51
|
Fournier LA, Phadke RA, Salgado M, Brack A, Nocon JC, Bolshakova S, Grant JR, Padró Luna NM, Sen K, Cruz-Martín A. Overexpression of the schizophrenia risk gene C4 in PV cells drives sex-dependent behavioral deficits and circuit dysfunction. iScience 2024; 27:110800. [PMID: 39310747 PMCID: PMC11416532 DOI: 10.1016/j.isci.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Fast-spiking parvalbumin (PV)-positive cells are key players in orchestrating pyramidal neuron activity, and their dysfunction is consistently observed in myriad brain diseases. To understand how immune complement pathway dysregulation in PV cells drives disease pathogenesis, we have developed a transgenic line that permits cell-type specific overexpression of the schizophrenia-associated C4 gene. We found that overexpression of mouse C4 (mC4) in PV cells causes sex-specific alterations in anxiety-like behavior and deficits in synaptic connectivity and excitability of PFC PV cells. Using a computational model, we demonstrated that these microcircuit deficits led to hyperactivity and disrupted neural communication. Finally, pan-neuronal overexpression of mC4 failed to evoke the same deficits in behavior as PV-specific mC4 overexpression, suggesting that perturbations of this neuroimmune gene in fast-spiking neurons are especially detrimental to circuits associated with anxiety-like behavior. Together, these results provide a causative link between C4 and the vulnerability of PV cells in brain disease.
Collapse
Affiliation(s)
- Luke A. Fournier
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Rhushikesh A. Phadke
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Maria Salgado
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Alison Brack
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Jian Carlo Nocon
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sonia Bolshakova
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics MS Program, Boston University, Boston, MA, USA
| | - Jaylyn R. Grant
- Biological Sciences, Eastern Illinois University, Charleston, IL, USA
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
| | - Nicole M. Padró Luna
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
- Biology Department, College of Natural Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Kamal Sen
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Alberto Cruz-Martín
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- NeuroTechnology Center (NTC), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
52
|
Li S, Liu H, Lv P, Yao Y, Peng L, Xia T, Yan C, Ma Z, Chen ZP, Zhao C, Gu X. Microglia mediate memory dysfunction via excitatory synaptic elimination in a fracture surgery mouse model. J Neuroinflammation 2024; 21:227. [PMID: 39285282 PMCID: PMC11406843 DOI: 10.1186/s12974-024-03216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Cognitive impairment is a common issue among human patients undergoing surgery, yet the neural mechanism causing this impairment remains unidentified. Surgical procedures often lead to glial cell activation and neuronal hypoexcitability, both of which are known to contribute to postoperative cognitive dysfunction (POCD). However, the role of neuron-glia crosstalk in the pathology of POCD is still unclear. Through integrated transcriptomics and proteomics analyses, we found that the complement cascades and microglial phagocytotic signaling pathways are activated in a mouse model of POCD. Following surgery, there is a significant increase in the presence of complement C3, but not C1q, in conjunction with presynaptic elements. This triggers a reduction in excitatory synapses, a decline in excitatory synaptic transmission, and subsequent memory deficits in the mouse model. By genetically knockout out C3ar1 or inhibiting p-STAT3 signaling, we successfully prevented neuronal hypoexcitability and alleviated cognitive impairment in the mouse model. Therefore, targeting the C3aR and downstream p-STAT3 signaling pathways could serve as potential therapeutic approaches for mitigating POCD.
Collapse
Affiliation(s)
- Shuming Li
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Huan Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yu Yao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liangyu Peng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianjiao Xia
- Medical School, Nanjing University, Nanjing, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhang-Peng Chen
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, School of Medicine, Southeast University, Nanjing, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
53
|
Ahmad S, Choe K, Badshah H, Ahmad R, Ali W, Rehman IU, Park TJ, Park JS, Kim MO. Physcion Mitigates LPS-Induced Neuroinflammation, Oxidative Stress, and Memory Impairments via TLR-4/NF-кB Signaling in Adult Mice. Pharmaceuticals (Basel) 2024; 17:1199. [PMID: 39338361 PMCID: PMC11434929 DOI: 10.3390/ph17091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is the most predominant cause of dementia, considered a progressive decline in cognitive function that ultimately leads to death. AD has posed a substantial challenge in the records of medical science over the past century, representing a predominant etiology of dementia with a high prevalence rate. Neuroinflammation is a common characteristic of various central nervous system (CNS) pathologies like AD, primarily mediated by specialized brain immune and inflammatory cells, such as astrocytes and microglia. The present study aims to elucidate the potential mechanism of physcion that mitigates LPS-induced gliosis and assesses oxidative stress in mice. Physcion reduced the reactivity of Iba-1- and GFAP-positive cells and decreased the level of inflammatory cytokines like TNF-α and IL-1β. Physcion also reversed the effect of LPS-induced oxidative stress by upregulating the expression of Nrf2 and HO-1. Moreover, physcion treatment reversed LPS-induced synaptic disorder by increasing the level of presynaptic protein SNAP-23 and postsynaptic protein PSD-95. Our findings may provide a contemporary theoretical framework for clinical investigations aimed at examining the pathogenic mechanisms and therapeutic approaches for neuroinflammation and AD.
Collapse
Affiliation(s)
- Sareer Ahmad
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Haroon Badshah
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, KPK, Pakistan
| | - Riaz Ahmad
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Waqar Ali
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, UK
| | - Jun Sung Park
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
54
|
Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Wu YT, Shao HH, Chen PC, Lai ML, Deng WC, Hsu R, Lo YC. Utilizing diffusion tensor imaging as an image biomarker in exploring the therapeutic efficacy of forniceal deep brain stimulation in a mice model of Alzheimer's disease. J Neural Eng 2024; 21:056003. [PMID: 39230033 DOI: 10.1088/1741-2552/ad7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Objective.With prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.Approach.This study assessed the efficacy and safety of DBS by estimating the optimal intersection volume between the volume of tissue activated and the fornix. Utilizing a gold-electroplating process, the microelectrode's surface area on the neural probe was increased, enhancing charge transfer performance within potential water window limits. Bilateral fornix implantation was conducted in triple-transgenic AD mice (3 × Tg-AD) and wild-type mice (strain: B6129SF1/J), with forniceal DBS administered exclusively to 3 × Tg-AD mice in the DBS-on group. Behavioral tasks, diffusion tensor imaging (DTI), and immunohistochemistry (IHC) were performed in all mice to assess the therapeutic efficacy of forniceal DBS.Main results.The results illustrated that memory deficits and increased anxiety-like behavior in 3 × Tg-AD mice were rescued by forniceal DBS. Furthermore, forniceal DBS positively altered DTI indices, such as increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD), together with reducing microglial cell and astrocyte counts, suggesting a potential causal relationship between revised FA/MD and reduced cell counts in the anterior cingulate cortex, hippocampus, fornix, amygdala, and entorhinal cortex of 3 × Tg-AD mice following forniceal DBS.Significance.The efficacy of forniceal DBS in AD can be indicated by alterations in DTI-based biomarkers reflecting the decreased activation of glial cells, suggesting reduced neural inflammation as evidenced by improvements in memory and anxiety-like behavior.
Collapse
Affiliation(s)
- You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan, Republic of China
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan, Republic of China
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Wen-Chun Deng
- Departments of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, No.222, Maijin Rd., Keelung 20400, Taiwan, Republic of China
| | - RuSiou Hsu
- Department of Ophthalmology, Stanford University, 1651 Page Mill Rd., Palo Alto, CA 94304, United States of America
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| |
Collapse
|
55
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
56
|
Zhang J, Hu D, Li L, Qu D, Shi W, Xie L, Jiang Q, Li H, Yu T, Qi C, Fu H. M2 Microglia-derived Exosomes Promote Spinal Cord Injury Recovery in Mice by Alleviating A1 Astrocyte Activation. Mol Neurobiol 2024; 61:7009-7025. [PMID: 38367135 DOI: 10.1007/s12035-024-04026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
M2 microglia transplantation has previously demonstrated beneficial effects on spinal cord injury (SCI) by regulating neuroinflammation and enhancing neuronal survival. Exosomes (EXOs), secreted by almost all cell types, embody partial functions and properties of their parent cells. However, the effect of M2 microglia-derived EXOs (M2-EXOs) on SCI recovery and the underlying molecular mechanisms remain unclear. In this study, we isolated M2-EXOs and intravenously introduced them into mice with SCI. Considering the reciprocal communication between microglia and astroglia in both healthy and injured central nervous systems (CNSs), we subsequently focused on the influence of M2-EXOs on astrocyte phenotype regulation. Our findings indicated that M2-EXOs promoted neuron survival and axon preservation, reduced the lesion area, inhibited A1 astrocyte activation, and improved motor function recovery in SCI mice. Moreover, they inhibited the nuclear translocation of p65 and the activation of the NF-κB signalling pathway in A1 astrocytes. Therefore, our research suggests that M2-EXOs mitigate the activation of neurotoxic A1 astrocytes by inhibiting the NF-κB signalling pathway, thereby improving spinal tissue preservation and motor function recovery following SCI. This positions M2-EXOs as a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Medical Department of, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Die Hu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Liping Li
- Department of Bone Surgery, Qingdao Central Hospital, Qingdao, 266000, China
| | - Di Qu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Medical Department of, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Weipeng Shi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Medical Department of, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Lei Xie
- Medical Department of, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
| | - Qi Jiang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Medical Department of, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Haifeng Li
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, 266000, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
57
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
58
|
Quintanilla B, Zarate CA, Pillai A. Ketamine's mechanism of action with an emphasis on neuroimmune regulation: can the complement system complement ketamine's antidepressant effects? Mol Psychiatry 2024; 29:2849-2858. [PMID: 38575806 PMCID: PMC11804209 DOI: 10.1038/s41380-024-02507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Over 300 million people worldwide suffer from major depressive disorder (MDD). Unfortunately, only 30-40% of patients with MDD achieve complete remission after conventional monoamine antidepressant therapy. In recent years, ketamine has revolutionized the treatment of MDD, with its rapid antidepressant effects manifesting within a few hours as opposed to weeks with conventional antidepressants. Many research endeavors have sought to identify ketamine's mechanism of action in mood disorders; while many studies have focused on ketamine's role in glutamatergic modulation, several studies have implicated its role in regulating neuroinflammation. The complement system is an important component of the innate immune response vital for synaptic plasticity. The complement system has been implicated in the pathophysiology of depression, and studies have shown increases in complement component 3 (C3) expression in the prefrontal cortex of suicidal individuals with depression. Given the role of the complement system in depression, ketamine and the complement system's abilities to modulate glutamatergic transmission, and our current understanding of ketamine's anti-inflammatory properties, there is reason to suspect a common link between the complement system and ketamine's mechanism of action. This review will summarize ketamine's anti- inflammatory roles in the periphery and central nervous system, with an emphasis on complement system regulation.
Collapse
Affiliation(s)
- Brandi Quintanilla
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
59
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
60
|
Zhu F, He P, Jiang W, Afridi SK, Xu H, Alahmad M, Alvin Huang YW, Qiu W, Wang G, Tang C. Astrocyte-secreted C3 signaling impairs neuronal development and cognition in autoimmune diseases. Prog Neurobiol 2024; 240:102654. [PMID: 38945516 DOI: 10.1016/j.pneurobio.2024.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Neuromyelitis optica (NMO) arises from primary astrocytopathy induced by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4), leading to severe neurological sequelae such as vision loss, motor deficits, and cognitive decline. Mounting evidence has shown that dysregulated activation of complement components contributes to NMO pathogenesis. Complement C3 deficiency has been shown to protect against hippocampal neurodegeneration and cognitive decline in neurodegenerative disorders (e.g., Alzheimer's disease, AD) and autoimmune diseases (e.g., multiple sclerosis, MS). However, whether inhibiting the C3 signaling can ameliorate cognitive dysfunctions in NMO remains unclear. In this study, we found that the levels of C3a, a split product of C3, significantly correlate with cognitive impairment in our patient cohort. In response to the stimulation of AQP4 autoantibodies, astrocytes were activated to secrete complement C3, which inhibited the development of cultured neuronal dendritic arborization. NMO mouse models exhibited reduced adult hippocampal newborn neuronal dendritic and spine development, as well as impaired learning and memory functions, which could be rescued by decreasing C3 levels in astrocytes. Mechanistically, we found that C3a engaged with C3aR to impair neuronal development by dampening β-catenin signalling. Additionally, inhibition of the C3-C3aR-GSK3β/β-catenin cascade restored neuronal development and ameliorated cognitive impairments. Collectively, our results suggest a pivotal role of the activation of the C3-C3aR network in neuronal development and cognition through mediating astrocyte and adult-born neuron communication, which represents a potential therapeutic target for autoimmune-related cognitive impairment diseases.
Collapse
Affiliation(s)
- Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Pengyan He
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Shabbir Khan Afridi
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; China Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Maali Alahmad
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, United States
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Guangyou Wang
- Department of Neurology, First Affiliated Clinical Hospital of Harbin Medical University, and Department of Neurobiology, Harbin Medical University, Harbin 150081, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
61
|
Pérez LA, Palacios E, González MF, Leyton-Rivera I, Martínez-Meza S, Pérez-Núñez R, Jeldes E, Avalos AM, Díaz J, Leyton L. A Pro-Inflammatory Stimulus versus Extensive Passaging of DITNC1 Astrocyte Cultures as Models to Study Astrogliosis. Int J Mol Sci 2024; 25:9454. [PMID: 39273404 PMCID: PMC11394751 DOI: 10.3390/ijms25179454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Astrogliosis is a process by which astrocytes, when exposed to inflammation, exhibit hypertrophy, motility, and elevated expression of reactivity markers such as Glial Fibrillar Acidic Protein, Vimentin, and Connexin43. Since 1999, our laboratory in Chile has been studying molecular signaling pathways associated with "gliosis" and has reported that reactive astrocytes upregulate Syndecan 4 and αVβ3 Integrin, which are receptors for the neuronal glycoprotein Thy-1. Thy-1 engagement stimulates adhesion and migration of reactive astrocytes and induces neurons to retract neurites, thus hindering neuronal network repair. Reportedly, we have used DITNC1 astrocytes and neuron-like CAD cells to study signaling mechanisms activated by the Syndecan 4-αVβ3 Integrin/Thy-1 interaction. Importantly, the sole overexpression of β3 Integrin in non-reactive astrocytes turns them into reactive cells. In vitro, extensive passaging is a simile for "aging", and aged fibroblasts have shown β3 Integrin upregulation. However, it is not known if astrocytes upregulate β3 Integrin after successive cell passages. Here, we hypothesized that astrocytes undergoing long-term passaging increase β3 Integrin expression levels and behave as reactive astrocytes without needing pro-inflammatory stimuli. We used DITNC1 cells with different passage numbers to study reactivity markers using immunoblots, immunofluorescence, and astrocyte adhesion/migration assays. We also evaluated β3 Integrin levels by immunoblot and flow cytometry, as well as the neurotoxic effects of reactive astrocytes. Serial cell passaging mimicked the effects of inflammatory stimuli, inducing astrocyte reactivity. Indeed, in response to Thy-1, β3 Integrin levels, as well as cell adhesion and migration, gradually increased with multiple passages. Importantly, these long-lived astrocytes expressed and secreted factors that inhibited neurite outgrowth and caused neuronal death, just like reactive astrocytes in culture. Therefore, we describe two DITNC1 cell types: a non-reactive type that can be activated with Tumor Necrosis Factor (TNF) and another one that exhibits reactive astrocyte features even in the absence of TNF treatment. Our results emphasize the importance of passage numbers in cell behavior. Likewise, we compare the pro-inflammatory stimulus versus long-term in-plate passaging of cell cultures and introduce them as astrocyte models to study the reactivity process.
Collapse
Affiliation(s)
- Leonardo A Pérez
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
| | - Esteban Palacios
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
- Laboratorio de Microbiología Celular, Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 833-0546, Chile
| | - María Fernanda González
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
| | - Ignacio Leyton-Rivera
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
| | - Samuel Martínez-Meza
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
| | - Ramón Pérez-Núñez
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
| | - Emanuel Jeldes
- Andes Biotechnologies SpA, Santiago 7750000, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago 7750000, Chile
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile
| |
Collapse
|
62
|
Schröder S, Fuchs U, Gisa V, Pena T, Krüger DM, Hempel N, Burkhardt S, Salinas G, Schütz AL, Delalle I, Sananbenesi F, Fischer A. PRDM16-DT is a novel lncRNA that regulates astrocyte function in Alzheimer's disease. Acta Neuropathol 2024; 148:32. [PMID: 39207536 PMCID: PMC11362476 DOI: 10.1007/s00401-024-02787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Astrocytes provide crucial support for neurons, contributing to synaptogenesis, synaptic maintenance, and neurotransmitter recycling. Under pathological conditions, deregulation of astrocytes contributes to neurodegenerative diseases such as Alzheimer's disease (AD). While most research in this field has focused on protein-coding genes, non-coding RNAs, particularly long non-coding RNAs (lncRNAs), have emerged as significant regulatory molecules. In this study, we identified the lncRNA PRDM16-DT as highly enriched in the human brain, where it is almost exclusively expressed in astrocytes. PRDM16-DT and its murine homolog, Prdm16os, are downregulated in the brains of AD patients and in AD models. In line with this, knockdown of PRDM16-DT and Prdm16os revealed its critical role in maintaining astrocyte homeostasis and supporting neuronal function by regulating genes essential for glutamate uptake, lactate release, and neuronal spine density through interactions with the RE1-Silencing Transcription factor (Rest) and Polycomb Repressive Complex 2 (PRC2). Notably, CRISPR-mediated overexpression of Prdm16os mitigated functional deficits in astrocytes induced by stimuli linked to AD pathogenesis. These findings underscore the importance of PRDM16-DT in astrocyte function and its potential as a novel therapeutic target for neurodegenerative disorders characterized by astrocyte dysfunction.
Collapse
Affiliation(s)
- Sophie Schröder
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Ulrike Fuchs
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Verena Gisa
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tonatiuh Pena
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Dennis M Krüger
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Nina Hempel
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Gabriela Salinas
- NGS- Integrative Genomics Core Unit, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Anna-Lena Schütz
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA, 02118, USA
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Andre Fischer
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
63
|
Serradas ML, Ding Y, Martorell PV, Kulińska I, Castro-Gomez S. Therapeutic Targets in Innate Immunity to Tackle Alzheimer's Disease. Cells 2024; 13:1426. [PMID: 39272998 PMCID: PMC11394242 DOI: 10.3390/cells13171426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
There is an urgent need for effective disease-modifying therapeutic interventions for Alzheimer's disease (AD)-the most prevalent cause of dementia with a profound socioeconomic burden. Most clinical trials targeting the classical hallmarks of this disease-β-amyloid plaques and neurofibrillary tangles-failed, showed discrete clinical effects, or were accompanied by concerning side effects. There has been an ongoing search for novel therapeutic targets. Neuroinflammation, now widely recognized as a hallmark of all neurodegenerative diseases, has been proven to be a major contributor to AD pathology. Here, we summarize the role of neuroinflammation in the pathogenesis and progression of AD and discuss potential targets such as microglia, TREM2, the complement system, inflammasomes, and cytosolic DNA sensors. We also present an overview of ongoing studies targeting specific innate immune system components, highlighting the progress in this field of drug research while bringing attention to the delicate nature of innate immune modulations in AD.
Collapse
Affiliation(s)
- Maria L. Serradas
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Yingying Ding
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Paula V. Martorell
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ida Kulińska
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Sergio Castro-Gomez
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
64
|
Barnett D, Zimmer TS, Booraem C, Palaguachi F, Meadows SM, Xiao H, Chouchani ET, Orr AG, Orr AL. Mitochondrial complex III-derived ROS amplify immunometabolic changes in astrocytes and promote dementia pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608708. [PMID: 39229090 PMCID: PMC11370371 DOI: 10.1101/2024.08.19.608708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Neurodegenerative disorders alter mitochondrial functions, including the production of reactive oxygen species (ROS). Mitochondrial complex III (CIII) generates ROS implicated in redox signaling, but its triggers, targets, and disease relevance are not clear. Using site-selective suppressors and genetic manipulations together with mitochondrial ROS imaging and multiomic profiling, we found that CIII is the dominant source of ROS production in astrocytes exposed to neuropathology-related stimuli. Astrocytic CIII-ROS production was dependent on nuclear factor-κB (NF-κB) and the mitochondrial sodium-calcium exchanger (NCLX) and caused oxidation of select cysteines within immune and metabolism-associated proteins linked to neurological disease. CIII-ROS amplified metabolomic and pathology-associated transcriptional changes in astrocytes, with STAT3 activity as a major mediator, and facilitated neuronal toxicity in a non-cell-autonomous manner. As proof-of-concept, suppression of CIII-ROS in mice decreased dementia-linked tauopathy and neuroimmune cascades and extended lifespan. Our findings establish CIII-ROS as an important immunometabolic signal transducer and tractable therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Daniel Barnett
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Till S. Zimmer
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Caroline Booraem
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Fernando Palaguachi
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Samantha M. Meadows
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Edward T. Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Anna G. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| | - Adam L. Orr
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY
| |
Collapse
|
65
|
Liu N, Haziyihan A, Zhao W, Chen Y, Chao H. Trajectory of brain-derived amyloid beta in Alzheimer's disease: where is it coming from and where is it going? Transl Neurodegener 2024; 13:42. [PMID: 39160618 PMCID: PMC11331646 DOI: 10.1186/s40035-024-00434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that primarily impacts cognitive function. Currently there are no disease-modifying treatments to stop or slow its progression. Recent studies have found that several peripheral and systemic abnormalities are associated with AD, and our understanding of how these alterations contribute to AD is becoming more apparent. In this review, we focuse on amyloid‑beta (Aβ), a major hallmark of AD, summarizing recent findings on the source of brain-derived Aβ and discussing where and how the brain-derived Aβ is cleared in vivo. Based on these findings, we propose future strategies for AD prevention and treatment, from a novel perspective on Aβ metabolism.
Collapse
Affiliation(s)
- Ni Liu
- Zhengzhou University, Zhengzhou, 450001, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Wei Zhao
- Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Chen
- Zhengzhou University, Zhengzhou, 450001, China
| | - Hongbo Chao
- Zhengzhou University, Zhengzhou, 450001, China.
- Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
66
|
Zhang F, Yao K, Liu Y, Zhou M, Zhang Y, Hong S, Wu J, Zhang C. Complement C3a/C3aR inhibition alleviates the formation of aortic aneurysm in Marfan syndrome mice. BMC Cardiovasc Disord 2024; 24:417. [PMID: 39127656 PMCID: PMC11316375 DOI: 10.1186/s12872-024-04077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Mutations in fibrillin 1 (FBN1) is the main cause of Marfan syndrome (MFS) with thoracic aortic aneurysm (TAA) as the main complication. Activation of the complement system plays a key role in the formation of thoracic and abdominal aortic aneurysms. However, the role of the complement system in MFS-associated aortic aneurysms remains unclear. In this study, we observed increased levels of complement C3a and C5a in the plasma of MFS patients and mouse, and the increased deposition of the activated complement system product C3b/iC3b was also observed in the elastic fiber rupture zone of 3-month-old MFS mice. The expression of C3a receptor (C3aR) was increased in MFS aortas, and recombinant C3a promoted the expression of cytokines in macrophages. The administration of a C3aR antagonist (C3aRA) attenuated the development of thoracic aortic aneurysms in MFS mice. The increased inflammation response and matrix metalloproteinases activities were also attenuated by C3aRA treatment in MFS mice. Therefore, these findings indicate that the complement C3a/C3aR inhibition alleviates the formation of aortic aneurysm in Marfan syndrome mice.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Kexin Yao
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Yan Liu
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Yanhong Zhang
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Shiyao Hong
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Jian Wu
- Section of Physiology and Biochemistry of Sports, Capital University of Physical Education and Sports, Beijing, 100191, China.
| | - Congcong Zhang
- Beijing Anzhen Hospital, Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Vascular Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
67
|
Fernandes S, Revanna J, Pratt J, Hayes N, Marchetto MC, Gage FH. Modeling Alzheimer's disease using human cell derived brain organoids and 3D models. Front Neurosci 2024; 18:1434945. [PMID: 39156632 PMCID: PMC11328153 DOI: 10.3389/fnins.2024.1434945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Age-related neurodegenerative diseases, like Alzheimer's disease (AD), are challenging diseases for those affected with no cure and limited treatment options. Functional, human derived brain tissues that represent the diverse genetic background and cellular subtypes contributing to sporadic AD (sAD) are limited. Human stem cell derived brain organoids recapitulate some features of human brain cytoarchitecture and AD-like pathology, providing a tool for illuminating the relationship between AD pathology and neural cell dysregulation leading to cognitive decline. In this review, we explore current strategies for implementing brain organoids in the study of AD as well as the challenges associated with investigating age-related brain diseases using organoid models.
Collapse
Affiliation(s)
- Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Jasmin Revanna
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joshua Pratt
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Nicholas Hayes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Biological Sciences, California State University, San Marcos, CA, United States
| | - Maria C. Marchetto
- Department of Anthropology, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, United States
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
68
|
Gedam M, Zheng H. Complement C3aR signaling: Immune and metabolic modulation and its impact on Alzheimer's disease. Eur J Immunol 2024; 54:e2350815. [PMID: 38778507 PMCID: PMC11305912 DOI: 10.1002/eji.202350815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia among the elderly population. Despite its widespread prevalence, our comprehension of the intricate mechanisms governing the pathogenesis of the disease remains incomplete, posing a challenge for the development of efficient therapies. Pathologically characterized by the presence of amyloid β plaques and neurofibrillary tau tangles, AD is also accompanied by the hyperactivation of glial cells and the immune system. The complement cascade, the evolutionarily conserved innate immune pathway, has emerged as a significant contributor to AD. This review focuses on one of the complement components, the C3a receptor (C3aR), covering its structure, ligand-receptor interaction, intracellular signaling and its functional consequences. Drawing insights from cellular and AD mouse model studies, we present the multifaceted role of complement C3aR signaling in AD and attempt to convey to the readers that C3aR acts as a crucial immune and metabolic modulator to influence AD pathogenesis. Building on this framework, the objective of this review is to inform future research endeavors and facilitate the development of therapeutic strategies for this challenging condition.
Collapse
Affiliation(s)
- Manasee Gedam
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Hui Zheng
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
69
|
Wirth S, Schlößer A, Beiersdorfer A, Schweizer M, Woo MS, Friese MA, Lohr C, Grochowska KM. Astrocytic uptake of posttranslationally modified amyloid-β leads to endolysosomal system disruption and induction of pro-inflammatory signaling. Glia 2024; 72:1451-1468. [PMID: 38629411 DOI: 10.1002/glia.24539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 06/29/2024]
Abstract
The disruption of astrocytic catabolic processes contributes to the impairment of amyloid-β (Aβ) clearance, neuroinflammatory signaling, and the loss of synaptic contacts in late-onset Alzheimer's disease (AD). While it is known that the posttranslational modifications of Aβ have significant implications on biophysical properties of the peptides, their consequences for clearance impairment are not well understood. It was previously shown that N-terminally pyroglutamylated Aβ3(pE)-42, a significant constituent of amyloid plaques, is efficiently taken up by astrocytes, leading to the release of pro-inflammatory cytokine tumor necrosis factor α and synapse loss. Here we report that Aβ3(pE)-42, but not Aβ1-42, gradually accumulates within the astrocytic endolysosomal system, disrupting this catabolic pathway and inducing the formation of heteromorphous vacuoles. This accumulation alters lysosomal kinetics, lysosome-dependent calcium signaling, and upregulates the lysosomal stress response. These changes correlate with the upregulation of glial fibrillary acidic protein (GFAP) and increased activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Treatment with a lysosomal protease inhibitor, E-64, rescues GFAP upregulation, NF-κB activation, and synapse loss, indicating that abnormal lysosomal protease activity is upstream of pro-inflammatory signaling and related synapse loss. Collectively, our data suggest that Aβ3(pE)-42-induced disruption of the astrocytic endolysosomal system leads to cytoplasmic leakage of lysosomal proteases, promoting pro-inflammatory signaling and synapse loss, hallmarks of AD-pathology.
Collapse
Affiliation(s)
- Sarah Wirth
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Schlößer
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Beiersdorfer
- Institute of Cell and Systems Biology of Animals, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Institute of Cell and Systems Biology of Animals, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Katarzyna M Grochowska
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
70
|
Wu J, Zhang J, Chen X, Wettschurack K, Que Z, Deming BA, Olivero-Acosta MI, Cui N, Eaton M, Zhao Y, Li SM, Suzuki M, Chen I, Xiao T, Halurkar MS, Mandal P, Yuan C, Xu R, Koss WA, Du D, Chen F, Wu LJ, Yang Y. Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids. Mol Psychiatry 2024; 29:2424-2437. [PMID: 38499656 DOI: 10.1038/s41380-024-02518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus of understanding ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglia-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.
Collapse
Affiliation(s)
- Jiaxiang Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Kyle Wettschurack
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Brody A Deming
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Maria I Olivero-Acosta
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Ningren Cui
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuanrui Zhao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Sophia M Li
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthew Suzuki
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Ian Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Tiange Xiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Manasi S Halurkar
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Purba Mandal
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjie Xu
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Wendy A Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
71
|
Kulkarni DH, Starick M, Aponte Alburquerque R, Kulkarni HS. Local complement activation and modulation in mucosal immunity. Mucosal Immunol 2024; 17:739-751. [PMID: 38838816 PMCID: PMC11929374 DOI: 10.1016/j.mucimm.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
The complement system is an evolutionarily conserved arm of innate immunity, which forms one of the first lines of host response to pathogens and assists in the clearance of debris. A deficiency in key activators/amplifiers of the cascade results in recurrent infection, whereas a deficiency in regulating the cascade predisposes to accelerated organ failure, as observed in colitis and transplant rejection. Given that there are over 60 proteins in this system, it has become an attractive target for immunotherapeutics, many of which are United States Food and Drug Administration-approved or in multiple phase 2/3 clinical trials. Moreover, there have been key advances in the last few years in the understanding of how the complement system operates locally in tissues, independent of its activities in circulation. In this review, we will put into perspective the abovementioned discoveries to optimally modulate the spatiotemporal nature of complement activation and regulation at mucosal surfaces.
Collapse
Affiliation(s)
- Devesha H Kulkarni
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marick Starick
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rafael Aponte Alburquerque
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
72
|
Li CF, Zhang QP, Cheng J, Xu GH, Zhu JX, Yi LT. Role of ginsenoside Rb1 in attenuating depression-like symptoms through astrocytic and microglial complement C3 pathway. Metab Brain Dis 2024; 39:1039-1050. [PMID: 39034364 DOI: 10.1007/s11011-024-01392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Ginsenoside Rb1, known as gypenoside III, exerts antidepressant-like effects in previous studies. It has also been indicated that ginsenoside Rb1 regulated neuroinflammation via inhibiting NF-κB signaling. According to the evidence that astrocytes can regulate microglia and neuroinflammation by secreting complement C3, the present study aimed to demonstrate the molecular mechanisms underlying ginsenoside Rb1-induced antidepressant-like effects from the astrocytic and microglial complement C3 pathway. The complement C3 mediated mechanism of ginsenoside Rb1 was investigated in mice exposed to chronic restraint stress (CRS). The results showed that ginsenoside Rb1 reversed the depressive-like behaviors in CRS. Treatment with ginsenoside Rb1 reduced both the number of astrocytes and microglia. In addition, ginsenoside Rb1 suppressed TLR4/NF-κB/C3 signaling in the astrocytes of the hippocampus. Furthermore, ginsenoside Rb1 attenuated the contents of synaptic protein including synaptophysin and PSD95 in microglia, suggesting the inhibition of microglia-mediated synaptic elimination caused by CRS. Importantly, ginsenoside Rb1 also maintained the dendritic spines in mice. In conclusion, our results demonstrate that ginsenoside Rb1 produces the antidepressant-like effects by inhibiting astrocyte TLR4/NF-κB/C3 signaling to covert microglia from a pro-inflammatory phenotype (amoeboid) towards an anti-inflammatory phenotype (ramified), which inhibit the synaptic pruning in the hippocampus.
Collapse
Affiliation(s)
- Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, Fujian province, PR China.
| | - Qiu-Ping Zhang
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361009, Fujian province, PR China
| | - Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen, 361008, Fujian province, PR China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian province, PR China
| |
Collapse
|
73
|
K. A, Singh S. Neuro-inflammatory Responses in Alzheimer’s v/s Parkinson’s Diseases. ADVANCES IN DIAGNOSTICS AND IMMUNOTHERAPEUTICS FOR NEURODEGENERATIVE DISEASES 2024:17-31. [DOI: 10.2174/9789815238754124010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders and are
the leading cause of morbidity and disability. These are described by the progressive
degeneration of the neurons and impaired function of the central nervous system.
Prevailing neurodegenerative diseases in the world include Alzheimer's disease and
Parkinson's disease and reports predict that on average, the prevalence of both diseases
will double in a span of the next twenty years. Pieces of evidence showed that the
immune system is profoundly involved in brain development, maintenance, and repair
as well as in damage, therefore, may provide a wide scope to focus on the
neuroinflammation-based therapeutic approaches. In this chapter, the various
neuroinflammatory responses will be discussed during the onset and progression of
both Alzheimer’s and Parkinson’s disease pathologies. We will be focusing on both
central and peripheral inflammatory responses and their consideration for disease
diagnosis and therapeutics.
Collapse
Affiliation(s)
- Amrutha K.
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute,
Lucknow-226031, India
| | - Sarika Singh
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
74
|
Tao B, Gong W, Xu C, Ma Z, Mei J, Chen M. The relationship between hypoxia and Alzheimer's disease: an updated review. Front Aging Neurosci 2024; 16:1402774. [PMID: 39086755 PMCID: PMC11288848 DOI: 10.3389/fnagi.2024.1402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and the most prevalent form of dementia. The main hallmarks for the diagnosis of AD are extracellular amyloid-beta (Aβ) plaque deposition and intracellular accumulation of highly hyperphosphorylated Tau protein as neurofibrillary tangles. The brain consumes more oxygen than any other organs, so it is more easily to be affected by hypoxia. Hypoxia has long been recognized as one of the possible causes of AD and other neurodegenerative diseases, but the exact mechanism has not been clarified. In this review, we will elucidate the connection between hypoxia-inducible factors-1α and AD, including its contribution to AD and its possible protective effects. Additionally, we will discuss the relationship between oxidative stress and AD as evidence show that oxidative stress acts on AD-related pathogenic factors such as mitochondrial dysfunction, Aβ deposition, inflammation, etc. Currently, there is no cure for AD. Given the close association between hypoxia, oxidative stress, and AD, along with current research on the protective effects of antioxidants against AD, we speculate that antioxidants could be a potential therapeutic approach for AD and worth further study.
Collapse
Affiliation(s)
- Borui Tao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wei Gong
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengyuan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhihui Ma
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinyu Mei
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
75
|
Lai W, Huang S, Liu J, Zhou B, Yu Z, Brown J, Hong G. Toll-like receptor 4-dependent innate immune responses are mediated by intracrine corticosteroids and activation of glycogen synthase kinase-3β in astrocytes. FASEB J 2024; 38:e23781. [PMID: 38941212 DOI: 10.1096/fj.202301923rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Reactive astrocytes are important pathophysiologically and synthesize neurosteroids. We observed that LPS increased immunoreactive TLR4 and key steroidogenic enzymes in cortical astrocytes of rats and investigated whether corticosteroids are produced and mediate astrocytic TLR4-dependent innate immune responses. We found that LPS increased steroidogenic acute regulatory protein (StAR) and StAR-dependent aldosterone production in purified astrocytes. Both increases were blocked by the TLR4 antagonist TAK242. LPS also increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and corticosterone production, and both were prevented by TAK242 and by siRNAs against 11β-HSD1, StAR, or aldosterone synthase (CYP11B2). Knockdown of 11β-HSD1, StAR, or CYP11B2 or blocking either mineralocorticoid receptors (MR) or glucocorticoid receptors (GR) prevented dephosphorylation of p-Ser9GSK-3β, activation of NF-κB, and the GSK-3β-dependent increases of C3, IL-1β, and TNF-α caused by LPS. Exogenous aldosterone mimicked the MR- and GSK-3β-dependent pro-inflammatory effects of LPS in astrocytes, but corticosterone did not. Supernatants from astrocytes treated with LPS reduced MAP2 and viability of cultured neurons except when astrocytic StAR or MR was inhibited. In adrenalectomized rats, intracerebroventricular injection of LPS increased astrocytic TLR4, StAR, CYP11B2, and 11β-HSD1, NF-κB, C3 and IL-1β, decreased astrocytic p-Ser9GSK-3β in the cortex and was neurotoxic, except when spironolactone was co-injected, consistent with the in vitro results. LPS also activated NF-κB in some NeuN+ and CD11b+ cells in the cortex, and these effects were prevented by spironolactone. We conclude that intracrine aldosterone may be involved in the TLR4-dependent innate immune responses of astrocytes and can trigger paracrine effects by activating astrocytic MR/GSK-3β/NF-κB signaling.
Collapse
Affiliation(s)
- Wenfang Lai
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Siying Huang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Junjie Liu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Binbin Zhou
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Zhengshuang Yu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - John Brown
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Guizhu Hong
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| |
Collapse
|
76
|
Sun W, Gong J, Li S, Wang P, Han X, Xu C, Luan H, Li R, Wen B, Wei C. Bibliometric analysis of neuroinflammation and Alzheimer's disease. Front Aging Neurosci 2024; 16:1423139. [PMID: 39076205 PMCID: PMC11284157 DOI: 10.3389/fnagi.2024.1423139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Background Alzheimer's disease (AD) is the predominant cause of dementia on a global scale, significantly impacting the health of the elderly population. The pathogenesis of AD is closely linked to neuroinflammation. The present study employs a bibliometric analysis to examine research pertaining to neuroinflammation and AD within the last decade, with the objective of providing a comprehensive overview of the current research profile, hotspots and trends. Methods This research conducted a comprehensive review of publications within the Science Citation Index Expanded of the Web of Science Core Collection Database spanning the years 2014 to 2024. Bibliometric analyses were performed using VOSviewer (version 1.6.19) and CiteSpace (version 6.3.R1) software to visualize data on countries, institutions, authors, journals, keywords, and references. Results A total of 3,833 publications on neuroinflammation and AD were included from January 2014 to January 2024. Publications were mainly from the United States and China. Zetterberg, Henrik emerged as the author with the highest publication output, while Edison, Paul was identified as the most cited author. The most productive journal was Journal of Alzheimers Disease, and the most co-cited was Journal of Neuroinflammation. Research hotspot focused on microglia, mouse models, oxidative stress, and amyloid-beta through keyword analysis. Additionally, keywords such as blood-brain barrier and tau protein exhibited prolonged citation bursts from 2022 to 2024. Conclusion This study provides a comprehensive review of the last 10 years of research on neuroinflammation and AD, including the number and impact of research findings, research hotspots, and future trends. The quantity of publications in this field is increasing, mainly in the United States and China, and there is a need to further strengthen close cooperation with different countries and institutions worldwide. Presently, research hotspots are primarily concentrated on microglia, with a focus on inhibiting their pro-inflammatory responses and promoting their anti-inflammatory functions as a potential direction for future investigations.
Collapse
Affiliation(s)
- Wenxian Sun
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jin Gong
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shaoqi Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Pin Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiaodong Han
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chang Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Heya Luan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ruina Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Boye Wen
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
77
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
78
|
Tang J, Maihemuti N, Fang Y, Tan J, Jia M, Mu Q, Huang K, Gan H, Zhao J. JR14a: A novel antagonist of C3aR attenuates neuroinflammation in cerebral ischemia-reperfusion injury. Brain Res Bull 2024; 213:110986. [PMID: 38810789 DOI: 10.1016/j.brainresbull.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI), a prevalent stroke-related complication, can lead to severe brain damage. Inflammation is a crucial factor in CIRI pathogenesis, and the complement component 3a receptor (C3aR) could be a key mediator in the post-CIRI inflammatory cascade. In this study, the role of C3aR in CIRI was investigated utilizing a middle cerebral artery occlusion (MCAO) model in C3aR knockout (KO) mice. Magnetic resonance imaging (MRI) and neurofunctional assessments revealed that C3aR KO mice exhibited significantly diminished cerebral infarction and improved neurological impairments. Consequently, the focus shifted to searching for a small molecule antagonist of C3aR. JR14a, a new potent thiophene antagonist of C3aR, was injected intraperitoneally into mice 1-h post-MCAO model implementation. The mass spectrometry (MS) results indicated the ability of JR14a to penetrate the blood-brain barrier. Subsequent TTC staining and neurofunctional assessments revealed the efficacy of JR14a in reducing cerebral infarct volume and neurological impairment following MCAO. In addition, immunofluorescence (IF) and immunohistochemistry (IHC) demonstrated attenuated microglial activation, neutrophil infiltration, and blood-brain barrier disruption by JR14a in the MCAO model. Furthermore, enzyme-linked immunosorbent assay (ELISA) and Western blotting supported the role of JR14a in downregulating the expression levels of C3aR, tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6), as well as the phosphorylation of p65. In conclusion, the findings suggested that C3aR could be a potential therapeutic target for CIRI, and JR14a emerged as a promising treatment candidate.
Collapse
Affiliation(s)
- Jiutang Tang
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Nueraili Maihemuti
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yu Fang
- Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Junyi Tan
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Mengjie Jia
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qinglan Mu
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Keli Huang
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hui Gan
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jing Zhao
- Center for Neuroscience Research, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
79
|
Latham AS, Rocha SM, McDermott CP, Reigan P, Slayden RA, Tjalkens RB. Neuroprotective efficacy of the glucocorticoid receptor modulator PT150 in the rotenone mouse model of Parkinson's disease. Neurotoxicology 2024; 103:320-334. [PMID: 38960072 PMCID: PMC11796432 DOI: 10.1016/j.neuro.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.
Collapse
Affiliation(s)
- Amanda S Latham
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Savannah M Rocha
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Casey P McDermott
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, United States
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, United States.
| |
Collapse
|
80
|
Schröder S, Fuchs U, Gisa V, Pena T, Krüger DM, Hempel N, Burkhardt S, Salinas G, Schütz AL, Delalle I, Sananbenesi F, Fischer A. PRDM16-DT: A Brain and Astrocyte-Specific lncRNA Implicated in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600964. [PMID: 39005272 PMCID: PMC11244882 DOI: 10.1101/2024.06.27.600964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Astrocytes provide crucial support for neurons, contributing to synaptogenesis, synaptic maintenance, and neurotransmitter recycling. Under pathological conditions, deregulation of astrocytes contributes to neurodegenerative diseases such as Alzheimer's disease (AD), highlighting the growing interest in targeting astrocyte function to address early phases of AD pathogenesis. While most research in this field has focused on protein-coding genes, non-coding RNAs, particularly long non-coding RNAs (lncRNAs), have emerged as significant regulatory molecules. In this study, we identified the lncRNA PRDM16-DT as highly enriched in the human brain, where it is almost exclusively expressed in astrocytes. PRDM16-DT and its murine homolog, Prdm16os, are downregulated in the brains of AD patients and in AD models. In line with this, knockdown of PRDM16-DT and Prdm16os revealed its critical role in maintaining astrocyte homeostasis and supporting neuronal function by regulating genes essential for glutamate uptake, lactate release, and neuronal spine density through interactions with the RE1-Silencing Transcription factor (Rest) and Polycomb Repressive Complex 2 (PRC2). Notably, CRISPR-mediated overexpression of Prdm16os mitigated functional deficits in astrocytes induced by stimuli linked to AD pathogenesis. These findings underscore the importance of PRDM16-DT in astrocyte function and its potential as a novel therapeutic target for neurodegenerative disorders characterized by astrocyte dysfunction.
Collapse
Affiliation(s)
- Sophie Schröder
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Ulrike Fuchs
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Verena Gisa
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tonatiuh Pena
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Dennis M Krüger
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Nina Hempel
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Gabriela Salinas
- NGS- Integrative Genomics Core Unit, Institute of Pathology, University Medical Center Göttingen, Germany
| | - Anna-Lena Schütz
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Andre Fischer
- Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
81
|
Singh MK, Shin Y, Ju S, Han S, Kim SS, Kang I. Comprehensive Overview of Alzheimer's Disease: Etiological Insights and Degradation Strategies. Int J Mol Sci 2024; 25:6901. [PMID: 39000011 PMCID: PMC11241648 DOI: 10.3390/ijms25136901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and affects millions of individuals globally. AD is associated with cognitive decline and memory loss that worsens with aging. A statistical report using U.S. data on AD estimates that approximately 6.9 million individuals suffer from AD, a number projected to surge to 13.8 million by 2060. Thus, there is a critical imperative to pinpoint and address AD and its hallmark tau protein aggregation early to prevent and manage its debilitating effects. Amyloid-β and tau proteins are primarily associated with the formation of plaques and neurofibril tangles in the brain. Current research efforts focus on degrading amyloid-β and tau or inhibiting their synthesis, particularly targeting APP processing and tau hyperphosphorylation, aiming to develop effective clinical interventions. However, navigating this intricate landscape requires ongoing studies and clinical trials to develop treatments that truly make a difference. Genome-wide association studies (GWASs) across various cohorts identified 40 loci and over 300 genes associated with AD. Despite this wealth of genetic data, much remains to be understood about the functions of these genes and their role in the disease process, prompting continued investigation. By delving deeper into these genetic associations, novel targets such as kinases, proteases, cytokines, and degradation pathways, offer new directions for drug discovery and therapeutic intervention in AD. This review delves into the intricate biological pathways disrupted in AD and identifies how genetic variations within these pathways could serve as potential targets for drug discovery and treatment strategies. Through a comprehensive understanding of the molecular underpinnings of AD, researchers aim to pave the way for more effective therapies that can alleviate the burden of this devastating disease.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
82
|
Jong Huat T, Camats-Perna J, Newcombe EA, Onraet T, Campbell D, Sucic JT, Martini A, Forner S, Mirzaei M, Poon W, LaFerla FM, Medeiros R. The impact of astrocytic NF-κB on healthy and Alzheimer's disease brains. Sci Rep 2024; 14:14305. [PMID: 38906984 PMCID: PMC11192733 DOI: 10.1038/s41598-024-65248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
Astrocytes play a role in healthy cognitive function and Alzheimer's disease (AD). The transcriptional factor nuclear factor-κB (NF-κB) drives astrocyte diversity, but the mechanisms are not fully understood. By combining studies in human brains and animal models and selectively manipulating NF-κB function in astrocytes, we deepened the understanding of the role of astrocytic NF-κB in brain health and AD. In silico analysis of bulk and cell-specific transcriptomic data revealed the association of NF-κB and astrocytes in AD. Confocal studies validated the higher level of p50 NF-κB and phosphorylated-p65 NF-κB in glial fibrillary acidic protein (GFAP)+-astrocytes in AD versus non-AD subjects. In the healthy mouse brain, chronic activation of astrocytic NF-κB disturbed the proteomic milieu, causing a loss of mitochondrial-associated proteins and the rise of inflammatory-related proteins. Sustained NF-κB signaling also led to microglial reactivity, production of pro-inflammatory mediators, and buildup of senescence-related protein p16INK4A in neurons. However, in an AD mouse model, NF-κB inhibition accelerated β-amyloid and tau accumulation. Molecular biology studies revealed that astrocytic NF-κB activation drives the increase in GFAP and inflammatory proteins and aquaporin-4, a glymphatic system protein that assists in mitigating AD. Our investigation uncovered fundamental mechanisms by which NF-κB enables astrocytes' neuroprotective and neurotoxic responses in the brain.
Collapse
Affiliation(s)
- Tee Jong Huat
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Judith Camats-Perna
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Estella A Newcombe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tessa Onraet
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Josiah T Sucic
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Alessandra Martini
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Stefânia Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Mehdi Mirzaei
- Clinical Medicine Department, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Wayne Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Rodrigo Medeiros
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, 3400A Biological Sciences III, Irvine, CA, 92697-4545, USA.
| |
Collapse
|
83
|
Ji B, Chen J, Gong H, Li X. Streamlined Full-Length Total RNA Sequencing of Paraformaldehyde-Fixed Brain Tissues. Int J Mol Sci 2024; 25:6504. [PMID: 38928210 PMCID: PMC11204141 DOI: 10.3390/ijms25126504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Paraformaldehyde (PFA) fixation is the preferred method for preserving tissue architecture for anatomical and pathological observations. Meanwhile, PFA reacts with the amine groups of biomolecules to form chemical cross-linking, which preserves RNA within the tissue. This has great prospects for RNA sequencing to characterize the molecular underpinnings after anatomical and pathological observations. However, RNA is inaccessible due to cross-linked adducts forming between RNA and other biomolecules in prolonged PFA-fixed tissue. It is also difficult to perform reverse transcription and PCR, resulting in low sequencing sensitivity and reduced reproducibility. Here, we developed a method to perform RNA sequencing in PFA-fixed tissue, which is easy to use, cost-effective, and allows efficient sample multiplexing. We employ cross-link reversal to recover RNA and library construction using random primers without artificial fragmentation. The yield and quality of recovered RNA significantly increased through our method, and sequencing quality metrics and detected genes did not show any major differences compared with matched fresh samples. Moreover, we applied our method for gene expression analysis in different regions of the mouse brain and identified unique gene expression profiles with varied functional implications. We also find significant dysregulation of genes involved in Alzheimer's disease (AD) pathogenesis within the medial septum (MS)/vertical diagonal band of Broca (VDB) of the 5×FAD mouse brain. Our method can thus increase the performance of high-throughput RNA sequencing with PFA-fixed samples and allows longitudinal studies of small tissue regions isolated by their in situ context.
Collapse
Affiliation(s)
- Bingqing Ji
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (B.J.); (J.C.); (H.G.)
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiale Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (B.J.); (J.C.); (H.G.)
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (B.J.); (J.C.); (H.G.)
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215125, China
| | - Xiangning Li
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215125, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
84
|
White KE, Bailey HL, Shaw BS, Geiszler PC, Mesquita-Ribeiro R, Scott D, Layfield R, Serres S. A convenient model of serum-induced reactivity of human astrocytes to investigate astrocyte-derived extracellular vesicles. Front Cell Neurosci 2024; 18:1414142. [PMID: 38915876 PMCID: PMC11195030 DOI: 10.3389/fncel.2024.1414142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
Extracellular vesicles (EVs) are secreted by all cells in the CNS, including neurons and astrocytes. EVs are lipid membrane enclosed particles loaded with various bioactive cargoes reflecting the dynamic activities of cells of origin. In contrast to neurons, the specific role of EVs released by astrocytes is less well understood, partly due to the difficulty in maintaining primary astrocyte cultures in a quiescent state. The aim of this study was to establish a human serum-free astrocyte culture system that maintains primary astrocytes in a quiescent state to study the morphology, function, and protein cargoes of astrocyte-derived EVs. Serum-free medium with G5 supplement and serum-supplemented medium with 2% FBS were compared for the culture of commercially available human primary fetal astrocytes. Serum-free astrocytes displayed morphologies similar to in vivo astrocytes, and surprisingly, higher levels of astrocyte markers compared to astrocytes chronically cultured in FBS. In contrast, astrocyte and inflammatory markers in serum-free astrocytes were upregulated 24 h after either acute 2% FBS or cytokine exposure, confirming their capacity to become reactive. Importantly, this suggests that distinct signaling pathways are involved in acute and chronic astrocyte reactivity. Despite having a similar morphology, chronically serum-cultured astrocyte-derived EVs (ADEVs) were smaller in size compared to serum-free ADEVs and could reactivate serum-free astrocytes. Proteomic analysis identified distinct protein datasets for both types of ADEVs with enrichment of complement and coagulation cascades for chronically serum-cultured astrocyte-derived EVs, offering insights into their roles in the CNS. Collectively, these results suggest that human primary astrocytes cultured in serum-free medium bear similarities with in vivo quiescent astrocytes and the addition of serum induces multiple morphological and transcriptional changes that are specific to human reactive astrocytes and their ADEVs. Thus, more emphasis should be made on using multiple structural, molecular, and functional parameters when evaluating ADEVs as biomarkers of astrocyte health.
Collapse
Affiliation(s)
- Katherine E. White
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Hannah L. Bailey
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Barry S. Shaw
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Daniel Scott
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Robert Layfield
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Sébastien Serres
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- The David Greenfield Human Physiology Unit, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
85
|
Ding Y, Fang F, Liu X, Sheng S, Li X, Yin X, Chen Z, Wen J. H 2S Regulates the Phenotypic Transformation of Astrocytes Following Cerebral Ischemia/Reperfusion via Inhibiting the RhoA/ROCK Pathway. Mol Neurobiol 2024; 61:3179-3197. [PMID: 37978158 DOI: 10.1007/s12035-023-03797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The role of hydrogen sulfide (H2S) on the phenotypic change of astrocytes following cerebral ischemia/reperfusion (I/R) in mice was investigated in present study. We tested the expression of glial fibrillary acidic protein (GFAP), A2 phenotype marker S100a10, and A1 phenotype marker C3 protein and assessed the change of BrdU/GFAP-positive cells, GFAP/C3-positive cells, and GFAP/S100a10-positive cells in mice hippocampal tissues to evaluate the change of astrocyte phenotypes following cerebral I/R. The role of H2S on the phenotypic change of astrocytes following cerebral I/R in mice was investigated by using H2S synthase cystathionine-γ-lyase (CSE) knockout mice (KO). The results revealed that cerebral I/R injury promoted the astrocytes proliferation of both A1 and A2 phenotypes, which were more significant in mice of H2S synthase CSE KO than in mice of wild type (WT). Interestingly, supplement with H2S could inhibit the A1 phenotype proliferation but promote the proliferation of A2 phenotype, suggesting that H2S could regulate the transformation of astrocytes to A2 phenotype following cerebral I/R, which is beneficial for neuronal recovery. Besides, we found that H2S-mediated change of astrocyte phenotype is related to inhibiting the RhoA/ROCK pathway. Furthermore, both H2S and ROCK inhibitor could ameliorate the brain injury of mice at 9 days after cerebral I/R. In conclusion, H2S regulates the phenotypic transformation of astrocytes to A2 phenotype following the cerebral I/R via inhibiting RhoA/ROCK pathway and then exerts the neuroprotective effect against the subacute brain injury.
Collapse
Affiliation(s)
- Yanyu Ding
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Fang Fang
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xiaolong Liu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shuyan Sheng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xueyan Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiaojiao Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
86
|
Tan LX, Oertel FC, Cheng A, Cobigo Y, Keihani A, Bennett DJ, Abdelhak A, Montes SC, Chapman M, Chen RY, Cordano C, Ward ME, Casaletto K, Kramer JH, Rosen HJ, Boxer A, Miller BL, Green AJ, Elahi FM, Lakkaraju A. Targeting complement C3a receptor resolves mitochondrial hyperfusion and subretinal microglial activation in progranulin-deficient frontotemporal dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.595206. [PMID: 38854134 PMCID: PMC11160746 DOI: 10.1101/2024.05.29.595206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mutations in progranulin ( GRN ) cause frontotemporal dementia ( GRN -FTD) due to deficiency of the pleiotropic protein progranulin. GRN -FTD exhibits diverse pathologies including lysosome dysfunction, lipofuscinosis, microgliosis, and neuroinflammation. Yet, how progranulin loss causes disease remains unresolved. Here, we report that non-invasive retinal imaging of GRN -FTD patients revealed deficits in photoreceptors and the retinal pigment epithelium (RPE) that correlate with cognitive decline. Likewise, Grn -/- mice exhibit early RPE dysfunction, microglial activation, and subsequent photoreceptor loss. Super-resolution live imaging and transcriptomic analyses identified RPE mitochondria as an early driver of retinal dysfunction. Loss of mitochondrial fission protein 1 (MTFP1) in Grn -/- RPE causes mitochondrial hyperfusion and bioenergetic defects, leading to NF-kB-mediated activation of complement C3a-C3a receptor signaling, which drives further mitochondrial hyperfusion and retinal inflammation. C3aR antagonism restores RPE mitochondrial integrity and limits subretinal microglial activation. Our study identifies a previously unrecognized mechanism by which progranulin modulates mitochondrial integrity and complement-mediated neuroinflammation.
Collapse
|
87
|
He C, Jiang J, Liu J, Zhou L, Ge Y, Yang Z. Pseudostellaria heterophylla polysaccharide mitigates Alzheimer's-like pathology via regulating the microbiota-gut-brain axis in 5 × FAD mice. Int J Biol Macromol 2024; 270:132372. [PMID: 38750854 DOI: 10.1016/j.ijbiomac.2024.132372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by neuroinflammation, for which gut dysbiosis may be implicated. Our previous study showed that treatment with Pseudostellaria heterophylla aqueous extract and one of its cyclopeptides, heterophyllin B, attenuate memory deficits via immunomodulation and neurite regeneration. However, whether Pseudostellaria heterophylla polysaccharide (PH-PS) exerts neuroprotective effects against AD and its underlying mechanisms remain unclear. The infrared spectrum, molecular weight, and carbohydrate composition of the PH-PS were determined. The results showed that PH-PS (Mw 8.771 kDa) was composed of glucose (57.78 %), galactose (41.52 %), and arabinose (0.70 %). PH-PS treatment ameliorated learning and spatial memory deficits, reduced amyloid β build-up, and suppressed reactive glia and astrocytes in 5 × FAD mice. 16S rRNA sequencing further showed that PH-PS remodelled the intestinal flora composition by promoting probiotic microbiota, such as Lactobacillus, Muribaculum, Monoglobus, and [Eubacterium]_siraeum_group, and suppressing inflammation-related UCG-009 and Blautia. Additionally, PH-PS restored intestinal barrier function; ameliorated peripheral inflammation by reducing the secretion of inflammatory cytokines, thereby converting M1 microglia and A1 astrocyte toward beneficial M2 and A2 phenotypes; and contributed to Aβ plaques clearance by upregulation of insulin degradation enzyme and neprilysin. Collectively, our findings demonstrate that PH-PS may prevent the progression of AD via modulation of the gut microbiota and regulation of glial polarisation, which could provide evidence to design a potential diet therapy for preventing or curing AD.
Collapse
Affiliation(s)
- Chuantong He
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Jiahui Jiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Junxin Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Longjian Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Yuewei Ge
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhiyou Yang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China.
| |
Collapse
|
88
|
Huo A, Wang J, Li Q, Li M, Qi Y, Yin Q, Luo W, Shi J, Cong Q. Molecular mechanisms underlying microglial sensing and phagocytosis in synaptic pruning. Neural Regen Res 2024; 19:1284-1290. [PMID: 37905877 PMCID: PMC11467947 DOI: 10.4103/1673-5374.385854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/08/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits. In brain physiology, highly dynamic microglial processes are facilitated to sense the surrounding environment and stimuli. Once the brain switches its functional states, microglia are recruited to specific sites to exert their immune functions, including the release of cytokines and phagocytosis of cellular debris. The crosstalk of microglia between neurons, neural stem cells, endothelial cells, oligodendrocytes, and astrocytes contributes to their functions in synapse pruning, neurogenesis, vascularization, myelination, and blood-brain barrier permeability. In this review, we highlight the neuron-derived "find-me," "eat-me," and "don't eat-me" molecular signals that drive microglia in response to changes in neuronal activity for synapse refinement during brain development. This review reveals the molecular mechanism of neuron-microglia interaction in synaptic pruning and presents novel ideas for the synaptic pruning of microglia in disease, thereby providing important clues for discovery of target drugs and development of nervous system disease treatment methods targeting synaptic dysfunction.
Collapse
Affiliation(s)
- Anran Huo
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiali Wang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Qi Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Mengqi Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuwan Qi
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jijun Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qifei Cong
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
89
|
Ye L, Hu M, Mao R, Tan Y, Sun M, Jia J, Xu S, Liu Y, Zhu X, Xu Y, Bai F, Shu S. Conditional knockout of AIM2 in microglia ameliorates synaptic plasticity and spatial memory deficits in a mouse model of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14555. [PMID: 38105588 PMCID: PMC11163192 DOI: 10.1111/cns.14555] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023] Open
Abstract
AIMS Synaptic dysfunction is a hallmark pathology of Alzheimer's disease (AD) and is strongly associated with cognitive impairment. Abnormal phagocytosis by the microglia is one of the main causes of synapse loss in AD. Previous studies have shown that the absence of melanoma 2 (AIM2) inflammasome activity is increased in the hippocampus of APP/PS1 mice, but the role of AIM2 in AD remains unclear. METHODS Injection of Aβ1-42 into the bilateral hippocampal CA1 was used to mimic an AD mouse model (AD mice). C57BL/6 mice injected with AIM2 overexpression lentivirus and conditional knockout of microglial AIM2 mice were used to confirm the function of AIM2 in AD. Cognitive functions were assessed with novel object recognition and Morris water maze tests. The protein and mRNA expression levels were evaluated by western blotting, immunofluorescence staining, and qRT-PCR. Synaptic structure and function were detected by Golgi staining and electrophysiology. RESULTS The expression level of AIM2 was increased in AD mice, and overexpression of AIM2 induced synaptic and cognitive impairments in C57BL/6 mice, similar to AD mice. Elevated expression levels of AIM2 occurred in microglia in AD mice. Conditional knockout of microglial AIM2 rescued cognitive and synaptic dysfunction in AD mice. Excessive microglial phagocytosis activity of synapses was decreased after knockout of microglial AIM2, which was associated with inhibiting complement activation. CONCLUSION Our results demonstrated that microglial AIM2 plays a critical role in regulating synaptic plasticity and memory deficits associated with AD, providing a new direction for developing novel preventative and therapeutic interventions for this disease.
Collapse
Affiliation(s)
- Lei Ye
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Mengsha Hu
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Rui Mao
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yi Tan
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Min Sun
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Junqiu Jia
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Siyi Xu
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yi Liu
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Xiaolei Zhu
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yun Xu
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingChina
- Jiangsu Provincial Key Discipline of NeurologyNanjingChina
- Nanjing Neurology Medical CenterNanjingChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingChina
| | - Feng Bai
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Shu Shu
- Department of NeurologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingChina
- Jiangsu Provincial Key Discipline of NeurologyNanjingChina
- Nanjing Neurology Medical CenterNanjingChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingChina
| |
Collapse
|
90
|
Santiago-Balmaseda A, Aguirre-Orozco A, Valenzuela-Arzeta IE, Villegas-Rojas MM, Pérez-Segura I, Jiménez-Barrios N, Hurtado-Robles E, Rodríguez-Hernández LD, Rivera-German ER, Guerra-Crespo M, Martinez-Fong D, Ledesma-Alonso C, Diaz-Cintra S, Soto-Rojas LO. Neurodegenerative Diseases: Unraveling the Heterogeneity of Astrocytes. Cells 2024; 13:921. [PMID: 38891053 PMCID: PMC11172252 DOI: 10.3390/cells13110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The astrocyte population, around 50% of human brain cells, plays a crucial role in maintaining the overall health and functionality of the central nervous system (CNS). Astrocytes are vital in orchestrating neuronal development by releasing synaptogenic molecules and eliminating excessive synapses. They also modulate neuronal excitability and contribute to CNS homeostasis, promoting neuronal survival by clearance of neurotransmitters, transporting metabolites, and secreting trophic factors. Astrocytes are highly heterogeneous and respond to CNS injuries and diseases through a process known as reactive astrogliosis, which can contribute to both inflammation and its resolution. Recent evidence has revealed remarkable alterations in astrocyte transcriptomes in response to several diseases, identifying at least two distinct phenotypes called A1 or neurotoxic and A2 or neuroprotective astrocytes. However, due to the vast heterogeneity of these cells, it is limited to classify them into only two phenotypes. This review explores the various physiological and pathophysiological roles, potential markers, and pathways that might be activated in different astrocytic phenotypes. Furthermore, we discuss the astrocyte heterogeneity in the main neurodegenerative diseases and identify potential therapeutic strategies. Understanding the underlying mechanisms in the differentiation and imbalance of the astrocytic population will allow the identification of specific biomarkers and timely therapeutic approaches in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Annai Aguirre-Orozco
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Irais E. Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Natalie Jiménez-Barrios
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Ernesto Hurtado-Robles
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Luis Daniel Rodríguez-Hernández
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Erick R. Rivera-German
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico;
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| |
Collapse
|
91
|
Ren W, Yan XS, Fan JC, Huo DS, Wang XX, Jia JX, Yang ZJ. Effect of total flavonoids of Dracocephalum moldavica L. On neuroinflammation in Alzheimer's disease model amyloid-β (Aβ1-42)-peptide-induced astrocyte activation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:436-447. [PMID: 38557424 DOI: 10.1080/15287394.2024.2336570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated β-amyloid (Aβ1-42)-peptides. Excess deposition of amyloid-β oligomers (AβO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aβ1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aβ1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 μM Aβ1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aβ1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.
Collapse
Affiliation(s)
- Wei Ren
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
| | - Xu-Sheng Yan
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
| | - Jia-Cheng Fan
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
| | - Dong-Sheng Huo
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
| | - Xin-Xin Wang
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
- Department of pathology, Baotou Medical College, Inner Mongolia, China
| | - Jian-Xin Jia
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
| | - Zhan-Jun Yang
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region
- Department of Human Anatomy, Chifeng University, Inner Mongolia, China
| |
Collapse
|
92
|
Sternberg Z. Neurodegenerative Etiology of Aromatic L-Amino Acid Decarboxylase Deficiency: a Novel Concept for Expanding Treatment Strategies. Mol Neurobiol 2024; 61:2996-3018. [PMID: 37953352 DOI: 10.1007/s12035-023-03684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
Aromatic l-amino acid decarboxylase deficiency (AADC-DY) is caused by one or more mutations in the DDC gene, resulting in the deficit in catecholamines and serotonin neurotransmitters. The disease has limited therapeutic options with relatively poor clinical outcomes. Accumulated evidence suggests the involvement of neurodegenerative mechanisms in the etiology of AADC-DY. In the absence of neurotransmitters' neuroprotective effects, the accumulation and the chronic presence of several neurotoxic metabolites including 4-dihydroxy-L-phenylalanine, 3-methyldopa, and homocysteine, in the brain of subjects with AADC-DY, promote oxidative stress and reduce the cellular antioxidant and methylation capacities, leading to glial activation and mitochondrial dysfunction, culminating to neuronal injury and death. These pathophysiological processes have the potential to hinder the clinical efficacy of treatments aimed at increasing neurotransmitters' synthesis and or function. This review describes in detail the mechanisms involved in AADC-DY neurodegenerative etiology, highlighting the close similarities with those involved in other neurodegenerative diseases. We then offer novel strategies for the treatment of the disease with the objective to either reduce the level of the metabolites or counteract their prooxidant and neurotoxic effects. These treatment modalities used singly or in combination, early in the course of the disease, will minimize neuronal injury, preserving the functional integrity of neurons, hence improving the clinical outcomes of both conventional and unconventional interventions in AADC-DY. These modalities may not be limited to AADC-DY but also to other metabolic disorders where a specific mutation leads to the accumulation of prooxidant and neurotoxic metabolites.
Collapse
Affiliation(s)
- Zohi Sternberg
- Jacobs School of Medicine and Biomedical Sciences, Buffalo Medical Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
93
|
Sun R, Tang MY, Yang D, Zhang YY, Xu YH, Qiao Y, Yu B, Cao SX, Wang H, Huang HQ, Zhang H, Li XM, Lian H. C3aR in the medial prefrontal cortex modulates the susceptibility to LPS-induced depressive-like behaviors through glutamatergic neuronal excitability. Prog Neurobiol 2024; 236:102614. [PMID: 38641040 DOI: 10.1016/j.pneurobio.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Complement activation and prefrontal cortical dysfunction both contribute to the pathogenesis of major depressive disorder (MDD), but their interplay in MDD is unclear. We here studied the role of complement C3a receptor (C3aR) in the medial prefrontal cortex (mPFC) and its influence on depressive-like behaviors induced by systematic lipopolysaccharides (LPS) administration. C3aR knockout (KO) or intra-mPFC C3aR antagonism confers resilience, whereas C3aR expression in mPFC neurons makes KO mice susceptible to LPS-induced depressive-like behaviors. Importantly, the excitation and inhibition of mPFC neurons have opposing effects on depressive-like behaviors, aligning with increased and decreased excitability by C3aR deletion and activation in cortical neurons. In particular, inhibiting mPFC glutamatergic (mPFCGlu) neurons, the main neuronal subpopulation expresses C3aR, induces depressive-like behaviors in saline-treated WT and KO mice, but not in LPS-treated KO mice. Compared to hypoexcitable mPFCGlu neurons in LPS-treated WT mice, C3aR-null mPFCGlu neurons display hyperexcitability upon LPS treatment, and enhanced excitation of mPFCGlu neurons is anti-depressant, suggesting a protective role of C3aR deficiency in these circumstances. In conclusion, C3aR modulates susceptibility to LPS-induced depressive-like behaviors through mPFCGlu neuronal excitability. This study identifies C3aR as a pivotal intersection of complement activation, mPFC dysfunction, and depression and a promising therapeutic target for MDD.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center of System Medicine, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Meng-Yu Tang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Dan Yang
- Clinical Research Center, The second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Yi Zhang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Heng Xu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yong Qiao
- Department of Neurology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center of System Medicine, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shu-Xia Cao
- Department of Neurology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui-Qian Huang
- Clinical Research Center, The second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ming Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hong Lian
- Department of Neurology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Center of System Medicine, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
94
|
Ayyubova G, Fazal N. Beneficial versus Detrimental Effects of Complement-Microglial Interactions in Alzheimer's Disease. Brain Sci 2024; 14:434. [PMID: 38790413 PMCID: PMC11119363 DOI: 10.3390/brainsci14050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Research indicates that brain-region-specific synapse loss and dysfunction are early hallmarks and stronger neurobiological correlates of cognitive decline in Alzheimer's disease (AD) than amyloid plaque and neurofibrillary tangle counts or neuronal loss. Even though the precise mechanisms underlying increased synaptic pruning in AD are still unknown, it has been confirmed that dysregulation of the balance between complement activation and inhibition is a crucial driver of its pathology. The complement includes three distinct activation mechanisms, with the activation products C3a and C5a, potent inflammatory effectors, and a membrane attack complex (MAC) leading to cell lysis. Besides pro-inflammatory cytokines, the dysregulated complement proteins released by activated microglia bind to amyloid β at the synaptic regions and cause the microglia to engulf the synapses. Additionally, research indicating that microglia-removed synapses are not always degenerating and that suppression of synaptic engulfment can repair cognitive deficits points to an essential opportunity for intervention that can prevent the loss of intact synapses. In this study, we focus on the latest research on the role and mechanisms of complement-mediated microglial synaptic pruning at different stages of AD to find the right targets that could interfere with complement dysregulation and be relevant for therapeutic intervention at the early stages of the disease.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku 370022, Azerbaijan;
| | - Nadeem Fazal
- College of Health Sciences and Pharmacy, Chicago State University, Chicago, IL 60628, USA
| |
Collapse
|
95
|
Latham AS, Rocha SM, McDermott CP, Reigan P, Slayden RA, Tjalkens RB. Neuroprotective Efficacy of the Glucocorticoid Receptor Modulator PT150 in the Rotenone Mouse Model of Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589261. [PMID: 38659796 PMCID: PMC11042181 DOI: 10.1101/2024.04.12.589261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days, immediately followed by oral treatment with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.
Collapse
|
96
|
Fournier LA, Phadke RA, Salgado M, Brack A, Nocon JC, Bolshakova S, Grant JR, Padró Luna NM, Sen K, Cruz-Martín A. Overexpression of the schizophrenia risk gene C4 in PV cells drives sex-dependent behavioral deficits and circuit dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.575409. [PMID: 38328248 PMCID: PMC10849664 DOI: 10.1101/2024.01.27.575409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Fast-spiking parvalbumin (PV)-positive cells are key players in orchestrating pyramidal neuron activity, and their dysfunction is consistently observed in myriad brain diseases. To understand how immune complement dysregulation - a prevalent locus of brain disease etiology - in PV cells may drive disease pathogenesis, we have developed a transgenic mouse line that permits cell-type specific overexpression of the schizophrenia-associated complement component 4 (C4) gene. We found that overexpression of mouse C4 (mC4) in PV cells causes sex-specific behavioral alterations and concomitant deficits in synaptic connectivity and excitability of PV cells of the prefrontal cortex. Using a computational network, we demonstrated that these microcircuit deficits led to hyperactivity and disrupted neural communication. Finally, pan-neuronal overexpression of mC4 failed to evoke the same deficits in behavior as PV-specific mC4 overexpression, suggesting that C4 perturbations in fast-spiking neurons are more harmful to brain function than pan-neuronal alterations. Together, these results provide a causative link between C4 and the vulnerability of PV cells in brain disease.
Collapse
Affiliation(s)
- Luke A. Fournier
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, United States
| | - Rhushikesh A. Phadke
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, United States
| | - Maria Salgado
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, United States
| | - Alison Brack
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, United States
| | - Jian Carlo Nocon
- Neurophotonics Center, Boston University, Boston, Massachusetts, United States
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States
- Hearing Research Center, Boston University, Boston, Massachusetts, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Sonia Bolshakova
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, United States
- Bioinformatics MS Program, Boston University, Boston, MA, United States
| | - Jaylyn R. Grant
- Biological Sciences, Eastern Illinois University, Charleston, IL, United States
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, United States
| | - Nicole M. Padró Luna
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, United States
- Biology Department, College of Natural Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Kamal Sen
- Neurophotonics Center, Boston University, Boston, Massachusetts, United States
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States
- Hearing Research Center, Boston University, Boston, Massachusetts, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Alberto Cruz-Martín
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, United States
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, United States
| |
Collapse
|
97
|
Jearjaroen P, Thangwong P, Tocharus C, Chaichompoo W, Suksamrarn A, Tocharus J. Hexahydrocurcumin attenuated demyelination and improved cognitive impairment in chronic cerebral hypoperfusion rats. Inflammopharmacology 2024; 32:1531-1544. [PMID: 38153537 DOI: 10.1007/s10787-023-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Age-related white matter lesions (WML) frequently present vascular problems by decreasing cerebral blood supply, resulting in the condition known as chronic cerebral hypoperfusion (CCH). This study aimed to investigate the effect of hexahydrocurcumin (HHC) on the processes of demyelination and remyelination induced by the model of the Bilateral Common Carotid Artery Occlusion (BCCAO) for 29 days to mimic the CCH condition. The pathological appearance of myelin integrity was significantly altered by CCH, as evidenced by Transmission Electron Microscopy (TEM) and Luxol Fast Blue (LFB) staining. In addition, CCH activated A1-astrocytes and reactive-microglia by increasing the expression of Glial fibrillary acidic protein (GFAP), complement 3 (C3d) and pro-inflammatory cytokines. However, S100a10 expression, a marker of neuroprotective astrocytes, was suppressed, as were regenerative factors including (IGF-1) and Transglutaminase 2 (TGM2). Therefore, the maturation step was obstructed as shown by decreases in the levels of myelin basic protein (MBP) and the proteins related with lipid synthesis. Cognitive function was therefore impaired in the CCH model, as evidenced by the Morris water maze test. By contrast, HHC treatment significantly improved myelin integrity, and inhibited A1-astrocytes and reactive-microglial activity. Consequently, pro-inflammatory cytokines and A1-astrocytes were attenuated, and regenerative factors increased assisting myelin maturation and hence improving cognitive performance. In conclusion, HHC improves cognitive function and also the integrity of white matter in CCH rats by reducing demyelination, and pro-inflammatory cytokine production and promoting the process of remyelination.
Collapse
Affiliation(s)
- Pranglada Jearjaroen
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phakkawat Thangwong
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chianqg Mai, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
98
|
Edison P. Astroglial activation: Current concepts and future directions. Alzheimers Dement 2024; 20:3034-3053. [PMID: 38305570 PMCID: PMC11032537 DOI: 10.1002/alz.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
Astrocytes are abundantly and ubiquitously expressed cell types with diverse functions throughout the central nervous system. Astrocytes show remarkable plasticity and exhibit morphological, molecular, and functional remodeling in response to injury, disease, or infection of the central nervous system, as evident in neurodegenerative diseases. Astroglial mediated inflammation plays a prominent role in the pathogenesis of neurodegenerative diseases. This review focus on the role of astrocytes as essential players in neuroinflammation and discuss their morphological and functional heterogeneity in the normal central nervous system and explore the spatial and temporal variations in astroglial phenotypes observed under different disease conditions. This review discusses the intimate relationship of astrocytes to pathological hallmarks of neurodegenerative diseases. Finally, this review considers the putative therapeutic strategies that can be deployed to modulate the astroglial functions in neurodegenerative diseases. HIGHLIGHTS: Astroglia mediated neuroinflammation plays a key role in the pathogenesis of neurodegenerative diseases. Activated astrocytes exhibit diverse phenotypes in a region-specific manner in brain and interact with β-amyloid, tau, and α-synuclein species as well as with microglia and neuronal circuits. Activated astrocytes are likely to influence the trajectory of disease progression of neurodegenerative diseases, as determined by the stage of disease, individual susceptibility, and state of astroglial priming. Modulation of astroglial activation may be a therapeutic strategy at various stages in the trajectory of neurodegenerative diseases to modify the disease course.
Collapse
Affiliation(s)
- Paul Edison
- Division of NeurologyDepartment of Brain SciencesFaculty of Medicine, Imperial College LondonLondonUK
- Division of Psychological medicine and clinical neurosciencesSchool of Medicine, Cardiff UniversityWalesUK
| |
Collapse
|
99
|
Quinlan S, Khan T, McFall D, Campos-Rodriguez C, Forcelli PA. Early life phenobarbital exposure dysregulates the hippocampal transcriptome. Front Pharmacol 2024; 15:1340691. [PMID: 38606173 PMCID: PMC11007044 DOI: 10.3389/fphar.2024.1340691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/01/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction: Phenobarbital (PB) and levetiracetam (LEV) are the first-line therapies for neonates with diagnosed seizures, however, a growing body of evidence shows that these drugs given during critical developmental windows trigger lasting molecular changes in the brain. While the targets and mechanism of action of these drugs are well understood-what is not known is how these drugs alter the transcriptomic landscape, and therefore molecular profile/gene expression during these critical windows of neurodevelopment. PB is associated with a range of neurotoxic effects in developing animals, from cell death to altered synaptic development to lasting behavioral impairment. LEV does not produce these effects. Methods: Here we evaluated the effects of PB and Lev on the hippocampal transcriptome by RNA sequencing. Neonatal rat pups were given a single dose of PB, Lev or vehicle and sacrificed 72 h later-at time at which drug is expected to be cleared. Results: We found PB induces broad changes in the transcriptomic profile (124 differentially expressed transcripts), as compared to relatively small changes in LEV-treated animals (15 transcripts). PB exposure decreased GABAergic and oligodendrocyte markers pvalb and opalin, and increased the marker of activated microglia, cd68 and the astrocyte- associated gene vegfa. These data are consistent with the existing literature showing developmental neurotoxicity associated with PB, but not LEV. Discussion: The widespread change in gene expression after PB, which affected transcripts reflective of multiple cell types, may provide a link between acute drug administration and lasting drug toxicity.
Collapse
Affiliation(s)
- Seán Quinlan
- Department of Physiology and Pharmacology, Georgetown University, Washington, DC, United States
| | - Tahiyana Khan
- Department of Physiology and Pharmacology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | - David McFall
- Department of Physiology and Pharmacology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | | | - Patrick A. Forcelli
- Department of Physiology and Pharmacology, Georgetown University, Washington, DC, United States
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
100
|
Ageeva T, Rizvanov A, Mukhamedshina Y. NF-κB and JAK/STAT Signaling Pathways as Crucial Regulators of Neuroinflammation and Astrocyte Modulation in Spinal Cord Injury. Cells 2024; 13:581. [PMID: 38607020 PMCID: PMC11011519 DOI: 10.3390/cells13070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Spinal cord injury (SCI) leads to significant functional impairments below the level of the injury, and astrocytes play a crucial role in the pathophysiology of SCI. Astrocytes undergo changes and form a glial scar after SCI, which has traditionally been viewed as a barrier to axonal regeneration and functional recovery. Astrocytes activate intracellular signaling pathways, including nuclear factor κB (NF-κB) and Janus kinase-signal transducers and activators of transcription (JAK/STAT), in response to external stimuli. NF-κB and STAT3 are transcription factors that play a pivotal role in initiating gene expression related to astrogliosis. The JAK/STAT signaling pathway is essential for managing secondary damage and facilitating recovery processes post-SCI: inflammation, glial scar formation, and astrocyte survival. NF-κB activation in astrocytes leads to the production of pro-inflammatory factors by astrocytes. NF-κB and STAT3 signaling pathways are interconnected: NF-κB activation in astrocytes leads to the release of interleukin-6 (IL-6), which interacts with the IL-6 receptor and initiates STAT3 activation. By modulating astrocyte responses, these pathways offer promising avenues for enhancing recovery outcomes, illustrating the crucial need for further investigation into their mechanisms and therapeutic applications in SCI treatment.
Collapse
Affiliation(s)
- Tatyana Ageeva
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
| | - Albert Rizvanov
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab Gene and Cell Technology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.R.)
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| |
Collapse
|