51
|
Abstract
Circuit operations are determined jointly by the properties of the circuit elements and the properties of the connections among these elements. In the nervous system, neurons exhibit diverse morphologies and branching patterns, allowing rich compartmentalization within individual cells and complex synaptic interactions among groups of cells. In this review, we summarize work detailing how neuronal morphology impacts neural circuit function. In particular, we consider example neurons in the retina, cerebral cortex, and the stomatogastric ganglion of crustaceans. We also explore molecular coregulators of morphology and circuit function to begin bridging the gap between molecular and systems approaches. By identifying motifs in different systems, we move closer to understanding the structure-function relationships that are present in neural circuits.
Collapse
Affiliation(s)
| | - Stephen D Van Hooser
- Department of Biology, Brandeis University , Waltham, Massachusetts.,Volen Center for Complex Systems, Brandeis University , Waltham, Massachusetts.,Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University , Waltham, Massachusetts
| |
Collapse
|
52
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
53
|
Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. Architecture, Function, and Assembly of the Mouse Visual System. Annu Rev Neurosci 2018; 40:499-538. [PMID: 28772103 DOI: 10.1146/annurev-neuro-071714-033842] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vision is the sense humans rely on most to navigate the world, make decisions, and perform complex tasks. Understanding how humans see thus represents one of the most fundamental and important goals of neuroscience. The use of the mouse as a model for parsing how vision works at a fundamental level started approximately a decade ago, ushered in by the mouse's convenient size, relatively low cost, and, above all, amenability to genetic perturbations. In the course of that effort, a large cadre of new and powerful tools for in vivo labeling, monitoring, and manipulation of neurons were applied to this species. As a consequence, a significant body of work now exists on the architecture, function, and development of mouse central visual pathways. Excitingly, much of that work includes causal testing of the role of specific cell types and circuits in visual perception and behavior-something rare to find in studies of the visual system of other species. Indeed, one could argue that more information is now available about the mouse visual system than any other sensory system, in any species, including humans. As such, the mouse visual system has become a platform for multilevel analysis of the mammalian central nervous system generally. Here we review the mouse visual system structure, function, and development literature and comment on the similarities and differences between the visual system of this and other model species. We also make it a point to highlight the aspects of mouse visual circuitry that remain opaque and that are in need of additional experimentation to enrich our understanding of how vision works on a broad scale.
Collapse
Affiliation(s)
- Tania A Seabrook
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305
| | - Timothy J Burbridge
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Michael C Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520;
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305.,Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California 94303; .,Bio-X, Stanford University, Stanford, California 94305
| |
Collapse
|
54
|
Mice use robust and common strategies to discriminate natural scenes. Sci Rep 2018; 8:1379. [PMID: 29358739 PMCID: PMC5778028 DOI: 10.1038/s41598-017-19108-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/20/2017] [Indexed: 11/08/2022] Open
Abstract
Mice use vision to navigate and avoid predators in natural environments. However, their visual systems are compact compared to other mammals, and it is unclear how well mice can discriminate ethologically relevant scenes. Here, we examined natural scene discrimination in mice using an automated touch-screen system. We estimated the discrimination difficulty using the computational metric structural similarity (SSIM), and constructed psychometric curves. However, the performance of each mouse was better predicted by the mean performance of other mice than SSIM. This high inter-mouse agreement indicates that mice use common and robust strategies to discriminate natural scenes. We tested several other image metrics to find an alternative to SSIM for predicting discrimination performance. We found that a simple, primary visual cortex (V1)-inspired model predicted mouse performance with fidelity approaching the inter-mouse agreement. The model involved convolving the images with Gabor filters, and its performance varied with the orientation of the Gabor filter. This orientation dependence was driven by the stimuli, rather than an innate biological feature. Together, these results indicate that mice are adept at discriminating natural scenes, and their performance is well predicted by simple models of V1 processing.
Collapse
|
55
|
Dylda E, Pakan JM, Rochefort NL. Chronic Two-Photon Calcium Imaging in the Visual Cortex of Awake Behaving Mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-12-812028-6.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
56
|
Muir DR, Molina-Luna P, Roth MM, Helmchen F, Kampa BM. Specific excitatory connectivity for feature integration in mouse primary visual cortex. PLoS Comput Biol 2017; 13:e1005888. [PMID: 29240769 PMCID: PMC5746254 DOI: 10.1371/journal.pcbi.1005888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 12/28/2017] [Accepted: 11/23/2017] [Indexed: 11/21/2022] Open
Abstract
Local excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli (plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted by responses to single gratings presented alone. This complexity is surprising, since excitatory neurons in V1 are considered to be mainly tuned to single preferred orientations. Here we examined the consequences for visual processing of two alternative connectivity schemes: in the first case, local connections are aligned with visual properties inherited from feedforward input (a 'like-to-like' scheme specifically connecting neurons that share similar preferred orientations); in the second case, local connections group neurons into excitatory subnetworks that combine and amplify multiple feedforward visual properties (a 'feature binding' scheme). By comparing predictions from large scale computational models with in vivo recordings of visual representations in mouse V1, we found that responses to plaid stimuli were best explained by assuming feature binding connectivity. Unlike under the like-to-like scheme, selective amplification within feature-binding excitatory subnetworks replicated experimentally observed facilitatory responses to plaid stimuli; explained selective plaid responses not predicted by grating selectivity; and was consistent with broad anatomical selectivity observed in mouse V1. Our results show that visual feature binding can occur through local recurrent mechanisms without requiring feedforward convergence, and that such a mechanism is consistent with visual responses and cortical anatomy in mouse V1.
Collapse
Affiliation(s)
- Dylan R. Muir
- Biozentrum, University of Basel, Basel, Switzerland
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Patricia Molina-Luna
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Morgane M. Roth
- Biozentrum, University of Basel, Basel, Switzerland
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Björn M. Kampa
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Neurophysiology, Institute of Biology 2, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN, Aachen, Germany
| |
Collapse
|
57
|
Colonnese MT, Shen J, Murata Y. Uncorrelated Neural Firing in Mouse Visual Cortex during Spontaneous Retinal Waves. Front Cell Neurosci 2017; 11:289. [PMID: 28979189 PMCID: PMC5611364 DOI: 10.3389/fncel.2017.00289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/04/2017] [Indexed: 11/25/2022] Open
Abstract
Synchronous firing among the elements of forming circuits is critical for stabilization of synapses. Understanding the nature of these local network interactions during development can inform models of circuit formation. Within cortex, spontaneous activity changes throughout development. Unlike the adult, early spontaneous activity occurs in discontinuous population bursts separated by long silent periods, suggesting a high degree of local synchrony. However, whether the micro-patterning of activity within early bursts is unique to this early age and specifically tuned for early development is poorly understood, particularly within the column. To study this we used single-shank multi-electrode array recordings of spontaneous activity in the visual cortex of non-anesthetized neonatal mice to quantify single-unit firing rates, and applied multiple measures of network interaction and synchrony throughout the period of map formation and immediately after eye-opening. We find that despite co-modulation of firing rates on a slow time scale (hundreds of ms), the number of coactive neurons, as well as pair-wise neural spike-rate correlations, are both lower before eye-opening. In fact, on post-natal days (P)6–9 correlated activity was lower than expected by chance, suggesting active decorrelation of activity during early bursts. Neurons in lateral geniculate nucleus developed in an opposite manner, becoming less correlated after eye-opening. Population coupling, a measure of integration in the local network, revealed a population of neurons with particularly strong local coupling present at P6–11, but also an adult-like diversity of coupling at all ages, suggesting that a neuron’s identity as locally or distally coupled is determined early. The occurrence probabilities of unique neuronal “words” were largely similar at all ages suggesting that retinal waves drive adult-like patterns of co-activation. These findings suggest that the bursts of spontaneous activity during early visual development do not drive hyper-synchronous activity within columns. Rather, retinal waves provide windows of potential activation during which neurons are active but poorly correlated, adult-like patterns of correlation are achieved soon after eye-opening.
Collapse
Affiliation(s)
- Matthew T Colonnese
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States
| | - Jing Shen
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States
| | - Yasunobu Murata
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington UniversityWashington, DC, United States
| |
Collapse
|
58
|
Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex. J Neurosci 2017; 37:10125-10138. [PMID: 28924011 DOI: 10.1523/jneurosci.1484-17.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/01/2017] [Indexed: 01/16/2023] Open
Abstract
Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system.SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits.
Collapse
|
59
|
Batista-Brito R, Vinck M, Ferguson KA, Chang JT, Laubender D, Lur G, Mossner JM, Hernandez VG, Ramakrishnan C, Deisseroth K, Higley MJ, Cardin JA. Developmental Dysfunction of VIP Interneurons Impairs Cortical Circuits. Neuron 2017; 95:884-895.e9. [PMID: 28817803 DOI: 10.1016/j.neuron.2017.07.034] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 07/08/2017] [Accepted: 07/27/2017] [Indexed: 02/01/2023]
Abstract
GABAergic interneurons play important roles in cortical circuit development. However, there are multiple populations of interneurons and their respective developmental contributions remain poorly explored. Neuregulin 1 (NRG1) and its interneuron-specific receptor ERBB4 are critical genes for interneuron maturation. Using a conditional ErbB4 deletion, we tested the role of vasoactive intestinal peptide (VIP)-expressing interneurons in the postnatal maturation of cortical circuits in vivo. ErbB4 removal from VIP interneurons during development leads to changes in their activity, along with severe dysregulation of cortical temporal organization and state dependence. These alterations emerge during adolescence, and mature animals in which VIP interneurons lack ErbB4 exhibit reduced cortical responses to sensory stimuli and impaired sensory learning. Our data support a key role for VIP interneurons in cortical circuit development and suggest a possible contribution to pathophysiology in neurodevelopmental disorders. These findings provide a new perspective on the role of GABAergic interneuron diversity in cortical development. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Renata Batista-Brito
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Martin Vinck
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
| | - Katie A Ferguson
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Jeremy T Chang
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - David Laubender
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Gyorgy Lur
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - James M Mossner
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Victoria G Hernandez
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; HHMI, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael J Higley
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA
| | - Jessica A Cardin
- Yale University School of Medicine, Department of Neuroscience, 333 Cedar St., New Haven, CT, 06520, USA; Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven CT, 06520, USA.
| |
Collapse
|
60
|
Development of Activity in the Mouse Visual Cortex. J Neurosci 2017; 36:12259-12275. [PMID: 27903733 DOI: 10.1523/jneurosci.1903-16.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/24/2016] [Accepted: 10/14/2016] [Indexed: 11/21/2022] Open
Abstract
A comprehensive developmental timeline of activity in the mouse cortex in vivo is lacking. Understanding the activity changes that accompany synapse and circuit formation is important to understand the mechanisms by which activity molds circuits and would help to identify critical checkpoints for normal development. To identify key principles of cortical activity maturation, we systematically tracked spontaneous and sensory-evoked activity with extracellular recordings of primary visual cortex (V1) in nonanesthetized mice. During the first postnatal week (postnatal days P4-P7), V1 was not visually responsive and exhibited long (>10 s) periods of network silence. Activation consisted exclusively of "slow-activity transients," 2-10 s periods of 6-10 Hz "spindle-burst' oscillations; the response to spontaneous retinal waves. By tracking daily changes in this activity, two key components of spontaneous activity maturation were revealed: (1) spindle-burst frequency acceleration (eventually becoming the 20-50 Hz broadband activity caused by the asynchronous state) and (2) "filling-in" of silent periods with low-frequency (2-4 Hz) activity (beginning on P10 and complete by P13). These two changes are sufficient to create the adult-like pattern of continuous activity, alternation between fast-asynchronous and slow-synchronous activity, by eye opening. Visual responses emerged on P8 as evoked spindle-bursts and neuronal firing with a signal-to-noise ratio higher than adult. Both were eliminated by eye opening, leaving only the mature, short-latency response. These results identify the developmental origins of mature cortical activity and implicate the period before eye opening as a critical checkpoint. By providing a systematic description of electrical activity development, we establish the murine visual cortex as a model for the electroencephalographic development of fetal humans. SIGNIFICANCE STATEMENT Cortical activity is an important indicator of long-term health and survival in preterm infants and molds circuit formation, but gaps remain in our understanding of the origin and normal progression of this activity in the developing cortex. We aimed to rectify this by monitoring daily changes in cortical activity in the nonanesthetized mouse, an important preclinical model of disease and development. At ages approximately equivalent to normal human term birth, mouse cortex exhibits primarily network silence, with spontaneous "spindle bursts" as the only form of activity. In contrast, mature cortex is noisy, alternating between asynchronous/discontinuous and synchronous/continuous states. This work identifies the key processes that produce this maturation and provides a normative reference for murine-based studies of cortical circuit development.
Collapse
|
61
|
Contribution of Innate Cortical Mechanisms to the Maturation of Orientation Selectivity in Parvalbumin Interneurons. J Neurosci 2017; 37:820-829. [PMID: 28123018 DOI: 10.1523/jneurosci.2386-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023] Open
Abstract
The maturation of cortical parvalbumin-positive (PV) interneurons depends on the interaction of innate and experience-dependent factors. Dark-rearing experiments suggest that visual experience determines when broad orientation selectivity emerges in visual cortical PV interneurons. Here, using neural transplantation and in vivo calcium imaging of mouse visual cortex, we investigated whether innate mechanisms contribute to the maturation of orientation selectivity in PV interneurons. First, we confirmed earlier findings showing that broad orientation selectivity emerges in PV interneurons by 2 weeks after vision onset, ∼35 d after these cells are born. Next, we assessed the functional development of transplanted PV (tPV) interneurons. Surprisingly, 25 d after transplantation (DAT) and >2 weeks after vision onset, we found that tPV interneurons have not developed broad orientation selectivity. By 35 DAT, however, broad orientation selectivity emerges in tPV interneurons. Transplantation does not alter orientation selectivity in host interneurons, suggesting that the maturation of tPV interneurons occurs independently from their endogenous counterparts. Together, these results challenge the notion that the onset of vision solely determines when PV interneurons become broadly tuned. Our results reveal that an innate cortical mechanism contributes to the emergence of broad orientation selectivity in PV interneurons. SIGNIFICANCE STATEMENT Early visual experience and innate developmental programs interact to shape cortical circuits. Visual-deprivation experiments have suggested that the onset of visual experience determines when interneurons mature in the visual cortex. Here we used neuronal transplantation and cellular imaging of visual responses to investigate the maturation of parvalbumin-positive (PV) interneurons. Our results suggest that the emergence of broad orientation selectivity in PV interneurons is innately timed.
Collapse
|
62
|
Complex Visual Motion Representation in Mouse Area V1. J Neurosci 2017; 37:164-183. [PMID: 28053039 DOI: 10.1523/jneurosci.0997-16.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 09/01/2016] [Accepted: 09/21/2016] [Indexed: 12/18/2022] Open
Abstract
Rodent visual cortex has a hierarchical architecture similar to that of higher mammals (Coogan and Burkhalter, 1993; Marshel et al., 2011; Wang et al., 2012). Although notable differences exist between the species in terms or receptive field sizes and orientation map organization (Dräger, 1975; Gattass et al., 1987; Van den Bergh et al., 2010), mouse V1 is thought to respond to local orientation and visual motion elements rather than to global patterns of motion, similar to V1 in higher mammals (Niell and Stryker, 2008; Bonin et al., 2011). However, recent results are inconclusive: some argue mouse V1 is analogous to monkey V1 (Juavinett and Callaway, 2015); others argue that it displays complex motion responses (Muir et al., 2015). We used type I plaids formed by the additive superposition of moving gratings (Adelson and Movshon, 1982; Movshon et al., 1985; Albright and Stoner, 1995) to investigate this question. We show that mouse V1 contains a considerably smaller fraction of component-motion-selective neurons (∼17% vs ∼84%), and a larger fraction of pattern-motion-selective neurons (∼10% vs <1.3%) compared with primate/cat V1. The direction of optokinetic nystagmus correlates with visual perception in higher mammals (Fox et al., 1975; Logothetis and Schall, 1990; Wei and Sun, 1998; Watanabe, 1999; Naber et al., 2011). Measurement of optokinetic responses to plaid stimuli revealed that mice demonstrate bistable perception, sometimes tracking individual stimulus components and others the global pattern of motion. Moreover, bistable optokinetic responses cannot be entirely attributed to subcortical circuitry as V1 lesions alter the fraction of responses occurring along pattern versus component motion. These observations suggest that area V1 input contributes to complex motion perception in the mouse. SIGNIFICANCE STATEMENT Area V1 in the mouse is hierarchically similar but not necessarily identical to area V1 in cats and primates. Here we demonstrate that area V1 neurons process complex motion plaid stimuli differently in mice versus in cats or primates. Specifically, a smaller proportion of mouse V1 cells are sensitive to component motion, and a larger proportion to pattern motion than are found in area V1 of cats/primates. Furthermore, we demonstrate for the first time that mice exhibit bistable visual perception of plaid stimuli, and that this depends, at least in part, on area V1 input. Finally, we suggest that the relative proportion of component-motion-selective responses to pattern-motion-selective responses in mouse V1 may bias visual perception, as evidenced by changes in the direction of elicited optokinetic responses.
Collapse
|
63
|
Pallas SL. The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry. Front Neurosci 2017; 11:344. [PMID: 28701910 PMCID: PMC5487431 DOI: 10.3389/fnins.2017.00344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022] Open
Abstract
Evolution and development are interdependent, particularly with regard to the construction of the nervous system and its position as the machine that produces behavior. On the one hand, the processes directing development and plasticity of the brain provide avenues through which natural selection can sculpt neural cell fate and connectivity, and on the other hand, they are themselves subject to selection pressure. For example, mutations that produce heritable perturbations in neuronal birth and death rates, transcription factor expression, or availability of axon guidance factors within sensory pathways can markedly affect the development of form and thus the function of stimulus decoding circuitry. This evolvability of flexible circuits makes them more adaptable to environmental variation. Although there is general agreement on this point, whether the sensitivity of circuits to environmental influence and the mechanisms underlying development and plasticity of sensory pathways are similar across species from different ecological niches has received almost no attention. Neural circuits are generally more sensitive to environmental influences during an early critical period, but not all niches afford the same access to stimuli in early life. Furthermore, depending on predictability of the habitat and ecological niche, sensory coding circuits might be more susceptible to sensory experience in some species than in others. Despite decades of work on understanding the mechanisms underlying critical period plasticity, the importance of ecological niche in visual pathway development has received little attention. Here, I will explore the relationship between critical period plasticity and ecological niche in mammalian sensory pathways.
Collapse
Affiliation(s)
- Sarah L. Pallas
- Neuroscience Institute, Georgia State UniversityAtlanta, GA, United States
| |
Collapse
|
64
|
Mazziotti R, Baroncelli L, Ceglia N, Chelini G, Sala GD, Magnan C, Napoli D, Putignano E, Silingardi D, Tola J, Tognini P, Arthur JSC, Baldi P, Pizzorusso T. Mir-132/212 is required for maturation of binocular matching of orientation preference and depth perception. Nat Commun 2017; 8:15488. [PMID: 28534484 PMCID: PMC5457514 DOI: 10.1038/ncomms15488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are known to mediate post-transcriptional gene regulation, but their role in postnatal brain development is still poorly explored. We show that the expression of many miRNAs is dramatically regulated during functional maturation of the mouse visual cortex with miR-132/212 family being one of the top upregulated miRNAs. Age-downregulated transcripts are significantly enriched in miR-132/miR-212 putative targets and in genes upregulated in miR-132/212 null mice. At a functional level, miR-132/212 deletion affects development of receptive fields of cortical neurons determining a specific impairment of binocular matching of orientation preference, but leaving orientation and direction selectivity unaltered. This deficit is associated with reduced depth perception in the visual cliff test. Deletion of miR-132/212 from forebrain excitatory neurons replicates the binocular matching deficits. Thus, miR-132/212 family shapes the age-dependent transcriptome of the visual cortex during a specific developmental window resulting in maturation of binocular cortical cells and depth perception.
Collapse
Affiliation(s)
- Raffaele Mazziotti
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi—Pad. 26, 50135 Florence, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1 56124 Pisa, Italy
| | - Nicholas Ceglia
- Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
| | - Gabriele Chelini
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi—Pad. 26, 50135 Florence, Italy
| | - Grazia Della Sala
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi—Pad. 26, 50135 Florence, Italy
| | - Christophe Magnan
- Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
| | - Debora Napoli
- BIO@SNS lab, Scuola Normale Superiore via Moruzzi, 1 56124 Pisa, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1 56124 Pisa, Italy
| | - Davide Silingardi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi—Pad. 26, 50135 Florence, Italy
| | - Jonida Tola
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1 56124 Pisa, Italy
| | - Paola Tognini
- BIO@SNS lab, Scuola Normale Superiore via Moruzzi, 1 56124 Pisa, Italy
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, USA
- Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, California 92697, USA
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, Irvine, California 92697, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, California 92697, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, USA
- Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, California 92697, USA
| | - Tommaso Pizzorusso
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi—Pad. 26, 50135 Florence, Italy
- Institute of Neuroscience, National Research Council, Via Moruzzi, 1 56124 Pisa, Italy
- BIO@SNS lab, Scuola Normale Superiore via Moruzzi, 1 56124 Pisa, Italy
| |
Collapse
|
65
|
Flashing Lights Induce Prolonged Distortions in Visual Cortical Responses and Visual Perception. eNeuro 2017; 4:eN-NWR-0304-16. [PMID: 28508035 PMCID: PMC5429040 DOI: 10.1523/eneuro.0304-16.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 01/01/2023] Open
Abstract
The primary sensory neocortex generates an internal representation of the environment, and its circuit reorganization is thought to lead to a modification of sensory perception. This reorganization occurs primarily through activity-dependent plasticity and has been well documented in animals during early developmental stages. Here, we describe a new method for the noninvasive induction of long-term plasticity in the mature brain: simple transient visual stimuli (i.e., flashing lights) can be used to induce prolonged modifications in visual cortical processing and visually driven behaviors. Our previous studies have shown that, in the primary visual cortex (V1) of mice, a flashing light stimulus evokes a long-delayed response that persists for seconds. When the mice were repetitively presented with drifting grating stimuli (conditioned stimuli) during the flash stimulus-evoked delayed response period, the V1 neurons exhibited a long-lasting decrease in responsiveness to the conditioned stimuli. The flash stimulus-induced underrepresentation of the grating motion was specific to the direction of the conditioned stimuli and was associated with a decrease in the animal's ability to detect the motion of the drifting gratings. The neurophysiological and behavioral plasticity both persisted for at least several hours and required N-methyl-d-aspartate receptor activation in the visual cortex. We propose that flashing light stimuli can be used as an experimental tool to investigate the visual function and plasticity of neuronal representations and perception after a critical period of neocortical plasticity.
Collapse
|
66
|
Christie IK, Miller P, Van Hooser SD. Cortical amplification models of experience-dependent development of selective columns and response sparsification. J Neurophysiol 2017; 118:874-893. [PMID: 28515285 DOI: 10.1152/jn.00177.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/28/2017] [Accepted: 05/11/2017] [Indexed: 02/05/2023] Open
Abstract
The development of direction-selective cortical columns requires visual experience, but the neural circuits and plasticity mechanisms that are responsible for this developmental transition are unknown. To gain insight into the mechanisms that could underlie experience-dependent increases in selectivity, we explored families of cortical amplifier models that enhance weakly biased feedforward signals. Here we focused exclusively on possible contributions of cortico-cortical connections and took feedforward input to be constant. We modeled pairs of interconnected columns that received equal and oppositely biased inputs. In a single-element model of cortical columns, we found two ways that cortical columns could receive biased feedforward input and exhibit strong but unselective responses to stimuli: 1) within-column recurrent excitatory connections could be strong enough to amplify both strong and weak feedforward input, or 2) columns that received differently biased inputs could have strong excitatory cross-connections that destroy selectivity. A Hebbian plasticity rule combined with simulated experience with stimuli weakened these strong cross-connections across cortical columns, allowing the individual columns to respond selectively to their biased inputs. In a model that included both excitatory and inhibitory neurons in each column, an additional means of obtaining selectivity through the cortical circuit was uncovered: cross-column suppression of inhibition-stabilized networks. When each column operated as an inhibition-stabilized network, cross-column excitation onto inhibitory neurons forced competition between the columns but in a manner that did not involve strong null-direction inhibition, consistent with experimental measurements of direction selectivity in visual cortex. Experimental predictions of these possible contributions of cortical circuits are discussed.NEW & NOTEWORTHY Sensory circuits are initially constructed via mechanisms that are independent of sensory experience, but later refinement requires experience. We constructed models of how circuits that receive biased feedforward inputs can be initially unselective and then be modified by experience and plasticity so that the resulting circuit exhibits increased selectivity. We propose that neighboring cortical columns may initially exhibit coupling that is too strong for selectivity. Experience-dependent mechanisms decrease this coupling so individual columns can exhibit selectivity.
Collapse
Affiliation(s)
- Ian K Christie
- Department of Biology, Brandeis University, Waltham, Massachusetts.,Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts; and
| | - Paul Miller
- Department of Biology, Brandeis University, Waltham, Massachusetts.,Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts; and.,Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University, Waltham, Massachusetts
| | - Stephen D Van Hooser
- Department of Biology, Brandeis University, Waltham, Massachusetts; .,Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts; and.,Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
67
|
Dooley JC, Donaldson MS, Krubitzer LA. Cortical plasticity following stripe rearing in the marsupial Monodelphis domestica: neural response properties of V1. J Neurophysiol 2017; 117:566-581. [PMID: 27852732 DOI: 10.1152/jn.00431.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
The functional organization of the primary visual area (V1) and the importance of sensory experience in its normal development have been well documented in eutherian mammals. However, very few studies have investigated the response properties of V1 neurons in another large class of mammals, or whether sensory experience plays a role in shaping their response properties. Thus we reared opossums (Monodelphis domestica) in normal and vertically striped cages until they reached adulthood. They were then anesthetized using urethane, and electrophysiological techniques were used to examine neuronal responses to different orientations, spatial and temporal frequencies, and contrast levels. For normal opossums, we observed responses to the temporal and spatial characteristics of the stimulus to be similar to those described in small, nocturnal, eutherian mammals such as rats and mice; neurons in V1 responded maximally to stimuli at 0.09 cycles per degree and 2.12 cycles per second. Unlike other eutherians, but similar to other marsupials investigated, only 40% of the neurons were orientation selective. In stripe-reared animals, neurons were significantly more likely to respond to vertical stimuli at a wider range of spatial frequencies, and were more sensitive to gratings at lower contrast values compared with normal animals. These results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors. NEW & NOTEWORTHY These results are the first description of visual response properties of the most commonly studied marsupial model organism, the short-tailed opossum (Monodelphis domestica). Further, these results are the first to demonstrate experience-dependent plasticity in the visual system of a marsupial species. Thus the ability of cortical neurons to alter their properties based on the dynamics of the visual environment predates the emergence of eutherian mammals and was likely present in our earliest mammalian ancestors.
Collapse
Affiliation(s)
- James C Dooley
- Center for Neuroscience, University of California, Davis, Davis, California; and
| | - Michaela S Donaldson
- Center for Neuroscience, University of California, Davis, Davis, California; and
| | - Leah A Krubitzer
- Center for Neuroscience, University of California, Davis, Davis, California; and .,Department of Psychology, University of California, Davis, Davis, California
| |
Collapse
|
68
|
Thompson A, Gribizis A, Chen C, Crair MC. Activity-dependent development of visual receptive fields. Curr Opin Neurobiol 2017; 42:136-143. [PMID: 28088066 DOI: 10.1016/j.conb.2016.12.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
Abstract
It is widely appreciated that neuronal activity contributes to the development of brain representations of the external world. In the visual system, in particular, it is well known that activity cooperates with molecular cues to establish the topographic organization of visual maps on a macroscopic scale [1,2] (Huberman et al., 2008; Cang and Feldheim, 2013), mapping axons in a retinotopic and eye-specific manner. In recent years, significant progress has been made in elucidating the role of activity in driving the finer-scale circuit refinement that shapes the receptive fields of individual cells. In this review, we focus on these recent breakthroughs-primarily in mice, but also in other mammals where noted.
Collapse
Affiliation(s)
- Andrew Thompson
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
69
|
Stream-dependent development of higher visual cortical areas. Nat Neurosci 2017; 20:200-208. [PMID: 28067905 PMCID: PMC5272868 DOI: 10.1038/nn.4469] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Abstract
Multiple cortical areas contribute to visual processing in mice. However, the functional organization and development of higher visual areas are unclear. Here we used intrinsic signal optical imaging and two-photon calcium imaging to map visual responses in adult and developing mice. We found that visually driven activity was well correlated among higher visual areas within two distinct subnetworks resembling the dorsal and ventral visual streams. Visual response magnitude in dorsal stream areas slowly increased over the first 2 weeks of visual experience. By contrast, ventral stream areas exhibited strong responses shortly after eye opening. Neurons in a dorsal stream area showed little change in their tuning sharpness to oriented gratings while those in a ventral stream area increased stimulus selectivity and expanded their receptive fields significantly. Together, these findings provide a functional basis for grouping subnetworks of mouse visual areas and revealed stream differences in the development of receptive field properties.
Collapse
|
70
|
Visual Stimulus Speed Does Not Influence the Rapid Emergence of Direction Selectivity in Ferret Visual Cortex. J Neurosci 2017; 37:1557-1567. [PMID: 28069921 DOI: 10.1523/jneurosci.3365-16.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 11/21/2022] Open
Abstract
Sensory experience is necessary for the development of some receptive field properties of neurons in primary sensory cortical areas. However, it remains unclear whether the parameters of an individual animal's experience play an instructive role and influence the tuning parameters of cortical sensory neurons as selectivity emerges, or rather whether experience merely permits the completion of processes that are fully seeded at the onset of experience. Here we have examined whether the speed of visual stimuli that are presented to visually naive ferrets can influence the parameters of speed tuning and direction selectivity in cortical neurons. Visual experience is necessary for the development of direction selectivity in carnivores. If, during development, cortical neurons had the flexibility to choose from among different inputs with a range of spatial positions and temporal delays, then correlation-based plasticity mechanisms could instruct the precise spatiotemporal selectivity that underlies speed tuning and direction selectivity, and the parameters of an individual animal's experience would influence the tuning that emerges. Alternatively, the tuning parameters of these neurons may already be established at the onset of visual experience, and experience may merely permit the expression of this tuning. We found that providing different groups of animals with either slow (12.5 deg/s) or fast (50 deg/s) visual stimuli resulted in emergence of direction selectivity, but that speed tuning and direction selectivity were similar in the two groups. These results are more consistent with a permissive role for experience in the development of direction selectivity.SIGNIFICANCE STATEMENT The proper development of brain circuits and neural response properties depends on both nature (factors independent of experience) and nurture (factors dependent on experience). In this study, we examined whether the quality of visual experience of an individual animal influences the development of basic sensory detectors in primary visual cortex. We found that, although visual experience is required for the development of direction selectivity, tuning for stimulus speed could not be altered by specific experience with slow or fast stimuli. These results suggest that the tuning parameters for direction selectivity are specified independently of an animal's sensory experience, and that a range of experiences can promote the proper mature expression of direction selectivity in primary visual cortex.
Collapse
|
71
|
Tarusawa E, Sanbo M, Okayama A, Miyashita T, Kitsukawa T, Hirayama T, Hirabayashi T, Hasegawa S, Kaneko R, Toyoda S, Kobayashi T, Kato-Itoh M, Nakauchi H, Hirabayashi M, Yagi T, Yoshimura Y. Establishment of high reciprocal connectivity between clonal cortical neurons is regulated by the Dnmt3b DNA methyltransferase and clustered protocadherins. BMC Biol 2016; 14:103. [PMID: 27912755 PMCID: PMC5133762 DOI: 10.1186/s12915-016-0326-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The specificity of synaptic connections is fundamental for proper neural circuit function. Specific neuronal connections that underlie information processing in the sensory cortex are initially established without sensory experiences to a considerable extent, and then the connections are individually refined through sensory experiences. Excitatory neurons arising from the same single progenitor cell are preferentially connected in the postnatal cortex, suggesting that cell lineage contributes to the initial wiring of neurons. However, the postnatal developmental process of lineage-dependent connection specificity is not known, nor how clonal neurons, which are derived from the same neural stem cell, are stamped with the identity of their common neural stem cell and guided to form synaptic connections. RESULTS We show that cortical excitatory neurons that arise from the same neural stem cell and reside within the same layer preferentially establish reciprocal synaptic connections in the mouse barrel cortex. We observed a transient increase in synaptic connections between clonal but not nonclonal neuron pairs during postnatal development, followed by selective stabilization of the reciprocal connections between clonal neuron pairs. Furthermore, we demonstrate that selective stabilization of the reciprocal connections between clonal neuron pairs is impaired by the deficiency of DNA methyltransferase 3b (Dnmt3b), which determines DNA-methylation patterns of genes in stem cells during early corticogenesis. Dnmt3b regulates the postnatal expression of clustered protocadherin (cPcdh) isoforms, a family of adhesion molecules. We found that cPcdh deficiency in clonal neuron pairs impairs the whole process of the formation and stabilization of connections to establish lineage-specific connection reciprocity. CONCLUSIONS Our results demonstrate that local, reciprocal neural connections are selectively formed and retained between clonal neurons in layer 4 of the barrel cortex during postnatal development, and that Dnmt3b and cPcdhs are required for the establishment of lineage-specific reciprocal connections. These findings indicate that lineage-specific connection reciprocity is predetermined by Dnmt3b during embryonic development, and that the cPcdhs contribute to postnatal cortical neuron identification to guide lineage-dependent synaptic connections in the neocortex.
Collapse
Affiliation(s)
- Etsuko Tarusawa
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585 Japan
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
| | - Makoto Sanbo
- National Institute for Physiological Sciences, Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, Okazaki, Aichi 444-8787 Japan
| | - Atsushi Okayama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Toshio Miyashita
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585 Japan
| | - Takashi Kitsukawa
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Teruyoshi Hirayama
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Takahiro Hirabayashi
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Sonoko Hasegawa
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Ryosuke Kaneko
- Bioresource Center, Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan
| | - Shunsuke Toyoda
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Toshihiro Kobayashi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639 Japan
| | - Megumi Kato-Itoh
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639 Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639 Japan
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 291 Campus Drive, Li Ka Shing Building, Stanford, CA 94305-5101 USA
| | - Masumi Hirabayashi
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- National Institute for Physiological Sciences, Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, Okazaki, Aichi 444-8787 Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585 Japan
| | - Takeshi Yagi
- AMED-CREST, AMED, 1-3 Yamadaoka, Suita, 565-0871 Osaka Japan
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yumiko Yoshimura
- Section of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585 Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585 Japan
| |
Collapse
|
72
|
Transplanted embryonic neurons integrate into adult neocortical circuits. Nature 2016; 539:248-253. [DOI: 10.1038/nature20113] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
|
73
|
Mixed functional microarchitectures for orientation selectivity in the mouse primary visual cortex. Nat Commun 2016; 7:13210. [PMID: 27767032 PMCID: PMC5078743 DOI: 10.1038/ncomms13210] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 09/12/2016] [Indexed: 11/21/2022] Open
Abstract
A minicolumn is the smallest anatomical module in the cortical architecture, but it is still in debate whether it serves as functional units for cortical processing. In the rodent primary visual cortex (V1), neurons with different preferred orientations are mixed horizontally in a salt and pepper manner, but vertical functional organization was not examined. In this study, we found that neurons with similar orientation preference are weakly but significantly clustered vertically in a short length and horizontally in the scale of a minicolumn. Interestingly, the vertical clustering is found only in a part of minicolumns, and others are composed of neurons with a variety of orientation preferences. Thus, the mouse V1 is a mixture of vertical clusters of neurons with various degrees of orientation similarity, which may be the compromise between the brain size and keeping the vertical clusters of similarly tuned neurons at least in a subset of clusters. Primary visual cortical neurons display mostly a salt and pepper arrangement of orientation preferences along the horizontal cortical axis. Here the authors show that a significant subset of minicolumns, one-cell wide arrays of cells arranged along the vertical axis, show similar orientation tuning preferences.
Collapse
|
74
|
Leighton AH, Lohmann C. The Wiring of Developing Sensory Circuits-From Patterned Spontaneous Activity to Synaptic Plasticity Mechanisms. Front Neural Circuits 2016; 10:71. [PMID: 27656131 PMCID: PMC5011135 DOI: 10.3389/fncir.2016.00071] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022] Open
Abstract
In order to accurately process incoming sensory stimuli, neurons must be organized into functional networks, with both genetic and environmental factors influencing the precise arrangement of connections between cells. Teasing apart the relative contributions of molecular guidance cues, spontaneous activity and visual experience during this maturation is on-going. During development of the sensory system, the first, rough organization of connections is created by molecular factors. These connections are then modulated by the intrinsically generated activity of neurons, even before the senses have become operational. Spontaneous waves of depolarizations sweep across the nervous system, placing them in a prime position to strengthen correct connections and weaken others, shaping synapses into a useful network. A large body of work now support the idea that, rather than being a mere side-effect of the system, spontaneous activity actually contains information which readies the nervous system so that, as soon as the senses become active, sensory information can be utilized by the animal. An example is the neonatal mouse. As soon as the eyelids first open, neurons in the cortex respond to visual information without the animal having previously encountered structured sensory input (Cang et al., 2005b; Rochefort et al., 2011; Zhang et al., 2012; Ko et al., 2013). In vivo imaging techniques have advanced considerably, allowing observation of the natural activity in the brain of living animals down to the level of the individual synapse. New (opto)genetic methods make it possible to subtly modulate the spatio-temporal properties of activity, aiding our understanding of how these characteristics relate to the function of spontaneous activity. Such experiments have had a huge impact on our knowledge by permitting direct testing of ideas about the plasticity mechanisms at play in the intact system, opening up a provocative range of fresh questions. Here, we intend to outline the most recent descriptions of spontaneous activity patterns in rodent developing sensory areas, as well as the inferences we can make about the information content of those activity patterns and ideas about the plasticity rules that allow this activity to shape the young brain.
Collapse
Affiliation(s)
- Alexandra H Leighton
- Synapse and Network Development, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - Christian Lohmann
- Synapse and Network Development, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| |
Collapse
|
75
|
Kummer M, Kirmse K, Zhang C, Haueisen J, Witte OW, Holthoff K. Column-like Ca(2+) clusters in the mouse neonatal neocortex revealed by three-dimensional two-photon Ca(2+) imaging in vivo. Neuroimage 2016; 138:64-75. [PMID: 27222218 DOI: 10.1016/j.neuroimage.2016.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 04/27/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022] Open
Abstract
Neuronal network activity in the developing brain is generated in a discontinuous manner. In the visual cortex during the period of physiological blindness of immaturity, this activity mainly comprises retinally triggered spindle bursts or Ca(2+) clusters thought to contribute to the activity-dependent construction of cortical circuits. In spite of potentially important developmental functions, the spatial structure of these activity patterns remains largely unclear. In order to address this issue, we here used three-dimensional two-photon Ca(2+) imaging in the visual cortex of neonatal mice at postnatal days (P) 3-4 in vivo. Large-scale voxel imaging covering a cortical depth of 200μm revealed that Ca(2+) clusters, identified as spindle bursts in simultaneous extracellular recordings, recruit cortical glutamatergic neurons of the upper cortical plate (CP) in a column-like manner. Specifically, the majority of Ca(2+) clusters exhibit prominent horizontal confinement and high intra-cluster density of activation involving the entire depth of the upper CP. Moreover, using simultaneous Ca(2+) imaging from hundreds of neurons at single-cellular resolution, we demonstrate that the degree of neuronal co-activation within Ca(2+) clusters displays substantial heterogeneity. We further provide evidence that co-activated cells within Ca(2+) clusters are spatially distributed in a non-stochastic manner. In summary, our data support the conclusion that dense coding in the form of column-like Ca(2+) clusters is a characteristic property of network activity in the developing visual neocortex. Such knowledge is expected to be relevant for a refined understanding of how specific spatiotemporal characteristics of early network activity instruct the development of cortical circuits.
Collapse
Affiliation(s)
- Michael Kummer
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Knut Kirmse
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Chuanqiang Zhang
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technical University Ilmenau, D-98693 Ilmenau, Germany
| | - Otto W Witte
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany
| | - Knut Holthoff
- Hans-Berger Department of Neurology, University Hospital Jena, D-07747 Jena, Germany.
| |
Collapse
|
76
|
Rousso DL, Qiao M, Kagan RD, Yamagata M, Palmiter RD, Sanes JR. Two Pairs of ON and OFF Retinal Ganglion Cells Are Defined by Intersectional Patterns of Transcription Factor Expression. Cell Rep 2016; 15:1930-44. [PMID: 27210758 DOI: 10.1016/j.celrep.2016.04.069] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/15/2016] [Accepted: 04/20/2016] [Indexed: 11/26/2022] Open
Abstract
Visual information is conveyed to the brain by axons of >30 retinal ganglion cell (RGC) types. Characterization of these types is a prerequisite to understanding visual perception. Here, we identify a family of RGCs that we call F-RGCs on the basis of expression of the transcription factor Foxp2. Intersectional expression of Foxp1 and Brn3 transcription factors divides F-RGCs into four types, comprising two pairs, each composed of closely related cells. One pair, F-mini(ON) and F-mini(OFF), shows robust direction selectivity. They are among the smallest RGCs in the mouse retina. The other pair, F-midi(ON) and F-midi(OFF), is larger and not direction selective. Together, F-RGCs comprise >20% of RGCs in the mouse retina, halving the number that remain to be classified and doubling the number of known direction-selective cells. Co-expression of Foxp and Brn3 genes also marks subsets of RGCs in macaques that could be primate homologs of F-RGCs.
Collapse
Affiliation(s)
- David L Rousso
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Mu Qiao
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Ruth D Kagan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Masahito Yamagata
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Richard D Palmiter
- HHMI and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
77
|
Bos R, Gainer C, Feller MB. Role for Visual Experience in the Development of Direction-Selective Circuits. Curr Biol 2016; 26:1367-75. [PMID: 27161499 DOI: 10.1016/j.cub.2016.03.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 11/24/2022]
Abstract
Visually guided behavior can depend critically on detecting the direction of object movement. This computation is first performed in the retina where direction is encoded by direction-selective ganglion cells (DSGCs) that respond strongly to an object moving in the preferred direction and weakly to an object moving in the opposite, or null, direction (reviewed in [1]). DSGCs come in multiple types that are classified based on their morphologies, response properties, and targets in the brain. This study focuses on two types-ON and ON-OFF DSGCs. Though animals can sense motion in all directions, the preferred directions of DSGCs in adult retina cluster along distinct directions that we refer to as the cardinal axes. ON DSGCs have three cardinal axes-temporal, ventral, and dorsonasal-while ON-OFF DSGCs have four-nasal, temporal, dorsal, and ventral. How these preferred directions emerge during development is still not understood. Several studies have demonstrated that ON [2] and ON-OFF DSGCs are well tuned at eye-opening, and even a few days prior to eye-opening, in rabbits [3], rats [4], and mice [5-8], suggesting that visual experience is not required to produce direction-selective tuning. However, here we show that at eye-opening the preferred directions of both ON and ON-OFF DSGCs are diffusely distributed and that visual deprivation prevents the preferred directions from clustering along the cardinal axes. Our findings indicate a critical role for visual experience in shaping responses in the retina.
Collapse
Affiliation(s)
- Rémi Bos
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Christian Gainer
- School of Optometry, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
78
|
Tang J, Ardila Jimenez SC, Chakraborty S, Schultz SR. Visual Receptive Field Properties of Neurons in the Mouse Lateral Geniculate Nucleus. PLoS One 2016; 11:e0146017. [PMID: 26741374 PMCID: PMC4712148 DOI: 10.1371/journal.pone.0146017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/12/2015] [Indexed: 11/18/2022] Open
Abstract
The lateral geniculate nucleus (LGN) is increasingly regarded as a "smart-gating" operator for processing visual information. Therefore, characterizing the response properties of LGN neurons will enable us to better understand how neurons encode and transfer visual signals. Efforts have been devoted to study its anatomical and functional features, and recent advances have highlighted the existence in rodents of complex features such as direction/orientation selectivity. However, unlike well-researched higher-order mammals such as primates, the full array of response characteristics vis-à-vis its morphological features have remained relatively unexplored in the mouse LGN. To address the issue, we recorded from mouse LGN neurons using multisite-electrode-arrays (MEAs) and analysed their discharge patterns in relation to their location under a series of visual stimulation paradigms. Several response properties paralleled results from earlier studies in the field and these include centre-surround organization, size of receptive field, spontaneous firing rate and linearity of spatial summation. However, our results also revealed "high-pass" and "low-pass" features in the temporal frequency tuning of some cells, and greater average contrast gain than reported by earlier studies. In addition, a small proportion of cells had direction/orientation selectivity. Both "high-pass" and "low-pass" cells, as well as direction and orientation selective cells, were found only in small numbers, supporting the notion that these properties emerge in the cortex. ON- and OFF-cells showed distinct contrast sensitivity and temporal frequency tuning properties, suggesting parallel projections from the retina. Incorporating a novel histological technique, we created a 3-D LGN volume model explicitly capturing the morphological features of mouse LGN and localising individual cells into anterior/middle/posterior LGN. Based on this categorization, we show that the ON/OFF, DS/OS and linear response properties are not regionally restricted. Our study confirms earlier findings of spatial pattern selectivity in the LGN, and builds on it to demonstrate that relatively elaborate features are computed early in the visual pathway.
Collapse
Affiliation(s)
- Jiaying Tang
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Silvia C. Ardila Jimenez
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Subhojit Chakraborty
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Simon R. Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- * E-mail:
| |
Collapse
|
79
|
Simultaneous Multi-plane Imaging of Neural Circuits. Neuron 2016; 89:269-84. [PMID: 26774159 DOI: 10.1016/j.neuron.2015.12.012] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/28/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
Recording the activity of large populations of neurons is an important step toward understanding the emergent function of neural circuits. Here we present a simple holographic method to simultaneously perform two-photon calcium imaging of neuronal populations across multiple areas and layers of mouse cortex in vivo. We use prior knowledge of neuronal locations, activity sparsity, and a constrained nonnegative matrix factorization algorithm to extract signals from neurons imaged simultaneously and located in different focal planes or fields of view. Our laser multiplexing approach is simple and fast, and could be used as a general method to image the activity of neural circuits in three dimensions across multiple areas in the brain.
Collapse
|
80
|
Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs. Nat Neurosci 2015; 19:308-15. [PMID: 26691829 PMCID: PMC4731241 DOI: 10.1038/nn.4196] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022]
Abstract
Understanding the functions of a brain region requires knowing the neural
representations of its myriad inputs, local neurons, and outputs. Primary visual
cortex (V1) has long been thought to compute visual orientation from untuned
thalamic inputs, but very few thalamic inputs have been measured in any mammal.
We determined the response properties of ~28,000 thalamic boutons and
~4,000 cortical neurons in layers 1–5 of awake mouse V1. With
adaptive optics allowing accurate measurement of bouton activity deep in cortex,
we found that around half of the boutons in the main thalamorecipient L4 carry
orientation-tuned information, and their orientation/direction biases are also
dominant in the L4 neuron population, suggesting that these neurons may inherit
their selectivity from tuned thalamic inputs. Cortical neurons in all layers
exhibited sharper tuning than thalamic boutons and a greater diversity of
preferred orientations. Our results provide data-rich constraints for refining
mechanistic models of cortical computation.
Collapse
|
81
|
Neuronal activity is not required for the initial formation and maturation of visual selectivity. Nat Neurosci 2015; 18:1780-8. [PMID: 26523644 DOI: 10.1038/nn.4155] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022]
Abstract
Neuronal activity is important for the functional refinement of neuronal circuits in the early visual system. At the level of the cerebral cortex, however, it is still unknown whether the formation of fundamental functions such as orientation selectivity depends on neuronal activity, as it has been difficult to suppress activity throughout development. Using genetic silencing of cortical activity starting before the formation of orientation selectivity, we found that the orientation selectivity of neurons in the mouse visual cortex formed and matured normally despite a strong suppression of both spontaneous and visually evoked activity throughout development. After the orientation selectivity formed, the distribution of the preferred orientations of neurons was reorganized. We found that this process required spontaneous activity, but not visually evoked activity. Thus, the initial formation and maturation of orientation selectivity is largely independent of neuronal activity, and the initial selectivity is subsequently modified depending on neuronal activity.
Collapse
|
82
|
Abstract
The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision.
Collapse
|
83
|
Abstract
The laminar structure and conserved cellular organization of mouse visual cortex provide a useful model to determine the mechanisms underlying the development of visual system function. However, the normal development of many receptive field properties has not yet been thoroughly quantified, particularly with respect to layer identity and in the absence of anesthesia. Here, we use multisite electrophysiological recording in the awake mouse across an extended period of development, starting at eye opening, to measure receptive field properties and behavioral-state modulation of responsiveness. We find selective responses for orientation, direction, and spatial frequency at eye opening, which are similar across cortical layers. After this initial similarity, we observe layer-specific maturation of orientation selectivity, direction selectivity, and linearity over the following week. Developmental increases in selectivity are most robust and similar between layers 2-4, whereas layers 5 and 6 undergo distinct refinement patterns. Finally, we studied layer-specific behavioral-state modulation of cortical activity and observed a striking reorganization in the effects of running on response gain. During week 1 after eye opening, running increases responsiveness in layers 4 and 5, whereas in adulthood, the effects of running are most pronounced in layer 2/3. Together, these data demonstrate that response selectivity is present in all layers of the primary visual cortex (V1) at eye opening in the awake mouse and identify the features of basic V1 function that are further shaped over this early developmental period in a layer-specific manner.
Collapse
|
84
|
Sadeh S, Clopath C, Rotter S. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS Comput Biol 2015; 11:e1004307. [PMID: 26090844 PMCID: PMC4474917 DOI: 10.1371/journal.pcbi.1004307] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/30/2015] [Indexed: 11/19/2022] Open
Abstract
In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational studies of sensory processing in neocortical network models equipped with synaptic plasticity. In primary visual cortex of mammals, neurons are selective to the orientation of contrast edges. In some species, as cats and monkeys, neurons preferring similar orientations are adjacent on the cortical surface, leading to smooth orientation maps. In rodents, in contrast, such spatial orientation maps do not exist, and neurons of different specificities are mixed in a salt-and-pepper fashion. During development, however, a “functional” map of orientation selectivity emerges, where connections between neurons of similar preferred orientations are selectively enhanced. Here we show how such feature-specific connectivity can arise in realistic neocortical networks of excitatory and inhibitory neurons. Our results demonstrate how recurrent dynamics can work in cooperation with synaptic plasticity to form networks where neurons preferring similar stimulus features connect more strongly together. Such networks, in turn, are known to enhance the specificity of neuronal responses to a stimulus. Our study thus reveals how self-organizing connectivity in neuronal networks enable them to achieve new or enhanced functions, and it underlines the essential role of recurrent inhibition and plasticity in this process.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
- Bioengineering Department, Imperial College London, London, United Kingdom
- * E-mail:
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Stefan Rotter
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
85
|
Sadeh S, Clopath C, Rotter S. Processing of Feature Selectivity in Cortical Networks with Specific Connectivity. PLoS One 2015; 10:e0127547. [PMID: 26083363 PMCID: PMC4471232 DOI: 10.1371/journal.pone.0127547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/07/2015] [Indexed: 02/02/2023] Open
Abstract
Although non-specific at the onset of eye opening, networks in rodent visual cortex attain a non-random structure after eye opening, with a specific bias for connections between neurons of similar preferred orientations. As orientation selectivity is already present at eye opening, it remains unclear how this specificity in network wiring contributes to feature selectivity. Using large-scale inhibition-dominated spiking networks as a model, we show that feature-specific connectivity leads to a linear amplification of feedforward tuning, consistent with recent electrophysiological single-neuron recordings in rodent neocortex. Our results show that optimal amplification is achieved at an intermediate regime of specific connectivity. In this configuration a moderate increase of pairwise correlations is observed, consistent with recent experimental findings. Furthermore, we observed that feature-specific connectivity leads to the emergence of orientation-selective reverberating activity, and entails pattern completion in network responses. Our theoretical analysis provides a mechanistic understanding of subnetworks’ responses to visual stimuli, and casts light on the regime of operation of sensory cortices in the presence of specific connectivity.
Collapse
Affiliation(s)
- Sadra Sadeh
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Feiburg, Germany
- Bioengineering Department, Imperial College London, London, UK
- * E-mail:
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, UK
| | - Stefan Rotter
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Feiburg, Germany
| |
Collapse
|
86
|
Zaltsman JB, Heimel JA, Van Hooser SD. Weak orientation and direction selectivity in lateral geniculate nucleus representing central vision in the gray squirrel Sciurus carolinensis. J Neurophysiol 2015; 113:2987-97. [PMID: 25717157 DOI: 10.1152/jn.00516.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/18/2015] [Indexed: 11/22/2022] Open
Abstract
Classic studies of lateral geniculate nucleus (LGN) and visual cortex (V1) in carnivores and primates have found that a majority of neurons in LGN exhibit a center-surround organization, while V1 neurons exhibit strong orientation selectivity and, in many species, direction selectivity. Recent work in the mouse and the monkey has discovered previously unknown classes of orientation- and direction-selective neurons in LGN. Furthermore, some recent studies in the mouse report that many LGN cells exhibit pronounced orientation biases that are of comparable strength to the subthreshold inputs to V1 neurons. These results raise the possibility that, in rodents, orientation biases of individual LGN cells make a substantial contribution to cortical orientation selectivity. Alternatively, the size and contribution of orientation- or direction-selective channels from LGN to V1 may vary across mammals. To address this question, we examined orientation and direction selectivity in LGN and V1 neurons of a highly visual diurnal rodent: the gray squirrel. In the representation of central vision, only a few LGN neurons exhibited strong orientation or direction selectivity. Across the population, LGN neurons showed weak orientation biases and were much less selective for orientation compared with V1 neurons. Although direction selectivity was weak overall, LGN layers 3abc, which contain neurons that express calbindin, exhibited elevated direction selectivity index values compared with LGN layers 1 and 2. These results suggest that, for central visual fields, the contribution of orientation- and direction-selective channels from the LGN to V1 is small in the squirrel. As in other mammals, this small contribution is elevated in the calbindin-positive layers of the LGN.
Collapse
Affiliation(s)
- Julia B Zaltsman
- Department of Biology, Brandeis University, Waltham, Massachusetts
| | - J Alexander Heimel
- Department of Cortical Structure and Function, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Stephen D Van Hooser
- Department of Biology, Brandeis University, Waltham, Massachusetts; Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts; Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University, Waltham, Massachusetts; and
| |
Collapse
|
87
|
Goltstein PM, Montijn JS, Pennartz CMA. Effects of isoflurane anesthesia on ensemble patterns of Ca2+ activity in mouse v1: reduced direction selectivity independent of increased correlations in cellular activity. PLoS One 2015; 10:e0118277. [PMID: 25706867 PMCID: PMC4338011 DOI: 10.1371/journal.pone.0118277] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 01/04/2015] [Indexed: 01/22/2023] Open
Abstract
Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to 'break' the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity.
Collapse
Affiliation(s)
- Pieter M. Goltstein
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Jorrit S. Montijn
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
| | - Cyriel M. A. Pennartz
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
88
|
Zhang X, An X, Liu H, Peng J, Cai S, Wang W, Lin DT, Yang Y. The topographical arrangement of cutoff spatial frequencies across lower and upper visual fields in mouse V1. Sci Rep 2015; 5:7734. [PMID: 25583266 PMCID: PMC4291572 DOI: 10.1038/srep07734] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/10/2014] [Indexed: 11/14/2022] Open
Abstract
The visual response to spatial frequency (SF), a characteristic of spatial structure across position in space, is of particular importance for animal survival. A natural challenge for rodents is to detect predators as early as possible while foraging. Whether neurons in mouse primary visual cortex (V1) are functionally organized to meet this challenge remains unclear. Combining intrinsic signal optical imaging and single-unit recording, we found that the cutoff SF was much greater for neurons whose receptive fields were located above the mouse. Specifically, we discovered that the cutoff SF increased in a gradient that was positively correlated with the elevation in the visual field. This organization was present at eye opening and persisted through adulthood. Dark rearing delayed the maturation of the cutoff SF globally, but had little impact on the topographical organization of the cutoff SF, suggesting that this regional distribution is innately determined. This form of cortical organization of different SFs may benefit the mouse for detection of airborne threats in the natural environment.
Collapse
Affiliation(s)
- Xian Zhang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P.R. China
| | - Xu An
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P.R. China
| | - Hanxiao Liu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P.R. China
| | - Jing Peng
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P.R. China
| | - Shanshan Cai
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P.R. China
| | - Wei Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Da-Ting Lin
- Intramural Research Programme, National Institute on Drug Abuse, National Institutes of Health, Baltimore MD 21224
| | - Yupeng Yang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei 230027, P.R. China
| |
Collapse
|
89
|
Abstract
Visual cortical neurons selectively respond to particular features of visual stimuli and this selective responsiveness emerges from specific connectivity in the cortex. Most visual response properties are basically established by eye opening and are thereafter modified or refined by visual experience based on activity-dependent synaptic modifications during an early postnatal period. Visual deprivation during this period impairs development of visual functions, such as visual acuity. We previously demonstrated that fine-scale networks composed of a population of interconnected layer 2/3 (L2/3) pyramidal neurons receiving common inputs from adjacent neurons are embedded in a small area in rat visual cortex. We suggested that this network could be a functional unit for visual information processing. In this study, we investigated the effects of early visual experience on the development of fine-scale networks and individual synaptic connections in rat visual cortical slices. We used two kinds of deprivation, binocular deprivation and dark rearing, which allowed visual inputs with only diffuse light and no visual input, respectively. The probability and strength of excitatory connections to L2/3 pyramidal cells increased during the 2 weeks after eye opening, and these changes were prevented by dark rearing, but not binocular deprivation. Fine-scale networks were absent just after eye opening and established during the following 2 weeks in rats reared with normal visual experience, but not with either type of deprivation. These results indicate that patterned vision is required for the emergence of the fine-scale network, whereas diffuse light stimulation is sufficient for the maturation of individual synapses.
Collapse
|
90
|
Grienberger C, Chen X, Konnerth A. Dendritic function in vivo. Trends Neurosci 2014; 38:45-54. [PMID: 25432423 DOI: 10.1016/j.tins.2014.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Dendrites are the predominant entry site for excitatory synaptic potentials in most types of central neurons. There is increasing evidence that dendrites are not just passive transmitting devices but play active roles in synaptic integration through linear and non-linear mechanisms. Frequently, excitatory synapses are formed on dendritic spines. In addition to relaying incoming electrical signals, spines can play important roles in modifying these signals through complex biochemical processes and, thereby, determine learning and memory formation. Here, we review recent advances in our understanding of the function of spines and dendrites in central mammalian neurons in vivo by focusing particularly on insights obtained from Ca(2+) imaging studies.
Collapse
Affiliation(s)
- Christine Grienberger
- Institute of Neuroscience, Technical University Munich, Munich, Germany; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Xiaowei Chen
- Institute of Neuroscience, Technical University Munich, Munich, Germany; Brain Research Center, Third Military Medical University, Chongqing, China
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM), Munich, Germany.
| |
Collapse
|
91
|
Pecka M, Han Y, Sader E, Mrsic-Flogel TD. Experience-dependent specialization of receptive field surround for selective coding of natural scenes. Neuron 2014; 84:457-69. [PMID: 25263755 PMCID: PMC4210638 DOI: 10.1016/j.neuron.2014.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2014] [Indexed: 11/16/2022]
Abstract
At eye opening, neurons in primary visual cortex (V1) are selective for stimulus features, but circuits continue to refine in an experience-dependent manner for some weeks thereafter. How these changes contribute to the coding of visual features embedded in complex natural scenes remains unknown. Here we show that normal visual experience after eye opening is required for V1 neurons to develop a sensitivity for the statistical structure of natural stimuli extending beyond the boundaries of their receptive fields (RFs), which leads to improvements in coding efficiency for full-field natural scenes (increased selectivity and information rate). These improvements are mediated by an experience-dependent increase in the effectiveness of natural surround stimuli to hyperpolarize the membrane potential specifically during RF-stimulus epochs triggering action potentials. We suggest that neural circuits underlying surround modulation are shaped by the statistical structure of visual input, which leads to more selective coding of features in natural scenes. V1 firing is more selective to natural than phase-scrambled surround stimuli Improved selectivity is caused by Vm hyperpolarisation prior to RF-spiking events Natural surround sensitivity is experience dependent, absent in immature/deprived V1 Vision shapes circuits to improve V1 coding of natural scenes across RF and surround
Collapse
Affiliation(s)
- Michael Pecka
- Department of Neuroscience, Physiology, and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK.
| | - Yunyun Han
- Department of Neuroscience, Physiology, and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK; Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Elie Sader
- Department of Neuroscience, Physiology, and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK
| | - Thomas D Mrsic-Flogel
- Department of Neuroscience, Physiology, and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK; Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
92
|
Emergence of feature-specific connectivity in cortical microcircuits in the absence of visual experience. J Neurosci 2014; 34:9812-6. [PMID: 25031418 DOI: 10.1523/jneurosci.0875-14.2014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In primary visual cortex (V1), connectivity between layer 2/3 (L2/3) excitatory neurons undergoes extensive reorganization after the onset of visual experience whereby neurons with similar feature selectivity form functional microcircuits (Ko et al., 2011, 2013). It remains unknown whether visual experience is required for the developmental refinement of intracortical circuitry or whether this maturation is guided intrinsically. Here, we correlated the connectivity between V1 L2/3 neurons assayed by simultaneous whole-cell recordings in vitro to their response properties measured by two-photon calcium imaging in vivo in dark-reared mice. We found that neurons with similar responses to oriented gratings or natural movies became preferentially connected in the absence of visual experience. However, the relationship between connectivity and similarity of visual responses to natural movies was not as strong in dark-reared as in normally reared mice. Moreover, dark rearing prevented the normally occurring loss of connections between visually nonresponsive neurons after eye opening (Ko et al., 2013). Therefore, our data suggest that the absence of visual input does not prevent the emergence of functionally specific recurrent connectivity in cortical circuits; however, visual experience is required for complete microcircuit maturation.
Collapse
|
93
|
Medini P. Experience-dependent plasticity of visual cortical microcircuits. Neuroscience 2014; 278:367-84. [PMID: 25171791 DOI: 10.1016/j.neuroscience.2014.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022]
Abstract
The recent decade testified a tremendous increase in our knowledge on how cell-type-specific microcircuits process sensory information in the neocortex and on how such circuitry reacts to manipulations of the sensory environment. Experience-dependent plasticity has now been investigated with techniques endowed with cell resolution during both postnatal development and in adult animals. This review recapitulates the main recent findings in the field using mainly the primary visual cortex as a model system to highlight the more important questions and physiological principles (such as the role of non-competitive mechanisms, the role of inhibition in excitatory cell plasticity, the functional importance of spine and axonal plasticity on a microscale level). I will also discuss on which scientific problems the debate and controversies are more pronounced. New technologies that allow to perturbate cell-type-specific subcircuits will certainly shine new light in the years to come at least on some of the still open questions.
Collapse
Affiliation(s)
- P Medini
- Institutionen för Molekylärbiologi, and Institutionen för Integrativ Medicinsk Biologi (IMB), Fysiologi Avdelning, Umeå Universitet, 90187 Umeå, Sweden.
| |
Collapse
|
94
|
Chen H, Liu X, Tian N. Subtype-dependent postnatal development of direction- and orientation-selective retinal ganglion cells in mice. J Neurophysiol 2014; 112:2092-101. [PMID: 25098962 DOI: 10.1152/jn.00320.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The direction-selective ganglion cells (DSGCs) and orientation-selective ganglion cells (OSGCs) encode the directional and the orientational information of a moving object, respectively. It is unclear how DSGCs and OSGCs mature in the mouse retina during postnatal development. Here we investigated the development of DSGCs and OSGCs after eye-opening. We show that 1) DSGCs and OSGCs are present at postnatal day 12 (P12), just before eye-opening; 2) the fractions of both DSGCs and OSGCs increase from P12 to P30; 3) the development of DSGCs and OSGCs is subtype dependent; and 4) direction and orientation selectivity are two separate features of retinal ganglion cells (RGCs) in the mouse retina. We classified RGCs into different functional subtypes based on their light response properties. Compared with P12, the direction and orientation selectivity of ON-OFF RGCs but not ON RGCs became stronger at P30. The tuning width of DSGCs for both ON and ON-OFF subtypes decreased with age. For OSGCs, we divided them into non-direction-selective (non-DS) OSGCs and direction-selective OSGCs (DS&OSGCs). For DS&OSGCs, we found that there was no correlation between the direction and orientation selectivity, and that the tuning width of both ON and ON-OFF subtypes remained unchanged with age. For non-DS OSGCs, the tuning width of ON but not ON-OFF subtype decreased with development. These findings provide a foundation to reveal the molecular and synaptic mechanisms underlying the development of the direction and orientation selectivity in the retina.
Collapse
Affiliation(s)
- Hui Chen
- Department of Ophthalmology, Northwestern University, Evanston, Illinois
| | - Xiaorong Liu
- Department of Ophthalmology, Northwestern University, Evanston, Illinois; Department of Neurobiology, Northwestern University, Evanston, Illinois;
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah, Salt Lake City, Utah
| |
Collapse
|
95
|
Adams SV, Harris CM. A proto-architecture for innate directionally selective visual maps. PLoS One 2014; 9:e102908. [PMID: 25054209 PMCID: PMC4108382 DOI: 10.1371/journal.pone.0102908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/25/2014] [Indexed: 11/18/2022] Open
Abstract
Self-organizing artificial neural networks are a popular tool for studying visual system development, in particular the cortical feature maps present in real systems that represent properties such as ocular dominance (OD), orientation-selectivity (OR) and direction selectivity (DS). They are also potentially useful in artificial systems, for example robotics, where the ability to extract and learn features from the environment in an unsupervised way is important. In this computational study we explore a DS map that is already latent in a simple artificial network. This latent selectivity arises purely from the cortical architecture without any explicit coding for DS and prior to any self-organising process facilitated by spontaneous activity or training. We find DS maps with local patchy regions that exhibit features similar to maps derived experimentally and from previous modeling studies. We explore the consequences of changes to the afferent and lateral connectivity to establish the key features of this proto-architecture that support DS.
Collapse
Affiliation(s)
- Samantha V Adams
- Centre for Robotics and Neural Systems, School of Computing and Mathematics, University of Plymouth, Plymouth, United Kingdom
| | - Chris M Harris
- Centre for Robotics and Neural Systems, School of Computing and Mathematics, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
96
|
Van Hooser SD, Escobar GM, Maffei A, Miller P. Emerging feed-forward inhibition allows the robust formation of direction selectivity in the developing ferret visual cortex. J Neurophysiol 2014; 111:2355-73. [PMID: 24598528 PMCID: PMC4099478 DOI: 10.1152/jn.00891.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/03/2014] [Indexed: 11/22/2022] Open
Abstract
The computation of direction selectivity requires that a cell respond to joint spatial and temporal characteristics of the stimulus that cannot be separated into independent components. Direction selectivity in ferret visual cortex is not present at the time of eye opening but instead develops in the days and weeks following eye opening in a process that requires visual experience with moving stimuli. Classic Hebbian or spike timing-dependent modification of excitatory feed-forward synaptic inputs is unable to produce direction-selective cells from unselective or weakly directionally biased initial conditions because inputs eventually grow so strong that they can independently drive cortical neurons, violating the joint spatial-temporal activation requirement. Furthermore, without some form of synaptic competition, cells cannot develop direction selectivity in response to training with bidirectional stimulation, as cells in ferret visual cortex do. We show that imposing a maximum lateral geniculate nucleus (LGN)-to-cortex synaptic weight allows neurons to develop direction-selective responses that maintain the requirement for joint spatial and temporal activation. We demonstrate that a novel form of inhibitory plasticity, postsynaptic activity-dependent long-term potentiation of inhibition (POSD-LTPi), which operates in the developing cortex at the time of eye opening, can provide synaptic competition and enables robust development of direction-selective receptive fields with unidirectional or bidirectional stimulation. We propose a general model of the development of spatiotemporal receptive fields that consists of two phases: an experience-independent establishment of initial biases, followed by an experience-dependent amplification or modification of these biases via correlation-based plasticity of excitatory inputs that compete against gradually increasing feed-forward inhibition.
Collapse
Affiliation(s)
- Stephen D Van Hooser
- Department of Biology, Brandeis University, Waltham, Massachusetts; Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University, Waltham, Massachusetts; Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts;
| | - Gina M Escobar
- Department of Biology, Brandeis University, Waltham, Massachusetts; Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University, Waltham, Massachusetts; Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| | - Arianna Maffei
- Department of Neurobiology and Behavior, State University of New York-Stony Brook, Stony Brook, New York; and SUNY Eye Institute, State University of New York-Stony Brook, Stony Brook, New York
| | - Paul Miller
- Department of Biology, Brandeis University, Waltham, Massachusetts; Sloan-Swartz Center for Theoretical Neurobiology, Brandeis University, Waltham, Massachusetts; Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
97
|
Aberrant development and plasticity of excitatory visual cortical networks in the absence of cpg15. J Neurosci 2014; 34:3517-22. [PMID: 24599452 DOI: 10.1523/jneurosci.2955-13.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During development, experience plays a crucial role in sculpting neuronal connections. Patterned neural activity guides formation of functional neural circuits through the selective stabilization of some synapses and the pruning of others. Activity-regulated factors are fundamental to this process, but their roles in synapse stabilization and maturation is still poorly understood. CPG15, encoded by the activity-regulated gene candidate plasticity gene 15, is a small, glycosylphosphatidylinositol (GPI)-linked, extracellular protein that promotes synapse stabilization. Here we show that global knock-out of cpg15 results in abnormal postnatal development of the excitatory network in visual cortex and an associated disruption in development of visual receptive field properties. In addition, whereas repeated stimulation induced potentiation and depression in wild-type mice, the depression was slower in cpg15 knock-out mice, suggesting impairment in short-term depression-like mechanisms. These findings establish the requirement for cpg15 in activity-dependent development of the visual system and demonstrate the importance of timely excitatory network development for normal visual function.
Collapse
|
98
|
Abstract
In the standard model of central visual processing, orientation tuned responses in cortex are built from untuned thalamic inputs. But recent studies in the mouse show orientation selectivity in thalamic neurons, and address their potential source and possible roles in cortical computation.
Collapse
Affiliation(s)
- Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
99
|
Griffen TC, Maffei A. GABAergic synapses: their plasticity and role in sensory cortex. Front Cell Neurosci 2014; 8:91. [PMID: 24723851 PMCID: PMC3972456 DOI: 10.3389/fncel.2014.00091] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/12/2014] [Indexed: 12/17/2022] Open
Abstract
The mammalian neocortex is composed of a variety of cell types organized in a highly interconnected circuit. GABAergic neurons account for only about 20% of cortical neurons. However, they show widespread connectivity and a high degree of diversity in morphology, location, electrophysiological properties and gene expression. In addition, distinct populations of inhibitory neurons have different sensory response properties, capacities for plasticity and sensitivities to changes in sensory experience. In this review we summarize experimental evidence regarding the properties of GABAergic neurons in primary sensory cortex. We will discuss how distinct GABAergic neurons and different forms of GABAergic inhibitory plasticity may contribute to shaping sensory cortical circuit activity and function.
Collapse
Affiliation(s)
- Trevor C Griffen
- SUNY Eye Research Consortium Buffalo, NY, USA ; Program in Neuroscience, SUNY - Stony Brook Stony Brook, NY, USA ; Medical Scientist Training Program, SUNY - Stony Brook Stony Brook, NY, USA
| | - Arianna Maffei
- SUNY Eye Research Consortium Buffalo, NY, USA ; Department of Neurobiology and Behavior, SUNY - Stony Brook Stony Brook, NY, USA
| |
Collapse
|
100
|
Li YT, Liu BH, Chou XL, Zhang LI, Tao HW. Strengthening of Direction Selectivity by Broadly Tuned and Spatiotemporally Slightly Offset Inhibition in Mouse Visual Cortex. Cereb Cortex 2014; 25:2466-77. [PMID: 24654259 DOI: 10.1093/cercor/bhu049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Direction selectivity (DS) of neuronal responses is fundamental for motion detection. How the integration of synaptic excitation and inhibition contributes to DS however remains not well-understood. Here, in vivo whole-cell voltage-clamp recordings in mouse primary visual cortex (V1) revealed that layer 4 simple cells received direction-tuned excitatory inputs but barely tuned inhibitory inputs under drifting-bar stimulation. Excitation and inhibition exhibited differential temporal offsets under movements of opposite directions: excitation peaked earlier than inhibition at the preferred direction, and vice versa at the null direction. This could be attributed to a small spatial mismatch between overlapping excitatory and inhibitory receptive fields: the distribution of excitatory input strengths was skewed and the skewness was strongly correlated with the DS of excitatory input, whereas that of inhibitory input strengths was spatially symmetric. Neural modeling revealed that the relatively stronger inhibition under null directional movements, as well as the specific spatial-temporal offsets between excitation and inhibition, allowed inhibition to enhance the DS of output responses by suppressing the null response more effectively than the preferred response. Our data demonstrate that while tuned excitatory input provides the basis for DS in mouse V1, the largely untuned and spatiotemporally offset inhibition contributes importantly to sharpening of DS.
Collapse
Affiliation(s)
- Ya-Tang Li
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA Graduate Programs, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Bao-Hua Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiao-Lin Chou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA Graduate Programs, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|