogenic programs, particularly properties of IPs, during neocortical development. The circuit comprises a long non-coding RNA (LncBAR) and the BAF (SWI/SNF) chromatin-remodeling complex, which transcriptionally maintains the expression of Zbtb20. LncBAR knockout neocortex contains more deep-layer but fewer upper-layer projection neurons. Intriguingly, loss of LncBAR promotes IP production, but paradoxically prolongs the duration of the cell cycle of IPs during mid-later neocortical neurogenesis. Moreover, in LncBAR knockout mice, depletion of the neural progenitor pool at embryonic stage results in fewer adult neural progenitor cells in the subventricular zone of lateral ventricles, leading to a failure in adult neurogenesis to replenish the olfactory bulb. LncBAR binds to BRG1, the core enzymatic component of the BAF chromatin-remodeling complex. LncBAR depletion enhances association of BRG1 with the genomic locus of, and suppresses the expression of, Zbtb20, a transcription factor gene known to regulate both embryonic and adult neurogenesis. ZBTB20 overexpression in LncBAR-knockout neural precursors reverses compromised cell cycle progressions of IPs.
Collapse
Affiliation(s)
- Andi Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Junbao Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Kuan Tian
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Dawei Huo
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China200072
| | - Hanzhe Ye
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Si Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China 300070
| | - Chen Zhao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Bo Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Yue Zheng
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Lichao Xu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Xiaojiao Hua
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Kun Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China 100101
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China 300070
| | - Tao Zeng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China200072
| | - Ying Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| | - Yan Zhou
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, China430071
| |
Collapse
|
100
|
Daghsni M, Aldiri I. Building a Mammalian Retina: An Eye on Chromatin Structure. Front Genet 2021; 12:775205. [PMID: 34764989 PMCID: PMC8576187 DOI: 10.3389/fgene.2021.775205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression by chromatin structure has been under intensive investigation, establishing nuclear organization and genome architecture as a potent and effective means of regulating developmental processes. The substantial growth in our knowledge of the molecular mechanisms underlying retinogenesis has been powered by several genome-wide based tools that mapped chromatin organization at multiple cellular and biochemical levels. Studies profiling the retinal epigenome and transcriptome have allowed the systematic annotation of putative cis-regulatory elements associated with transcriptional programs that drive retinal neural differentiation, laying the groundwork to understand spatiotemporal retinal gene regulation at a mechanistic level. In this review, we outline recent advances in our understanding of the chromatin architecture in the mammalian retina during development and disease. We focus on the emerging roles of non-coding regulatory elements in controlling retinal cell-type specific transcriptional programs, and discuss potential implications in untangling the etiology of eye-related disorders.
Collapse
Affiliation(s)
- Marwa Daghsni
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Issam Aldiri
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|