51
|
Transcription factor 4 controls positioning of cortical projection neurons through regulation of cell adhesion. Mol Psychiatry 2021; 26:6562-6577. [PMID: 33963287 DOI: 10.1038/s41380-021-01119-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
The establishment of neural circuits depends on precise neuronal positioning in the cortex, which occurs via a tightly coordinated process of neuronal differentiation, migration, and terminal localization. Deficits in this process have been implicated in several psychiatric disorders. Here, we show that the transcription factor Tcf4 controls neuronal positioning during brain development. Tcf4-deficient neurons become mispositioned in clusters when their migration to the cortical plate is complete. We reveal that Tcf4 regulates the expression of cell adhesion molecules to control neuronal positioning. Furthermore, through in vivo extracellular electrophysiology, we show that neuronal functions are disrupted after the loss of Tcf4. TCF4 mutations are strongly associated with schizophrenia and cause Pitt-Hopkins syndrome, which is characterized by severe intellectual disability. Thus, our results not only reveal the importance of neuronal positioning in brain development but also provide new insights into the potential mechanisms underlying neurological defects linked to TCF4 mutations.
Collapse
|
52
|
Noronha C, Ribeiro AS, Taipa R, Castro DS, Reis J, Faria C, Paredes J. Cadherin Expression and EMT: A Focus on Gliomas. Biomedicines 2021; 9:biomedicines9101328. [PMID: 34680444 PMCID: PMC8533397 DOI: 10.3390/biomedicines9101328] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cadherins are calcium-binding proteins with a pivotal role in cell adhesion and tissue homeostasis. The cadherin-dependent mechanisms of cell adhesion and migration are exploited by cancer cells, contributing to tumor invasiveness and dissemination. In particular, cadherin switch is a hallmark of epithelial to mesenchymal transition, a complex development process vastly described in the progression of most epithelial cancers. This is characterized by drastic changes in cell polarity, adhesion, and motility, which lead from an E-cadherin positive differentiated epithelial state into a dedifferentiated mesenchymal-like state, prone to metastization and defined by N-cadherin expression. Although vastly explored in epithelial cancers, how these mechanisms contribute to the pathogenesis of other non-epithelial tumor types is poorly understood. Herein, the current knowledge on cadherin expression in normal development in parallel to tumor pathogenesis is reviewed, focusing on epithelial to mesenchymal transition. Emphasis is taken in the unascertained cadherin expression in CNS tumors, particularly in gliomas, where the potential contribution of an epithelial-to-mesenchymal-like process to glioma genesis and how this may be associated with changes in cadherin expression is discussed.
Collapse
Affiliation(s)
- Carolina Noronha
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal; (C.N.); (J.R.)
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Ricardo Taipa
- Neuropathology Unit, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal;
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Diogo S. Castro
- Stem Cells & Neurogenesis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Joaquim Reis
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal; (C.N.); (J.R.)
- Anatomy Department, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte, 1649-028 Lisboa, Portugal;
- IMM—Instituto de Medicina Molecular Joao Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joana Paredes
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
53
|
Kalebic N, Namba T. Inheritance and flexibility of cell polarity: a clue for understanding human brain development and evolution. Development 2021; 148:272121. [PMID: 34499710 PMCID: PMC8451944 DOI: 10.1242/dev.199417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell polarity is fundamentally important for understanding brain development. Here, we hypothesize that the inheritance and flexibility of cell polarity during neocortex development could be implicated in neocortical evolutionary expansion. Molecular and morphological features of cell polarity may be inherited from one type of progenitor cell to the other and finally transmitted to neurons. Furthermore, key cell types, such as basal progenitors and neurons, exhibit a highly flexible polarity. We suggest that both inheritance and flexibility of cell polarity are implicated in the amplification of basal progenitors and tangential dispersion of neurons, which are key features of the evolutionary expansion of the neocortex. Summary: We suggest that the inheritance and flexibility of cell polarity are implicated in the evolutionary expansion of the developing neocortex by promoting the amplification of neural progenitors and tangential migration of neurons.
Collapse
Affiliation(s)
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
54
|
Berdenis van Berlekom A, Notman N, Sneeboer MAM, Snijders GJLJ, Houtepen LC, Nispeling DM, He Y, Psychiatric Donor Program of the Netherlands Brain Bank (NBB-PSY), Dracheva S, Hol EM, Kahn RS, de Witte LD, Boks MP. DNA methylation differences in cortical grey and white matter in schizophrenia. Epigenomics 2021; 13:1157-1169. [PMID: 34323598 PMCID: PMC8386513 DOI: 10.2217/epi-2021-0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/09/2021] [Indexed: 01/27/2023] Open
Abstract
Aim: Identify grey- and white-matter-specific DNA-methylation differences between schizophrenia (SCZ) patients and controls in postmortem brain cortical tissue. Materials & methods: Grey and white matter were separated from postmortem brain tissue of the superior temporal and medial frontal gyrus from SCZ (n = 10) and control (n = 11) cases. Genome-wide DNA-methylation analysis was performed using the Infinium EPIC Methylation Array (Illumina, CA, USA). Results: Four differentially methylated regions associated with SCZ status and tissue type (grey vs white matter) were identified within or near KLF9, SFXN1, SPRED2 and ALS2CL genes. Gene-expression analysis showed differential expression of KLF9 and SFXN1 in SCZ. Conclusion: Our data show distinct differences in DNA methylation between grey and white matter that are unique to SCZ, providing new leads to unravel the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Amber Berdenis van Berlekom
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nina Notman
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marjolein AM Sneeboer
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gijsje JLJ Snijders
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lotte C Houtepen
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Danny M Nispeling
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yujie He
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Stella Dracheva
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, & Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education, & Clinical Center (VISN 2 South), James J Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Lot D de Witte
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco P Boks
- Department of Psychiatry, Brain Center University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
55
|
Sokpor G, Kerimoglu C, Nguyen H, Pham L, Rosenbusch J, Wagener R, Nguyen HP, Fischer A, Staiger JF, Tuoc T. Loss of BAF Complex in Developing Cortex Perturbs Radial Neuronal Migration in a WNT Signaling-Dependent Manner. Front Mol Neurosci 2021; 14:687581. [PMID: 34220450 PMCID: PMC8243374 DOI: 10.3389/fnmol.2021.687581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Radial neuronal migration is a key neurodevelopmental event indispensable for proper cortical laminar organization. Cortical neurons mainly use glial fiber guides, cell adhesion dynamics, and cytoskeletal remodeling, among other discrete processes, to radially trek from their birthplace to final layer positions. Dysregulated radial migration can engender cortical mis-lamination, leading to neurodevelopmental disorders. Epigenetic factors, including chromatin remodelers have emerged as formidable regulators of corticogenesis. Notably, the chromatin remodeler BAF complex has been shown to regulate several aspects of cortical histogenesis. Nonetheless, our understanding of how BAF complex regulates neuronal migration is limited. Here, we report that BAF complex is required for neuron migration during cortical development. Ablation of BAF complex in the developing mouse cortex caused alteration in the cortical gene expression program, leading to loss of radial migration-related factors critical for proper cortical layer formation. Of note, BAF complex inactivation in cortex caused defective neuronal polarization resulting in diminished multipolar-to-bipolar transition and eventual disruption of radial migration of cortical neurons. The abnormal radial migration and cortical mis-lamination can be partly rescued by downregulating WNT signaling hyperactivity in the BAF complex mutant cortex. By implication, the BAF complex modulates WNT signaling to establish the gene expression program required for glial fiber-dependent neuronal migration, and cortical lamination. Overall, BAF complex has been identified to be crucial for cortical morphogenesis through instructing multiple aspects of radial neuronal migration in a WNT signaling-dependent manner.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Huong Nguyen
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Linh Pham
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany
| | - Robin Wagener
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Neurology, University Medical Center Heidelberg, Heidelberg, Germany.,Neurooncology Clinical Cooperation Unit, German Cancer Research Center, Heidelberg, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| |
Collapse
|
56
|
A junctional PACSIN2/EHD4/MICAL-L1 complex coordinates VE-cadherin trafficking for endothelial migration and angiogenesis. Nat Commun 2021; 12:2610. [PMID: 33972531 PMCID: PMC8110786 DOI: 10.1038/s41467-021-22873-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Angiogenic sprouting relies on collective migration and coordinated rearrangements of endothelial leader and follower cells. VE-cadherin-based adherens junctions have emerged as key cell-cell contacts that transmit forces between cells and trigger signals during collective cell migration in angiogenesis. However, the underlying molecular mechanisms that govern these processes and their functional importance for vascular development still remain unknown. We previously showed that the F-BAR protein PACSIN2 is recruited to tensile asymmetric adherens junctions between leader and follower cells. Here we report that PACSIN2 mediates the formation of endothelial sprouts during angiogenesis by coordinating collective migration. We show that PACSIN2 recruits the trafficking regulators EHD4 and MICAL-L1 to the rear end of asymmetric adherens junctions to form a recycling endosome-like tubular structure. The junctional PACSIN2/EHD4/MICAL-L1 complex controls local VE-cadherin trafficking and thereby coordinates polarized endothelial migration and angiogenesis. Our findings reveal a molecular event at force-dependent asymmetric adherens junctions that occurs during the tug-of-war between endothelial leader and follower cells, and allows for junction-based guidance during collective migration in angiogenesis. Communication between endothelial leader and follower cells during collective cell migration is crucial for vascular development. Here, the authors show that PACSIN2 guides collective cell migration and angiogenesis by recruiting a protein trafficking complex to asymmetric cell-cell junctions, controlling local junction plasticity.
Collapse
|
57
|
Theisen U, Ernst AU, Heyne RLS, Ring TP, Thorn-Seshold O, Köster RW. Microtubules and motor proteins support zebrafish neuronal migration by directing cargo. J Cell Biol 2021; 219:151951. [PMID: 32668451 PMCID: PMC7659711 DOI: 10.1083/jcb.201908040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/08/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
Neuronal migration during development is necessary to form an ordered and functional brain. Postmitotic neurons require microtubules and dynein to move, but the mechanisms by which they contribute to migration are not fully characterized. Using tegmental hindbrain nuclei neurons in zebrafish embryos together with subcellular imaging, optogenetics, and photopharmacology, we show that, in vivo, the centrosome's position relative to the nucleus is not linked to greatest motility in this cell type. Nevertheless, microtubules, dynein, and kinesin-1 are essential for migration, and we find that interference with endosome formation or the Golgi apparatus impairs migration to a similar extent as disrupting microtubules. In addition, an imbalance in the traffic of the model cargo Cadherin-2 also reduces neuronal migration. These results lead us to propose that microtubules act as cargo carriers to control spatiotemporal protein distribution, which in turn controls motility. This adds crucial insights into the variety of ways that microtubules can support successful neuronal migration in vivo.
Collapse
Affiliation(s)
- Ulrike Theisen
- Technical University of Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| | - Alexander U Ernst
- Technical University of Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany.,University of Bern, Institute of Anatomy, Bern, Switzerland
| | - Ronja L S Heyne
- Technical University of Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany.,Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
| | - Tobias P Ring
- Technical University of Braunschweig, Institute for Acoustics, Braunschweig, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig Maximilians University of Munich, Munich, Germany
| | - Reinhard W Köster
- Technical University of Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| |
Collapse
|
58
|
de Agustín-Durán D, Mateos-White I, Fabra-Beser J, Gil-Sanz C. Stick around: Cell-Cell Adhesion Molecules during Neocortical Development. Cells 2021; 10:118. [PMID: 33435191 PMCID: PMC7826847 DOI: 10.3390/cells10010118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell-cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.
Collapse
Affiliation(s)
| | | | | | - Cristina Gil-Sanz
- Neural Development Laboratory, Instituto Universitario de Biomedicina y Biotecnología (BIOTECMED) and Departamento de Biología Celular, Facultat de Biología, Universidad de Valencia, 46100 Burjassot, Spain; (D.d.A.-D.); (I.M.-W.); (J.F.-B.)
| |
Collapse
|
59
|
Kam KL, Parrack P, Banworth M, Aravindan S, Li G, Fung KM. Use of Immunohistochemistry to Determine Expression of Rab5 Subfamily of GTPases in Mature and Developmental Brains. Methods Mol Biol 2021; 2293:265-271. [PMID: 34453724 PMCID: PMC8917831 DOI: 10.1007/978-1-0716-1346-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rab GTPases are essentially molecular switches. They serve as master regulators in intracellular membrane trafficking from the formation and transport of vesicles at the originating organelle to its fusion to the membrane at the target organelle. Their functions are diversified and each has their specific subcellular location. Their expression may vary significantly in the same cell when the level of protein production is significantly different in different physiologic status. One of the best examples is the transition from fetal to mature status of cells. Expression and localization of Rab GTPases in mature and developing brains have not been well studied. Immunohistochemistry is an efficient way in the detection, semiquantitation, and localization of Rab GTPases in tissue sections. It is inexpensive and fast which allow efficient mass screening of many sections. In this chapter, we describe the immunohistochemical assay protocol for analyzing several Rab protein expressions of the Rab5 subfamily, including Rab5, Rab17, Rab22, and Rab31, in developmental (fetal) and mature human brains.
Collapse
Affiliation(s)
- Kwok-Ling Kam
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Paige Parrack
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marcellus Banworth
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sheeja Aravindan
- Tissue Pathology Shared Resource, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
60
|
Jinnou H. Regeneration using endogenous neural stem cells following neonatal brain injury. Pediatr Int 2021; 63:13-21. [PMID: 32609915 DOI: 10.1111/ped.14368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/29/2020] [Accepted: 06/25/2020] [Indexed: 01/25/2023]
Abstract
Despite recent advancements in perinatal care, the incidence of neonatal brain injury has not decreased. No therapies are currently available to repair injured brain tissues. In the postnatal brain, neural stem cells reside in the ventricular-subventricular zone (V-SVZ) and continuously generate new immature neurons (neuroblasts). After brain injury in rodents, V-SVZ-derived neuroblasts migrate toward the injured area using blood vessels as a scaffold. Notably, the neonatal V-SVZ has a remarkable neurogenic capacity. Furthermore, compared with the adult brain, after neonatal brain injury, larger numbers of neuroblasts migrate toward the lesion, raising the possibility that the V-SVZ could be a source for endogenous neuronal regeneration after neonatal brain injury. We recently demonstrated that efficient migration of V-SVZ-derived neuroblasts toward a lesion is supported by neonatal radial glia via neural cadherin (N-cadherin)-mediated neuron-fiber contact, which promotes RhoA activity. Moreover, providing blood vessel- and radial glia-mimetic scaffolds for migrating neuroblasts promotes neuronal migration and improves functional gait behaviors after neonatal brain injury. In the V-SVZ, oligodendrocyte progenitor cells (OPCs) are also generated and migrate toward the surrounding white matter, where they differentiate and form myelin. After white matter injury in rodents, the production and subsequent migration of V-SVZ-derived OPCs are enhanced. In the neonatal period, administration of growth factors at a specific time promotes oligodendrocyte regeneration and functional recovery after brain injury. These findings suggest that activating the high regenerative capacity that is specific to the neonatal period could lead to the development of new therapeutic strategies for neonatal brain injury.
Collapse
Affiliation(s)
- Hideo Jinnou
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
61
|
Gonda Y, Namba T, Hanashima C. Beyond Axon Guidance: Roles of Slit-Robo Signaling in Neocortical Formation. Front Cell Dev Biol 2020; 8:607415. [PMID: 33425915 PMCID: PMC7785817 DOI: 10.3389/fcell.2020.607415] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The formation of the neocortex relies on intracellular and extracellular signaling molecules that are involved in the sequential steps of corticogenesis, ranging from the proliferation and differentiation of neural progenitor cells to the migration and dendrite formation of neocortical neurons. Abnormalities in these steps lead to disruption of the cortical structure and circuit, and underly various neurodevelopmental diseases, including dyslexia and autism spectrum disorder (ASD). In this review, we focus on the axon guidance signaling Slit-Robo, and address the multifaceted roles of Slit-Robo signaling in neocortical development. Recent studies have clarified the roles of Slit-Robo signaling not only in axon guidance but also in progenitor cell proliferation and migration, and the maturation of neocortical neurons. We further discuss the etiology of neurodevelopmental diseases, which are caused by defects in Slit-Robo signaling during neocortical formation.
Collapse
Affiliation(s)
- Yuko Gonda
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Neuroscience Center, HiLIFE – Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Carina Hanashima
- Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
62
|
Meyerink BL, Tiwari NK, Pilaz LJ. Ariadne's Thread in the Developing Cerebral Cortex: Mechanisms Enabling the Guiding Role of the Radial Glia Basal Process during Neuron Migration. Cells 2020; 10:E3. [PMID: 33375033 PMCID: PMC7822038 DOI: 10.3390/cells10010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
Radial neuron migration in the developing cerebral cortex is a complex journey, starting in the germinal zones and ending in the cortical plate. In mice, migratory distances can reach several hundreds of microns, or millimeters in humans. Along the migratory path, radially migrating neurons slither through cellularly dense and complex territories before they reach their final destination in the cortical plate. This task is facilitated by radial glia, the neural stem cells of the developing cortex. Indeed, radial glia have a unique bipolar morphology, enabling them to serve as guides for neuronal migration. The key guiding structure of radial glia is the basal process, which traverses the entire thickness of the developing cortex. Neurons recognize the basal process as their guide and maintain physical interactions with this structure until the end of migration. Thus, the radial glia basal process plays a key role during radial migration. In this review, we highlight the pathways enabling neuron-basal process interactions during migration, as well as the known mechanisms regulating the morphology of the radial glia basal process. Throughout, we describe how dysregulation of these interactions and of basal process morphology can have profound effects on cortical development, and therefore lead to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Brandon L. Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Neeraj K. Tiwari
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
| | - Louis-Jan Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA; (B.L.M.); (N.K.T.)
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
63
|
Rozés-Salvador V, González-Billault C, Conde C. The Recycling Endosome in Nerve Cell Development: One Rab to Rule Them All? Front Cell Dev Biol 2020; 8:603794. [PMID: 33425908 PMCID: PMC7793921 DOI: 10.3389/fcell.2020.603794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Endocytic recycling is an intracellular process that returns internalized molecules back to the plasma membrane and plays crucial roles not only in the reuse of receptor molecules but also in the remodeling of the different components of this membrane. This process is required for a diversity of cellular events, including neuronal morphology acquisition and functional regulation, among others. The recycling endosome (RE) is a key vesicular component involved in endocytic recycling. Recycling back to the cell surface may occur with the participation of several different Rab proteins, which are master regulators of membrane/protein trafficking in nerve cells. The RE consists of a network of interconnected and functionally distinct tubular subdomains that originate from sorting endosomes and transport their cargoes along microtubule tracks, by fast or slow recycling pathways. Different populations of REs, particularly those formed by Rab11, Rab35, and Arf6, are associated with a myriad of signaling proteins. In this review, we discuss the cumulative evidence suggesting the existence of heterogeneous domains of REs, controlling different aspects of neurogenesis, with a particular focus on the commonalities and singularities of these REs and their contribution to nerve development and differentiation in several animal models.
Collapse
Affiliation(s)
- Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina.,Instituto de Ciencias Básicas, Universidad Nacional de Villa María, Córdoba, Argentina
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile.,Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States
| | - Cecilia Conde
- Instituto de Investigación Médica Mercedes y Martín Ferreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| |
Collapse
|
64
|
Hatanaka Y, Hirata T. How Do Cortical Excitatory Neurons Terminate Their Migration at the Right Place? Critical Roles of Environmental Elements. Front Cell Dev Biol 2020; 8:596708. [PMID: 33195277 PMCID: PMC7644909 DOI: 10.3389/fcell.2020.596708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
Interactions between neurons and their environment are crucial for proper termination of neuronal migration during brain development. In this review, we first introduce the migration behavior of cortical excitatory neurons from neurogenesis to migration termination, focusing on morphological and behavioral changes. We then describe possible requirements for environmental elements, including extracellular matrix proteins and Cajal–Retzius cells in the marginal zone, radial glial cells, and neighboring neurons, to ensure proper migration termination of these neurons at their final destinations. The requirements appear to be highly linked to sequential and/or concurrent changes in adhesiveness of migrating neurons and their surroundings, which allow the neurons to reach their final positions, detach from substrates, and establish stable laminar structures.
Collapse
Affiliation(s)
- Yumiko Hatanaka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tatsumi Hirata
- Brain Function Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, Graduate School of Life Sciences, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
65
|
Li X, Yan M, Guo Z, Yan L, Feng R, Zhu H, Tu X, Yu S, Chen JG. Inhibition of Sar1b, the Gene Implicated in Chylomicron Retention Disease, Impairs Migration and Morphogenesis of Developing Cortical Neurons. Neuroscience 2020; 449:228-240. [DOI: 10.1016/j.neuroscience.2020.09.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
|
66
|
Ferent J, Zaidi D, Francis F. Extracellular Control of Radial Glia Proliferation and Scaffolding During Cortical Development and Pathology. Front Cell Dev Biol 2020; 8:578341. [PMID: 33178693 PMCID: PMC7596222 DOI: 10.3389/fcell.2020.578341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/08/2020] [Indexed: 01/14/2023] Open
Abstract
During the development of the cortex, newly generated neurons migrate long-distances in the expanding tissue to reach their final positions. Pyramidal neurons are produced from dorsal progenitors, e.g., radial glia (RGs) in the ventricular zone, and then migrate along RG processes basally toward the cortex. These neurons are hence dependent upon RG extensions to support their migration from apical to basal regions. Several studies have investigated how intracellular determinants are required for RG polarity and subsequent formation and maintenance of their processes. Fewer studies have identified the influence of the extracellular environment on this architecture. This review will focus on extracellular factors which influence RG morphology and pyramidal neuronal migration during normal development and their perturbations in pathology. During cortical development, RGs are present in different strategic positions: apical RGs (aRGs) have their cell bodies located in the ventricular zone with an apical process contacting the ventricle, while they also have a basal process extending radially to reach the pial surface of the cortex. This particular conformation allows aRGs to be exposed to long range and short range signaling cues, whereas basal RGs (bRGs, also known as outer RGs, oRGs) have their cell bodies located throughout the cortical wall, limiting their access to ventricular factors. Long range signals impacting aRGs include secreted molecules present in the embryonic cerebrospinal fluid (e.g., Neuregulin, EGF, FGF, Wnt, BMP). Secreted molecules also contribute to the extracellular matrix (fibronectin, laminin, reelin). Classical short range factors include cell to cell signaling, adhesion molecules and mechano-transduction mechanisms (e.g., TAG1, Notch, cadherins, mechanical tension). Changes in one or several of these components influencing the RG extracellular environment can disrupt the development or maintenance of RG architecture on which neuronal migration relies, leading to a range of cortical malformations. First, we will detail the known long range signaling cues impacting RG. Then, we will review how short range cell contacts are also important to instruct the RG framework. Understanding how RG processes are structured by their environment to maintain and support radial migration is a critical part of the investigation of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Julien Ferent
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Donia Zaidi
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| | - Fiona Francis
- Inserm, U 1270, Paris, France.,Sorbonne University, UMR-S 1270, IFM, Paris, France.,Institut du Fer á Moulin, Paris, France
| |
Collapse
|
67
|
Hatakeyama J, Shimamura K. The Pace of Neurogenesis Is Regulated by the Transient Retention of the Apical Endfeet of Differentiating Cells. Cereb Cortex 2020; 29:3725-3737. [PMID: 30307484 DOI: 10.1093/cercor/bhy252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023] Open
Abstract
The development of the mammalian cerebral cortex involves a variety of temporally organized events such as successive waves of neuronal production and the transition of progenitor competence for each neuronal subtype generated. The number of neurons generated in a certain time period, that is, the rate of neuron production, varies across the regions of the brain and the specific developmental stage; however, the underlying mechanism of this process is poorly understood. We have recently found that nascent neurons communicate with undifferentiated progenitors and thereby regulate neurogenesis, through a transiently retained apical endfoot that signals via the Notch pathway. Here, we report that the retention time length of the neuronal apical endfoot correlates with the rate of neuronal production in the developing mouse cerebral cortex. We further demonstrate that a forced reduction or extension of the retention period through the disruption or stabilization of adherens junction, respectively, resulted in the acceleration or deceleration of neurogenesis, respectively. Our results suggest that the apical endfeet of differentiating cells serve as a pace controller for neurogenesis, thereby assuring the well-proportioned laminar organization of the neocortex.
Collapse
Affiliation(s)
- Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
68
|
Hansen AH, Hippenmeyer S. Non-Cell-Autonomous Mechanisms in Radial Projection Neuron Migration in the Developing Cerebral Cortex. Front Cell Dev Biol 2020; 8:574382. [PMID: 33102480 PMCID: PMC7545535 DOI: 10.3389/fcell.2020.574382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023] Open
Abstract
Concerted radial migration of newly born cortical projection neurons, from their birthplace to their final target lamina, is a key step in the assembly of the cerebral cortex. The cellular and molecular mechanisms regulating the specific sequential steps of radial neuronal migration in vivo are however still unclear, let alone the effects and interactions with the extracellular environment. In any in vivo context, cells will always be exposed to a complex extracellular environment consisting of (1) secreted factors acting as potential signaling cues, (2) the extracellular matrix, and (3) other cells providing cell–cell interaction through receptors and/or direct physical stimuli. Most studies so far have described and focused mainly on intrinsic cell-autonomous gene functions in neuronal migration but there is accumulating evidence that non-cell-autonomous-, local-, systemic-, and/or whole tissue-wide effects substantially contribute to the regulation of radial neuronal migration. These non-cell-autonomous effects may differentially affect cortical neuron migration in distinct cellular environments. However, the cellular and molecular natures of such non-cell-autonomous mechanisms are mostly unknown. Furthermore, physical forces due to collective migration and/or community effects (i.e., interactions with surrounding cells) may play important roles in neocortical projection neuron migration. In this concise review, we first outline distinct models of non-cell-autonomous interactions of cortical projection neurons along their radial migration trajectory during development. We then summarize experimental assays and platforms that can be utilized to visualize and potentially probe non-cell-autonomous mechanisms. Lastly, we define key questions to address in the future.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
69
|
Peregrina C, Del Toro D. FLRTing Neurons in Cortical Migration During Cerebral Cortex Development. Front Cell Dev Biol 2020; 8:578506. [PMID: 33043013 PMCID: PMC7527468 DOI: 10.3389/fcell.2020.578506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 01/26/2023] Open
Abstract
During development, two coordinated events shape the morphology of the mammalian cerebral cortex, leading to the cortex's columnar and layered structure: the proliferation of neuronal progenitors and cortical migration. Pyramidal neurons originating from germinal zones migrate along radial glial fibers to their final position in the cortical plate by both radial migration and tangential dispersion. These processes rely on the delicate balance of intercellular adhesive and repulsive signaling that takes place between neurons interacting with different substrates and guidance cues. Here, we focus on the function of the cell adhesion molecules fibronectin leucine-rich repeat transmembrane proteins (FLRTs) in regulating both the radial migration of neurons, as well as their tangential spread, and the impact these processes have on cortex morphogenesis. In combining structural and functional analysis, recent studies have begun to reveal how FLRT-mediated responses are precisely tuned - from forming different protein complexes to modulate either cell adhesion or repulsion in neurons. These approaches provide a deeper understanding of the context-dependent interactions of FLRTs with multiple receptors involved in axon guidance and synapse formation that contribute to finely regulated neuronal migration.
Collapse
Affiliation(s)
- Claudia Peregrina
- Department of Biological Sciences, Faculty of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Del Toro
- Department of Biological Sciences, Faculty of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
70
|
Martinez-Garay I. Molecular Mechanisms of Cadherin Function During Cortical Migration. Front Cell Dev Biol 2020; 8:588152. [PMID: 33043020 PMCID: PMC7523180 DOI: 10.3389/fcell.2020.588152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
During development of the cerebral cortex, different types of neurons migrate from distinct origins to create the different cortical layers and settle within them. Along their way, migrating neurons use cell adhesion molecules on their surface to interact with other cells that will play critical roles to ensure that migration is successful. Radially migrating projection neurons interact primarily with radial glia and Cajal-Retzius cells, whereas interneurons originating in the subpallium follow a longer, tangential route and encounter additional cellular substrates before reaching the cortex. Cell-cell adhesion is therefore essential for the correct migration of cortical neurons. Several members of the cadherin superfamily of cell adhesion proteins, which mediate cellular interactions through calcium-dependent, mostly homophilic binding, have been shown to play important roles during neuronal migration of both projection neurons and interneurons. Although several classical cadherins and protocadherins are involved in this process, the most prominent is CDH2. This mini review will explore the cellular and molecular mechanisms underpinning cadherin function during cortical migration, including recent advances in our understanding of the control of adhesive strength through regulation of cadherin surface levels.
Collapse
Affiliation(s)
- Isabel Martinez-Garay
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
71
|
Minegishi T, Inagaki N. Forces to Drive Neuronal Migration Steps. Front Cell Dev Biol 2020; 8:863. [PMID: 32984342 PMCID: PMC7490296 DOI: 10.3389/fcell.2020.00863] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 11/13/2022] Open
Abstract
To establish and maintain proper brain architecture and elaborate neural networks, neurons undergo massive migration. As a unique feature of their migration, neurons move in a saltatory manner by repeating two distinct steps: extension of the leading process and translocation of the cell body. Neurons must therefore generate forces to extend the leading process as well as to translocate the cell body. In addition, neurons need to switch these forces alternately in order to orchestrate their saltatory movement. Recent studies with mechanobiological analyses, including traction force microscopy, cell detachment analyses, live-cell imaging, and loss-of-function analyses, have begun to reveal the forces required for these steps and the molecular mechanics underlying them. Spatiotemporally organized forces produced between cells and their extracellular environment, as well as forces produced within cells, play pivotal roles to drive these neuronal migration steps. Traction force produced by the leading process growth cone extends the leading processes. On the other hand, mechanical tension of the leading process, together with reduction in the adhesion force at the rear and the forces to drive nucleokinesis, translocates the cell body. Traction forces are generated by mechanical coupling between actin filament retrograde flow and the extracellular environment through clutch and adhesion molecules. Forces generated by actomyosin and dynein contribute to the nucleokinesis. In addition to the forces generated in cell-intrinsic manners, external forces provided by neighboring migratory cells coordinate cell movement during collective migration. Here, we review our current understanding of the forces that drive neuronal migration steps and describe the molecular machineries that generate these forces for neuronal migration.
Collapse
Affiliation(s)
- Takunori Minegishi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
72
|
Arimura N, Okada M, Taya S, Dewa KI, Tsuzuki A, Uetake H, Miyashita S, Hashizume K, Shimaoka K, Egusa S, Nishioka T, Yanagawa Y, Yamakawa K, Inoue YU, Inoue T, Kaibuchi K, Hoshino M. DSCAM regulates delamination of neurons in the developing midbrain. SCIENCE ADVANCES 2020; 6:6/36/eaba1693. [PMID: 32917586 PMCID: PMC7467692 DOI: 10.1126/sciadv.aba1693] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/22/2020] [Indexed: 06/10/2023]
Abstract
For normal neurogenesis and circuit formation, delamination of differentiating neurons from the proliferative zone must be precisely controlled; however, the regulatory mechanisms underlying cell attachment are poorly understood. Here, we show that Down syndrome cell adhesion molecule (DSCAM) controls neuronal delamination by local suppression of the RapGEF2-Rap1-N-cadherin cascade at the apical endfeet in the dorsal midbrain. Dscam transcripts were expressed in differentiating neurons, and DSCAM protein accumulated at the distal part of the apical endfeet. Cre-loxP-based neuronal labeling revealed that Dscam knockdown impaired endfeet detachment from ventricles. DSCAM associated with RapGEF2 to inactivate Rap1, whose activity is required for membrane localization of N-cadherin. Correspondingly, Dscam knockdown increased N-cadherin localization and ventricular attachment area at the endfeet. Furthermore, excessive endfeet attachment by Dscam knockdown was restored by co-knockdown of RapGEF2 or N-cadherin Our findings shed light on the molecular mechanism that regulates a critical step in early neuronal development.
Collapse
Affiliation(s)
- Nariko Arimura
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Mako Okada
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ken-Ichi Dewa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Akiko Tsuzuki
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hirotomo Uetake
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Koichi Hashizume
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazumi Shimaoka
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Saki Egusa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
73
|
Giudetti AM, Guerra F, Longo S, Beli R, Romano R, Manganelli F, Nolano M, Mangini V, Santoro L, Bucci C. An altered lipid metabolism characterizes Charcot-Marie-Tooth type 2B peripheral neuropathy. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158805. [PMID: 32829064 DOI: 10.1016/j.bbalip.2020.158805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Charcot-Marie Tooth type 2B (CMT2B) is a rare inherited peripheral neuropathy caused by five missense mutations in the RAB7A gene, which encodes a small GTPase of the RAB family. Currently, no cure is available for this disease. In this study, we approached the disease by comparing the lipid metabolism of CMT2B-derived fibroblasts to that of healthy controls. We found that CMT2B cells showed increased monounsaturated fatty acid level and increased expression of key enzymes of monounsaturated and polyunsaturated fatty acid synthesis. Moreover, in CMT2B cells a higher expression of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), key enzymes of de novo fatty acid synthesis, with a concomitantly increased [1-14C]acetate incorporation into fatty acids, was observed. The expression of diacylglycerol acyltransferase 2, a rate-limiting enzyme in triacylglycerol synthesis, as well as triacylglycerol levels were increased in CMT2B compared to control cells. In addition, as RAB7A controls lipid droplet breakdown and lipid droplet dynamics have been linked to diseases, we analyzed these organelles and showed that in CMT2B cells there is a strong accumulation of lipid droplets compared to control cells, thus reinforcing our data on abnormal lipid metabolism in CMT2B. Furthermore, we demonstrated that ACC and FAS expression levels changed upon RAB7 silencing or overexpression in HeLa cells, thus suggesting that metabolic modifications observed in CMT2B-derived fibroblasts can be, at least in part, related to RAB7 mutations.
Collapse
Affiliation(s)
- Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni n. 165, 73100 Lecce, Italy.
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni n. 165, 73100 Lecce, Italy
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni n. 165, 73100 Lecce, Italy
| | - Raffaella Beli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni n. 165, 73100 Lecce, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni n. 165, 73100 Lecce, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology of Telese Terme Institute, 82037 Telese Terme, Benevento, Italy
| | - Vincenzo Mangini
- Center for Biomolecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia, 73010 Arnesano (LE), Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni n. 165, 73100 Lecce, Italy.
| |
Collapse
|
74
|
Hisanaga SI, Wei R, Huo A, Tomomura M. LMTK1, a Novel Modulator of Endosomal Trafficking in Neurons. Front Mol Neurosci 2020; 13:112. [PMID: 32714146 PMCID: PMC7344150 DOI: 10.3389/fnmol.2020.00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons extend long processes known as axons and dendrites, through which they communicate with each other. The neuronal circuits formed by the axons and dendrites are the structural basis of higher brain functions. The formation and maintenance of these processes are essential for physiological brain activities. Membrane components, both lipids, and proteins, that are required for process formation are supplied by vesicle transport. Intracellular membrane trafficking is regulated by a family of Rab small GTPases. A group of Rabs regulating endosomal trafficking has been studied mainly in nonpolarized culture cell lines, and little is known about their regulation in polarized neurons with long processes. As shown in our recent study, lemur tail (former tyrosine) kinase 1 (LMTK1), an as yet uncharacterized Ser/Thr kinase associated with Rab11-positive recycling endosomes, modulates the formation of axons, dendrites, and spines in cultured primary neurons. LMTK1 knockdown or knockout (KO) or the expression of a kinase-negative mutant stimulates the transport of endosomal vesicles in neurons, leading to the overgrowth of axons, dendrites, and spines. More recently, we found that LMTK1 regulates TBC1D9B Rab11 GAP and proposed the Cdk5/p35-LMTK1-TBC1D9B-Rab11 pathway as a signaling cascade that regulates endosomal trafficking. Here, we summarize the biochemical, cell biological, and physiological properties of LMTK1.
Collapse
Affiliation(s)
- Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Ran Wei
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Anni Huo
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, Urayasu, Japan
| |
Collapse
|
75
|
Na Y, Calvo-Jiménez E, Kon E, Cao H, Jossin Y, Cooper JA. Fbxo45 Binds SPRY Motifs in the Extracellular Domain of N-Cadherin and Regulates Neuron Migration during Brain Development. Mol Cell Biol 2020; 40:e00539-19. [PMID: 32341084 PMCID: PMC7324847 DOI: 10.1128/mcb.00539-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 11/20/2022] Open
Abstract
Several events during the normal development of the mammalian neocortex depend on N-cadherin, including the radial migration of immature projection neurons into the cortical plate. Remarkably, radial migration requires the N-cadherin extracellular domain but not N-cadherin-dependent homophilic cell-cell adhesion, suggesting that other N-cadherin-binding proteins may be involved. We used proximity ligation and affinity purification proteomics to identify N-cadherin-binding proteins. Both screens detected MycBP2 and SPRY domain protein Fbxo45, two components of an intracellular E3 ubiquitin ligase. Fbxo45 appears to be secreted by a nonclassical mechanism, not involving a signal peptide and not requiring transport from the endoplasmic reticulum to the Golgi apparatus. Fbxo45 binding requires N-cadherin SPRY motifs that are not involved in cell-cell adhesion. SPRY mutant N-cadherin does not support radial migration in vivo Radial migration was similarly inhibited when Fbxo45 expression was suppressed. The results suggest that projection neuron migration requires both Fbxo45 and the binding of Fbxo45 or another protein to SPRY motifs in the extracellular domain of N-cadherin.
Collapse
Affiliation(s)
- Youn Na
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elisa Calvo-Jiménez
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Elif Kon
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Hong Cao
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yves Jossin
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Jonathan A Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
76
|
Chao H, Deng L, Xu F, Fu B, Zhu Z, Dong Z, Liu YN, Zeng T. RAB14 activates MAPK signaling to promote bladder tumorigenesis. Carcinogenesis 2020; 40:1341-1351. [PMID: 30809635 DOI: 10.1093/carcin/bgz039] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/22/2019] [Accepted: 02/24/2019] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer (BC) is a fatal invasive malignancy accounting for approximately 5% of all cancer deaths in humans; however, the underlying molecular mechanisms and potential targeted therapeutics for BC patients remain unclear. We report herein that RAB14 was overexpressed in BC tissues and cells with high metastatic potential and its abundance was significantly associated with lymph node metastasis (P = 0.001), a high-grade tumor stage (P = 0.009), poor differentiation (P < 0.001) and unfavorable prognoses of BC patients (P = 0.003, log-rank test). Interference by RAB14 mediated a reduction in the TWIST1 protein and inhibited cell migration and invasion (P < 0.05). Moreover, silencing RAB14 reduced cell proliferation and induced apoptosis in vitro and suppressed tumorigenesis in a mouse xenograft model. We demonstrated that RAB14-promoted BC cancer development and progression were associated with activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase signaling through upregulation of MAPK1/MAPK8 and downregulation of dual-specificity protein phosphatase 6/Src homology 2 domain containing transforming protein/Fos proto-oncogene, AP-1 transcription factor subunit (FOS). We provide evidence that RAB14 acts as a tumor promoter and modulates the invasion and metastatic potential of BC cells via activating the MAPK pathway.
Collapse
Affiliation(s)
- Haichao Chao
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Leihong Deng
- Medical Department of Graduate School, Nanchang University, Nanchang, P.R. China
| | - Fanghua Xu
- Pathology Department, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Zunwei Zhu
- Department of Urology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Zhifeng Dong
- Medical Department of Graduate School, Nanchang University, Nanchang, P.R. China
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tao Zeng
- Department of Urology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| |
Collapse
|
77
|
Kim BH, Choi YH, Yang JJ, Kim S, Nho K, Lee JM. Identification of Novel Genes Associated with Cortical Thickness in Alzheimer’s Disease: Systems Biology Approach to Neuroimaging Endophenotype. J Alzheimers Dis 2020; 75:531-545. [DOI: 10.3233/jad-191175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Bo-Hyun Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Yong-Ho Choi
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jin-Ju Yang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Clinical Neuroscience Center of Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | | |
Collapse
|
78
|
Siri SO, Rozés-Salvador V, de la Villarmois EA, Ghersi MS, Quassollo G, Pérez MF, Conde C. Decrease of Rab11 prevents the correct dendritic arborization, synaptic plasticity and spatial memory formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118735. [PMID: 32389643 DOI: 10.1016/j.bbamcr.2020.118735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/30/2022]
Abstract
Emerging evidence shows that Rab11 recycling endosomes (REs Rab11) are essential for several neuronal processes, including the proper functioning of growth cones, synapse architecture regulation and neuronal migration. However, several aspects of REs Rab11 remain unclear, such as its sub-cellular distribution across neuronal development, contribution to dendritic tree organization and its consequences in memory formation. In this work we show a spatio-temporal correlation between the endogenous localization of REs Rab11 and developmental stage of neurons. Furthermore, Rab11-suppressed neurons showed an increase on dendritic branching (without altering total dendritic length) and misdistribution of dendritic proteins in cultured neurons. In addition, suppression of Rab11 in adult rat brains in vivo (by expressing shRab11 through lentiviral infection), showed a decrease on both the sensitivity to induce long-term potentiation and hippocampal-dependent memory acquisition. Taken together, our results suggest that REs Rab11 expression is required for a proper dendritic architecture and branching, controlling key aspects of synaptic plasticity and spatial memory formation.
Collapse
Affiliation(s)
- Sebastian O Siri
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Investigación Médica Mercedes y Martıín Ferreyra (INIMEC-CONICET-UNC), Av. Friuli 2434, 5016 Córdoba, Argentina
| | - Victoria Rozés-Salvador
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto A.P. de Ciencias Básicas y Aplicadas, Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, Ciudad Universitaria, Villa María, Argentina
| | - Emilce Artur de la Villarmois
- IFEC, CONICET, Departamento de Farmacologia, Facultad de Ciencias Químicas, UNC, Haya de la Torre Y Medina Allende, 5000 Córdoba, Argentina
| | - Marisa S Ghersi
- IFEC, CONICET, Departamento de Farmacologia, Facultad de Ciencias Químicas, UNC, Haya de la Torre Y Medina Allende, 5000 Córdoba, Argentina
| | - Gonzalo Quassollo
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Investigación Médica Mercedes y Martıín Ferreyra (INIMEC-CONICET-UNC), Av. Friuli 2434, 5016 Córdoba, Argentina
| | - Mariela F Pérez
- IFEC, CONICET, Departamento de Farmacologia, Facultad de Ciencias Químicas, UNC, Haya de la Torre Y Medina Allende, 5000 Córdoba, Argentina
| | - Cecilia Conde
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n Ciudad Universitaria, 5000 Córdoba, Argentina; Instituto de Investigación Médica Mercedes y Martıín Ferreyra (INIMEC-CONICET-UNC), Av. Friuli 2434, 5016 Córdoba, Argentina.
| |
Collapse
|
79
|
Zhang J, Su G, Wu Q, Liu J, Tian Y, Liu X, Zhou J, Gao J, Chen W, Chen D, Zhang Z. Rab11-mediated recycling endosome role in nervous system development and neurodegenerative diseases. Int J Neurosci 2020; 131:1012-1018. [PMID: 32329391 DOI: 10.1080/00207454.2020.1761354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
STUDY Membrane trafficking process is significant for the complex and precise regulatory of the nervous system. Rab11, as a small GTPase of the Rab superfamily, controls endocytic vesicular trafficking to the cell surface after sorting in recycling endosome (RE), coordinating with its receptors to maintain neurological function. MATERIALS AND METHODS This article reviewed the literature of Rab11 in nervous system. RESULTS Rab11-positive vesicles targeted transport growth-related molecules, such as integrins, protrudin, tropomyosin receptor kinase (Trk) A/B receptor and AMPA receptor (AMPAR) to membrane surface to promote the regeneration capacity of axon and dendrites and maintain synaptic plasticity. In addition, many studies have shown that the expression of Rab11 is decreased in multiple neurodegenerative diseases, which is highly correlated with the process of production, transport and clearance of disease-related pathological proteins. And overexpression or increased activity of Rab11 can greatly improve the defect of membrane trafficking and slow down the disease process. CONCLUSION With increasing research efforts on Rab11-dependent membrane trafficking mechanisms, a potential target for nerve regeneration and neurodegenerative diseases will be provided.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Qionghui Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jifei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ye Tian
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoyan Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Juanping Zhou
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Deyi Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
80
|
Charcot-Marie-Tooth Type 2B: A New Phenotype Associated with a Novel RAB7A Mutation and Inhibited EGFR Degradation. Cells 2020; 9:cells9041028. [PMID: 32326241 PMCID: PMC7226405 DOI: 10.3390/cells9041028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023] Open
Abstract
The rare autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) is associated with mutations in the RAB7A gene, involved in the late endocytic pathway. CMT2B is characterized by predominant sensory loss, ulceromutilating features, with lesser-to-absent motor deficits. We characterized clinically and genetically a family harboring a novel pathogenic RAB7A variant and performed structural and functional analysis of the mutant protein. A 39-year-old woman presented with early-onset walking difficulties, progressive distal muscle wasting and weakness in lower limbs and only mild sensory signs. Electrophysiology demonstrated an axonal sensorimotor neuropathy. Nerve biopsy showed a chronic axonal neuropathy with moderate loss of all caliber myelinated fibers. Next-generation sequencing (NGS) technology revealed in the proband and in her similarly affected father the novel c.377A>G (p.K126R) heterozygous variant predicted to be deleterious. The mutation affects the biochemical properties of RAB7 GTPase, causes altered interaction with peripherin, and inhibition of neurite outgrowth, as for previously reported CMT2B mutants. However, it also shows differences, particularly in the epidermal growth factor receptor degradation process. Altogether, our findings indicate that this RAB7A variant is pathogenic and widens the phenotypic spectrum of CMT2B to include predominantly motor CMT2. Alteration of the receptor degradation process might explain the different clinical presentations in this family.
Collapse
|
81
|
Integrin linked kinase regulates endosomal recycling of N-cadherin in melanoma cells. Cell Signal 2020; 72:109642. [PMID: 32305668 DOI: 10.1016/j.cellsig.2020.109642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/20/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Malignant transformation is characterized by a phenotype "switch" from E- to N-cadherin - a major hallmark of epithelial to mesenchymal transition (EMT). The increased expression of N-cadherin is commonly followed by a growing capacity for migration as well as resistance to apoptosis. Integrin Linked Kinase (ILK) is a key molecule involved in EMT and progression of cancer cells. ILK is known as a major signaling mediator involved in cadherin switch, but the specific mechanism through which ILK modulates N-cadherin expression is still not clear. Studies were carried out on human melanoma WM793 and 1205Lu cell lines. Expression of proteins was analyzed using PCR and Western Blot; siRNA transfection was done for ILK. Analysis of cell signaling pathways was monitored with phospho-specific antibodies. Subcellular localization of protein was studied using the ProteoExtract Subcellular Kit and Western blot analysis. Our data show that ILK knockdown by siRNA did suppress N-cadherin expression in melanoma, but only at the protein level. The ILK silencing-induced decrease of N-cadherin membranous expression in melanoma highlights the likely crucial role of ILK in the coordination of membrane trafficking through alteration of Rab expression. It is essential to understand the molecular mechanism of increased N-cadherin expression in cancer to possibly use it in the search of new therapeutic targets.
Collapse
|
82
|
Romano R, Rivellini C, De Luca M, Tonlorenzi R, Beli R, Manganelli F, Nolano M, Santoro L, Eskelinen EL, Previtali SC, Bucci C. Alteration of the late endocytic pathway in Charcot-Marie-Tooth type 2B disease. Cell Mol Life Sci 2020; 78:351-372. [PMID: 32280996 PMCID: PMC7867545 DOI: 10.1007/s00018-020-03510-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022]
Abstract
The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Cristina Rivellini
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Rossana Tonlorenzi
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Beli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
- Salvatore Maugeri Foundation, Institute of Telese Terme, Benevento, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Eeva-Liisa Eskelinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Stefano C Previtali
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
83
|
Advances in defining signaling networks for the establishment of neuronal polarity. Curr Opin Cell Biol 2020; 63:76-87. [DOI: 10.1016/j.ceb.2019.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022]
|
84
|
László ZI, Bercsényi K, Mayer M, Lefkovics K, Szabó G, Katona I, Lele Z. N-cadherin (Cdh2) Maintains Migration and Postmitotic Survival of Cortical Interneuron Precursors in a Cell-Type-Specific Manner. Cereb Cortex 2020; 30:1318-1329. [PMID: 31402374 PMCID: PMC7219024 DOI: 10.1093/cercor/bhz168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
The multiplex role of cadherin-based adhesion complexes during development of pallial excitatory neurons has been thoroughly characterized. In contrast, much less is known about their function during interneuron development. Here, we report that conditional removal of N-cadherin (Cdh2) from postmitotic neuroblasts of the subpallium results in a decreased number of Gad65-GFP-positive interneurons in the adult cortex. We also found that interneuron precursor migration into the pallium was already delayed at E14. Using immunohistochemistry and TUNEL assay in the embryonic subpallium, we excluded decreased mitosis and elevated cell death as possible sources of this defect. Moreover, by analyzing the interneuron composition of the adult somatosensory cortex, we uncovered an unexpected interneuron-type-specific defect caused by Cdh2-loss. This was not due to a fate-switch between interneuron populations or altered target selection during migration. Instead, potentially due to the migration delay, part of the precursors failed to enter the cortical plate and consequently got eliminated at early postnatal stages. In summary, our results indicate that Cdh2-mediated interactions are necessary for migration and survival during the postmitotic phase of interneuron development. Furthermore, we also propose that unlike in pallial glutamatergic cells, Cdh2 is not universal, rather a cell type-specific factor during this process.
Collapse
Affiliation(s)
- Zsófia I László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Kinga Bercsényi
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, and Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Mátyás Mayer
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kornél Lefkovics
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
85
|
Rigby MJ, Gomez TM, Puglielli L. Glial Cell-Axonal Growth Cone Interactions in Neurodevelopment and Regeneration. Front Neurosci 2020; 14:203. [PMID: 32210757 PMCID: PMC7076157 DOI: 10.3389/fnins.2020.00203] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
The developing nervous system is a complex yet organized system of neurons, glial support cells, and extracellular matrix that arranges into an elegant, highly structured network. The extracellular and intracellular events that guide axons to their target locations have been well characterized in many regions of the developing nervous system. However, despite extensive work, we have a poor understanding of how axonal growth cones interact with surrounding glial cells to regulate network assembly. Glia-to-growth cone communication is either direct through cellular contacts or indirect through modulation of the local microenvironment via the secretion of factors or signaling molecules. Microglia, oligodendrocytes, astrocytes, Schwann cells, neural progenitor cells, and olfactory ensheathing cells have all been demonstrated to directly impact axon growth and guidance. Expanding our understanding of how different glial cell types directly interact with growing axons throughout neurodevelopment will inform basic and clinical neuroscientists. For example, identifying the key cellular players beyond the axonal growth cone itself may provide translational clues to develop therapeutic interventions to modulate neuron growth during development or regeneration following injury. This review will provide an overview of the current knowledge about glial involvement in development of the nervous system, specifically focusing on how glia directly interact with growing and maturing axons to influence neuronal connectivity. This focus will be applied to the clinically-relevant field of regeneration following spinal cord injury, highlighting how a better understanding of the roles of glia in neurodevelopment can inform strategies to improve axon regeneration after injury.
Collapse
Affiliation(s)
- Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy M Gomez
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, United States
| |
Collapse
|
86
|
Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:25-42. [PMID: 32958178 DOI: 10.1016/b978-0-444-64150-2.00004-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the central nervous system (CNS) is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical factors from early embryonic stages to postnatal life. Duringthe past decade, great strides have been made to unravel mechanisms underlying human CNS development through the employment of modern genetic techniques and experimental approaches. In this chapter, we review the current knowledge regarding the main developmental processes and signaling mechanisms of (i) neurogenesis, (ii) neuronal migration, and (iii) axon guidance. We discuss mechanisms related to neural stem cells proliferation, migration, terminal translocation of neuronal progenitors, and axon guidance and pathfinding. For each section, we also provide a comprehensive overview of the underlying regulatory processes, including transcriptional, posttranscriptional, and epigenetic factors, and a myriad of signaling pathways that are pivotal to determine the fate of neuronal progenitors and newly formed migrating neurons. We further highlight how impairment of this complex regulating system, such as mutations in its core components, may cause cortical malformation, epilepsy, intellectual disability, and autism in humans. A thorough understanding of normal human CNS development is thus crucial to decipher mechanisms responsible for neurodevelopmental disorders and in turn guide the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Accogli
- Unit of Medical Genetics, Istituto Giannina Gaslini Pediatric Hospital, Genova, Italy; Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Science, Università degli Studi di Genova, Genova, Italy
| | | | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
87
|
Zhang H, Gao Y, Qian P, Dong Z, Hao W, Liu D, Duan X. Expression analysis of Rab11 during zebrafish embryonic development. BMC DEVELOPMENTAL BIOLOGY 2019; 19:25. [PMID: 31884948 PMCID: PMC6936149 DOI: 10.1186/s12861-019-0207-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Abstract
Background Rab proteins are GTPases responsible for intracellular vesicular trafficking regulation. Rab11 proteins, members of the Rab GTPase family, are known to regulate vesicular recycling during embryonic development. In zebrafish, there are 3 rab11 paralogues, known as rab11a, rab11ba and rab11bb, sharing high identity with each other. However, the expression analysis of rab11 is so far lacking. Results Here, by phylogeny analysis, we found the three rab11 genes are highly conserved especially for their GTPase domains. We examined the expression patterns of rab11a, rab11ba and rab11bb using RT-PCR and in situ hybridization. We found that all the three genes were highly enriched in the central nervous system, but in different areas of the brain. Apart from brain, rab11a was also expressed in caudal vein, pronephric duct, proctodeum, pharyngeal arches and digestive duct, rab11ba was detected to express in muscle, and rab11bb was expressed in kidney, fin and spinal cord. Different from rab11a and rab11ba, which both have maternal expressions in embryos, rab11bb only expresses during 24hpf to 96hpf. Conclusions Our results suggest that rab11 genes play important but distinct roles in the development of the nervous system in zebrafish. The findings could provide new evidences for better understanding the functions of rab11 in the development of zebrafish embryos.
Collapse
Affiliation(s)
- Haijun Zhang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19# Qixiu Road, Nantong, 226001, China
| | - Yu Gao
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19# Qixiu Road, Nantong, 226001, China
| | - Peipei Qian
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19# Qixiu Road, Nantong, 226001, China
| | - Zhangji Dong
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19# Qixiu Road, Nantong, 226001, China
| | - Wenjin Hao
- College of life science, Nantong University, 9# Seyuan Road, Nantong, 226001, China
| | - Dong Liu
- College of life science, Nantong University, 9# Seyuan Road, Nantong, 226001, China
| | - Xuchu Duan
- College of life science, Nantong University, 9# Seyuan Road, Nantong, 226001, China.
| |
Collapse
|
88
|
Saito K, Okamoto M, Watanabe Y, Noguchi N, Nagasaka A, Nishina Y, Shinoda T, Sakakibara A, Miyata T. Dorsal-to-Ventral Cortical Expansion Is Physically Primed by Ventral Streaming of Early Embryonic Preplate Neurons. Cell Rep 2019; 29:1555-1567.e5. [DOI: 10.1016/j.celrep.2019.09.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
|
89
|
The Endolysosomal System and Proteostasis: From Development to Degeneration. J Neurosci 2019; 38:9364-9374. [PMID: 30381428 DOI: 10.1523/jneurosci.1665-18.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
How do neurons adapt their endolysosomal system to address the particular challenge of membrane transport across their elaborate cellular landscape and to maintain proteostasis for the lifetime of the organism? Here we review recent findings that address this central question. We discuss the cellular and molecular mechanisms of endolysosomal trafficking and the autophagy pathway in neurons, as well as their role in neuronal development and degeneration. These studies highlight the importance of understanding the basic cell biology of endolysosomal trafficking and autophagy and their roles in the maintenance of proteostasis within the context of neurons, which will be critical for developing effective therapies for various neurodevelopmental and neurodegenerative disorders.
Collapse
|
90
|
Accogli A, Calabretta S, St-Onge J, Boudrahem-Addour N, Dionne-Laporte A, Joset P, Azzarello-Burri S, Rauch A, Krier J, Fieg E, Pallais JC, McConkie-Rosell A, McDonald M, Freedman SF, Rivière JB, Lafond-Lapalme J, Simpson BN, Hopkin RJ, Trimouille A, Van-Gils J, Begtrup A, McWalter K, Delphine H, Keren B, Genevieve D, Argilli E, Sherr EH, Severino M, Rouleau GA, Yam PT, Charron F, Srour M. De Novo Pathogenic Variants in N-cadherin Cause a Syndromic Neurodevelopmental Disorder with Corpus Collosum, Axon, Cardiac, Ocular, and Genital Defects. Am J Hum Genet 2019; 105:854-868. [PMID: 31585109 DOI: 10.1016/j.ajhg.2019.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023] Open
Abstract
Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects).
Collapse
Affiliation(s)
- Andrea Accogli
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, H4A 3J1, Montreal, QC, Canada; Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Dipartimento di Neuroscienze, Reabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università degli Studi di Genova, 16132 Genova Italy
| | - Sara Calabretta
- Montreal Clinical Research Institute, H2W 1R7 Montreal, QC, Canada
| | - Judith St-Onge
- McGill University Health Center Research Institute, H4A 3J1, Montreal, QC, Canada
| | | | | | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, CH-8952 Schlieren, Switzerland
| | | | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, CH-8952 Schlieren, Switzerland
| | - Joel Krier
- Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27707, USA
| | - Marie McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC 27707, USA
| | - Sharon F Freedman
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Joël Lafond-Lapalme
- McGill University Health Center Research Institute, H4A 3J1, Montreal, QC, Canada
| | - Brittany N Simpson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Aurélien Trimouille
- Centre Hospitalier Universitaire Bordeaux, Service de Génétique Médicale, 33076 Bordeaux, France; Laboratoire Maladies Rares: Génétique et Métabolisme, Inserm U1211, Université de Bordeaux, 33076 Bordeaux, France
| | - Julien Van-Gils
- Centre Hospitalier Universitaire Bordeaux, Service de Génétique Médicale, 33076 Bordeaux, France; Laboratoire Maladies Rares: Génétique et Métabolisme, Inserm U1211, Université de Bordeaux, 33076 Bordeaux, France
| | | | | | - Heron Delphine
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - Boris Keren
- Département de Génétique, Centre de Référence des Déficiences Intellectuelles de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013 Paris
| | - David Genevieve
- Département de Genetique Médicale, Maladies Rares et Médecine Personnalisée, Centre de Référence Anomalies du Développement, Université Montpellier, Unité Inserm U1183, Centre Hospitalier Universitaire Montpellier, 34000 Montpellier, France
| | - Emanuela Argilli
- Departments of Neurology and Pediatrics, Weill Institute of Neuroscience and Institute of Human Genetics, University of California, CA 94143 San Francisco
| | - Elliott H Sherr
- Departments of Neurology and Pediatrics, Weill Institute of Neuroscience and Institute of Human Genetics, University of California, CA 94143 San Francisco
| | - Mariasavina Severino
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, H3A 2B4, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4, Montreal, QC, Canada
| | - Patricia T Yam
- Montreal Clinical Research Institute, H2W 1R7 Montreal, QC, Canada
| | - Frédéric Charron
- Montreal Clinical Research Institute, H2W 1R7 Montreal, QC, Canada; Department of Medicine, University of Montreal, H3C 3J7, Montreal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, H4A 3J1, Montreal, QC, Canada.
| | - Myriam Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, H4A 3J1, Montreal, QC, Canada; McGill University Health Center Research Institute, H4A 3J1, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4, Montreal, QC, Canada.
| |
Collapse
|
91
|
Kon E, Calvo-Jiménez E, Cossard A, Na Y, Cooper JA, Jossin Y. N-cadherin-regulated FGFR ubiquitination and degradation control mammalian neocortical projection neuron migration. eLife 2019; 8:47673. [PMID: 31577229 PMCID: PMC6786859 DOI: 10.7554/elife.47673] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
The functions of FGF receptors (FGFRs) in early development of the cerebral cortex are well established. Their functions in the migration of neocortical projection neurons, however, are unclear. We have found that FGFRs regulate multipolar neuron orientation and the morphological change into bipolar cells necessary to enter the cortical plate. Mechanistically, our results suggest that FGFRs are activated by N-Cadherin. N-Cadherin cell-autonomously binds FGFRs and inhibits FGFR K27- and K29-linked polyubiquitination and lysosomal degradation. Accordingly, FGFRs accumulate and stimulate prolonged Erk1/2 phosphorylation. Neurons inhibited for Erk1/2 are stalled in the multipolar zone. Moreover, Reelin, a secreted protein regulating neuronal positioning, prevents FGFR degradation through N-Cadherin, causing Erk1/2 phosphorylation. These findings reveal novel functions for FGFRs in cortical projection neuron migration, suggest a physiological role for FGFR and N-Cadherin interaction in vivo and identify Reelin as an extracellular upstream regulator and Erk1/2 as downstream effectors of FGFRs during neuron migration.
Collapse
Affiliation(s)
- Elif Kon
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Elisa Calvo-Jiménez
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alexia Cossard
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Youn Na
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
92
|
Rab GTPases: Switching to Human Diseases. Cells 2019; 8:cells8080909. [PMID: 31426400 PMCID: PMC6721686 DOI: 10.3390/cells8080909] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Rab proteins compose the largest family of small GTPases and control the different steps of intracellular membrane traffic. More recently, they have been shown to also regulate cell signaling, division, survival, and migration. The regulation of these processes generally occurs through recruitment of effectors and regulatory proteins, which control the association of Rab proteins to membranes and their activation state. Alterations in Rab proteins and their effectors are associated with multiple human diseases, including neurodegeneration, cancer, and infections. This review provides an overview of how the dysregulation of Rab-mediated functions and membrane trafficking contributes to these disorders. Understanding the altered dynamics of Rabs and intracellular transport defects might thus shed new light on potential therapeutic strategies.
Collapse
|
93
|
Guerra F, Bucci C. Role of the RAB7 Protein in Tumor Progression and Cisplatin Chemoresistance. Cancers (Basel) 2019; 11:cancers11081096. [PMID: 31374919 PMCID: PMC6721790 DOI: 10.3390/cancers11081096] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
RAB7 is a small guanosine triphosphatase (GTPase) extensively studied as regulator of vesicular trafficking. Indeed, its role is fundamental in several steps of the late endocytic pathway, including endosome maturation, transport from early endosomes to late endosomes and lysosomes, clustering and fusion of late endosomes and lysosomes in the perinuclear region and lysosomal biogenesis. Besides endocytosis, RAB7 is important for a number of other cellular processes among which, autophagy, apoptosis, signaling, and cell migration. Given the importance of RAB7 in these cellular processes, the interest to study the role of RAB7 in cancer progression is widely grown. Here, we describe the current understanding of oncogenic and oncosuppressor functions of RAB7 analyzing cellular context and other environmental factors in which it elicits pro and/or antitumorigenic effects. We also discuss the role of RAB7 in cisplatin resistance associated with its ability to regulate the late endosomal pathway, lysosomal biogenesis and extracellular vesicle secretion. Finally, we examined the potential cancer therapeutic strategies targeting the different molecular events in which RAB7 is involved.
Collapse
Affiliation(s)
- Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| |
Collapse
|
94
|
Nguyen T, Duchesne L, Sankara Narayana GHN, Boggetto N, Fernig DD, Uttamrao Murade C, Ladoux B, Mège RM. Enhanced cell-cell contact stability and decreased N-cadherin-mediated migration upon fibroblast growth factor receptor-N-cadherin cross talk. Oncogene 2019; 38:6283-6300. [PMID: 31312021 DOI: 10.1038/s41388-019-0875-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
N-cadherin adhesion has been reported to enhance cancer and neuronal cell migration either by mediating actomyosin-based force transduction or initiating fibroblast growth factor receptor (FGFR)-dependent biochemical signalling. Here we show that FGFR1 reduces N-cadherin-mediated cell migration. Both proteins are co-stabilised at cell-cell contacts through direct interaction. As a consequence, cell adhesion is strengthened, limiting the migration of cells on N-cadherin. Both the inhibition of migration and the stabilisation of cell adhesions require the FGFR activity stimulated by N-cadherin engagement. FGFR1 stabilises N-cadherin at the cell membrane through a pathway involving Src and p120. Moreover, FGFR1 stimulates the anchoring of N-cadherin to actin. We found that the migratory behaviour of cells depends on an optimum balance between FGFR-regulated N-cadherin adhesion and actin dynamics. Based on these findings we propose a positive feed-back loop between N-cadherin and FGFR at adhesion sites limiting N-cadherin-based single-cell migration.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - Laurence Duchesne
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, F-35000, Rennes, France
| | | | - Nicole Boggetto
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - David D Fernig
- Department of Biochemistry, Institute of Integrated Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | - Benoit Ladoux
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - René-Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France.
| |
Collapse
|
95
|
Hor CHH, Goh ELK. Rab23 Regulates Radial Migration of Projection Neurons via N-cadherin. Cereb Cortex 2019; 28:1516-1531. [PMID: 29420702 PMCID: PMC6093454 DOI: 10.1093/cercor/bhy018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 01/12/2023] Open
Abstract
Radial migration of cortical projection neurons is a prerequisite for shaping a distinct multilayered cerebral cortex during mammalian corticogenesis. Members of Rab GTPases family were reported to regulate radial migration. Here, in vivo conditional knockout or in utero knockdown (KD) of Rab23 in mice neocortex causes aberrant polarity and halted migration of cortical projection neurons. Further investigation of the underlying mechanism reveals down-regulation of N-cadherin in the Rab23-deficient neurons, which is a cell adhesion protein previously known to modulate radial migration. (Shikanai M, Nakajima K, Kawauchi T. 2011. N-cadherin regulates radial glial fiber-dependent migration of cortical locomoting neurons. Commun Integr Biol. 4:326–330.) Interestingly, pharmacological inhibition of extracellular signal-regulated kinases (ERK1/2) also decreases the expression of N-cadherin, implicating an upstream effect of ERK1/2 on N-cadherin and also suggesting a link between Rab23 and ERK1/2. Further biochemical studies show that silencing of Rab23 impedes activation of ERK1/2 via perturbed platelet-derived growth factor-alpha (PDGFRα) signaling. Restoration of the expression of Rab23 or N-cadherin in Rab23-KD neurons could reverse neuron migration defects, indicating that Rab23 modulates migration through N-cadherin. These studies suggest that cortical neuron migration is mediated by a molecular hierarchy downstream of Rab23 via N-cadherin.
Collapse
Affiliation(s)
- Catherine H H Hor
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
| | - Eyleen L K Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Research, National Neuroscience Institute, Singapore 308433, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.,KK Research Center, KK Women's and Children's Hospital, Singapore 229899, Singapore
| |
Collapse
|
96
|
Xu Z, Chen Y, Chen Y. Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells 2019; 8:cells8060568. [PMID: 31185627 PMCID: PMC6627650 DOI: 10.3390/cells8060568] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Neuronal migration is essential for the orchestration of brain development and involves several contiguous steps: interkinetic nuclear movement (INM), multipolar–bipolar transition, locomotion, and translocation. Growing evidence suggests that Rho GTPases, including RhoA, Rac, Cdc42, and the atypical Rnd members, play critical roles in neuronal migration by regulating both actin and microtubule cytoskeletal components. This review focuses on the spatiotemporal-specific regulation of Rho GTPases as well as their regulators and effectors in distinct steps during the neuronal migration process. Their roles in bridging extracellular signals and cytoskeletal dynamics to provide optimal structural support to the migrating neurons will also be discussed.
Collapse
Affiliation(s)
- Zhenyan Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
| | - Yuewen Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| | - Yu Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| |
Collapse
|
97
|
Hakanen J, Ruiz-Reig N, Tissir F. Linking Cell Polarity to Cortical Development and Malformations. Front Cell Neurosci 2019; 13:244. [PMID: 31213986 PMCID: PMC6558068 DOI: 10.3389/fncel.2019.00244] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 01/23/2023] Open
Abstract
Cell polarity refers to the asymmetric distribution of signaling molecules, cellular organelles, and cytoskeleton in a cell. Neural progenitors and neurons are highly polarized cells in which the cell membrane and cytoplasmic components are compartmentalized into distinct functional domains in response to internal and external cues that coordinate polarity and behavior during development and disease. In neural progenitor cells, polarity has a prominent impact on cell shape and coordinate several processes such as adhesion, division, and fate determination. Polarity also accompanies a neuron from the beginning until the end of its life. It is essential for development and later functionality of neuronal circuitries. During development, polarity governs transitions between multipolar and bipolar during migration of postmitotic neurons, and directs the specification and directional growth of axons. Once reaching final positions in cortical layers, neurons form dendrites which become compartmentalized to ensure proper establishment of neuronal connections and signaling. Changes in neuronal polarity induce signaling cascades that regulate cytoskeletal changes, as well as mRNA, protein, and vesicle trafficking, required for synapses to form and function. Hence, defects in establishing and maintaining cell polarity are associated with several neural disorders such as microcephaly, lissencephaly, schizophrenia, autism, and epilepsy. In this review we summarize the role of polarity genes in cortical development and emphasize the relationship between polarity dysfunctions and cortical malformations.
Collapse
Affiliation(s)
- Janne Hakanen
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium
| |
Collapse
|
98
|
Lee DK, Lee H, Yoon J, Hong S, Lee Y, Kim KT, Kim JW, Song MR. Cdk5 regulates N-cadherin-dependent neuronal migration during cortical development. Biochem Biophys Res Commun 2019; 514:645-652. [PMID: 31076103 DOI: 10.1016/j.bbrc.2019.04.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) controls neuronal migration in the developing cortex when multipolar newborn neurons transform to become bipolar. However, by which mechanisms Cdk5 controls cell adhesion in migrating neurons are not fully understood. In this study, we examined the functional interaction between Cdk5 and N-cadherin (Ncad) in newborn neurons when they undergo the multipolar to bipolar transition in the intermediate zone (IZ). Detailed expression analysis revealed that both Cdk5 and Ncad were present in GFP-electroporated migrating neurons in the IZ. Misexpression of dominant negative Cdk5 into the embryonic brains stalled neuronal locomotion in the lower IZ in which arrested cells were round or multipolar. When Ncad was co-introduced with Cdk5DN, however, cells continue to migrate into the cortical plate (CP) and migrating neurons acquired typical bipolar morphology with a pia-directed leading process. Similarly, downregulation of CDK5 resulted in lesser aggregation ability, reversed by the expression of Ncad in vitro. Down-regulation of activity or protein level of CDK5 did not alter the total amount of NCAD proteins but lowered its surface expression in cells. Lastly, expression of CDK5 and NCAD overlapped in the IZ of the human fetal cortex, indicating that the role of Cdk5 and Ncad in neuronal migration is evolutionarily conserved.
Collapse
Affiliation(s)
- Dong-Keun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Hojae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Jiyoung Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Sujeong Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea
| | - Kyung-Tai Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Jong Woon Kim
- Department of Obstetrics and Gynecology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, 500-712, Republic of Korea.
| |
Collapse
|
99
|
Dejgaard SY, Presley JF. Rab18: new insights into the function of an essential protein. Cell Mol Life Sci 2019; 76:1935-1945. [PMID: 30830238 PMCID: PMC11105521 DOI: 10.1007/s00018-019-03050-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
Rab18 is one of the small number of conserved Rab proteins which have been traced to the last eukaryotic common ancestor. It is found in organisms ranging from humans to trypanosomes, and localizes to multiple organelles, including most notably endoplasmic reticulum and lipid droplets. In humans, absence of Rab18 leads to a severe illness known as Warburg-Micro syndrome. Despite this evidence that Rab18 is essential, its role in cells remains mysterious. However, recent studies identifying effectors and interactors of Rab18, are now shedding light on its mechanism of action, suggesting functions related to organelle tethering and to autophagy. In this review, we examine the variety of roles proposed for Rab18 with a focus on new evidence giving insights into the molecular mechanisms it utilizes. Based on this summary of our current understanding, we identify priority areas for further research.
Collapse
Affiliation(s)
- Selma Yilmaz Dejgaard
- Department of Medical Biology, Near East University, Nicosia, Cyprus
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
100
|
Coordination between Rac1 and Rab Proteins: Functional Implications in Health and Disease. Cells 2019; 8:cells8050396. [PMID: 31035701 PMCID: PMC6562727 DOI: 10.3390/cells8050396] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
The small GTPases of the Rho family regulate many aspects of actin dynamics, but are functionally connected to many other cellular processes. Rac1, a member of this family, besides its known function in the regulation of actin cytoskeleton, plays a key role in the production of reactive oxygen species, in gene transcription, in DNA repair, and also has been proven to have specific roles in neurons. This review focuses on the cooperation between Rac1 and Rab proteins, analyzing how the coordination between these GTPases impact on cells and how alterations of their functions lead to disease.
Collapse
|