51
|
Abstract
Neurons form precise patterns of connections. The cellular recognition mechanisms regulating the selection of synaptic partners are poorly understood. As final mediators of cell-cell interactions, cell surface and secreted molecules (CSMs) are expected to play important roles in this process. To gain insight into how neurons discriminate synaptic partners, we profiled the transcriptomes of 7 closely related neurons forming distinct synaptic connections in discrete layers in the medulla neuropil of the fly visual system. Our sequencing data revealed that each one of these neurons expresses a unique combination of hundreds of CSMs at the onset of synapse formation. We show that 21 paralogs of the defective proboscis extension response (Dpr) family are expressed in a unique cell-type-specific fashion, consistent with the distinct connectivity pattern of each neuron profiled. Expression analysis of their cognate binding partners, the 9 members of the Dpr interacting protein (DIP) family, revealed complementary layer-specific expression in the medulla, suggestive of interactions between neurons expressing Dpr and those expressing DIP in the same layer. Through coexpression analysis and correlation to connectome data, we identify neurons expressing DIP as a subset of the synaptic partners of the neurons expressing Dpr. We propose that Dpr-DIP interactions regulate patterns of connectivity between the neurons expressing them.
Collapse
Affiliation(s)
- Marta Morey
- a Department de Genètica , Facultat de Biologia and Institut de Biomedicina de la Universitat de Barcelona (IBUB) , Barcelona Spain
| |
Collapse
|
52
|
Carrillo RA, Özkan E, Menon KP, Nagarkar-Jaiswal S, Lee PT, Jeon M, Birnbaum ME, Bellen HJ, Garcia KC, Zinn K. Control of Synaptic Connectivity by a Network of Drosophila IgSF Cell Surface Proteins. Cell 2016; 163:1770-1782. [PMID: 26687361 DOI: 10.1016/j.cell.2015.11.022] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/27/2015] [Accepted: 11/10/2015] [Indexed: 12/16/2022]
Abstract
We have defined a network of interacting Drosophila cell surface proteins in which a 21-member IgSF subfamily, the Dprs, binds to a nine-member subfamily, the DIPs. The structural basis of the Dpr-DIP interaction code appears to be dictated by shape complementarity within the Dpr-DIP binding interface. Each of the six dpr and DIP genes examined here is expressed by a unique subset of larval and pupal neurons. In the neuromuscular system, interactions between Dpr11 and DIP-γ affect presynaptic terminal development, trophic factor responses, and neurotransmission. In the visual system, dpr11 is selectively expressed by R7 photoreceptors that use Rh4 opsin (yR7s). Their primary synaptic targets, Dm8 amacrine neurons, express DIP-γ. In dpr11 or DIP-γ mutants, yR7 terminals extend beyond their normal termination zones in layer M6 of the medulla. DIP-γ is also required for Dm8 survival or differentiation. Our findings suggest that Dpr-DIP interactions are important determinants of synaptic connectivity.
Collapse
Affiliation(s)
- Robert A Carrillo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Engin Özkan
- Dept. of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL.,Howard Hughes Medical Institute, Depts. of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA
| | - Kaushiki P Menon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Sonal Nagarkar-Jaiswal
- Howard Hughes Medical Institute, Program in Developmental Biology, Dept. of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at TCH, Baylor College of Medicine, Houston, TX
| | - Pei-Tseng Lee
- Howard Hughes Medical Institute, Program in Developmental Biology, Dept. of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at TCH, Baylor College of Medicine, Houston, TX
| | - Mili Jeon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA.,Howard Hughes Medical Institute, Depts. of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA
| | - Michael E Birnbaum
- Howard Hughes Medical Institute, Depts. of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Program in Developmental Biology, Dept. of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at TCH, Baylor College of Medicine, Houston, TX
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Depts. of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
53
|
Tan L, Zhang KX, Pecot MY, Nagarkar-Jaiswal S, Lee PT, Takemura SY, McEwen JM, Nern A, Xu S, Tadros W, Chen Z, Zinn K, Bellen HJ, Morey M, Zipursky SL. Ig Superfamily Ligand and Receptor Pairs Expressed in Synaptic Partners in Drosophila. Cell 2016; 163:1756-69. [PMID: 26687360 DOI: 10.1016/j.cell.2015.11.021] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/27/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022]
Abstract
Information processing relies on precise patterns of synapses between neurons. The cellular recognition mechanisms regulating this specificity are poorly understood. In the medulla of the Drosophila visual system, different neurons form synaptic connections in different layers. Here, we sought to identify candidate cell recognition molecules underlying this specificity. Using RNA sequencing (RNA-seq), we show that neurons with different synaptic specificities express unique combinations of mRNAs encoding hundreds of cell surface and secreted proteins. Using RNA-seq and protein tagging, we demonstrate that 21 paralogs of the Dpr family, a subclass of immunoglobulin (Ig)-domain containing proteins, are expressed in unique combinations in homologous neurons with different layer-specific synaptic connections. Dpr interacting proteins (DIPs), comprising nine paralogs of another subclass of Ig-containing proteins, are expressed in a complementary layer-specific fashion in a subset of synaptic partners. We propose that pairs of Dpr/DIP paralogs contribute to layer-specific patterns of synaptic connectivity.
Collapse
Affiliation(s)
- Liming Tan
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelvin Xi Zhang
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Y Pecot
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sonal Nagarkar-Jaiswal
- Department of Molecular and Human Genetics, HHMI, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jason M McEwen
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Shuwa Xu
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wael Tadros
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhenqing Chen
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, HHMI, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marta Morey
- Departament de Genètica, Facultat de Biologia and Institut de Biomedicina (IBUB) de la Universitat de Barcelona, Barcelona 08028, Spain.
| | - S Lawrence Zipursky
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
54
|
Zhang KX, Tan L, Pellegrini M, Zipursky SL, McEwen JM. Rapid Changes in the Translatome during the Conversion of Growth Cones to Synaptic Terminals. Cell Rep 2016; 14:1258-1271. [PMID: 26832407 DOI: 10.1016/j.celrep.2015.12.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 12/04/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
A common step in the formation of neural circuits is the conversion of growth cones to presynaptic terminals. Characterizing patterns of global gene expression during this process is problematic due to the cellular diversity of the brain and the complex temporal dynamics of development. Here, we take advantage of the synchronous conversion of Drosophila photoreceptor growth cones into presynaptic terminals to explore global changes in gene expression during presynaptic differentiation. Using a tandemly tagged ribosome trap (T-TRAP) and RNA sequencing (RNA-seq) at multiple developmental times, we observed dramatic changes in coding and non-coding RNAs with presynaptic differentiation. Marked changes in the mRNA encoding transmembrane and secreted proteins occurred preferentially. The 3' UTRs of transcripts encoding synaptic proteins were preferentially lengthened, and these extended UTRs were preferentially enriched for sites recognized by RNA binding proteins. These data provide a rich resource for uncovering the regulatory logic underlying presynaptic differentiation.
Collapse
Affiliation(s)
- Kelvin Xi Zhang
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Liming Tan
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, P.O. Box 951606, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA.
| | - Jason M McEwen
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| |
Collapse
|
55
|
de Wit J, Ghosh A. Specification of synaptic connectivity by cell surface interactions. Nat Rev Neurosci 2015; 17:22-35. [PMID: 26656254 DOI: 10.1038/nrn.2015.3] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular diversification of cell surface molecules has long been postulated to impart specific surface identities on neuronal cell types. The existence of unique cell surface identities would allow neurons to distinguish one another and connect with their appropriate target cells. Although progress has been made in identifying cell type-specific surface molecule repertoires and in characterizing their extracellular interactions, determining how this molecular diversity contributes to the precise wiring of neural circuitry has proven challenging. Here, we review the role of the cadherin, neurexin, immunoglobulin and leucine-rich repeat protein superfamilies in the specification of connectivity. The emerging evidence suggests that the concerted actions of these proteins may critically contribute to the assembly of neural circuits.
Collapse
Affiliation(s)
- Joris de Wit
- VIB Center for the Biology of Disease and Center for Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anirvan Ghosh
- Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffman-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
56
|
Ward A, Hong W, Favaloro V, Luo L. Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit. Neuron 2015; 85:1013-28. [PMID: 25741726 DOI: 10.1016/j.neuron.2015.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/26/2014] [Accepted: 01/23/2015] [Indexed: 01/12/2023]
Abstract
Our understanding of the mechanisms that establish wiring specificity of complex neural circuits is far from complete. During Drosophila olfactory circuit assembly, axons of 50 olfactory receptor neuron (ORN) classes and dendrites of 50 projection neuron (PN) classes precisely target to 50 discrete glomeruli, forming parallel information-processing pathways. Here we show that Toll-6 and Toll-7, members of the Toll receptor family best known for functions in innate immunity and embryonic patterning, cell autonomously instruct the targeting of specific classes of PN dendrites and ORN axons, respectively. The canonical ligands and downstream partners of Toll receptors in embryonic patterning and innate immunity are not required for the function of Toll-6/Toll-7 in wiring specificity, nor are their cytoplasmic domains. Interestingly, both Toll-6 and Toll-7 participate in synaptic partner matching between ORN axons and PN dendrites. Our investigations reveal that olfactory circuit assembly involves dynamic and long-range interactions between PN dendrites and ORN axons.
Collapse
Affiliation(s)
- Alex Ward
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Weizhe Hong
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Vincenzo Favaloro
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
57
|
Mosca TJ. On the Teneurin track: a new synaptic organization molecule emerges. Front Cell Neurosci 2015; 9:204. [PMID: 26074772 PMCID: PMC4444827 DOI: 10.3389/fncel.2015.00204] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022] Open
Abstract
To achieve proper synaptic development and function, coordinated signals must pass between the pre- and postsynaptic membranes. Such transsynaptic signals can be comprised of receptors and secreted ligands, membrane associated receptors, and also pairs of synaptic cell adhesion molecules. A critical open question bridging neuroscience, developmental biology, and cell biology involves identifying those signals and elucidating how they function. Recent work in Drosophila and vertebrate systems has implicated a family of proteins, the Teneurins, as a new transsynaptic signal in both the peripheral and central nervous systems. The Teneurins have established roles in neuronal wiring, but studies now show their involvement in regulating synaptic connections between neurons and bridging the synaptic membrane and the cytoskeleton. This review will examine the Teneurins as synaptic cell adhesion molecules, explore how they regulate synaptic organization, and consider how some consequences of human Teneurin mutations may have synaptopathic origins.
Collapse
Affiliation(s)
- Timothy J Mosca
- Department of Biology, Stanford University Stanford, CA, USA
| |
Collapse
|
58
|
Wang F, Eagleson KL, Levitt P. Positive regulation of neocortical synapse formation by the Plexin-D1 receptor. Brain Res 2015; 1616:157-165. [PMID: 25976775 DOI: 10.1016/j.brainres.2015.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/06/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022]
Abstract
Synapse formation is a critical process during neural development and is coordinated by multiple signals. Several lines of evidence implicate the Plexin-D1 receptor in synaptogenesis. Studies have shown that Plexin-D1 signaling is involved in synaptic specificity and synapse formation in spinal cord and striatum. Expression of Plexin-D1 and its principal neural ligand, Sema3E, by neocortical neurons is temporally and spatially regulated, reaching the highest level at the time of synaptogenesis in mice. In this study, we examined the function of Plexin-D1 in synapse formation by primary neocortical neurons in vitro. A novel, automated image analysis method was developed to quantitate synapse formation under baseline conditions and with manipulation of Plexin-D1 levels. shRNA and overexpression manipulations caused opposite changes, with reduction resulting in less synapse formation, an effect distinct from that reported in the striatum. The data indicate that Plexin-D1 operates in a cell context-specific fashion, mediating different synaptogenic outcomes depending upon neuron type.
Collapse
Affiliation(s)
- F Wang
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - K L Eagleson
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - P Levitt
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Institute for the Developing Mind, The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
59
|
Abstract
Little is known about the genetic basis of naturally occurring variation for sexually selected behavioral traits. Drosophila melanogaster, with its rich repertoire of courtship behavior and genomic and genetic resources, is an excellent model organism for addressing this question. We assayed a genetically diverse panel of lines with full genome sequences, the Drosophila Genetic Reference Panel, to assess the heritability of variation in courtship behavior and mating progression. We subsequently used these data to quantify natural variation in transition probabilities between courtship behaviors. We found heritable variation along the expected trajectory for courtship behaviors, including the tendency to initiate courtship and rate of progression through courtship, suggesting a genetic basis to male modulation of courtship behavior based on feedback from unrelated, outbred, and genetically identical females. We assessed the genetic basis of variation of the transition with the greatest heritability--from copulation to no engagement with the female--and identified variants in Serrate and Furin 1 as well as many other polymorphisms on the chromosome 3R associated with this transition. Our findings suggest that courtship is a highly dynamic behavior with both social and genetic inputs, and that males may play an important role in courtship initiation and duration.
Collapse
|
60
|
Ectopic expression screen identifies genes affecting Drosophila mesoderm development including the HSPG Trol. G3-GENES GENOMES GENETICS 2014; 5:301-13. [PMID: 25538103 PMCID: PMC4321038 DOI: 10.1534/g3.114.015891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gastrulation of the embryo involves coordinate cell movements likely supported by multiple signaling pathways, adhesion molecules, and extracellular matrix components. Fibroblast growth factors (FGFs) have a major role in Drosophila melanogaster mesoderm migration; however, few other inputs are known and the mechanism supporting cell movement is unclear. To provide insight, we performed an ectopic expression screen to identify secreted or membrane-associated molecules that act to support mesoderm migration. Twenty-four UAS insertions were identified that cause lethality when expressed in either the mesoderm (Twi-Gal4) or the ectoderm (69B-Gal4). The list was narrowed to a subset of 10 genes that were shown to exhibit loss-of-function mutant phenotypes specifically affecting mesoderm migration. These include the FGF ligand Pyramus, α-integrins, E-cadherin, Cueball, EGFR, JAK/STAT signaling components, as well as the heparan sulfate proteoglycan (HSPG) Terribly reduced optic lobes (Trol). Trol encodes the ortholog of mammalian HSPG Perlecan, a demonstrated FGF signaling cofactor. Here, we examine the role of Trol in Drosophila mesoderm migration and compare and contrast its role with that of Syndecan (Sdc), another HSPG previously implicated in this process. Embryos mutant for Trol or Sdc were obtained and analyzed. Our data support the view that both HSPGs function to support FGF-dependent processes in the early embryo as they share phenotypes with FGF mutants: Trol in terms of effects on mesoderm migration and caudal visceral mesoderm (CVM) migration and Sdc in terms of dorsal mesoderm specification. The differential roles uncovered for these two HSPGs suggest that HSPG cofactor choice may modify FGF-signaling outputs.
Collapse
|
61
|
unfulfilled interacting genes display branch-specific roles in the development of mushroom body axons in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2014; 4:693-706. [PMID: 24558265 PMCID: PMC4577660 DOI: 10.1534/g3.113.009829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mushroom body (MB) of Drosophila melanogaster is an organized collection of interneurons that is required for learning and memory. Each of the three subtypes of MB neurons, γ, α´/β´, and α/β, branch at some point during their development, providing an excellent model in which to study the genetic regulation of axon branching. Given the sequential birth order and the unique patterning of MB neurons, it is likely that specific gene cascades are required for the different guidance events that form the characteristic lobes of the MB. The nuclear receptor UNFULFILLED (UNF), a transcription factor, is required for the differentiation of all MB neurons. We have developed and used a classical genetic suppressor screen that takes advantage of the fact that ectopic expression of unf causes lethality to identify candidate genes that act downstream of UNF. We hypothesized that reducing the copy number of unf-interacting genes will suppress the unf-induced lethality. We have identified 19 candidate genes that when mutated suppress the unf-induced lethality. To test whether candidate genes impact MB development, we performed a secondary phenotypic screen in which the morphologies of the MBs in animals heterozygous for unf and a specific candidate gene were analyzed. Medial MB lobes were thin, missing, or misguided dorsally in five double heterozygote combinations (;unf/+;axin/+, unf/+;Fps85D/+, ;unf/+;Tsc1/+, ;unf/+;Rheb/+, ;unf/+;msn/+). Dorsal MB lobes were missing in ;unf/+;DopR2/+ or misprojecting beyond the termination point in ;unf/+;Sytβ double heterozygotes. These data suggest that unf and unf-interacting genes play specific roles in axon development in a branch-specific manner.
Collapse
|
62
|
Abstract
A complete understanding of nervous system function cannot be achieved without the identification of its component cell types. In this Perspective, we explore a series of related issues surrounding cell identity and how revolutionary methods for labeling and probing specific neuronal types have clarified this question. Specifically, we ask the following questions: what is the purpose of such diversity, how is it generated, how is it maintained, and, ultimately, how can one unambiguously identity one cell type from another? We suggest that each cell type can be defined by a unique and conserved molecular ground state that determines its capabilities. We believe that gaining an understanding of these molecular barcodes will advance our ability to explore brain function, enhance our understanding of the biochemical basis of CNS disorders, and aid in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10016, USA.
| | | |
Collapse
|
63
|
Berger-Müller S, Sugie A, Takahashi F, Tavosanis G, Hakeda-Suzuki S, Suzuki T. Assessing the role of cell-surface molecules in central synaptogenesis in the Drosophila visual system. PLoS One 2013; 8:e83732. [PMID: 24386266 PMCID: PMC3873376 DOI: 10.1371/journal.pone.0083732] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/15/2013] [Indexed: 12/12/2022] Open
Abstract
A hallmark of the central nervous system is its spatial and functional organization in synaptic layers. During neuronal development, axons form transient contacts with potential post-synaptic elements and establish synapses with appropriate partners at specific layers. These processes are regulated by synaptic cell-adhesion molecules. In the Drosophila visual system, R7 and R8 photoreceptor subtypes target distinct layers and form en passant pre-synaptic terminals at stereotypic loci of the axonal shaft. A leucine-rich repeat transmembrane protein, Capricious (Caps), is known to be selectively expressed in R8 axons and their recipient layer, which led to the attractive hypothesis that Caps mediates R8 synaptic specificity by homophilic adhesion. Contradicting this assumption, our results indicate that Caps does not have a prominent role in synaptic-layer targeting and synapse formation in Drosophila photoreceptors, and that the specific recognition of the R8 target layer does not involve Caps homophilic axon-target interactions. We generated flies that express a tagged synaptic marker to evaluate the presence and localization of synapses in R7 and R8 photoreceptors. These genetic tools were used to assess how the synaptic profile is affected when axons are forced to target abnormal layers by expressing axon guidance molecules. When R7 axons were mistargeted to the R8-recipient layer, R7s either maintained an R7-like synaptic profile or acquired a similar profile to r8s depending on the overexpressed protein. When R7 axons were redirected to a more superficial medulla layer, the number of presynaptic terminals was reduced. These results indicate that cell-surface molecules are able to dictate synapse loci by changing the axon terminal identity in a partially cell-autonomous manner, but that presynapse formation at specific sites also requires complex interactions between pre- and post-synaptic elements.
Collapse
Affiliation(s)
- Sandra Berger-Müller
- Research Group Axon Guidance and Neuronal Connectivity, Max Planck Institute of Neurobiology, Martinsried, Germany
- CNRS 5273, Unité mixte de recherche STROMALab, Toulouse, France
| | - Atsushi Sugie
- Research Group Axon Guidance and Neuronal Connectivity, Max Planck Institute of Neurobiology, Martinsried, Germany
- Dendrite Differentiation Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Fumio Takahashi
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Gaia Tavosanis
- Dendrite Differentiation Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Satoko Hakeda-Suzuki
- Research Group Axon Guidance and Neuronal Connectivity, Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takashi Suzuki
- Research Group Axon Guidance and Neuronal Connectivity, Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Bioscience & Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
- * E-mail:
| |
Collapse
|
64
|
Baier H. Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annu Rev Cell Dev Biol 2013; 29:385-416. [PMID: 24099086 DOI: 10.1146/annurev-cellbio-101011-155748] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptic connections between neurons form the basis for perception and behavior. Synapses are often clustered in space, forming stereotyped layers. In the retina and optic tectum, multiple such synaptic laminae are stacked on top of each other, giving rise to stratified neuropil regions in which each layer combines synapses responsive to a particular sensory feature. Recently, several cellular and molecular mechanisms that underlie the development of multilaminar arrays of synapses have been discovered. These mechanisms include neurite guidance and cell-cell recognition. Molecules of the Slit, Semaphorin, Netrin, and Hedgehog families, binding to their matching receptors, bring axons and dendrites into spatial register. These guidance cues may diffuse over short distances or bind to sheets of extracellular matrix, thus conditioning the local extracellular milieu, or are presented on the surface of cells bordering the future neuropil. In addition, mutual recognition of axons and dendrites through adhesion molecules with immunoglobulin domains ensures cell type-specific connections within a given layer. Thus, an elaborate genetic program assembles the parallel processing channels that underlie visual perception.
Collapse
Affiliation(s)
- Herwig Baier
- Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried near Munich, Germany;
| |
Collapse
|
65
|
Ghezzi A, Krishnan HR, Lew L, Prado FJ, Ong DS, Atkinson NS. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance. PLoS Genet 2013; 9:e1003986. [PMID: 24348266 PMCID: PMC3861128 DOI: 10.1371/journal.pgen.1003986] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/14/2013] [Indexed: 12/19/2022] Open
Abstract
Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment, however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.
Collapse
Affiliation(s)
- Alfredo Ghezzi
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (AG); (NSA)
| | - Harish R. Krishnan
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Linda Lew
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Francisco J. Prado
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Darryl S. Ong
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Nigel S. Atkinson
- Section of Neurobiology and Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail: (AG); (NSA)
| |
Collapse
|
66
|
Sharma K, Choi SY, Zhang Y, Nieland TJF, Long S, Li M, Huganir RL. High-throughput genetic screen for synaptogenic factors: identification of LRP6 as critical for excitatory synapse development. Cell Rep 2013; 5:1330-41. [PMID: 24316074 DOI: 10.1016/j.celrep.2013.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 09/30/2013] [Accepted: 11/04/2013] [Indexed: 01/30/2023] Open
Abstract
Genetic screens in invertebrates have discovered many synaptogenic genes and pathways. However, similar genetic studies have not been possible in mammals. We have optimized an automated high-throughput platform that employs automated liquid handling and imaging of primary mammalian neurons. Using this platform, we have screened 3,200 shRNAs targeting 800 proteins. One of the hits identified was LRP6, a coreceptor for canonical Wnt ligands. LRP6 regulates excitatory synaptogenesis and is selectively localized to excitatory synapses. In vivo knockdown of LRP6 leads to a reduction in the number of functional synapses. Moreover, we show that the canonical Wnt ligand, Wnt8A, promotes synaptogenesis via LRP6. These results provide a proof of principle for using a high-content approach to screen for synaptogenic factors in the mammalian nervous system and identify and characterize a Wnt ligand receptor complex that is critical for the development of functional synapses in vivo.
Collapse
Affiliation(s)
- Kamal Sharma
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Se-Young Choi
- Department of Physiology, Seoul National University School of Dentistry, Seoul 110-749, South Korea
| | - Yong Zhang
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Thomas J F Nieland
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Shunyou Long
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Min Li
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
67
|
Dolan J, Mitchell KJ. Mutation of Elfn1 in mice causes seizures and hyperactivity. PLoS One 2013; 8:e80491. [PMID: 24312227 PMCID: PMC3842350 DOI: 10.1371/journal.pone.0080491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/12/2013] [Indexed: 02/02/2023] Open
Abstract
A growing number of proteins with extracellular leucine-rich repeats (eLRRs) have been implicated in directing neuronal connectivity. We previously identified a novel family of eLRR proteins in mammals: the Elfns are transmembrane proteins with 6 LRRs, a fibronectin type-3 domain and a long cytoplasmic tail. The recent discovery that Elfn1 protein, expressed postsynaptically, can direct the elaboration of specific electrochemical properties of synapses between particular cell types in the hippocampus strongly reinforces this hypothesis. Here, we present analyses of an Elfn1 mutant mouse line and demonstrate a functional requirement for this gene in vivo. We first carried out detailed expression analysis of Elfn1 using a β-galactosidase reporter gene in the knockout line. Elfn1 is expressed in distinct subsets of interneurons of the hippocampus and cortex, and also in discrete subsets of cells in the habenula, septum, globus pallidus, dorsal subiculum, amygdala and several other regions. Elfn1 is expressed in diverse cell types, including local GABAergic interneurons as well as long-range projecting GABAergic and glutamatergic neurons. Elfn1 protein localises to axons of excitatory neurons in the habenula, and long-range GABAergic neurons of the globus pallidus, suggesting the possibility of additional roles for Elfn1 in axons or presynaptically. While gross anatomical analyses did not reveal any obvious neuroanatomical abnormalities, behavioural analyses clearly illustrate functional effects of Elfn1 mutation. Elfn1 mutant mice exhibit seizures, subtle motor abnormalities, reduced thigmotaxis and hyperactivity. The hyperactivity is paradoxically reversible by treatment with the stimulant amphetamine, consistent with phenotypes observed in animals with habenular lesions. These analyses reveal a requirement for Elfn1 in brain function and are suggestive of possible relevance to the etiology and pathophysiology of epilepsy and attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Jackie Dolan
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
68
|
Almeida RG, Lyons DA. On the resemblance of synapse formation and CNS myelination. Neuroscience 2013; 276:98-108. [PMID: 24035825 DOI: 10.1016/j.neuroscience.2013.08.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination.
Collapse
Affiliation(s)
- R G Almeida
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK; MS Society Centre for Translational Research, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - D A Lyons
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK; MS Society Centre for Translational Research, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
69
|
Lee HKP, Cording A, Vielmetter J, Zinn K. Interactions between a receptor tyrosine phosphatase and a cell surface ligand regulate axon guidance and glial-neuronal communication. Neuron 2013; 78:813-26. [PMID: 23764287 DOI: 10.1016/j.neuron.2013.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2013] [Indexed: 12/31/2022]
Abstract
We developed a screening method for orphan receptor ligands, in which cell-surface proteins are expressed in Drosophila embryos from GAL4-dependent insertion lines and ligand candidates identified by the presence of ectopic staining with receptor fusion proteins. Stranded at second (Sas) binds to the receptor tyrosine phosphatase Ptp10D in embryos and in vitro. Sas and Ptp10D can interact in trans when expressed in cultured cells. Interactions between Sas and Ptp10D on longitudinal axons are required to prevent them from abnormally crossing the midline. Sas is expressed on both neurons and glia, whereas Ptp10D is restricted to CNS axons. We conducted epistasis experiments by overexpressing Sas in glia and examining how the resulting phenotypes are changed by removal of Ptp10D from neurons. We find that neuronal Ptp10D restrains signaling by overexpressed glial Sas, which would otherwise produce strong glial and axonal phenotypes.
Collapse
Affiliation(s)
- Hyung-Kook Peter Lee
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
70
|
Schroeder NE, Androwski RJ, Rashid A, Lee H, Lee J, Barr MM. Dauer-specific dendrite arborization in C. elegans is regulated by KPC-1/Furin. Curr Biol 2013; 23:1527-35. [PMID: 23932402 PMCID: PMC4671503 DOI: 10.1016/j.cub.2013.06.058] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 06/04/2013] [Accepted: 06/24/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Dendrites often display remarkably complex and diverse morphologies that are influenced by developmental and environmental cues. Neuroplasticity in response to adverse environmental conditions entails both hypertrophy and resorption of dendrites. How dendrites rapidly alter morphology in response to unfavorable environmental conditions is unclear. The nematode Caenorhabditis elegans enters into a stress-resistant dauer larval stage in response to an adverse environment. RESULTS Here we show that the IL2 bipolar sensory neurons undergo dendrite arborization and axon remodeling during dauer development. When dauer larvae are returned to favorable environmental conditions, animals resume reproductive development and IL2 dendritic branches retract, leaving behind remnant branches in postdauer L4 and adult animals. The C. elegans furin homolog KPC-1 is required for dauer IL2 dendritic arborization and dauer-specific nictation behavior. KPC-1 is also necessary for dendritic arborization of PVD and FLP sensory neurons. In mammals, furin is essential, ubiquitously expressed, and associated with numerous pathologies, including neurodegenerative diseases. While broadly expressed in C. elegans neurons and epithelia, KPC-1 acts cell autonomously in IL2 neurons to regulate dauer-specific dendritic arborization and nictation. CONCLUSIONS Neuroplasticity of the C. elegans IL2 sensory neurons provides a paradigm to study stress-induced and reversible dendritic branching, and the role of environmental and developmental cues in this process. The newly discovered role of KPC-1 in dendrite morphogenesis provides insight into the function of proprotein convertases in nervous system development.
Collapse
Affiliation(s)
- Nathan E Schroeder
- Department of Genetics and The Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854 USA
| | | | | | | | | | | |
Collapse
|
71
|
Özkan E, Carrillo RA, Eastman CL, Weiszmann R, Waghray D, Johnson KG, Zinn K, Celniker SE, Garcia KC. An extracellular interactome of immunoglobulin and LRR proteins reveals receptor-ligand networks. Cell 2013; 154:228-39. [PMID: 23827685 PMCID: PMC3756661 DOI: 10.1016/j.cell.2013.06.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/02/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
Extracellular domains of cell surface receptors and ligands mediate cell-cell communication, adhesion, and initiation of signaling events, but most existing protein-protein "interactome" data sets lack information for extracellular interactions. We probed interactions between receptor extracellular domains, focusing on a set of 202 proteins composed of the Drosophila melanogaster immunoglobulin superfamily (IgSF), fibronectin type III (FnIII), and leucine-rich repeat (LRR) families, which are known to be important in neuronal and developmental functions. Out of 20,503 candidate protein pairs tested, we observed 106 interactions, 83 of which were previously unknown. We "deorphanized" the 20 member subfamily of defective-in-proboscis-response IgSF proteins, showing that they selectively interact with an 11 member subfamily of previously uncharacterized IgSF proteins. Both subfamilies interact with a single common "orphan" LRR protein. We also observed interactions between Hedgehog and EGFR pathway components. Several of these interactions could be visualized in live-dissected embryos, demonstrating that this approach can identify physiologically relevant receptor-ligand pairs.
Collapse
Affiliation(s)
- Engin Özkan
- Department of Molecular and Cellular Physiology, and Structural Biology, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert A. Carrillo
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Catharine L. Eastman
- Department of Molecular and Cellular Physiology, and Structural Biology, Stanford, CA 94305, USA
| | - Richard Weiszmann
- Department of Genome Dynamics, Berkeley Genome Project, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Deepa Waghray
- Department of Molecular and Cellular Physiology, and Structural Biology, Stanford, CA 94305, USA
| | - Karl G. Johnson
- Department of Biology, and Neuroscience, Pomona College, Claremont, CA 91711, USA
| | - Kai Zinn
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Susan E. Celniker
- Department of Genome Dynamics, Berkeley Genome Project, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, and Structural Biology, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
72
|
Multiple interactions control synaptic layer specificity in the Drosophila visual system. Neuron 2013; 77:299-310. [PMID: 23352166 PMCID: PMC3684158 DOI: 10.1016/j.neuron.2012.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2012] [Indexed: 01/03/2023]
Abstract
How neurons form synapses within specific layers remains poorly understood. In the Drosophila medulla, neurons target to discrete layers in a precise fashion. Here we demonstrate that the targeting of L3 neurons to a specific layer occurs in two steps. Initially, L3 growth cones project to a common domain in the outer medulla, overlapping with the growth cones of other neurons destined for a different layer through the redundant functions of N-Cadherin (CadN) and Semaphorin-1a (Sema-1a). CadN mediates adhesion within the domain and Sema-1a mediates repulsion through Plexin A (PlexA) expressed in an adjacent region. Subsequently, L3 growth cones segregate from the domain into their target layer in part through Sema-1a/PlexA-dependent remodeling. Together, our results and recent studies argue that the early medulla is organized into common domains, comprising processes bound for different layers, and that discrete layers later emerge through successive interactions between processes within domains and developing layers.
Collapse
|
73
|
Ten-a affects the fusion of central complex primordia in Drosophila. PLoS One 2013; 8:e57129. [PMID: 23437330 PMCID: PMC3577759 DOI: 10.1371/journal.pone.0057129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/17/2013] [Indexed: 02/03/2023] Open
Abstract
The central complex of Drosophila melanogaster plays important functions in various behaviors, such as visual and olfactory memory, visual orientation, sleep, and movement control. However little is known about the genes regulating the development of the central complex. Here we report that a mutant gene affecting central complex morphology, cbd (central brain defect), was mapped to ten-a, a type II trans-membrane protein coding gene. Down-regulation of ten-a in pan-neural cells contributed to abnormal morphology of central complex. Over-expression of ten-a by C767-Gal4 was able to partially restore the abnormal central complex morphology in the cbd mutant. Tracking the development of FB primordia revealed that C767-Gal4 labeled interhemispheric junction that separated fan-shaped body precursors at larval stage withdrew to allow the fusion of the precursors. While the C767-Gal4 labeled structure did not withdraw properly and detached from FB primordia, the two fan-shaped body precursors failed to fuse in the cbd mutant. We propose that the withdrawal of C767-Gal4 labeled structure is related to the formation of the fan-shaped body. Our result revealed the function of ten-a in central brain development, and possible cellular mechanism underlying Drosophila fan-shaped body formation.
Collapse
|
74
|
Kohsaka H, Okusawa S, Itakura Y, Fushiki A, Nose A. Development of larval motor circuits in Drosophila. Dev Growth Differ 2012; 54:408-19. [PMID: 22524610 DOI: 10.1111/j.1440-169x.2012.01347.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How are functional neural circuits formed during development? Despite recent advances in our understanding of the development of individual neurons, little is known about how complex circuits are assembled to generate specific behaviors. Here, we describe the ways in which Drosophila motor circuits serve as an excellent model system to tackle this problem. We first summarize what has been learned during the past decades on the connectivity and development of component neurons, in particular motor neurons and sensory feedback neurons. We then review recent progress in our understanding of the development of the circuits as well as studies that apply optogenetics and other innovative techniques to dissect the circuit diagram. New approaches using Drosophila as a model system are now making it possible to search for developmental rules that regulate the construction of neural circuits.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1, Hongo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
75
|
Nose A. Generation of neuromuscular specificity in Drosophila: novel mechanisms revealed by new technologies. Front Mol Neurosci 2012; 5:62. [PMID: 22586369 PMCID: PMC3347465 DOI: 10.3389/fnmol.2012.00062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/23/2012] [Indexed: 11/13/2022] Open
Abstract
The Drosophila larval neuromuscular system is one of the best-characterized model systems for axon targeting. In each abdominal hemisegment, only 36 identified motor neurons form synaptic connections with just 30 target muscles in a highly specific and stereotypic manner. Studies in the 1990s identified several cell-surface and secreted proteins that are expressed in specific muscles and contribute to target specificity. Emerging evidence suggests that target selection is determined not only by attraction to the target cells but also by exclusion from non-target cells. Proteins with leucine-rich repeats (LRR proteins) appear to be a major molecular family of proteins responsible for the targeting. While the demonstrated roles of the target-derived cues point to active recognition by presynaptic motor neurons, postsynaptic muscles also reach out and recognize specific motor neurons by sending out cellular protrusions called myopodia. Simultaneous live imaging of myopodia and growth cones has revealed that local and mutual recognition at the tip of myopodia is critical for selective synapse formation. A large number of candidate target cues have been identified on a single muscle, suggesting that target specificity is determined by the partially redundant and combinatorial function of multiple cues. Analyses of the seemingly simple neuromuscular system in Drosophila have revealed an unexpected complexity in the mechanisms of axon targeting.
Collapse
Affiliation(s)
- Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa Chiba, Japan
| |
Collapse
|
76
|
Zarin AA, Daly AC, Hülsmeier J, Asadzadeh J, Labrador JP. A GATA/homeodomain transcriptional code regulates axon guidance through the Unc-5 receptor. Development 2012; 139:1798-805. [PMID: 22461564 DOI: 10.1242/dev.070656] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transcription factor codes play an essential role in neuronal specification and axonal guidance in both vertebrate and invertebrate organisms. However, how transcription codes regulate axon pathfinding remains poorly understood. One such code defined by the homeodomain transcription factor Even-skipped (Eve) and by the GATA 2/3 homologue Grain (Grn) is specifically required for motor axon projection towards dorsal muscles in Drosophila. Using different mutant combinations, we present genetic evidence that both Grn and Eve are in the same pathway as Unc-5 in dorsal motoneurons (dMNs). In grn mutants, in which dMNs fail to reach their muscle targets, dMNs show significantly reduced levels of unc-5 mRNA expression and this phenotype can be partially rescued by the reintroduction of unc-5. We also show that both eve and grn are required independently to induce expression of unc-5 in dMNs. Reconstitution of the eve-grn transcriptional code of a dMN in dMP2 neurons, which do not project to lateral muscles in Drosophila, is able to reprogramme those cells accordingly; they robustly express unc-5 and project towards the muscle field as dMNs. Each transcription factor can independently induce unc-5 expression but unc-5 expression is more robust when both factors are expressed together. Furthermore, dMP2 exit is dependent on the level of unc-5 induced by eve and grn. Taken together, our data strongly suggests that the eve-grn transcriptional code controls axon guidance, in part, by regulating the level of unc-5 expression.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Smurfit Institute of Genetics, Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
77
|
Mosca TJ, Hong W, Dani VS, Favaloro V, Luo L. Trans-synaptic Teneurin signalling in neuromuscular synapse organization and target choice. Nature 2012; 484:237-41. [PMID: 22426000 PMCID: PMC3326183 DOI: 10.1038/nature10923] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 02/07/2012] [Indexed: 11/18/2022]
Abstract
Synapse assembly requires trans-synaptic signals between the pre- and postsynapse, but our understanding of the essential organizational molecules involved in this process remains incomplete. Teneurin proteins are conserved, epidermal growth factor (EGF)-repeat-containing transmembrane proteins with large extracellular domains. Here we show that two Drosophila Teneurins, Ten-m and Ten-a, are required for neuromuscular synapse organization and target selection. Ten-a is presynaptic whereas Ten-m is mostly postsynaptic; neuronal Ten-a and muscle Ten-m form a complex in vivo. Pre- or postsynaptic Teneurin perturbations cause severe synapse loss and impair many facets of organization trans-synaptically and cell autonomously. These include defects in active zone apposition, release sites, membrane and vesicle organization, and synaptic transmission. Moreover, the presynaptic microtubule and postsynaptic spectrin cytoskeletons are severely disrupted, suggesting a mechanism whereby Teneurins organize the cytoskeleton, which in turn affects other aspects of synapse development. Supporting this, Ten-m physically interacts with α-Spectrin. Genetic analyses of teneurin and neuroligin reveal that they have differential roles that synergize to promote synapse assembly. Finally, at elevated endogenous levels, Ten-m regulates target selection between specific motor neurons and muscles. Our study identifies the Teneurins as a key bi-directional trans-synaptic signal involved in general synapse organization, and demonstrates that proteins such as these can also regulate target selection.
Collapse
Affiliation(s)
- Timothy J Mosca
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
78
|
Teneurins instruct synaptic partner matching in an olfactory map. Nature 2012; 484:201-7. [PMID: 22425994 PMCID: PMC3345284 DOI: 10.1038/nature10926] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
Abstract
Neurons are interconnected with extraordinary precision to assemble a functional nervous system. Compared to axon guidance, far less is understood about how individual pre- and post-synaptic partners are matched. To ensure the proper relay of olfactory information in flies, axons of ~50 classes of olfactory receptor neurons (ORNs) form one-to-one connections with dendrites of ~50 classes of projection neurons (PNs). Using genetic screens, we identified two evolutionarily conserved EGF-repeat transmembrane Teneurins, Ten-m and Ten-a, as synaptic partner matching molecules between PN dendrites and ORN axons. Ten-m and Ten-a are highly expressed in select PN-ORN matching pairs. Teneurin loss- and gain-of-function cause specific mismatching of select ORNs and PNs. Finally, Teneurins promote homophilic interactions in vitro, and Ten-m co-expression in non-partner PNs and ORNs promotes their ectopic connections in vivo. We propose that Teneurins instruct matching specificity between synaptic partners through homophilic attraction.
Collapse
|
79
|
Mancuso VP, Parry JM, Storer L, Poggioli C, Nguyen KCQ, Hall DH, Sundaram MV. Extracellular leucine-rich repeat proteins are required to organize the apical extracellular matrix and maintain epithelial junction integrity in C. elegans. Development 2012; 139:979-90. [PMID: 22278925 PMCID: PMC3274359 DOI: 10.1242/dev.075135] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2011] [Indexed: 12/13/2022]
Abstract
Epithelial cells are linked by apicolateral junctions that are essential for tissue integrity. Epithelial cells also secrete a specialized apical extracellular matrix (ECM) that serves as a protective barrier. Some components of the apical ECM, such as mucins, can influence epithelial junction remodeling and disassembly during epithelial-to-mesenchymal transition (EMT). However, the molecular composition and biological roles of the apical ECM are not well understood. We identified a set of extracellular leucine-rich repeat only (eLRRon) proteins in C. elegans (LET-4 and EGG-6) that are expressed on the apical surfaces of epidermal cells and some tubular epithelia, including the excretory duct and pore. A previously characterized paralog, SYM-1, is also expressed in epidermal cells and secreted into the apical ECM. Related mammalian eLRRon proteins, such as decorin or LRRTM1-3, influence stromal ECM or synaptic junction organization, respectively. Mutants lacking one or more of the C. elegans epithelial eLRRon proteins show multiple defects in apical ECM organization, consistent with these proteins contributing to the embryonic sheath and cuticular ECM. Furthermore, epithelial junctions initially form in the correct locations, but then rupture at the time of cuticle secretion and remodeling of cell-matrix interactions. This work identifies epithelial eLRRon proteins as important components and organizers of the pre-cuticular and cuticular apical ECM, and adds to the small but growing body of evidence linking the apical ECM to epithelial junction stability. We propose that eLRRon-dependent apical ECM organization contributes to cell-cell adhesion and may modulate epithelial junction dynamics in both normal and disease situations.
Collapse
Affiliation(s)
- Vincent P. Mancuso
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jean M. Parry
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Luke Storer
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Corey Poggioli
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H. Hall
- Department of Neuroscience, Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
80
|
Fares MA, Ruiz-González MX, Labrador JP. Protein coadaptation and the design of novel approaches to identify protein-protein interactions. IUBMB Life 2011; 63:264-71. [PMID: 21488148 DOI: 10.1002/iub.455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteins rarely function in isolation but they form part of complex networks of interactions with other proteins within or among cells. The importance of a particular protein for cell viability is directly dependent upon the number of interactions where it participates and the function it performs: the larger the number of interactions of a protein the greater its functional importance is for the cell. With the advent of genome sequencing and "omics" technologies it became feasible conducting large-scale searches for protein interacting partners. Unfortunately, the accuracy of such analyses has been underwhelming owing to methodological limitations and to the inherent complexity of protein interactions. In addition to these experimental approaches, many computational methods have been developed to identify protein-protein interactions by assuming that interacting proteins coevolve resulting from the coadaptation dynamics between the amino acids of their interacting faces. We review the main technological advances made in the field of interactomics and discuss the feasibility of computational methods to identify protein-protein interactions based on the estimation of coevolution. As proof-of-concept, we present a classical case study: the interactions of cell surface proteins (receptors) and their ligands. Finally, we take this discussion one step forward to include interactions between organisms and species to understand the generation of biological complexity. Development of technologies for accurate detection of protein-protein interactions may shed light on processes that go from the fine-tuning of pathways and metabolic networks to the emergence of biological complexity.
Collapse
Affiliation(s)
- Mario A Fares
- Department of Abiotic Stress, Group of Integrative and Systems Biology, Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Valencia, Spain.
| | | | | |
Collapse
|
81
|
Babu K, Hu Z, Chien SC, Garriga G, Kaplan JM. The immunoglobulin super family protein RIG-3 prevents synaptic potentiation and regulates Wnt signaling. Neuron 2011; 71:103-16. [PMID: 21745641 PMCID: PMC3134796 DOI: 10.1016/j.neuron.2011.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2011] [Indexed: 11/15/2022]
Abstract
Cell surface Ig superfamily proteins (IgSF) have been implicated in several aspects of neuron development and function. Here, we describe the function of a Caenorhabditis elegans IgSF protein, RIG-3. Mutants lacking RIG-3 have an exaggerated paralytic response to a cholinesterase inhibitor, aldicarb. Although RIG-3 is expressed in motor neurons, heightened drug responsiveness was caused by an aldicarb-induced increase in muscle ACR-16 acetylcholine receptor (AChR) abundance, and a corresponding potentiation of postsynaptic responses at neuromuscular junctions. Mutants lacking RIG-3 also had defects in the anteroposterior polarity of the ALM mechanosensory neurons. The effects of RIG-3 on synaptic transmission and ALM polarity were both mediated by changes in Wnt signaling, and in particular by inhibiting CAM-1, a Ror-type receptor tyrosine kinase that binds Wnt ligands. These results identify RIG-3 as a regulator of Wnt signaling, and suggest that RIG-3 has an anti-plasticity function that prevents activity-induced changes in postsynaptic receptor fields.
Collapse
Affiliation(s)
- Kavita Babu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Zhitao Hu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Shih-Chieh Chien
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720
| | - Gian Garriga
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| | - Joshua M. Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
82
|
de Wit J, Hong W, Luo L, Ghosh A. Role of leucine-rich repeat proteins in the development and function of neural circuits. Annu Rev Cell Dev Biol 2011; 27:697-729. [PMID: 21740233 DOI: 10.1146/annurev-cellbio-092910-154111] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nervous system consists of an ensemble of billions of neurons interconnected in a highly specific pattern that allows proper propagation and integration of neural activities. The organization of these specific connections emerges from sequential developmental events including axon guidance, target selection, and synapse formation. These events critically rely on cell-cell recognition and communication mediated by cell-surface ligands and receptors. Recent studies have uncovered central roles for leucine-rich repeat (LRR) domain-containing proteins, not only in organizing neural connectivity from axon guidance to target selection to synapse formation, but also in various nervous system disorders. Their versatile LRR domains, in particular, serve as key sites for interactions with a wide diversity of binding partners. Here, we focus on a few exquisite examples of secreted or membrane-associated LRR proteins in Drosophila and mammals and review the mechanisms by which they regulate diverse aspects of nervous system development and function.
Collapse
Affiliation(s)
- Joris de Wit
- Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, California 92093-0366, USA
| | | | | | | |
Collapse
|
83
|
Guan Z, Buhl LK, Quinn WG, Littleton JT. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants. Learn Mem 2011; 18:191-206. [PMID: 21422168 DOI: 10.1101/lm.2027111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila.
Collapse
Affiliation(s)
- Zhuo Guan
- Department of Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
84
|
Maeder CI, Shen K. Genetic dissection of synaptic specificity. Curr Opin Neurobiol 2011; 21:93-9. [PMID: 21087855 PMCID: PMC3168556 DOI: 10.1016/j.conb.2010.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/04/2010] [Accepted: 10/21/2010] [Indexed: 11/22/2022]
Abstract
Nervous systems are built of a myriad of neurons connected by an even larger number of synapses. While it has been long known that neurons specifically select their synaptic partners among many possible choices during development, we only begin to understand how they make those decisions. Recent findings have started to elucidate the molecular mechanisms underlying synaptic target selection including positive as well as negative cues from synaptic partners, intermediate targets and surrounding tissues. Furthermore, emerging evidence suggests that synaptic connections are not only formed among specific sets of neurons, but also targeted to specific subcellular domains. Finally, spatial and temporal transcriptional regulation of these molecular cues represents an additional, versatile mechanism to provide wiring specificity.
Collapse
Affiliation(s)
- Celine I. Maeder
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Deparment of Pathology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
85
|
Giagtzoglou N, Ly CV, Bellen HJ. Cell adhesion, the backbone of the synapse: "vertebrate" and "invertebrate" perspectives. Cold Spring Harb Perspect Biol 2010; 1:a003079. [PMID: 20066100 DOI: 10.1101/cshperspect.a003079] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neurodevelopmental diseases, such as autism, or neurodegeneration, such as Alzheimer's disease. Therefore, understanding the roles of different adhesion protein families in synapse formation is crucial for unraveling the biology of neuronal circuit formation, as well as the pathogenesis of some brain disorders. The present review summarizes some of the knowledge that has been acquired in vertebrate and invertebrate genetic model organisms.
Collapse
Affiliation(s)
- Nikolaos Giagtzoglou
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
86
|
Ou CY, Shen K. Setting up presynaptic structures at specific positions. Curr Opin Neurobiol 2010; 20:489-93. [PMID: 20471244 PMCID: PMC3168548 DOI: 10.1016/j.conb.2010.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 11/21/2022]
Abstract
Precise formation of presynaptic structures at specific loci is critical for correctly wiring neuronal circuits. Recent findings have gradually revealed how essential cues from different sources inform the axon to define the presynaptic domain and to choose its postsynaptic target. Here, we review key molecular regulators which mediate instructive or repellent signals from multiple sources including the target cells, local guidepost cells, and distal guiding tissues.
Collapse
Affiliation(s)
- Chan-Yen Ou
- Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, CA 94305, USA
| | | |
Collapse
|
87
|
Tixier V, Bataillé L, Jagla K. Diversification of muscle types: recent insights from Drosophila. Exp Cell Res 2010; 316:3019-27. [PMID: 20673829 DOI: 10.1016/j.yexcr.2010.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
Myogenesis is a highly conserved process ending up by the formation of contracting muscles. In Drosophila embryos, myogenesis gives rise to a segmentally repeated array of thirty distinct fibres, each of which represents an individual muscle. Since Drosophila offers a large range of genetic tools for easily testing gene functions, it has become one of the most studied and consequently best-described model organisms for muscle development. Over the last two decades, the Drosophila model system has enabled major advances in our understanding of how the initially equivalent mesodermal cells become competent for entering myogenic differentiation and how each distinct type of muscle is specified. Here we present an overview of Drosophila muscle development with a special focus on the diversification of muscle types and the genes that control acquisition of distinct muscle properties.
Collapse
Affiliation(s)
- Vanessa Tixier
- GReD, INSERM U931, CNRS UMR6247, Clermont University, Faculty of Medicine, 28 place Henri Dunant, Clermont-Ferrand, France
| | | | | |
Collapse
|
88
|
Gilsohn E, Volk T. Fine tuning cellular recognition: The function of the leucine rich repeat (LRR) trans-membrane protein, LRT, in muscle targeting to tendon cells. Cell Adh Migr 2010; 4:368-71. [PMID: 20404543 DOI: 10.4161/cam.4.3.11606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The formation of complex tissues during embryonic development is often accompanied by directed cellular migration towards a target tissue. Specific mutual recognition between the migrating cell and its target tissue leads to the arrest of the cell migratory behavior and subsequent contact formation between the two interacting cell types. Recent studies implicated a novel family of surface proteins containing a trans-membrane domain and single leucine-rich repeat (LRR) domain in inter-cellular recognition and the arrest of cell migration. Here, we describe the involvement of a novel LRR surface protein, LRT, in targeting migrating muscles towards their corresponding tendon cells in the Drosophila embryo. LRT is specifically expressed by the target tendon cells and is essential for arresting the migratory behavior of the muscle cells. Additional studies in Drosophila S2 cultured cells suggest that LRT forms a protein complex with the Roundabout (Robo) receptor, essential for guiding muscles towards their tendon partners. Genetic analysis supports a model in which LRT performs its activity non-autonomously through its interaction with the Robo receptors expressed on the muscle surfaces. These results suggest a novel mechanism of intercellular recognition through interactions between LRR family members and Robo receptors.
Collapse
Affiliation(s)
- Eli Gilsohn
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
89
|
Astigarraga S, Hofmeyer K, Treisman JE. Missed connections: photoreceptor axon seeks target neuron for synaptogenesis. Curr Opin Genet Dev 2010; 20:400-7. [PMID: 20434326 DOI: 10.1016/j.gde.2010.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 02/06/2023]
Abstract
Extending axons must choose the appropriate synaptic target cells in order to assemble functional neural circuitry. The axons of the Drosophila color-sensitive photoreceptors R7 and R8 project as a single fascicle from each ommatidium, but their terminals are segregated into distinct layers within their target region. Recent studies have begun to reveal the molecular mechanisms that establish this projection pattern. Both homophilic adhesion molecules and specific ligand-receptor interactions make important contributions to stabilizing R7 and R8 terminals in the appropriate target layers. These cell recognition molecules are regulated by the same transcription factors that control R7 and R8 cell fates. Autocrine and repulsive signaling mechanisms prevent photoreceptor terminals from encroaching on their neighbors, preserving the spatial resolution of visual information.
Collapse
Affiliation(s)
- Sergio Astigarraga
- Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
90
|
Kwon SK, Woo J, Kim SY, Kim H, Kim E. Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase delta (PTPdelta), and PTPsigma via specific domains regulate excitatory synapse formation. J Biol Chem 2010; 285:13966-78. [PMID: 20139422 PMCID: PMC2859559 DOI: 10.1074/jbc.m109.061127] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 01/12/2010] [Indexed: 01/15/2023] Open
Abstract
Synaptic cell adhesion molecules regulate various steps of synapse formation. The trans-synaptic adhesion between postsynaptic NGL-3 (for netrin-G ligand-3) and presynaptic LAR (for leukocyte antigen-related) regulates excitatory synapse formation in a bidirectional manner. However, little is known about the molecular details of the NGL-3-LAR adhesion and whether two additional LAR family proteins, protein-tyrosine phosphatase delta (PTPdelta), and PTPsigma, also interact with NGL-3 and are involved in synapse formation. We report here that the leucine-rich repeat (LRR) domain of NGL-3, containing nine LRRs, interacts with the first two fibronectin III (FNIII) domains of LAR to induce bidirectional synapse formation. Moreover, Gln-96 in the first LRR motif of NGL-3 is critical for LAR binding and induction of presynaptic differentiation. PTPdelta and PTPsigma also interact with NGL-3 via their first two FNIII domains. These two interactions promote synapse formation in a different manner; the PTPsigma-NGL-3 interaction promotes synapse formation in a bidirectional manner, whereas the PTPdelta-NGL-3 interaction instructs only presynaptic differentiation in a unidirectional manner. mRNAs encoding LAR family proteins display overlapping and differential expression patterns in various brain regions. These results suggest that trans-synaptic adhesion between NGL-3 and the three LAR family proteins regulates excitatory synapse formation in shared and distinct neural circuits.
Collapse
Affiliation(s)
- Seok-Kyu Kwon
- From the National Creative Research Initiative Center for Synaptogenesis, Department of Biological Sciences, and Department of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 305-701 and
| | - Jooyeon Woo
- From the National Creative Research Initiative Center for Synaptogenesis, Department of Biological Sciences, and Department of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 305-701 and
| | - Soo-Young Kim
- the Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, 126-1, 5-Ka, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| | - Hyun Kim
- the Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, 126-1, 5-Ka, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| | - Eunjoon Kim
- From the National Creative Research Initiative Center for Synaptogenesis, Department of Biological Sciences, and Department of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 305-701 and
| |
Collapse
|
91
|
Abstract
A century ago, Cajal noted striking similarities between the neural circuits that underlie vision in vertebrates and flies. Over the past few decades, structural and functional studies have provided strong support for Cajal's view. In parallel, genetic studies have revealed some common molecular mechanisms controlling development of vertebrate and fly visual systems and suggested that they share a common evolutionary origin. Here, we review these shared features, focusing on the first several layers-retina, optic tectum (superior colliculus), and lateral geniculate nucleus in vertebrates; and retina, lamina, and medulla in fly. We argue that vertebrate and fly visual circuits utilize common design principles and that taking advantage of this phylogenetic conservation will speed progress in elucidating both functional strategies and developmental mechanisms, as has already occurred in other areas of neurobiology ranging from electrical signaling and synaptic plasticity to neurogenesis and axon guidance.
Collapse
Affiliation(s)
- Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138 ()
| | - S. Lawrence Zipursky
- Dept. of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 ()
| |
Collapse
|
92
|
Abstract
The most impressive structural feature of the nervous system is the specificity of its synaptic connections. Even after axons have navigated long distances to reach target areas, they must still choose appropriate synaptic partners from the many potential partners within easy reach. In many cases, axons also select a particular domain of the postsynaptic cell on which to form a synapse. Thus, synapse formation is selective at both cellular and subcellular levels. Unsurprisingly, the nervous system uses multiple mechanisms to ensure proper connectivity; these include complementary labels, coordinated growth of synaptic partners, sorting of afferents, prohibition or elimination of inappropriate synapses, respecification of targets, and use of short-range guidance mechanisms or intermediate targets. Specification of any circuit is likely to involve integration of multiple mechanisms. Recent studies of vertebrate and invertebrate systems have led to the identification of molecules that mediate a few of these interactions.
Collapse
Affiliation(s)
- Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
93
|
Margeta MA, Shen K. Molecular mechanisms of synaptic specificity. Mol Cell Neurosci 2009; 43:261-7. [PMID: 19969086 DOI: 10.1016/j.mcn.2009.11.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/30/2009] [Indexed: 11/27/2022] Open
Abstract
Synapses are specialized junctions that mediate information flow between neurons and their targets. A striking feature of the nervous system is the specificity of its synaptic connections: an individual neuron will form synapses only with a small subset of available presynaptic and postsynaptic partners. Synaptic specificity has been classically thought to arise from homophilic or heterophilic interactions between adhesive molecules acting across the synaptic cleft. Over the past decade, many new mechanisms giving rise to synaptic specificity have been identified. Synapses can be specified by secreted molecules that promote or inhibit synaptogenesis, and their source can be a neighboring guidepost cell, not just presynaptic and postsynaptic neurons. Furthermore, lineage, fate, and timing of development can also play critical roles in shaping neural circuits. Future work utilizing large-scale screens will aim to elucidate the full scope of cellular mechanisms and molecular players that can give rise to synaptic specificity.
Collapse
Affiliation(s)
- Milica A Margeta
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | | |
Collapse
|
94
|
Heiman MG, Shaham S. Twigs into branches: how a filopodium becomes a dendrite. Curr Opin Neurobiol 2009; 20:86-91. [PMID: 19939665 DOI: 10.1016/j.conb.2009.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 01/25/2023]
Abstract
A dendrite grows by sprouting filopodia, some of which mature into stable dendrite branches that bear synapses and sprout filopodia of their own. Recent work has shown that a filopodium begins deciding to become a stable branch within 1min of contacting a presynaptic partner, but what triggers this decision remains unknown. We consider the evidence for three possible triggers: activity of neurotransmitter receptors, signaling through adhesion proteins, and heightened membrane tension as the filopodium attempts to retract but is held in place by adhesive contacts with the target. Of these, membrane tension-induced signaling is especially appealing, as it would serve as a general reporter of attachment, independent of which specific adhesion molecules are used.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
95
|
Hong W, Zhu H, Potter CJ, Barsh G, Kurusu M, Zinn K, Luo L. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map. Nat Neurosci 2009; 12:1542-50. [PMID: 19915565 PMCID: PMC2826190 DOI: 10.1038/nn.2442] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/01/2009] [Indexed: 11/09/2022]
Abstract
Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at approximately 50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a three-dimensional discrete neural map are unclear. We found that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) was differentially expressed in different classes of PNs. Loss-of-function and gain-of-function studies indicated that Caps instructs the segregation of Caps-positive and Caps-negative PN dendrites to discrete glomerular targets. Moreover, Caps-mediated PN dendrite targeting was independent of presynaptic ORNs and did not involve homophilic interactions. The closely related protein Tartan was partially redundant with Caps. These LRR proteins are probably part of a combinatorial cell-surface code that instructs discrete olfactory map formation.
Collapse
Affiliation(s)
- Weizhe Hong
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Wayburn B, Volk T. LRT, a tendon-specific leucine-rich repeat protein, promotes muscle-tendon targeting through its interaction with Robo. Development 2009; 136:3607-15. [PMID: 19793885 DOI: 10.1242/dev.040329] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Correct muscle migration towards tendon cells, and the adhesion of these two cell types, form the basis for contractile tissue assembly in the Drosophila embryo. While molecules promoting the attraction of muscles towards tendon cells have been described, signals involved in the arrest of muscle migration following the arrival of myotubes at their corresponding tendon cells have yet to be elucidated. Here, we describe a novel tendon-specific transmembrane protein, which we named LRT due to the presence of a leucine-rich repeat domain (LRR) in its extracellular region. Our analysis suggests that LRT acts non-autonomously to better target the muscle and/or arrest its migration upon arrival at its corresponding tendon cell. Muscles in embryos lacking LRT exhibited continuous formation of membrane extensions despite arrival at their corresponding tendon cells, and a partial failure of muscles to target their correct tendon cells. In addition, overexpression of LRT in tendon cells often stalled muscles located close to the tendon cells. LRT formed a protein complex with Robo, and we detected a functional genetic interaction between Robo and LRT at the level of muscle migration behavior. Taken together, our data suggest a novel mechanism by which muscles are targeted towards tendon cells as a result of LRT-Robo interactions. This mechanism may apply to the Robo-dependent migration of a wide variety of cell types.
Collapse
Affiliation(s)
- Bess Wayburn
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
97
|
Söllner C, Wright GJ. A cell surface interaction network of neural leucine-rich repeat receptors. Genome Biol 2009; 10:R99. [PMID: 19765300 PMCID: PMC2768988 DOI: 10.1186/gb-2009-10-9-r99] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/18/2009] [Accepted: 09/18/2009] [Indexed: 01/18/2023] Open
Abstract
A network of Zebrafish extracellular neuroreceptor interactions are revealed using AVEXIS, a highly stringent interaction assay. Background The vast number of precise intercellular connections within vertebrate nervous systems is only partly explained by the comparatively few known extracellular guidance cues. Large families of neural orphan receptor proteins have been identified and are likely to contribute to these recognition processes but due to the technical difficulty in identifying novel extracellular interactions of membrane-embedded proteins, their ligands remain unknown. Results To identify novel neural recognition signals, we performed a large systematic protein interaction screen using an assay capable of detecting low affinity extracellular protein interactions between the ectodomains of 150 zebrafish receptor proteins containing leucine-rich-repeat and/or immunoglobulin superfamily domains. We screened 7,592 interactions to construct a network of 34 cell surface receptor-ligand pairs that included orphan receptor subfamilies such as the Lrrtms, Lrrns and Elfns but also novel ligands for known receptors such as Robos and Unc5b. A quantitative biochemical analysis of a subnetwork involving the Unc5b and three Flrt receptors revealed a surprising quantitative variation in receptor binding strengths. Paired spatiotemporal gene expression patterns revealed dynamic neural receptor recognition maps within the developing nervous system, providing biological support for the network and revealing likely functions. Conclusions This integrated interaction and expression network provides a rich source of novel neural recognition pathways and highlights the importance of quantitative systematic extracellular protein interaction screens to mechanistically explain neural wiring patterns.
Collapse
Affiliation(s)
- Christian Söllner
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK.
| | | |
Collapse
|
98
|
Al-Anzi B, Wyman RJ. The Drosophila immunoglobulin gene turtle encodes guidance molecules involved in axon pathfinding. Neural Dev 2009; 4:31. [PMID: 19686588 PMCID: PMC2739522 DOI: 10.1186/1749-8104-4-31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background Neuronal growth cones follow specific pathways over long distances in order to reach their appropriate targets. Research over the past 15 years has yielded a large body of information concerning the molecules that regulate this process. Some of these molecules, such as the evolutionarily conserved netrin and slit proteins, are expressed in the embryonic midline, an area of extreme importance for early axon pathfinding decisions. A general model has emerged in which netrin attracts commissural axons towards the midline while slit forces them out. However, a large number of commissural axons successfully cross the midline even in the complete absence of netrin signaling, indicating the presence of a yet unidentified midline attractant. Results The evolutionarily conserved Ig proteins encoded by the turtle/Dasm1 genes are found in Drosophila, Caenorhabditis elegans, and mammals. In Drosophila the turtle gene encodes five proteins, two of which are diffusible, that are expressed in many areas, including the vicinity of the midline. Using both molecular null alleles and transgenic expression of the different isoforms, we show that the turtle encoded proteins function as non-cell autonomous axonal attractants that promote midline crossing via a netrin-independent mechanism. turtle mutants also have either stalled or missing axon projections, while overexpression of the different turtle isoforms produces invasive neurons and branching axons that do not respect the histological divisions of the nervous system. Conclusion Our findings indicate that the turtle proteins function as axon guidance cues that promote midline attraction, axon branching, and axonal invasiveness. The latter two capabilities are required by migrating axons to explore densely packed targets.
Collapse
Affiliation(s)
- Bader Al-Anzi
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
99
|
Kohsaka H, Nose A. Target recognition at the tips of postsynaptic filopodia: accumulation and function of Capricious. Development 2009; 136:1127-35. [PMID: 19270171 DOI: 10.1242/dev.027920] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While much evidence suggests that postsynaptic dynamism contributes to the formation of synapses, few studies have addressed its possible role in target selection. Do postsynaptic motile structures seek specific synaptic partner cells, as does the presynaptic growth cone? Here we studied the dynamics of myopodia, postsynaptic filopodia in Drosophila muscles, and the role of Capricious (CAPS) during the process of synaptic matchmaking. CAPS is a target recognition molecule with an extracellular domain containing leucine-rich repeat sequences. It is expressed in specific subsets of embryonic/larval body wall muscles, including muscle 12 (M12). We provide evidence that implicates the tips of myopodia as loci of initial neuromuscular recognition: (1) CAPS, expressed as a GFP-fusion protein in M12, accumulated at the tips of myopodia; and (2) simultaneous live imaging of presynaptic motoneurons and postsynaptic myopodia revealed that initial neuromuscular contacts occur at the tips of myopodia. The live imaging also showed that individual postsynaptic myopodia appear to be able to discriminate partner and non-partner presynaptic cells: whereas many myopodial contacts with the partner motoneurons are stabilized to form synapses, those with non-partner neurons are retracted. In caps mutants, or in double mutants lacking both CAPS and the closely related protein Tartan, we observed fewer contacts between myopodia of M12 and the presynaptic growth cones during the process of initial neuromuscular interaction. The nascent synaptic sites of M12 were also reduced. These results provide evidence for the sensing function of postsynaptic filopodia, and implicate Caps-mediated recognition at the tips of myopodia in synaptic matching.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Complexity Science and Engineering, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | | |
Collapse
|
100
|
Woo J, Kwon SK, Kim E. The NGL family of leucine-rich repeat-containing synaptic adhesion molecules. Mol Cell Neurosci 2009; 42:1-10. [PMID: 19467332 DOI: 10.1016/j.mcn.2009.05.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022] Open
Abstract
Cell adhesion molecules at neuronal synapses regulate diverse aspects of synaptic development, including axo-dendritic contact establishment, early synapse formation, and synaptic maturation. Recent studies have identified several synaptogenic adhesion molecules. The NGL (netrin-G ligand; LRRC4) family of synaptic cell adhesion molecules belongs to the superfamily of leucine-rich repeat (LRR) proteins. The three known members of the NGL family, NGL-1, NGL-2, and NGL-3, are mainly localized to the postsynaptic side of excitatory synapses, and interact with the presynaptic ligands, netrin-G1, netrin-G2, and LAR, respectively. NGLs interact with the abundant postsynaptic density (PSD) protein, PSD-95, and other postsynaptic proteins, including NMDA receptors. These interactions are thought to couple synaptic adhesion events to the assembly of synaptic proteins. In addition, NGL proteins regulate axonal outgrowth and lamina-specific dendritic segmentation, suggesting that the NGL-dependent adhesion system is important for the development of axons, dendrites, and synapses. Consistent with these functions, defects in NGLs and their ligands are associated with impaired learning and memory, hyperactivity, and an abnormal acoustic startle response in transgenic mice, and schizophrenia, bipolar disorder, and Rett syndrome in human patients.
Collapse
Affiliation(s)
- Jooyeon Woo
- National Creative Research Initiative Center for Synaptogenesis, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|