51
|
Ependymal cells-CSF flow regulates stress-induced depression. Mol Psychiatry 2021; 26:7308-7315. [PMID: 34234280 PMCID: PMC8873010 DOI: 10.1038/s41380-021-01202-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 11/09/2022]
Abstract
Major depressive disorder (MDD) is a severe, common mood disorder. While reduced cerebrospinal fluid (CSF) flow adversely affects brain metabolism and fluid balance in the aging population and during development, only indirect evidence links aberrant CSF circulation with many diseases including neurological, neurodegenerative, and psychiatric disorders, such as anxiety and depression. Here we show a very high concentration of p11 as a key molecular determinant for depression in ependymal cells, which is significantly decreased in patients with MDD, and in two mouse models of depression induced by chronic stress, such as restraint and social isolation. The loss of p11 in ependymal cells causes disoriented ependymal planar cell polarity (PCP), reduced CSF flow, and depression-like and anxiety-like behaviors. p11 intrinsically controls PCP core genes, which mediates CSF flow. Viral expression of p11 in ependymal cells specifically rescues the pathophysiological and behavioral deficits caused by loss of p11. Taken together, our results identify a new role and a key molecular determinant for ependymal cell-driven CSF flow in mood disorders and suggest a novel strategy for development of treatments for stress-associated neurological, neurodegenerative, and psychiatric disorders.
Collapse
|
52
|
Jedrychowska J, Gasanov EV, Korzh V. Kcnb1 plays a role in development of the inner ear. Dev Biol 2020; 471:65-75. [PMID: 33316259 DOI: 10.1016/j.ydbio.2020.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
The function of the inner ear depends on the maintenance of high concentrations of K+ ions. The slow-inactivating delayed rectifier Kv2.1/KCNB1 channel works in the inner ear in mammals. The kcnb1 gene is expressed in the otic vesicle of developing zebrafish, suggesting its role in development of the inner ear. In the present study, we found that a Kcnb1 loss-of-function mutation affected development of the inner ear at multiple levels, including otic vesicle expansion, otolith formation, and the proliferation and differentiation of mechanosensory cells. This resulted in defects of kinocilia and stereocilia and abnormal function of the inner ear detected by behavioral assays. The quantitative transcriptional analysis of 75 genes demonstrated that the kcnb1 mutation affected the transcription of genes that are involved in K+ metabolism, cell proliferation, cilia development, and intracellular protein trafficking. These results demonstrate a role for Kv2.1/Kcnb1 channels in development of the inner ear in zebrafish.
Collapse
Affiliation(s)
- Justyna Jedrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Poland; Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Eugene V Gasanov
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland.
| |
Collapse
|
53
|
González P, González-Fernández C, Campos-Martín Y, Mollejo M, Carballosa-Gautam M, Marcillo A, Norenberg M, Rodríguez FJ. Frizzled 1 and Wnt1 as new potential therapeutic targets in the traumatically injured spinal cord. Cell Mol Life Sci 2020; 77:4631-4662. [PMID: 31900623 PMCID: PMC11104978 DOI: 10.1007/s00018-019-03427-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Despite the experimental evidence pointing to a significant role of the Wnt family of proteins in physiological and pathological rodent spinal cord functioning, its potential relevance in the healthy and traumatically injured human spinal cord as well as its therapeutic potential in spinal cord injury (SCI) are still poorly understood. To get further insight into these interesting issues, we first demonstrated by quantitative Real-Time PCR and simple immunohistochemistry that detectable mRNA expression of most Wnt components, as well as protein expression of all known Wnt receptors, can be found in the healthy human spinal cord, supporting its potential involvement in human spinal cord physiology. Moreover, evaluation of Frizzled (Fz) 1 expression by double immunohistochemistry showed that its spatio-temporal and cellular expression pattern in the traumatically injured human spinal cord is equivalent to that observed in a clinically relevant model of rat SCI and suggests its potential involvement in SCI progression/outcome. Accordingly, we found that long-term lentiviral-mediated overexpression of the Fz1 ligand Wnt1 after rat SCI improves motor functional recovery, increases myelin preservation and neuronal survival, and reduces early astroglial reactivity and NG2+ cell accumulation, highlighting the therapeutic potential of Wnt1 in this neuropathological situation.
Collapse
Affiliation(s)
- Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Toledo, Spain.
| | | | | | - Manuela Mollejo
- Department of Pathology, Hospital Virgen de La Salud, Toledo, Spain
| | | | - Alexander Marcillo
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | - Michael Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | | |
Collapse
|
54
|
Ngo J, Hashimoto M, Hamada H, Wynshaw-Boris A. Deletion of the Dishevelled family of genes disrupts anterior-posterior axis specification and selectively prevents mesoderm differentiation. Dev Biol 2020; 464:161-175. [PMID: 32579954 PMCID: PMC8301231 DOI: 10.1016/j.ydbio.2020.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022]
Abstract
The Dishevelled proteins transduce both canonical Wnt/β-catenin and non-canonical Wnt/planar cell polarity (PCP) signaling pathways to regulate many key developmental processes during embryogenesis. Here, we disrupt both canonical and non-canonical Wnt pathways by targeting the entire Dishevelled family of genes (Dvl1, Dvl2, and Dvl3) to investigate their functional roles in the early embryo. We identified several defects in anterior-posterior axis specification and mesoderm patterning in Dvl1+/-; Dvl2-/-; Dvl3-/- embryos. Homozygous deletions in all three Dvl genes (Dvl TKO) resulted in defects in distal visceral endoderm migration and a complete failure to induce mesoderm formation. To identify potential mechanisms that lead to the defects in the developmental processes preceding gastrulation, we generated Dvl TKO mouse embryonic stem cells (mESCs) and compared the transcriptional profile of these cells with wild-type (WT) mESCs during germ lineage differentiation into 3D embryoid bodies (EBs). While the Dvl TKO mESCs displayed similar morphology, self-renewal properties, and minor transcriptional variation from WT mESCs, we identified major transcriptional dysregulation in the Dvl TKO EBs during differentiation in a number of genes involved in anterior-posterior pattern specification, gastrulation induction, mesenchyme morphogenesis, and mesoderm-derived tissue development. The absence of the Dvls leads to specific down-regulation of BMP signaling genes. Furthermore, exogenous activation of canonical Wnt, BMP, and Nodal signaling all fail to rescue the mesodermal defects in the Dvl TKO EBs. Moreover, endoderm differentiation was promoted in the absence of mesoderm in the Dvl TKO EBs, while the suppression of ectoderm differentiation was delayed. Overall, we demonstrate that the Dvls are dispensable for maintaining self-renewal in mESCs but are critical during differentiation to regulate key developmental signaling pathways to promote proper axis specification and mesoderm formation.
Collapse
Affiliation(s)
- Justine Ngo
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, 10900, Euclid Ave, Cleveland, OH, USA
| | - Masakazu Hashimoto
- Laboratory for Embryogenesis, Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, 10900, Euclid Ave, Cleveland, OH, USA.
| |
Collapse
|
55
|
Sheng X, Sheng Y, Gao S, Fan F, Wang J. Low fluid shear stress promoted ciliogenesis via Dvl2 in hUVECs. Histochem Cell Biol 2020; 154:639-654. [PMID: 32776193 DOI: 10.1007/s00418-020-01908-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2020] [Indexed: 01/30/2023]
Abstract
This study aims to explore the mechanism of fluid shear stress in regulating the primary cilia assembly or disassembly in human umbilical vein endothelial cells (hUVECs) using microfluidic chamber experiments. Immunofluorescence analysis showed that primary cilia assembled under disturbed fluid shear stress (DF) of 1 dyne/cm2, while disassembled under unidirectional shear stress (USS) of 15 dynes/cm2. Disheveled (Dvl2) in Wnt signaling pathway was effectively co-immunoprecipitated with Bardet-Biedl syndrome proteins 8 (Bbs8) and γ-tubulin. Compared with those in the control group, the percentages of ciliated cells with Dvl2 overexpression were found to be 67% and 59.667%, respectively, under USS and DF (an increment of 21-38.7%); while, those with Dvl2 silencing were 16% and 32.667%, respectively, under USS and DF (a decrement of 23-30%). Further, the expression of Bbs8 and γ-tubulin was decreased by RNA interference of Dvl2 but increased with Dvl2 overexpression. The results indicated that Dvl2 played a pivotal role during DF-induced primary cilia assembly, and was important for apical docking of basal bodies through Bbs8 and γ-tubulin.
Collapse
Affiliation(s)
- Xin Sheng
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China.
| | - Yan Sheng
- Laboratory of Basic Medical Morphology, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Shuanglin Gao
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Fang Fan
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Junhua Wang
- Department of Biochemistry, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| |
Collapse
|
56
|
Glia and Neural Stem and Progenitor Cells of the Healthy and Ischemic Brain: The Workplace for the Wnt Signaling Pathway. Genes (Basel) 2020; 11:genes11070804. [PMID: 32708801 PMCID: PMC7397164 DOI: 10.3390/genes11070804] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt signaling plays an important role in the self-renewal, fate-commitment and survival of the neural stem/progenitor cells (NS/PCs) of the adult central nervous system (CNS). Ischemic stroke impairs the proper functioning of the CNS and, therefore, active Wnt signaling may prevent, ameliorate, or even reverse the negative effects of ischemic brain injury. In this review, we provide the current knowledge of Wnt signaling in the adult CNS, its status in diverse cell types, and the Wnt pathway’s impact on the properties of NS/PCs and glial cells in the context of ischemic injury. Finally, we summarize promising strategies that might be considered for stroke therapy, and we outline possible future directions of the field.
Collapse
|
57
|
LRRK2 mediates axon development by regulating Frizzled3 phosphorylation and growth cone-growth cone communication. Proc Natl Acad Sci U S A 2020; 117:18037-18048. [PMID: 32641508 PMCID: PMC7395514 DOI: 10.1073/pnas.1921878117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Axon-axon interactions are essential for axon guidance during nervous system wiring. However, it is unknown whether and how the growth cones communicate with each other while sensing and responding to guidance cues. We found that the Parkinson's disease gene, leucine-rich repeat kinase 2 (LRRK2), has an unexpected role in growth cone-growth cone communication. The LRRK2 protein acts as a scaffold and induces Frizzled3 hyperphosphorylation indirectly by recruiting other kinases and also directly phosphorylates Frizzled3 on threonine 598 (T598). In LRRK1 or LRRK2 single knockout, LRRK1/2 double knockout, and LRRK2 G2019S knockin, the postcrossing spinal cord commissural axons are disorganized and showed anterior-posterior guidance errors after midline crossing. Growth cones from either LRRK2 knockout or G2019S knockin mice showed altered interactions, suggesting impaired communication. Intercellular interaction between Frizzled3 and Vangl2 is essential for planar cell polarity signaling. We show here that this interaction is regulated by phosphorylation of Frizzled3 at T598 and can be regulated by LRRK2 in a kinase activity-dependent way. In the LRRK1/2 double knockout or LRRK2 G2019S knockin, the dopaminergic axon bundle in the midbrain was significantly widened and appeared disorganized, showing aberrant posterior-directed growth. Our findings demonstrate that LRRK2 regulates growth cone-growth cone communication in axon guidance and that both loss-of-function mutation and a gain-of-function mutation (G2019S) cause axon guidance defects in development.
Collapse
|
58
|
Development of Ependymal and Postnatal Neural Stem Cells and Their Origin from a Common Embryonic Progenitor. Cell Rep 2020; 27:429-441.e3. [PMID: 30970247 DOI: 10.1016/j.celrep.2019.01.088] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/05/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
The adult mouse brain contains an extensive neurogenic niche in the lateral walls of the lateral ventricles. This epithelium, which has a unique pinwheel organization, contains multiciliated ependymal (E1) cells and neural stem cells (B1). This postnatal germinal epithelium develops from the embryonic ventricular zone, but the lineage relationship between E1 and B1 cells remains unknown. Distinct subpopulations of radial glia (RG) cells in late embryonic and early postnatal development either expand their apical domain >11-fold to form E1 cells or retain small apical domains that coalesce into the centers of pinwheels to form B1 cells. Using independent methods of lineage tracing, we show that individual RG cells can give rise to clones containing E1 and B1 cells. This study reveals key developmental steps in the formation of the postnatal germinal niche and the shared cellular origin of E1 and B1 cells.
Collapse
|
59
|
Durbin MD, O'Kane J, Lorentz S, Firulli AB, Ware SM. SHROOM3 is downstream of the planar cell polarity pathway and loss-of-function results in congenital heart defects. Dev Biol 2020; 464:124-136. [PMID: 32511952 DOI: 10.1016/j.ydbio.2020.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Congenital heart disease (CHD) is the most common birth defect, and the leading cause of death due to birth defects, yet causative molecular mechanisms remain mostly unknown. We previously implicated a novel CHD candidate gene, SHROOM3, in a patient with CHD. Using a Shroom3 gene trap knockout mouse (Shroom3gt/gt) we demonstrate that SHROOM3 is downstream of the noncanonical Wnt planar cell polarity signaling pathway (PCP) and loss-of-function causes cardiac defects. We demonstrate Shroom3 expression within cardiomyocytes of the ventricles and interventricular septum from E10.5 onward, as well as within cardiac neural crest cells and second heart field cells that populate the cardiac outflow tract. We demonstrate that Shroom3gt/gt mice exhibit variable penetrance of a spectrum of CHDs that include ventricular septal defects, double outlet right ventricle, and thin left ventricular myocardium. This CHD spectrum phenocopies what is observed with disrupted PCP. We show that during cardiac development SHROOM3 interacts physically and genetically with, and is downstream of, key PCP signaling component Dishevelled 2. Within Shroom3gt/gt hearts we demonstrate disrupted terminal PCP components, actomyosin cytoskeleton, cardiomyocyte polarity, organization, proliferation and morphology. Together, these data demonstrate SHROOM3 functions during cardiac development as an actomyosin cytoskeleton effector downstream of PCP signaling, revealing SHROOM3's novel role in cardiac development and CHD.
Collapse
Affiliation(s)
- Matthew D Durbin
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James O'Kane
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Samuel Lorentz
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony B Firulli
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie M Ware
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
60
|
Cytoplasmic Dynein Functions in Planar Polarization of Basal Bodies within Ciliated Cells. iScience 2020; 23:101213. [PMID: 32535020 PMCID: PMC7300155 DOI: 10.1016/j.isci.2020.101213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/26/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Despite common consensus about the importance of planar cell polarity (PCP) proteins in tissue orientation, little is known about the mechanisms used by PCP proteins to promote planar polarization of cytoskeletons within individual cells. One PCP protein Fzd6 asymmetrically localizes to the apical cell membrane of multi-ciliated ependymal cells lining the lateral ventricular (LV) wall on the side that contacts cerebrospinal fluid flow. Individual ependymal cells have planar polarized microtubules that connect ciliary basal bodies (BBs) with the cell cortex of the Fzd side to coordinate cilia orientation. Here, we report that cytoplasmic dynein is anchored to the cell cortex of the Fzd side via an adapter protein Daple that regulates microtubule dynamics. Asymmetric localization of cortical dynein generates a pulling force on dynamic microtubules connected to BBs, which in turn orients BBs toward the Fzd side. This is required for coordinated cilia orientation on the LV wall. Daple anchors cytoplasmic dynein to the cell cortex of ependymal cells on LV wall Cytoplasmic dynein is anchored to the Fzd6/Dvl1/Daple side of the cell cortex Cytoplasmic dynein functions include BB positioning and orientation Cortex-anchored dynein generates a pulling force on microtubules connected to BBs
Collapse
|
61
|
Jiang Z, Zhou J, Qin X, Zheng H, Gao B, Liu X, Jin G, Zhou Z. MT1-MMP deficiency leads to defective ependymal cell maturation, impaired ciliogenesis, and hydrocephalus. JCI Insight 2020; 5:132782. [PMID: 32229724 DOI: 10.1172/jci.insight.132782] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/26/2020] [Indexed: 01/02/2023] Open
Abstract
Hydrocephalus is characterized by abnormal accumulation of cerebrospinal fluid (CSF) in the ventricular cavity. The circulation of CSF in brain ventricles is controlled by the coordinated beating of motile cilia at the surface of ependymal cells (ECs). Here, we show that MT1-MMP is highly expressed in olfactory bulb, rostral migratory stream, and the ventricular system. Mice deficient for membrane-type 1-MMP (MT1-MMP) developed typical phenotypes observed in hydrocephalus, such as dome-shaped skulls, dilated ventricles, corpus callosum agenesis, and astrocyte hypertrophy, during the first 2 weeks of postnatal development. MT1-MMP-deficient mice exhibited reduced and disorganized motile cilia with the impaired maturation of ECs, leading to abnormal CSF flow. Consistent with the defects in motile cilia morphogenesis, the expression of promulticiliogenic genes was significantly decreased, with a concomitant hyperactivation of Notch signaling in the walls of lateral ventricles in Mmp14-/- brains. Inhibition of Notch signaling by γ-secretase inhibitor restored ciliogenesis in Mmp14-/- ECs. Taken together, these data suggest that MT1-MMP is required for ciliogenesis and EC maturation through suppression of Notch signaling during early brain development. Our findings indicate that MT1-MMP is critical for early brain development and loss of MT1-MMP activity gives rise to hydrocephalus.
Collapse
Affiliation(s)
- Zhixin Jiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Innovation and Research, University of Hong Kong, Shenzhen, China
| | - Jin Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Innovation and Research, University of Hong Kong, Shenzhen, China
| | - Xin Qin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Innovation and Research, University of Hong Kong, Shenzhen, China
| | - Huiling Zheng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Institute for Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Xinguang Liu
- Institute for Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Guoxiang Jin
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Innovation and Research, University of Hong Kong, Shenzhen, China
| |
Collapse
|
62
|
Nakaya MA, Gudmundsson KO, Komiya Y, Keller JR, Habas R, Yamaguchi TP, Ajima R. Placental defects lead to embryonic lethality in mice lacking the Formin and PCP proteins Daam1 and Daam2. PLoS One 2020; 15:e0232025. [PMID: 32353019 PMCID: PMC7192421 DOI: 10.1371/journal.pone.0232025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 04/06/2020] [Indexed: 01/30/2023] Open
Abstract
The actin cytoskeleton plays a central role in establishing cell polarity and shape during embryonic morphogenesis. Daam1, a member of the Formin family of actin cytoskeleton regulators, is a Dvl2-binding protein that functions in the Wnt/Planar Cell Polarity (PCP) pathway. To examine the role of the Daam proteins in mammalian development, we generated Daam-deficient mice by gene targeting and found that Daam1, but not Daam2, is necessary for fetal survival. Embryonic development of Daam1 mutants was delayed most likely due to functional defects in the labyrinthine layer of the placenta. Examination of Daam2 and Daam1/2 double mutants revealed that Daam1 and Daam2 are functionally redundant during placental development. Of note, neural tube closure defects (NTD), which are observed in several mammalian PCP mutants, are not observed in Wnt5a or Daam1 single mutants, but arise in Daam1;Wnt5a double mutants. These findings demonstrate a unique function for Daam genes in placental development and are consistent with a role for Daam1 in the Wnt/PCP pathway in mammals.
Collapse
Affiliation(s)
- Masa-aki Nakaya
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Kristibjorn Orri Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Yuko Komiya
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United State of America
| | - Jonathan R. Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Raymond Habas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United State of America
| | - Terry P. Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Rieko Ajima
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| |
Collapse
|
63
|
Ependymal Vps35 Promotes Ependymal Cell Differentiation and Survival, Suppresses Microglial Activation, and Prevents Neonatal Hydrocephalus. J Neurosci 2020; 40:3862-3879. [PMID: 32291328 DOI: 10.1523/jneurosci.1520-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022] Open
Abstract
Hydrocephalus is a pathologic condition associated with various brain diseases, including Alzheimer's disease (AD). Dysfunctional ependymal cells (EpCs) are believed to contribute to the development of hydrocephalus. It is thus of interest to investigate EpCs' development and function. Here, we report that vacuolar protein sorting-associated protein 35 (VPS35) is critical for EpC differentiation, ciliogenesis, and survival, and thus preventing neonatal hydrocephalus. VPS35 is abundantly expressed in EpCs. Mice with conditional knock-out (cKO) of Vps35 in embryonic (Vps35GFAP-Cre and Vps35Emx1-Cre) or postnatal (Vps35Foxj1-CreER) EpC progenitors exhibit enlarged lateral ventricles (LVs) and hydrocephalus-like pathology. Further studies reveal marked reductions in EpCs and their cilia in both Vps35GFAP-Cre and Vps35Foxj1-CreER mutant mice. The reduced EpCs appear to be due to impairments in EpC differentiation and survival. Additionally, both Vps35GFAP-Cre and Vps35Foxj1-CreER neonatal pups exhibit increased cell proliferation and death largely in a region close to LV-EpCs. Many microglia close to the mutant LV-EpC region become activated. Depletion of the microglia by PLX3397, an antagonist of colony-stimulating factor 1 receptor (CSF1R), restores LV-EpCs and diminishes the pathology of neonatal hydrocephalus in Vps35Foxj1-CreER mice. Taken together, these observations suggest unrecognized functions of Vps35 in EpC differentiation, ciliogenesis, and survival in neonatal LV, and reveal pathologic roles of locally activated microglia in EpC homeostasis and hydrocephalus development.SIGNIFICANCE STATEMENT This study reports critical functions of vacuolar protein sorting-associated protein 35 (VPS35) not only in promoting ependymal cell (EpC) differentiation, ciliogenesis, and survival, but also in preventing local microglial activation. The dysfunctional EpCs and activated microglia are likely to induce hydrocephalus.
Collapse
|
64
|
Namba T, Ishihara S. Cytoskeleton polarity is essential in determining orientational order in basal bodies of multi-ciliated cells. PLoS Comput Biol 2020; 16:e1007649. [PMID: 32084125 PMCID: PMC7055923 DOI: 10.1371/journal.pcbi.1007649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/04/2020] [Accepted: 01/09/2020] [Indexed: 01/16/2023] Open
Abstract
In multi-ciliated cells, directed and synchronous ciliary beating in the apical membrane occurs through appropriate configuration of basal bodies (BBs, roots of cilia). Although it has been experimentally shown that the position and orientation of BBs are coordinated by apical cytoskeletons (CSKs), such as microtubules (MTs), and planar cell polarity (PCP), the underlying mechanism for achieving the patterning of BBs is not yet understood. In this study, we propose that polarity in bundles of apical MTs play a crucial role in the patterning of BBs. First, the necessity of the polarity was discussed by theoretical consideration on the symmetry of the system. The existence of the polarity was investigated by measuring relative angles between the MTs and BBs using published experimental data. Next, a mathematical model for BB patterning was derived by combining the polarity and self-organizational ability of CSKs. In the model, BBs were treated as finite-size particles in the medium of CSKs and excluded volume effects between BBs and CSKs were taken into account. The model reproduces the various experimental observations, including normal and drug-treated phenotypes. Our model with polarity provides a coherent and testable mechanism for apical BB pattern formation. We have also discussed the implication of our study on cell chirality. Synchronous and directed ciliary beating in trachea allows transport and ejection of virus and dust from the body. This ciliary function depends on the coordinated configuration of basal bodies (root of cilia) in apical cell membrane. However, the mechanism for their formation remains unknown. In this study, we show that the polarity in apical microtubule bundles plays a significant role in the organization of basal bodies. A mathematical model incorporating polarity has been formulated which provides a coherent explanation and is able to reproduce experimental observations. We have clarified both necessity (‘why polarity is required for pattern formation’) and sufficiency (‘how polarity works for pattern formation’) of cytoskeleton polarity for correct pattering of basal bodies with verification by experimental data. This model further leads us to a possible mechanism for cellular chirality.
Collapse
Affiliation(s)
- Toshinori Namba
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo, Japan
| | - Shuji Ishihara
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Komaba, Tokyo, Japan
- * E-mail:
| |
Collapse
|
65
|
Eom TY, Han SB, Kim J, Blundon JA, Wang YD, Yu J, Anderson K, Kaminski DB, Sakurada SM, Pruett-Miller SM, Horner L, Wagner B, Robinson CG, Eicholtz M, Rose DC, Zakharenko SS. Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nat Commun 2020; 11:912. [PMID: 32060266 PMCID: PMC7021727 DOI: 10.1038/s41467-020-14628-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/22/2020] [Indexed: 01/11/2023] Open
Abstract
Progressive ventricular enlargement, a key feature of several neurologic and psychiatric diseases, is mediated by unknown mechanisms. Here, using murine models of 22q11-deletion syndrome (22q11DS), which is associated with schizophrenia in humans, we found progressive enlargement of lateral and third ventricles and deceleration of ciliary beating on ependymal cells lining the ventricular walls. The cilia-beating deficit observed in brain slices and in vivo is caused by elevated levels of dopamine receptors (Drd1), which are expressed in motile cilia. Haploinsufficiency of the microRNA-processing gene Dgcr8 results in Drd1 elevation, which is brought about by a reduction in Drd1-targeting microRNAs miR-382-3p and miR-674-3p. Replenishing either microRNA in 22q11DS mice normalizes ciliary beating and ventricular size. Knocking down the microRNAs or deleting their seed sites on Drd1 mimicked the cilia-beating and ventricular deficits. These results suggest that the Dgcr8-miR-382-3p/miR-674-3p-Drd1 mechanism contributes to deceleration of ciliary motility and age-dependent ventricular enlargement in 22q11DS.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Seung Baek Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jieun Kim
- Center for In Vivo Imaging and Therapeutics, Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jay A Blundon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jing Yu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kara Anderson
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Damian B Kaminski
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sadie Miki Sakurada
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Linda Horner
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ben Wagner
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Camenzind G Robinson
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matthew Eicholtz
- Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Computer Science, Florida Southern College, Lakeland, FL, 33801, USA
| | - Derek C Rose
- Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
66
|
Yang J, Simonneau C, Kilker R, Oakley L, Byrne MD, Nichtova Z, Stefanescu I, Pardeep-Kumar F, Tripathi S, Londin E, Saugier-Veber P, Willard B, Thakur M, Pickup S, Ishikawa H, Schroten H, Smeyne R, Horowitz A. Murine MPDZ-linked hydrocephalus is caused by hyperpermeability of the choroid plexus. EMBO Mol Med 2019; 11:emmm.201809540. [PMID: 30518636 PMCID: PMC6328942 DOI: 10.15252/emmm.201809540] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Though congenital hydrocephalus is heritable, it has been linked only to eight genes, one of which is MPDZ. Humans and mice that carry a truncated version of MPDZ incur severe hydrocephalus resulting in acute morbidity and lethality. We show by magnetic resonance imaging that contrast medium penetrates into the brain ventricles of mice carrying a Mpdz loss‐of‐function mutation, whereas none is detected in the ventricles of normal mice, implying that the permeability of the choroid plexus epithelial cell monolayer is abnormally high. Comparative proteomic analysis of the cerebrospinal fluid of normal and hydrocephalic mice revealed up to a 53‐fold increase in protein concentration, suggesting that transcytosis through the choroid plexus epithelial cells of Mpdz KO mice is substantially higher than in normal mice. These conclusions are supported by ultrastructural evidence, and by immunohistochemistry and cytology data. Our results provide a straightforward and concise explanation for the pathophysiology of Mpdz‐linked hydrocephalus.
Collapse
Affiliation(s)
- Junning Yang
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Claire Simonneau
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert Kilker
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laura Oakley
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew D Byrne
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zuzana Nichtova
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ioana Stefanescu
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fnu Pardeep-Kumar
- Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sushil Tripathi
- Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Belinda Willard
- Proteomics Core Facility, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mathew Thakur
- Department of Radiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine University of Tsukuba, Tsukuba-City, Ibaraki, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Smeyne
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arie Horowitz
- Cardeza Center for Vascular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA .,Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
67
|
Lee M, Hwang YS, Yoon J, Sun J, Harned A, Nagashima K, Daar IO. Developmentally regulated GTP-binding protein 1 modulates ciliogenesis via an interaction with Dishevelled. J Cell Biol 2019; 218:2659-2676. [PMID: 31270137 PMCID: PMC6683737 DOI: 10.1083/jcb.201811147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/25/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Our study reveals Drg1 as a new binding partner of Dishevelled. The Drg1–Dishevelled association regulates Daam1 and RhoA interactions and activity, leading to polymerization and stability of the actin cytoskeleton, a process that is essential for proper multiciliation. Cilia are critical for proper embryonic development and maintaining homeostasis. Although extensively studied, there are still significant gaps regarding the proteins involved in regulating ciliogenesis. Using the Xenopus laevis embryo, we show that Dishevelled (Dvl), a key Wnt signaling scaffold that is critical to proper ciliogenesis, interacts with Drg1 (developmentally regulated GTP-binding protein 1). The loss of Drg1 or disruption of the interaction with Dvl reduces the length and number of cilia and displays defects in basal body migration and docking to the apical surface of multiciliated cells (MCCs). Moreover, Drg1 morphants display abnormal rotational polarity of basal bodies and a decrease in apical actin and RhoA activity that can be attributed to disruption of the protein complex between Dvl and Daam1, as well as between Daam1 and RhoA. These results support the concept that the Drg1–Dvl interaction regulates apical actin polymerization and stability in MCCs. Thus, Drg1 is a newly identified partner of Dvl in regulating ciliogenesis.
Collapse
Affiliation(s)
| | | | - Jaeho Yoon
- National Cancer Institute, Frederick, MD
| | - Jian Sun
- National Cancer Institute, Frederick, MD
| | - Adam Harned
- Electron Microscope Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kunio Nagashima
- Electron Microscope Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Ira O Daar
- National Cancer Institute, Frederick, MD
| |
Collapse
|
68
|
Derepression of sonic hedgehog signaling upon Gpr161 deletion unravels forebrain and ventricular abnormalities. Dev Biol 2019; 450:47-62. [PMID: 30914320 DOI: 10.1016/j.ydbio.2019.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 11/24/2022]
Abstract
Inverse gradients of transcriptional repressors antagonize the transcriptional effector response to morphogens. However, the role of such inverse regulation might not manifest solely from lack of repressors. Sonic hedgehog (Shh) patterns the forebrain by being expressed ventrally; however, absence of antagonizing Gli3 repressor paradoxically cause insufficient pathway activation. Interestingly, lack of the primary cilia-localized G-protein-coupled receptor, Gpr161 increases Shh signaling in the mouse neural tube from coordinated lack of Gli3 repressor and Smoothened-independent activation. Here, by deleting Gpr161 in mouse neuroepithelial cells and radial glia at early mid-gestation we detected derepression of Shh signaling throughout forebrain, allowing determination of the pathophysiological consequences. Accumulation of cerebrospinal fluid (hydrocephalus) was apparent by birth, although usual causative defects in multiciliated ependymal cells or aqueduct were not seen. Rather, the ventricular surface was expanded (ventriculomegaly) during embryogenesis from radial glial overproliferation. Cortical phenotypes included polymicrogyria in the medial cingulate cortex, increased proliferation of intermediate progenitors and basal radial glia, and altered neocortical cytoarchitectonic structure with increased upper layer and decreased deep layer neurons. Finally, periventricular nodular heterotopia resulted from disrupted neuronal migration, while the radial glial scaffold was unaffected. Overall, suppression of Shh pathway during early mid-gestation prevents ventricular overgrowth, and regulates cortical gyration and neocortical/periventricular cytoarchitecture.
Collapse
|
69
|
Marques MM, Villoch-Fernandez J, Maeso-Alonso L, Fuertes-Alvarez S, Marin MC. The Trp73 Mutant Mice: A Ciliopathy Model That Uncouples Ciliogenesis From Planar Cell Polarity. Front Genet 2019; 10:154. [PMID: 30930930 PMCID: PMC6428764 DOI: 10.3389/fgene.2019.00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/13/2019] [Indexed: 12/21/2022] Open
Abstract
p73 transcription factor belongs to one of the most important gene families in vertebrate biology, the p53-family. Trp73 gene, like the other family members, generates multiple isoforms named TA and DNp73, with different and, sometimes, antagonist functions. Although p73 shares many biological functions with p53, it also plays distinct roles during development. Trp73 null mice (p73KO from now on) show multiple phenotypes as gastrointestinal and cranial hemorrhages, rhinitis and severe central nervous system defects. Several groups, including ours, have revisited the apparently unrelated phenotypes observed in total p73KO and revealed a novel p73 function in the organization of ciliated epithelia in brain and trachea, but also an essential role as regulator of ependymal planar cell polarity. Unlike p73KO or TAp73KO mice, tumor-prone Trp53−/− mice (p53KO) do not present ependymal ciliary or planar cell polarity defects, indicating that regulation of ciliogenesis and PCP is a p73-specific function. Thus, loss of ciliary biogenesis and epithelial organization might be a common underlying cause of the diverse p73KO-phenotypes, highlighting Trp73 role as an architect of the epithelial tissue. In this review we would like to discuss the data regarding p73 role as regulator of ependymal cell ciliogenesis and PCP, supporting the view of the Trp73-mutant mice as a model that uncouples ciliogenesis from PCP and a possible model of human congenital hydrocephalus.
Collapse
Affiliation(s)
- Margarita M Marques
- Departamento de Producción Animal, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares, Instituto de Desarrollo Ganadero y Sanidad Animal, Universidad de León, León, Spain
| | - Javier Villoch-Fernandez
- Departamento de Biología Molecular, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares, Instituto de Biomedicina, Universidad de León, León, Spain
| | - Laura Maeso-Alonso
- Departamento de Biología Molecular, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares, Instituto de Biomedicina, Universidad de León, León, Spain
| | - Sandra Fuertes-Alvarez
- Departamento de Biología Molecular, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares, Instituto de Biomedicina, Universidad de León, León, Spain
| | - Maria C Marin
- Departamento de Biología Molecular, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares, Instituto de Biomedicina, Universidad de León, León, Spain
| |
Collapse
|
70
|
Ryan R, Failler M, Reilly ML, Garfa-Traore M, Delous M, Filhol E, Reboul T, Bole-Feysot C, Nitschké P, Baudouin V, Amselem S, Escudier E, Legendre M, Benmerah A, Saunier S. Functional characterization of tektin-1 in motile cilia and evidence for TEKT1 as a new candidate gene for motile ciliopathies. Hum Mol Genet 2019; 27:266-282. [PMID: 29121203 DOI: 10.1093/hmg/ddx396] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/31/2017] [Indexed: 02/06/2023] Open
Abstract
A child presenting with Mainzer-Saldino syndrome (MZSDS), characterized by renal, retinal and skeletal involvements, was also diagnosed with lung infections and airway ciliary dyskinesia. These manifestations suggested dysfunction of both primary and motile cilia, respectively. Targeted exome sequencing identified biallelic mutations in WDR19, encoding an IFT-A subunit previously associated with MZSDS-related chondrodysplasia, Jeune asphyxiating thoracic dysplasia and cranioectodermal dysplasia, linked to primary cilia dysfunction, and in TEKT1 which encodes tektin-1 an uncharacterized member of the tektin family, mutations of which may cause ciliary dyskinesia. Tektin-1 localizes at the centrosome in cycling cells, at basal bodies of both primary and motile cilia and to the axoneme of motile cilia in airway cells. The identified mutations impaired these localizations. In addition, airway cells from the affected individual showed severe motility defects without major ultrastructural changes. Knockdown of tekt1 in zebrafish resulted in phenotypes consistent with a function for tektin-1 in ciliary motility, which was confirmed by live imaging. Finally, experiments in the zebrafish also revealed a synergistic effect of tekt1 and wdr19. Altogether, our data show genetic interactions between WDR19 and TEKT1 likely contributing to the overall clinical phenotype observed in the affected individual and provide strong evidence for TEKT1 as a new candidate gene for primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Rebecca Ryan
- INSERM UMR 1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France.,Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, 75015 Paris, France
| | - Marion Failler
- INSERM UMR 1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France.,Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, 75015 Paris, France
| | - Madeline Louise Reilly
- INSERM UMR 1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France.,Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, 75015 Paris, France.,Paris Diderot University, Paris, France
| | - Meriem Garfa-Traore
- Cell Imaging Platform, INSERM US24 Structure Fédérative de Recherche Necker, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Marion Delous
- INSERM UMR 1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France.,Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, 75015 Paris, France
| | - Emilie Filhol
- INSERM UMR 1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France.,Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, 75015 Paris, France
| | - Thérèse Reboul
- INSERM UMR 1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France.,Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, 75015 Paris, France
| | - Christine Bole-Feysot
- Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, 75015 Paris, France.,Bioinformatics Core Facility, Paris Descartes - Sorbonne Paris Cité University, 75015 Paris, France
| | - Patrick Nitschké
- Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, 75015 Paris, France.,INSERM UMR-1163, Genomic Core Facility, 75015 Paris, France
| | | | - Serge Amselem
- UMR-S 933, INSERM, Université Pierre et Marie Curie - Paris 6, Paris, France.,Service de Génétique et Embryologie Médicales, Assistance Publique - Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Estelle Escudier
- UMR-S 933, INSERM, Université Pierre et Marie Curie - Paris 6, Paris, France.,Service de Génétique et Embryologie Médicales, Assistance Publique - Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Marie Legendre
- UMR-S 933, INSERM, Université Pierre et Marie Curie - Paris 6, Paris, France.,Service de Génétique et Embryologie Médicales, Assistance Publique - Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Alexandre Benmerah
- INSERM UMR 1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France.,Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, 75015 Paris, France
| | - Sophie Saunier
- INSERM UMR 1163, Laboratory of Hereditary Kidney Diseases, 75015 Paris, France.,Imagine Institute, Paris Descartes - Sorbonne Paris Cité University, 75015 Paris, France
| |
Collapse
|
71
|
Fuertes-Alvarez S, Maeso-Alonso L, Villoch-Fernandez J, Wildung M, Martin-Lopez M, Marshall C, Villena-Cortes AJ, Diez-Prieto I, Pietenpol JA, Tissir F, Lizé M, Marques MM, Marin MC. p73 regulates ependymal planar cell polarity by modulating actin and microtubule cytoskeleton. Cell Death Dis 2018; 9:1183. [PMID: 30518789 PMCID: PMC6281643 DOI: 10.1038/s41419-018-1205-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
Planar cell polarity (PCP) and intercellular junctional complexes establish tissue structure and coordinated behaviors across epithelial sheets. In multiciliated ependymal cells, rotational and translational PCP coordinate cilia beating and direct cerebrospinal fluid circulation. Thus, PCP disruption results in ciliopathies and hydrocephalus. PCP establishment depends on the polarization of cytoskeleton and requires the asymmetric localization of core and global regulatory modules, including membrane proteins like Vangl1/2 or Frizzled. We analyzed the subcellular localization of select proteins that make up these modules in ependymal cells and the effect of Trp73 loss on their localization. We identify a novel function of the Trp73 tumor suppressor gene, the TAp73 isoform in particular, as an essential regulator of PCP through the modulation of actin and microtubule cytoskeleton dynamics, demonstrating that Trp73 is a key player in the organization of ependymal ciliated epithelia. Mechanistically, we show that p73 regulates translational PCP and actin dynamics through TAp73-dependent modulation of non-musclemyosin-II activity. In addition, TAp73 is required for the asymmetric localization of PCP-core and global signaling modules and regulates polarized microtubule dynamics, which in turn set up the rotational PCP. Therefore, TAp73 modulates, directly and/or indirectly, transcriptional programs regulating actin and microtubules dynamics and Golgi organization signaling pathways. These results shed light into the mechanism of ependymal cell planar polarization and reveal p73 as an epithelial architect during development regulating the cellular cytoskeleton.
Collapse
Affiliation(s)
- Sandra Fuertes-Alvarez
- Instituto de Biomedicina (IBIOMED) and Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Laura Maeso-Alonso
- Instituto de Biomedicina (IBIOMED) and Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Javier Villoch-Fernandez
- Instituto de Biomedicina (IBIOMED) and Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Merit Wildung
- Molecular and Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center, 37077, Göttingen, Germany.,Institute of Molecular Oncology, Clinic for Cardiology and Pneumology, Department of Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Marta Martin-Lopez
- Instituto de Biomedicina (IBIOMED) and Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Clayton Marshall
- Department of Biochemistry and Vanderbilt-Ingram Cancer Center, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Alberto J Villena-Cortes
- Instituto de Biomedicina (IBIOMED) and Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Inmaculada Diez-Prieto
- Departamento de Medicina, Cirugía y Anatomía Veterinaria, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Jennifer A Pietenpol
- Department of Biochemistry and Vanderbilt-Ingram Cancer Center, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Fadel Tissir
- Developmental Neurobiology, Institute of Neuroscience, Universite Catholique de Louvain, Avenue E. Mounier, 73, Box B1.73.16, B1200, Brussels, Belgium
| | - Muriel Lizé
- Molecular and Experimental Pneumology Group, Clinic for Cardiology and Pneumology, University Medical Center, 37077, Göttingen, Germany.,Institute of Molecular Oncology, Clinic for Cardiology and Pneumology, Department of Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Margarita M Marques
- Instituto de Desarrollo Ganadero (INDEGSAL) and Departamento de Producción Animal, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Maria C Marin
- Instituto de Biomedicina (IBIOMED) and Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain.
| |
Collapse
|
72
|
Henderson DJ, Long DA, Dean CH. Planar cell polarity in organ formation. Curr Opin Cell Biol 2018; 55:96-103. [PMID: 30015152 DOI: 10.1016/j.ceb.2018.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 01/11/2023]
Abstract
The planar cell polarity (PCP) pathway controls a variety of morphological events across many species. During embryonic development, the PCP pathway regulates coordinated behaviour of groups of cells to direct morphogenetic processes such as convergent extension and collective cell migration. In this review we discuss the increasingly prominent role of the PCP pathway in organogenesis, focusing on the lungs, kidneys and heart. We also highlight emerging evidence that PCP gene mutations are associated with adult diseases.
Collapse
Affiliation(s)
- Deborah J Henderson
- Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charlotte H Dean
- Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
73
|
Konjikusic MJ, Yeetong P, Boswell CW, Lee C, Roberson EC, Ittiwut R, Suphapeetiporn K, Ciruna B, Gurnett CA, Wallingford JB, Shotelersuk V, Gray RS. Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development. PLoS Genet 2018; 14:e1007817. [PMID: 30475797 PMCID: PMC6307780 DOI: 10.1371/journal.pgen.1007817] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/27/2018] [Accepted: 11/07/2018] [Indexed: 01/06/2023] Open
Abstract
Cerebrospinal fluid flow is crucial for neurodevelopment and homeostasis of the ventricular system of the brain, with localized flow being established by the polarized beating of the ependymal cell (EC) cilia. Here, we report a homozygous one base-pair deletion, c.1193delT (p.Leu398Glnfs*2), in the Kinesin Family Member 6 (KIF6) gene in a child displaying neurodevelopmental defects and intellectual disability. To test the pathogenicity of this novel human KIF6 mutation we engineered an analogous C-terminal truncating mutation in mouse. These mutant mice display severe, postnatal-onset hydrocephalus. We generated a Kif6-LacZ transgenic mouse strain and report expression specifically and uniquely within the ependymal cells (ECs) of the brain, without labeling other multiciliated mouse tissues. Analysis of Kif6 mutant mice with scanning electron microscopy (SEM) and immunofluorescence (IF) revealed specific defects in the formation of EC cilia, without obvious effect of cilia of other multiciliated tissues. Dilation of the ventricular system and defects in the formation of EC cilia were also observed in adult kif6 mutant zebrafish. Finally, we report Kif6-GFP localization at the axoneme and basal bodies of multi-ciliated cells (MCCs) of the mucociliary Xenopus epidermis. Overall, this work describes the first clinically-defined KIF6 homozygous null mutation in human and defines KIF6 as a conserved mediator of neurological development with a specific role for EC ciliogenesis in vertebrates. Cerebrospinal fluid flow is crucial for neurodevelopment and homeostasis of the ventricular system of the brain. Localized flows of cerebrospinal fluid throughout the ventricular system of the brain are established from the polarized beating of the ependymal cell (EC) cilia. Here, we identified a homozygous truncating mutation in KIF6 in a child displaying neurodevelopmental defects and intellectual disability. To test the function of KIF6 in vivo, we engineered mutations of Kif6 in mouse. These Kif6 mutant mice display severe hydrocephalus, coupled with defects in the formation of EC cilia. Similarly, we observed hydrocephalus and a reduction in EC cilia in kif6 mutant zebrafish. Overall, this work describes the first clinically-defined KIF6 mutation in human, while our animal studies demonstrate the pathogenicity of mutations in KIF6 and establish KIF6 as a conserved mediator of ciliogenesis in ECs in vertebrates.
Collapse
Affiliation(s)
- Mia J. Konjikusic
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, Texas, United States of America
- Department of Molecular Biosciences, Patterson Labs, The University of Texas at Austin, Austin, Texas, United States of America
| | - Patra Yeetong
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Division of Human Genetics, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Curtis W. Boswell
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Chanjae Lee
- Department of Molecular Biosciences, Patterson Labs, The University of Texas at Austin, Austin, Texas, United States of America
| | - Elle C. Roberson
- Department of Molecular Biosciences, Patterson Labs, The University of Texas at Austin, Austin, Texas, United States of America
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Brian Ciruna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Christina A. Gurnett
- Department of Neurology, Division Pediatric Neurology, Washington University School of Medicine, St Louis, MO, United States of America
| | - John B. Wallingford
- Department of Molecular Biosciences, Patterson Labs, The University of Texas at Austin, Austin, Texas, United States of America
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- * E-mail: (VS); (RSG)
| | - Ryan S. Gray
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, Texas, United States of America
- * E-mail: (VS); (RSG)
| |
Collapse
|
74
|
Zhu L, Chi T, Zhao X, Yang L, Song S, Lu Q, Ji X, Liu P, Wang L, Zou L. Xanthoceraside modulates neurogenesis to ameliorate cognitive impairment in APP/PS1 transgenic mice. J Physiol Sci 2018; 68:555-565. [PMID: 28744803 PMCID: PMC10717762 DOI: 10.1007/s12576-017-0561-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022]
Abstract
Neuronal loss is reported to be an important pathological process in Alzheimer's disease (AD). Neurogenesis is a process of generation of new neurons to fill the neuronal loss. Xanthoceraside has been shown to attenuate the cognitive deficits in several AD animal models. However, little is known about the effect of xanthoceraside on neurogenesis in APP/PS1 transgenic mice. Thus, in this study, we investigated whether xanthoceraside can ameliorate learning and memory impairment by promoting NSCs proliferation and neuronal differentiation. The results suggested that xanthoceraside significantly ameliorated the cognitive impairment and induced NSCs proliferation and neuronal differentiation in APP/PS1 transgenic mice. Meanwhile, in vitro study revealed that xanthoceraside increased the size of NSCs and induced NSCs differentiation into neurons compared with amyloid beta-peptide (25-35) (Aβ25-35) treatment. Furthermore, we found that xanthoceraside significantly increased the expression of Wnt3a and p-GSK3β, decreased the expression of p-β-catenin, and induced nuclear translocation of β-catenin in APP/PS1 transgenic mice. Furthermore, in vitro study found that the effect of xanthoceraside on inducing NSCs proliferation and neuronal differentiation were inhibited by Wnt pathway inhibitor Dickkopf-1 (Dkk-1). Our data demonstrated that xanthoceraside may promote the proliferation and differentiation of NSCs into neurons by up-regulating the Wnt/β-catenin pathway to fill the neuronal loss, thereby improving learning and memory impairment in APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Tianyan Chi
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Xuemei Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Lei Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Shijie Song
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Qiaohui Lu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Xuefei Ji
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Peng Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Lihua Wang
- Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China
| | - Libo Zou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang Liaoning, 110016, People's Republic of China.
| |
Collapse
|
75
|
Mutational analysis of dishevelled genes in zebrafish reveals distinct functions in embryonic patterning and gastrulation cell movements. PLoS Genet 2018; 14:e1007551. [PMID: 30080849 PMCID: PMC6095615 DOI: 10.1371/journal.pgen.1007551] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/16/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Wnt signaling plays critical roles in dorsoventral fate specification and anteroposterior patterning, as well as in morphogenetic cell movements. Dishevelled proteins, or Dvls, mediate the activation of Wnt/ß-catenin and Wnt/planar cell polarity pathways. There are at least three highly conserved Dvl proteins in vertebrates, but the implication of each Dvl in key early developmental processes remains poorly understood. In this study, we use genome-editing approach to generate different combinations of maternal and zygotic dvl mutants in zebrafish, and examine their functions during early development. Maternal transcripts for dvl2 and dvl3a are most abundantly expressed, whereas the transcript levels of other dvl genes are negligible. Phenotypic and molecular analyses show that early dorsal fate specification is not affected in maternal and zygotic dvl2 and dvl3a double mutants, suggesting that the two proteins may be dispensable for the activation of maternal Wnt/ß-catenin signaling. Interestingly, convergence and extension movements and anteroposterior patterning require both maternal and the zygotic functions of Dvl2 and Dvl3a, but these processes are more sensitive to Dvl2 dosage. Zygotic dvl2 and dvl3a double mutants display mild axis extension defect with correct anteroposterior patterning. However, maternal and zygotic double mutants exhibit most strongly impaired convergence and extension movements, severe trunk and posterior deficiencies, and frequent occurrence of cyclopia and craniofacial defects. Our results suggest that Dvl2 and Dvl3a products are required for the activation of zygotic Wnt/ß-catenin signaling and Wnt/planar cell polarity pathway, and regulate zygotic developmental processes in a dosage-dependent manner. This work provides insight into the mechanisms of Dvl-mediated Wnt signaling pathways during early vertebrate development. The embryogenesis of most animals is first supported by maternal gene products accumulated in the oocyte, and then by the expression of genes from the zygote. In all vertebrates, there are at least three Dishevelled (Dvl) proteins, which play critical roles in normal development and human diseases. They are both maternally and zygotically expressed, and can activate the ß-catenin-dependent Wnt pathway that regulates gene expression and cell fate, and the ß-catenin-independent Wnt pathway that orchestrates cell movements. In zebrafish embryo, Dvl2 and Dvl3a are most abundant, but their functions are not fully understood. We find that maternally and zygotically expressed Dvl2 plays a predominant role in the elongation of the anteroposterior axis, and the expression of genes involved in the development of the posterior region. Dvl3a cooperates with Dvl2 in these processes. Analyses after loss-of-function of these genes indicate that deficiency of maternal and zygotic Dvl2 and Dvl3a results in embryos with cyclopia, craniofacial defects, and severe abnormality in the trunk and posterior regions. Many human birth defects and other diseases, like cancer, are attributed to the dysfunction of the Wnt pathways. Our results help to understand the mechanisms of Dvl-mediated Wnt pathway activation, and the causes of developmental disorders.
Collapse
|
76
|
Chen ZS, Li L, Peng S, Chen FM, Zhang Q, An Y, Lin X, Li W, Koon AC, Chan TF, Lau KF, Ngo JCK, Wong WT, Kwan KM, Chan HYE. Planar cell polarity gene Fuz triggers apoptosis in neurodegenerative disease models. EMBO Rep 2018; 19:embr.201745409. [PMID: 30026307 DOI: 10.15252/embr.201745409] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 01/04/2023] Open
Abstract
Planar cell polarity (PCP) describes a cell-cell communication process through which individual cells coordinate and align within the plane of a tissue. In this study, we show that overexpression of Fuz, a PCP gene, triggers neuronal apoptosis via the dishevelled/Rac1 GTPase/MEKK1/JNK/caspase signalling axis. Consistent with this finding, endogenous Fuz expression is upregulated in models of polyglutamine (polyQ) diseases and in fibroblasts from spinocerebellar ataxia type 3 (SCA3) patients. The disruption of this upregulation mitigates polyQ-induced neurodegeneration in Drosophila We show that the transcriptional regulator Yin Yang 1 (YY1) associates with the Fuz promoter. Overexpression of YY1 promotes the hypermethylation of Fuz promoter, causing transcriptional repression of Fuz Remarkably, YY1 protein is recruited to ATXN3-Q84 aggregates, which reduces the level of functional, soluble YY1, resulting in Fuz transcriptional derepression and induction of neuronal apoptosis. Furthermore, Fuz transcript level is elevated in amyloid beta-peptide, Tau and α-synuclein models, implicating its potential involvement in other neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Taken together, this study unveils a generic Fuz-mediated apoptotic cell death pathway in neurodegenerative disorders.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Li Li
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Shaohong Peng
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Francis M Chen
- Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qian Zhang
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ying An
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Xiao Lin
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Wen Li
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Alex Chun Koon
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ting-Fung Chan
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kwok-Fai Lau
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Wing Tak Wong
- Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Kin Ming Kwan
- Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Partner State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila Research, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China .,Biochemistry Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Cell and Molecular Biology Program, School of Life Sciences Faculty of Science The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| |
Collapse
|
77
|
Ohata S, Uga H, Okamoto H, Katada T. Small GTPase R-Ras participates in neural tube formation in zebrafish embryonic spinal cord. Biochem Biophys Res Commun 2018; 501:786-790. [PMID: 29772239 DOI: 10.1016/j.bbrc.2018.05.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/12/2018] [Indexed: 10/16/2022]
Abstract
Ras related (R-Ras), a small GTPase, is involved in the maintenance of apico-basal polarity in neuroepithelial cells of the zebrafish hindbrain, axonal collapse in cultured murine hippocampal neurons, and maturation of blood vessels in adult mice. However, the role of R-Ras in neural tube formation remains unknown. Using antisense morpholino oligonucleotides (AMOs), we found that in the spinal cord of zebrafish embryos, the lumen was formed bilaterally in rras morphants, whereas it was formed at the midline in control embryos. As AMO can cause off-target effects, we generated rras mutant zebrafish lines using CRISPR/Cas9 technology. Although these rras mutant embryos did not have a bilateral lumen in the spinal cord, the following findings suggest that the phenotype is unlikely due to an off-target effect of rras AMO: 1) The rras morphant phenotype was rescued by an injection of AMO-resistant rras mRNA, and 2) a bilaterally segregated spinal cord was not observed in rras mutant embryos injected with rras AMO. The results suggest that the function of other ras family genes may be redundant in rras mutants. Previous research reported a bilaterally formed lumen in the spinal cord of zebrafish embryos with a mutation in a planar cell polarity (PCP) gene, van gogh-like 2 (vangl2). In the present study, in cultured cells, R-Ras was co-immunoprecipitated with Vangl2 but not with another PCP regulator, Pricke1. Interestingly, the interaction between R-Ras and Vangl2 was stronger in guanine-nucleotide free point mutants of R-Ras than in wild-type or constitutively active (GTP-bound) forms of R-Ras. R-Ras may regulate neural tube formation in cooperation with Vangl2 in the developing zebrafish spinal cord.
Collapse
Affiliation(s)
- Shinya Ohata
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan; Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan; RIKEN Center for Brain Science, Saitama, 351-0198, Japan.
| | - Hideko Uga
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan; Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | | | - Toshiaki Katada
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan; Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
78
|
Abdi K, Lai CH, Paez-Gonzalez P, Lay M, Pyun J, Kuo CT. Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus. Nat Commun 2018; 9:1655. [PMID: 29695808 PMCID: PMC5916891 DOI: 10.1038/s41467-018-03812-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 03/14/2018] [Indexed: 12/26/2022] Open
Abstract
Specialized, differentiated cells often perform unique tasks that require them to maintain a stable phenotype. Multiciliated ependymal cells (ECs) are unique glial cells lining the brain ventricles, important for cerebral spinal fluid circulation. While functional ECs are needed to prevent hydrocephalus, they have also been reported to generate new neurons: whether ECs represent a stable cellular population remains unclear. Via a chemical screen we found that mature ECs are inherently plastic, with their multiciliated state needing constant maintenance by the Foxj1 transcription factor, which paradoxically is rapidly turned over by the ubiquitin-proteasome system leading to cellular de-differentiation. Mechanistic analyses revealed a novel NF-κB-independent IKK2 activity stabilizing Foxj1 in mature ECs, and we found that known IKK2 inhibitors including viruses and growth factors robustly induced Foxj1 degradation, EC de-differentiation, and hydrocephalus. Although mature ECs upon de-differentiation can divide and regenerate multiciliated ECs, we did not detect evidence supporting EC’s neurogenic potential. Multiciliated ependymal cells (ECs) in the mammalian brain are glial cells facilitating cerebral spinal fluid movement. This study describes an inherent cellular plasticity of ECs as maintained by Foxj1 and IKK2 signaling, and shows resulting hydrocephalus when EC de-differentiation is triggered.
Collapse
Affiliation(s)
- Khadar Abdi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chun-Hsiang Lai
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Mark Lay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Joon Pyun
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, NC, 27710, USA. .,Brumley Neonatal/Perinatal Research Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Institute for Brain Sciences, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
79
|
Feldner A, Adam MG, Tetzlaff F, Moll I, Komljenovic D, Sahm F, Bäuerle T, Ishikawa H, Schroten H, Korff T, Hofmann I, Wolburg H, von Deimling A, Fischer A. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med 2018; 9:890-905. [PMID: 28500065 PMCID: PMC5494508 DOI: 10.15252/emmm.201606430] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hydrocephalus is a common congenital anomaly. LCAM1 and MPDZ (MUPP1) are the only known human gene loci associated with non‐syndromic hydrocephalus. To investigate functions of the tight junction‐associated protein Mpdz, we generated mouse models. Global Mpdz gene deletion or conditional inactivation in Nestin‐positive cells led to formation of supratentorial hydrocephalus in the early postnatal period. Blood vessels, epithelial cells of the choroid plexus, and cilia on ependymal cells, which line the ventricular system, remained morphologically intact in Mpdz‐deficient brains. However, flow of cerebrospinal fluid through the cerebral aqueduct was blocked from postnatal day 3 onward. Silencing of Mpdz expression in cultured epithelial cells impaired barrier integrity, and loss of Mpdz in astrocytes increased RhoA activity. In Mpdz‐deficient mice, ependymal cells had morphologically normal tight junctions, but expression of the interacting planar cell polarity protein Pals1 was diminished and barrier integrity got progressively lost. Ependymal denudation was accompanied by reactive astrogliosis leading to aqueductal stenosis. This work provides a relevant hydrocephalus mouse model and demonstrates that Mpdz is essential to maintain integrity of the ependyma.
Collapse
Affiliation(s)
- Anja Feldner
- Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Gordian Adam
- Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Tetzlaff
- Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Iris Moll
- Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dorde Komljenovic
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Bäuerle
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hiroshi Ishikawa
- Department of NDU Life Sciences, School of Life Dentistry, Nippon Dental University, Chiyoda-ku Tokyo, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Mannheim Heidelberg University, Mannheim, Germany
| | - Thomas Korff
- Department of Cardiovascular Research, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Ilse Hofmann
- Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Vascular Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hartwig Wolburg
- Department of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Fischer
- Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany .,Vascular Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Medical Clinic I, Endocrinology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
80
|
Xie J, Han M, Zhang M, Deng H, Wu W. PP5 (PPP5C) is a phosphatase of Dvl2. Sci Rep 2018; 8:2715. [PMID: 29426949 PMCID: PMC5807433 DOI: 10.1038/s41598-018-21124-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/30/2018] [Indexed: 11/09/2022] Open
Abstract
Dishevelled (Dvl) family proteins are key mediators of Wnt signalling and function in both canonical and noncanonical branches. Dvl2, the most studied Dvl protein, is extensively regulated by phosphorylation. Several kinases were found to be critical for Dvl2 localisation, stability control and functional segregation. For example, S143-phosphorylated Dvl2 was detected, together with CK1δ/ε, at the centrosome and basal body of primary cilia and plays pivotal roles during ciliogenesis. However, relatively less is known about Dvl dephosphorylation and the phosphatases involved. Here, we identified PP5 (PPP5C) as a phosphatase of Dvl2. PP5 interacts with and can directly dephosphorylate Dvl2. Knockdown of PP5 caused elevated Dvl2 phosphorylation both at the basal level and upon Wnt stimulation. In the Dvl2 protein, S143, the 10B5 cluster and other sites were dephosphorylated by PP5. Interestingly, comparison of PP5 with PP2A, another known Dvl2 phosphatase, revealed that PP5 and PP2A are not fully redundant in the regulation of Dvl2 phosphorylation status. In hTERT-RPE1 cells, PP5 was found at the basal body of cilia, where S143-phosphorylated Dvl2 also resides. Functional assays revealed modest effects on ciliogenesis after PP5 depletion or over-expression. Taken together, our results provided evidence to suggest PP5 as a new phosphatase for Dvl2.
Collapse
Affiliation(s)
- Jianlei Xie
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng Han
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Miaojun Zhang
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Wu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
81
|
Ruggeri G, Timms AE, Cheng C, Weiss A, Kollros P, Chapman T, Tully H, Mirzaa GM. Bi-allelic mutations of CCDC88C are a rare cause of severe congenital hydrocephalus. Am J Med Genet A 2018; 176:676-681. [PMID: 29341397 DOI: 10.1002/ajmg.a.38592] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/24/2017] [Accepted: 12/01/2017] [Indexed: 01/13/2023]
Abstract
Congenital or infantile hydrocephalus is caused by genetic and non-genetic factors and is highly heterogeneous in etiology. In recent studies, a limited number of genetic causes of hydrocephalus have been identified. To date, recessive mutations in the CCDC88C gene have been identified as a cause of non-syndromic congenital hydrocephalus in three reported families. Here, we report the fourth known family with two affected individuals with congenital hydrocephalus due to a homozygous mutation in the CCDC88C gene identified by whole exome sequencing. Our two newly described children, as well as the previously published ones, all shared several features including severe infantile-onset hydrocephalus, mild to severe intellectual delay, varying degrees of motor delay, and infantile onset seizures. All identified homozygous mutations in CCDC88C abolish the PDZ binding site necessary for proper CCDC88C protein function in the Wnt signaling pathway. Our report further establishes CCDC88C as one of the few known recessive causes of severe prenatal-onset hydrocephalus. Recognition of this syndrome has important diagnostic and genetic implications for families identified in the future.
Collapse
Affiliation(s)
- Gaia Ruggeri
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington
| | - Chi Cheng
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Avery Weiss
- Division of Ophthalmology, Roger H. Johnson Vision Lab, Seattle Children's Hospital, Seattle, Washington.,Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington
| | - Peter Kollros
- Division of Pediatric Neurology, Seattle Children's Hospital, Seattle, Washington
| | - Teresa Chapman
- Department of Radiology, Seattle Children's Hospital, Seattle, Washington.,University of Washington School of Medicine, University of Washington, Seattle, Washington
| | - Hannah Tully
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Division of Pediatric Neurology, Seattle Children's Hospital, Seattle, Washington
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| |
Collapse
|
82
|
Surprisingly good outcome in antenatal diagnosis of severe hydrocephalus related to CCDC88C deficiency. Eur J Med Genet 2017; 61:189-196. [PMID: 29225145 DOI: 10.1016/j.ejmg.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/23/2017] [Accepted: 12/04/2017] [Indexed: 11/22/2022]
Abstract
Non-syndromic congenital hydrocephalus is aetiologically diverse and while a genetic cause is frequently suspected, it often cannot be confirmed. The most common genetic cause is L1CAM-related X-linked hydrocephalus and that explains only 5%-10% of all male cases. This underlines a current limitation in our understanding of the genetic burden of non-syndromic congenital hydrocephalus, especially for those cases with likely autosomal recessive inheritance. Additionally, the prognosis for most cases of severe congenital hydrocephalus is poor, with most of the surviving infants displaying significant intellectual impairment despite surgical intervention. It is for this reason that couples with an antenatal diagnosis of severe hydrocephalus are given the option, and may opt, for termination of the pregnancy. We present two families with CCDC88C-related recessive congenital hydrocephalus with children who had severe hydrocephalus. Those individuals who were shunted within the first few weeks of life, who did not require multiple surgical revisions, and who had a more distal truncating variant of the CCDC88C gene met their early childhood developmental milestones in some cases. This suggests that children with CCDC88C-related autosomal recessive hydrocephalus can have normal developmental outcomes under certain circumstances. We recommend CCDC88C analysis in cases of severe non-syndromic congenital hydrocephalus, especially when aqueduct stenosis with or without a medial diverticulum is seen, in order to aid prognosis discussion.
Collapse
|
83
|
The mouse Jhy gene regulates ependymal cell differentiation and ciliogenesis. PLoS One 2017; 12:e0184957. [PMID: 29211732 PMCID: PMC5718522 DOI: 10.1371/journal.pone.0184957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
During the first postnatal week of mouse development, radial glial cells lining the ventricles of the brain differentiate into ependymal cells, undergoing a morphological change from pseudostratified cuboidal cells to a flattened monolayer. Concomitant with this change, multiple motile cilia are generated and aligned on each nascent ependymal cell. Proper ependymal cell development is crucial to forming the brain tissue:CSF barrier, and to the establishment of ciliary CSF flow, but the mechanisms that regulate this differentiation event are poorly understood. The JhylacZ mouse line carries an insertional mutation in the Jhy gene (formerly 4931429I11Rik), and homozygous JhylacZ/lacZ mice develop a rapidly progressive juvenile hydrocephalus, with defects in ependymal cilia morphology and ultrastructure. Here we show that beyond just defective motile cilia, JhylacZ/lacZ mice display abnormal ependymal cell differentiation. Ventricular ependyma in JhylacZ/lacZ mice retain an unorganized and multi-layered morphology, representative of undifferentiated ependymal (radial glial) cells, and they show altered expression of differentiation markers. Most JhylacZ/lacZ ependymal cells do eventually acquire some differentiated ependymal characteristics, suggesting a delay, rather than a block, in the differentiation process, but ciliogenesis remains perturbed. JhylacZ/lacZ ependymal cells also manifest disruptions in adherens junction formation, with altered N-cadherin localization, and have defects in the polarized organization of the apical motile cilia that do form. Functional studies showed that cilia of JhylacZ/lacZ mice have severely reduced motility, a potential cause for the development of hydrocephalus. This work shows that JHY does not only control ciliogenesis, but is a crucial component of the ependymal differentiation process, with ciliary defects likely a consequence of altered ependymal differentiation.
Collapse
|
84
|
Omran AJA, Saternos HC, Althobaiti YS, Wisner A, Sari Y, Nauli SM, AbouAlaiwi WA. Alcohol consumption impairs the ependymal cilia motility in the brain ventricles. Sci Rep 2017; 7:13652. [PMID: 29057897 PMCID: PMC5651853 DOI: 10.1038/s41598-017-13947-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
Ependymal cilia protrude into the central canal of the brain ventricles and spinal cord to circulate the cerebral spinal fluid (CSF). Ependymal cilia dysfunction can hinder the movement of CSF leading to an abnormal accumulation of CSF within the brain known as hydrocephalus. Although the etiology of hydrocephalus was studied before, the effects of ethanol ingestion on ependymal cilia function have not been investigated in vivo. Here, we report three distinct types of ependymal cilia, type-I, type-II and type-III classified based upon their beating frequency, their beating angle, and their distinct localization within the mouse brain-lateral ventricle. Our studies show for the first time that oral gavage of ethanol decreased the beating frequency of all three types of ependymal cilia in both the third and the lateral rat brain ventricles in vivo. Furthermore, we show for the first time that hydin, a hydrocephalus-inducing gene product whose mutation impairs ciliary motility, and polycystin-2, whose ablation is associated with hydrocephalus are colocalized to the ependymal cilia. Thus, our studies reinforce the presence of three types of ependymal cilia in the brain ventricles and demonstrate the involvement of ethanol as a risk factor for the impairment of ependymal cilia motility in the brain.
Collapse
Affiliation(s)
- Alzahra J Al Omran
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, Ohio, USA
| | - Hannah C Saternos
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, Ohio, USA
| | - Yusuf S Althobaiti
- Taif University, College of Pharmacy, Department of Pharmacology and Toxicology, Taif, Kingdom of Saudi Arabia
| | - Alexander Wisner
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, Ohio, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, Ohio, USA
| | - Surya M Nauli
- Chapman University, College of Pharmacy, Irvine, California, USA
| | - Wissam A AbouAlaiwi
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, Ohio, USA.
| |
Collapse
|
85
|
Fujitani M, Sato R, Yamashita T. Loss of p73 in ependymal cells during the perinatal period leads to aqueductal stenosis. Sci Rep 2017; 7:12007. [PMID: 28931858 PMCID: PMC5607290 DOI: 10.1038/s41598-017-12105-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/05/2017] [Indexed: 11/17/2022] Open
Abstract
The p53 family member p73 plays a critical role in brain development. p73 knockout mice exhibit a number of deficits in the nervous system, such as neuronal death, hydrocephalus, hippocampal dysgenesis, and pheromonal defects. Among these phenotypes, the mechanisms of hydrocephalus remain unknown. In this study, we generated a p73 knock-in (KI) mutant mouse and a conditional p73 knockout mouse. The homozygous KI mutants showed aqueductal stenosis. p73 was expressed in the ependymal cell layer and several brain areas. Unexpectedly, when p73 was disrupted during the postnatal period, animals showed aqueductal stenosis at a later stage but not hydrocephalus. An assessment of the integrity of cilia and basal body (BB) patch formation suggests that p73 is required to establish translational polarity but not to establish rotational polarity or the planar polarization of BB patches. Deletion of p73 in adult ependymal cells did not affect the maintenance of translational polarity. These results suggest that the loss of p73 during the embryonic period is critical for hydrocephalus development.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0872, Japan. .,Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Ryohei Sato
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,World Premier International, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan. .,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| |
Collapse
|
86
|
McAllister JP, Guerra MM, Ruiz LC, Jimenez AJ, Dominguez-Pinos D, Sival D, den Dunnen W, Morales DM, Schmidt RE, Rodriguez EM, Limbrick DD. Ventricular Zone Disruption in Human Neonates With Intraventricular Hemorrhage. J Neuropathol Exp Neurol 2017; 76:358-375. [PMID: 28521038 DOI: 10.1093/jnen/nlx017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To determine if ventricular zone (VZ) and subventricular zone (SVZ) alterations are associated with intraventricular hemorrhage (IVH) and posthemorrhagic hydrocephalus, we compared postmortem frontal and subcortical brain samples from 12 infants with IVH and 3 nonneurological disease controls without hemorrhages or ventriculomegaly. Birth and expiration estimated gestational ages were 23.0-39.1 and 23.7-44.1 weeks, respectively; survival ranges were 0-42 days (median, 2.0 days). Routine histology and immunohistochemistry for neural stem cells (NSCs), neural progenitors (NPs), multiciliated ependymal cells (ECs), astrocytes (AS), and cell adhesion molecules were performed. Controls exhibited monociliated NSCs and multiciliated ECs lining the ventricles, abundant NPs in the SVZ, and medial vs. lateral wall differences with a complex mosaic organization in the latter. In IVH cases, normal VZ/SVZ areas were mixed with foci of NSC and EC loss, eruption of cells into the ventricle, cytoplasmic transposition of N-cadherin, subependymal rosettes, and periventricular heterotopia. Mature AS populated areas believed to be sites of VZ disruption. The cytopathology and extension of the VZ disruption correlated with developmental age but not with brain hemorrhage grade or location. These results corroborate similar findings in congenital hydrocephalus in animals and humans and indicate that VZ disruption occurs consistently in premature neonates with IVH.
Collapse
Affiliation(s)
- James P McAllister
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Maria Montserrat Guerra
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Leandro Castaneyra Ruiz
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Antonio J Jimenez
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Dolores Dominguez-Pinos
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Deborah Sival
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Wilfred den Dunnen
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Diego M Morales
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Robert E Schmidt
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - Esteban M Rodriguez
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| | - David D Limbrick
- From the Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri (JPM, LCR, DMM, DDL); Instituto de Antomía, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile (MMG, EMR); Instituto de Biología Celular, Genética y Fisiología Facultad de Ciencias, Universidad de Malaga, Malaga, Spain and Instituto de Investigación Biomédica (IBIMA), Malaga, Spain (AJJ, DDP); Departments of Pediatrics, Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands (DS, WD); Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri (RES); and Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri (DDL)
| |
Collapse
|
87
|
Bryja V, Červenka I, Čajánek L. The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Crit Rev Biochem Mol Biol 2017; 52:614-637. [PMID: 28741966 DOI: 10.1080/10409238.2017.1350135] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wnt signaling cascade has developed together with multicellularity to orchestrate the development and homeostasis of complex structures. Wnt pathway components - such as β-catenin, Dishevelled (DVL), Lrp6, and Axin-- are often dedicated proteins that emerged in evolution together with the Wnt signaling cascade and are believed to function primarily in the Wnt cascade. It is interesting to see that in recent literature many of these proteins are connected with cellular functions that are more ancient and not limited to multicellular organisms - such as cell cycle regulation, centrosome biology, or cell division. In this review, we summarize the recent literature describing this crosstalk. Specifically, we attempt to find the answers to the following questions: Is the response to Wnt ligands regulated by the cell cycle? Is the centrosome and/or cilium required to activate the Wnt pathway? How do Wnt pathway components regulate the centrosomal cycle and cilia formation and function? We critically review the evidence that describes how these connections are regulated and how they help to integrate cell-to-cell communication with the cell and the centrosomal cycle in order to achieve a fine-tuned, physiological response.
Collapse
Affiliation(s)
- Vítězslav Bryja
- a Department of Experimental Biology, Faculty of Science , Masaryk University , Brno , Czech Republic
| | - Igor Červenka
- b Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology , Karolinska Institutet , Stockholm , Sweden
| | - Lukáš Čajánek
- c Department of Histology and Embryology, Faculty of Medicine , Masaryk University , Brno , Czech Republic
| |
Collapse
|
88
|
Shimada IS, Acar M, Burgess RJ, Zhao Z, Morrison SJ. Prdm16 is required for the maintenance of neural stem cells in the postnatal forebrain and their differentiation into ependymal cells. Genes Dev 2017; 31:1134-1146. [PMID: 28698301 PMCID: PMC5538436 DOI: 10.1101/gad.291773.116] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/12/2017] [Indexed: 11/24/2022]
Abstract
Shimada et al. demonstrate that Prdm16 is required for neural stem cell maintenance and neurogenesis in the adult lateral ventricle subventricular zone and dentate gyrus. Prdm16 is also required for the formation of ciliated ependymal cells in the lateral ventricle. We and others showed previously that PR domain-containing 16 (Prdm16) is a transcriptional regulator required for stem cell function in multiple fetal and neonatal tissues, including the nervous system. However, Prdm16 germline knockout mice died neonatally, preventing us from testing whether Prdm16 is also required for adult stem cell function. Here we demonstrate that Prdm16 is required for neural stem cell maintenance and neurogenesis in the adult lateral ventricle subventricular zone and dentate gyrus. We also discovered that Prdm16 is required for the formation of ciliated ependymal cells in the lateral ventricle. Conditional Prdm16 deletion during fetal development using Nestin-Cre prevented the formation of ependymal cells, disrupting cerebrospinal fluid flow and causing hydrocephalus. Postnatal Prdm16 deletion using Nestin-CreERT2 did not cause hydrocephalus or prevent the formation of ciliated ependymal cells but caused defects in their differentiation. Prdm16 was required in neural stem/progenitor cells for the expression of Foxj1, a transcription factor that promotes ependymal cell differentiation. These studies show that Prdm16 is required for adult neural stem cell maintenance and neurogenesis as well as the formation of ependymal cells.
Collapse
Affiliation(s)
- Issei S Shimada
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Melih Acar
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Bahcesehir University, School of Medicine, Istanbul 34734, Turkey
| | - Rebecca J Burgess
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sean J Morrison
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
89
|
Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus. Cell Rep 2017; 20:960-972. [DOI: 10.1016/j.celrep.2017.06.089] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 05/22/2017] [Accepted: 06/29/2017] [Indexed: 11/15/2022] Open
|
90
|
Abstract
Multiciliated cells are epithelial cells that are in contact with bodily fluids and are required for the proper function of major organs including the brain, the respiratory system and the reproductive tracts. Their multiple motile cilia beat unidirectionally to remove particles of external origin from their surface and/or drive cells or fluids into the lumen of the organs. Multiciliated cells in the brain are produced once, almost exclusively during embryonic development, whereas in respiratory tracts and oviducts they regenerate throughout life. In this Review, we provide a cell-to-organ overview of multiciliated cells and highlight recent studies that have greatly increased our understanding of the mechanisms driving the development and function of these cells in vertebrates. We discuss cell fate determination and differentiation of multiciliated cells, and provide a comprehensive account of their locations and functions in mammals.
Collapse
|
91
|
Luo W, Yi H, Taylor J, Li JD, Chi F, Todd NW, Lin X, Ren D, Chen P. Cilia distribution and polarity in the epithelial lining of the mouse middle ear cavity. Sci Rep 2017; 7:45870. [PMID: 28358397 PMCID: PMC5372464 DOI: 10.1038/srep45870] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/03/2017] [Indexed: 12/15/2022] Open
Abstract
The middle ear conducts sound to the cochlea for hearing. Otitis media (OM) is the most common illness in childhood. Moreover, chronic OM with effusion (COME) is the leading cause of conductive hearing loss. Clinically, COME is highly associated with Primary Ciliary Dyskinesia, implicating significant contributions of cilia dysfunction to COME. The understanding of middle ear cilia properties that are critical to OM susceptibility, however, is limited. Here, we confirmed the presence of a ciliated region near the Eustachian tube orifice at the ventral region of the middle ear cavity, consisting mostly of a lumen layer of multi-ciliated and a layer of Keratin-5-positive basal cells. We also found that the motile cilia are polarized coordinately and display a planar cell polarity. Surprisingly, we also found a region of multi-ciliated cells that line the posterior dorsal pole of the middle ear cavity which was previously thought to contain only non-ciliated cells. Our study provided a more complete understanding of cilia distribution and revealed for the first time coordinated polarity of cilia in the epithelium of the mammalian middle ear, thus illustrating novel structural features that are likely critical for middle ear functions and related to OM susceptibility.
Collapse
Affiliation(s)
- Wenwei Luo
- Department of Cell Biology Emory University, Atlanta, USA.,Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, PR China
| | - Hong Yi
- Electronic Microscopy Laboratory, Emory University, Atlanta, USA
| | - Jeannette Taylor
- Electronic Microscopy Laboratory, Emory University, Atlanta, USA
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institution for Biomedical Sciences, Georgia State University, Atlanta, USA
| | - Fanglu Chi
- Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, PR China
| | - N Wendell Todd
- Department of Otolaryngology, Emory University, Atlanta, USA
| | - Xi Lin
- Department of Otolaryngology, Emory University, Atlanta, USA
| | - Dongdong Ren
- Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, PR China
| | - Ping Chen
- Department of Cell Biology Emory University, Atlanta, USA
| |
Collapse
|
92
|
Butler MT, Wallingford JB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol 2017; 18:375-388. [PMID: 28293032 DOI: 10.1038/nrm.2017.11] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) is an essential feature of animal tissues, whereby distinct polarity is established within the plane of a cell sheet. Tissue-wide establishment of PCP is driven by multiple global cues, including gradients of gene expression, gradients of secreted WNT ligands and anisotropic tissue strain. These cues guide the dynamic, subcellular enrichment of PCP proteins, which can self-assemble into mutually exclusive complexes at opposite sides of a cell. Endocytosis, endosomal trafficking and degradation dynamics of PCP components further regulate planar tissue patterning. This polarization propagates throughout the whole tissue, providing a polarity axis that governs collective morphogenetic events such as the orientation of subcellular structures and cell rearrangements. Reflecting the necessity of polarized cellular behaviours for proper development and function of diverse organs, defects in PCP have been implicated in human pathologies, most notably in severe birth defects.
Collapse
Affiliation(s)
- Mitchell T Butler
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, Texas 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
93
|
Cerebrospinal fluid biomarkers of infantile congenital hydrocephalus. PLoS One 2017; 12:e0172353. [PMID: 28212403 PMCID: PMC5315300 DOI: 10.1371/journal.pone.0172353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/04/2017] [Indexed: 11/19/2022] Open
Abstract
Introduction Hydrocephalus is a complex neurological disorder with a pervasive impact on the central nervous system. Previous work has demonstrated derangements in the biochemical profile of cerebrospinal fluid (CSF) in hydrocephalus, particularly in infants and children, in whom neurodevelopment is progressing in parallel with concomitant neurological injury. The objective of this study was to examine the CSF of children with congenital hydrocephalus (CHC) to gain insight into the pathophysiology of hydrocephalus and identify candidate biomarkers of CHC with potential diagnostic and therapeutic value. Methods CSF levels of amyloid precursor protein (APP) and derivative isoforms (sAPPα, sAPPβ, Aβ42), tau, phosphorylated tau (pTau), L1CAM, NCAM-1, aquaporin 4 (AQP4), and total protein (TP) were measured by ELISA in 20 children with CHC. Two comparative groups were included: age-matched controls and children with other neurological diseases. Demographic parameters, ventricular frontal-occipital horn ratio, associated brain malformations, genetic alterations, and surgical treatments were recorded. Logistic regression analysis and receiver operating characteristic curves were used to examine the association of each CSF protein with CHC. Results CSF levels of APP, sAPPα, sAPPβ, Aβ42, tau, pTau, L1CAM, and NCAM-1 but not AQP4 or TP were increased in untreated CHC. CSF TP and normalized L1CAM levels were associated with FOR in CHC subjects, while normalized CSF tau levels were associated with FOR in control subjects. Predictive ability for CHC was strongest for sAPPα, especially in subjects ≤12 months of age (p<0.0001 and AUC = 0.99), followed by normalized sAPPβ (p = 0.0001, AUC = 0.95), tau, APP, and L1CAM. Among subjects ≤12 months, a normalized CSF sAPPα cut-point of 0.41 provided the best prediction of CHC (odds ratio = 528, sensitivity = 0.94, specificity = 0.97); these infants were 32 times more likely to have CHC. Conclusions CSF proteins such as sAPPα and related proteins hold promise as biomarkers of CHC in infants and young children, and provide insight into the pathophysiology of CHC during this critical period in neurodevelopment.
Collapse
|
94
|
Abstract
Many animal cells assemble single cilia involved in motile and/or sensory functions. In contrast, multiciliated cells (MCCs) assemble up to 300 motile cilia that beat in a coordinate fashion to generate a directional fluid flow. In the human airways, the brain, and the oviduct, MCCs allow mucus clearance, cerebrospinal fluid circulation, and egg transportation, respectively. Impairment of MCC function leads to chronic respiratory infections and increased risks of hydrocephalus and female infertility. MCC differentiation during development or repair involves the activation of a regulatory cascade triggered by the inhibition of Notch activity in MCC progenitors. The downstream events include the simultaneous assembly of a large number of basal bodies (BBs)-from which cilia are nucleated-in the cytoplasm of the differentiating MCCs, their migration and docking at the plasma membrane associated to an important remodeling of the actin cytoskeleton, and the assembly and polarization of motile cilia. The direction of ciliary beating is coordinated both within cells and at the tissue level by a combination of planar polarity cues affecting BB position and hydrodynamic forces that are both generated and sensed by the cilia. Herein, we review the mechanisms controlling the specification and differentiation of MCCs and BB assembly and organization at the apical surface, as well as ciliary assembly and coordination in MCCs.
Collapse
Affiliation(s)
- Alice Meunier
- Institut de Biologie de l'Ecole Normale Supérieure, Institut National de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche Scientifique UMR8197, 75005 Paris, France
| | - Juliette Azimzadeh
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592, Université Paris-Diderot, 75013 Paris, France
| |
Collapse
|
95
|
Carvajal-Gonzalez JM, Mulero-Navarro S, Mlodzik M. Centriole positioning in epithelial cells and its intimate relationship with planar cell polarity. Bioessays 2016; 38:1234-1245. [PMID: 27774671 DOI: 10.1002/bies.201600154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Planar cell polarity (PCP)-signaling and associated tissue polarization are evolutionarily conserved. A well documented feature of PCP-signaling in vertebrates is its link to centriole/cilia positioning, although the relationship of PCP and ciliogenesis is still debated. A recent report in Drosophila established that Frizzled (Fz)-PCP core signaling has an instructive input to polarized centriole positioning in non-ciliated Drosophila wing epithelia as a PCP read-out. Here, we review the impact of this observation in the context of recent descriptions of the relationship(s) of core Fz-PCP signaling and cilia/centriole positioning in epithelial and non-epithelial cells. All existing data are consistent with a model where Fz-PCP signaling functions upstream of centriole/cilia positioning, independent of ciliogenesis. The combined data sets indicate that the Fz-Dsh PCP complex is instructive for centriole/ciliary positioning via an actin-based mechanism. Thereby, centriole/cilia/centrosome positioning can be considered an evolutionarily conserved readout and common downstream effect of PCP-signaling from flies to mammals.
Collapse
Affiliation(s)
- Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
96
|
Katz ML, Tecedor L, Chen Y, Williamson BG, Lysenko E, Wininger FA, Young WM, Johnson GC, Whiting REH, Coates JR, Davidson BL. AAV gene transfer delays disease onset in a TPP1-deficient canine model of the late infantile form of Batten disease. Sci Transl Med 2016; 7:313ra180. [PMID: 26560358 DOI: 10.1126/scitranslmed.aac6191] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common form of the childhood neurodegenerative disease late infantile neuronal ceroid lipofuscinosis (also called Batten disease) is caused by deficiency of the soluble lysosomal enzyme tripeptidyl peptidase 1 (TPP1) resulting from mutations in the TPP1 gene. We tested whether TPP1 gene transfer to the ependyma, the epithelial lining of the brain ventricular system, in TPP1-deficient dogs would be therapeutically beneficial. A one-time administration of recombinant adeno-associated virus (rAAV) expressing canine TPP1 (rAAV.caTPP1) resulted in high expression of TPP1 predominantly in ependymal cells and secretion of the enzyme into the cerebrospinal fluid leading to clinical benefit. Diseased dogs treated with rAAV.caTPP1 showed delays in onset of clinical signs and disease progression, protection from cognitive decline, and extension of life span. By immunostaining and enzyme assay, recombinant protein was evident throughout the brain and spinal cord, with correction of the neuropathology characteristic of the disease. This study in a naturally occurring canine model of TPP1 deficiency highlights the utility of AAV transduction of ventricular lining cells to accomplish stable secretion of recombinant protein for broad distribution in the central nervous system and therapeutic benefit.
Collapse
Affiliation(s)
- Martin L Katz
- Department of Ophthalmology, University of Missouri, Columbia, MO 65212, USA
| | - Luis Tecedor
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yonghong Chen
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Baye G Williamson
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Elena Lysenko
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Fred A Wininger
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Whitney M Young
- Department of Ophthalmology, University of Missouri, Columbia, MO 65212, USA
| | - Gayle C Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Rebecca E H Whiting
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Joan R Coates
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA. Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
97
|
Wang Y, Williams J, Rattner A, Wu S, Bassuk AG, Goffinet AM, Nathans J. Patterning of papillae on the mouse tongue: A system for the quantitative assessment of planar cell polarity signaling. Dev Biol 2016; 419:298-310. [PMID: 27612405 DOI: 10.1016/j.ydbio.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/03/2016] [Accepted: 09/03/2016] [Indexed: 12/16/2022]
Abstract
The dorsal surface of the mouse tongue is covered by ~7000 papillae, asymmetric epithelial protrusions that are precisely oriented to create a stereotyped macroscopic pattern. Within the context of this large-scale pattern, neighboring papillae exhibit a high degree of local order that minimizes the differences in their orientations. We show here that the orientations of lingual papillae are under the control of the core planar cell polarity (PCP) genes Vangl1, Vangl2, and Celsr1. Using K14-Cre and Nkx2.5-Cre to induce conditional knockout of Vangl1 and/or Vangl2 in the tongue epithelium, we observe more severe disruptions to local order among papillae with inactivation of larger numbers of Vangl genes, a greater role for Vangl2 than Vangl1, and a more severe phenotype with the Vangl2 Looptail (Lp) allele than the Vangl2 null allele, consistent with a dominant negative mode of action of the Vangl2Lp allele. Interestingly, Celsr1-/- tongues show disruption of both local and global order, with many papillae in the anterior tongue showing a reversed orientation. To quantify each of these phenotypes, we have developed and applied three procedures for sampling the orientations of papillae and assessing the degree of order on different spatial scales. The experiments reported here establish the dorsal surface of the mouse tongue as a favorable system for studying PCP control of epithelial patterning.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Williams
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shu Wu
- Department of Neurology, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA; Department of Pediatrics, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | - Alexander G Bassuk
- Department of Neurology, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA; Department of Pediatrics, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | - Andre M Goffinet
- Institute of Neuroscience, University of Louvain Medical School and WELBIO, B1200 Brussels, Belgium
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
98
|
Abedalthagafi MS, Wu MP, Merrill PH, Du Z, Woo T, Sheu SH, Hurwitz S, Ligon KL, Santagata S. Decreased FOXJ1 expression and its ciliogenesis programme in aggressive ependymoma and choroid plexus tumours. J Pathol 2016; 238:584-97. [PMID: 26690880 DOI: 10.1002/path.4682] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/12/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022]
Abstract
Well-differentiated human cancers share transcriptional programmes with the normal tissue counterparts from which they arise. These programmes broadly influence cell behaviour and function and are integral modulators of malignancy. Here, we show that the master regulator of motile ciliogenesis, FOXJ1, is highly expressed in cells along the ventricular surface of the human brain. Strong expression is present in cells of the ependyma and the choroid plexus as well as in a subset of cells residing in the subventricular zone. Expression of FOXJ1 and its transcriptional programme is maintained in many well-differentiated human tumours that arise along the ventricle, including low-grade ependymal tumours and choroid plexus papillomas. Anaplastic ependymomas as well as choroid plexus carcinomas show decreased FOXJ1 expression and its associated ciliogenesis programme genes. In ependymomas and choroid plexus tumours, reduced expression of FOXJ1 and its ciliogenesis programme are markers of poor outcome and are therefore useful biomarkers for assessing these tumours. Transitions in ciliogenesis define distinct differentiation states in ependymal and choroid plexus tumours with important implications for patient care. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Malak S Abedalthagafi
- Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, King Fahad Medical City, Riyadh, Saudi Arabia.,King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael P Wu
- Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Parker H Merrill
- Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ziming Du
- Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Terri Woo
- Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shu-Hsien Sheu
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shelley Hurwitz
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith L Ligon
- Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sandro Santagata
- Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
99
|
Ye J, Zhang Z, Wang Y, Chen C, Xu X, Yu H, Peng M. Altered hippocampal microRNA expression profiles in neonatal rats caused by sevoflurane anesthesia: MicroRNA profiling and bioinformatics target analysis. Exp Ther Med 2016; 12:1299-1310. [PMID: 27588052 PMCID: PMC4998092 DOI: 10.3892/etm.2016.3452] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
Although accumulating evidence has suggested that microRNAs (miRNAs) have a serious impact on cognitive function and are associated with the etiology of several neuropsychiatric disorders, their expression in sevoflurane-induced neurotoxicity in the developing brain has not been characterized. In the present study, the miRNAs expression pattern in neonatal hippocampus samples (24 h after sevoflurane exposure) was investigated and 9 miRNAs were selected, which were associated with brain development and cognition in order to perform a bioinformatic analysis. Previous microfluidic chip assay had detected 29 upregulated and 24 downregulated miRNAs in the neonatal rat hippocampus, of which 7 selected deregulated miRNAs were identified by the quantitative polymerase chain reaction. A total of 85 targets of selected deregulated miRNAs were analyzed using bioinformatics and the main enriched metabolic pathways, mitogen-activated protein kinase and Wnt pathways may have been involved in molecular mechanisms with regard to neuronal cell body, dendrite and synapse. The observations of the present study provided a novel understanding regarding the regulatory mechanism of miRNAs underlying sevoflurane-induced neurotoxicity, therefore benefitting the improvement of the prevention and treatment strategies of volatile anesthetics related neurotoxicity.
Collapse
Affiliation(s)
- Jishi Ye
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xing Xu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hui Yu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
100
|
Ohata S, Alvarez-Buylla A. Planar Organization of Multiciliated Ependymal (E1) Cells in the Brain Ventricular Epithelium. Trends Neurosci 2016; 39:543-551. [PMID: 27311928 DOI: 10.1016/j.tins.2016.05.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 01/17/2023]
Abstract
Cerebrospinal fluid (CSF) continuously flows through the cerebral ventricles, a process essential for brain homeostasis. Multiciliated ependymal (E1) cells line the walls of the ventricles and contribute importantly to CSF flow through ciliary beating. Key to this function is the rotational and translational planar cell polarity (PCP) of E1 cells. Defects in the PCP of E1 cells can result in abnormal CSF accumulation and hydrocephalus. Here, we integrate recent data on the roles of early CSF flow in the embryonic ventricles, PCP regulators (e.g., Vangl2 and Dishevelled), and cytoskeletal networks in the establishment, refinement, and maintenance of E1 cells' PCP. The planar organization mechanisms of E1 cells could explain how CSF flow contributes to brain function and may help in the diagnosis and prevention of hydrocephalus.
Collapse
Affiliation(s)
- Shinya Ohata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, and Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|