51
|
Staszko SM, Boughter JD, Fletcher ML. The impact of familiarity on cortical taste coding. Curr Biol 2022; 32:4914-4924.e4. [PMID: 36261035 PMCID: PMC9691541 DOI: 10.1016/j.cub.2022.09.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
The role of the gustatory region of the insular cortex in mediating associative taste learning, such as conditioned taste aversion, has been well studied. However, while associative learning plays a role in some taste behaviors, such as avoiding toxins, animals often encounter taste stimuli in their natural environment without explicit consequences. This type of inconsequential experience with sensory stimuli has been studied in other sensory systems, generally with the finding that neuronal responses habituate with repeated sensory exposure. This study sought to determine the effect of taste familiarity on population taste coding in the mouse gustatory cortex (GC). Using microendoscope calcium imaging, we studied the taste responses of visually identifiable neurons over 5 days of taste experience, during which animals could freely choose to consume taste stimuli. We found that the number of active cells in the insular cortex, as well as the number of cells characterized as taste-responsive, significantly decreased as animals became familiar with taste stimuli. Moreover, the magnitude of taste-evoked excited responses increased while inhibited responses decreased with experience. By tracking individual neurons over time, we identified a subpopulation of stable neurons present on all days of the taste familiarity paradigm and further characterized their taste coding properties. The population-level response across these stable cells was distinct for each taste quality when taste stimuli were novel, but population responses for readily consumed stimuli became more correlated as the stimuli became familiar. Overall, these results highlight the effects of familiarity on both taste-specific and non-taste responses in the gustatory cortex.
Collapse
Affiliation(s)
- Stephanie M Staszko
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John D Boughter
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Max L Fletcher
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
52
|
Benisty H, Song A, Mishne G, Charles AS. Review of data processing of functional optical microscopy for neuroscience. NEUROPHOTONICS 2022; 9:041402. [PMID: 35937186 PMCID: PMC9351186 DOI: 10.1117/1.nph.9.4.041402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
Functional optical imaging in neuroscience is rapidly growing with the development of optical systems and fluorescence indicators. To realize the potential of these massive spatiotemporal datasets for relating neuronal activity to behavior and stimuli and uncovering local circuits in the brain, accurate automated processing is increasingly essential. We cover recent computational developments in the full data processing pipeline of functional optical microscopy for neuroscience data and discuss ongoing and emerging challenges.
Collapse
Affiliation(s)
- Hadas Benisty
- Yale Neuroscience, New Haven, Connecticut, United States
| | - Alexander Song
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Gal Mishne
- UC San Diego, Halıcığlu Data Science Institute, Department of Electrical and Computer Engineering and the Neurosciences Graduate Program, La Jolla, California, United States
| | - Adam S. Charles
- Johns Hopkins University, Kavli Neuroscience Discovery Institute, Center for Imaging Science, Department of Biomedical Engineering, Department of Neuroscience, and Mathematical Institute for Data Science, Baltimore, Maryland, United States
| |
Collapse
|
53
|
Anandakumar DB, Liu RC. More than the end: OFF response plasticity as a mnemonic signature of a sound's behavioral salience. Front Comput Neurosci 2022; 16:974264. [PMID: 36148326 PMCID: PMC9485674 DOI: 10.3389/fncom.2022.974264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
In studying how neural populations in sensory cortex code dynamically varying stimuli to guide behavior, the role of spiking after stimuli have ended has been underappreciated. This is despite growing evidence that such activity can be tuned, experience-and context-dependent and necessary for sensory decisions that play out on a slower timescale. Here we review recent studies, focusing on the auditory modality, demonstrating that this so-called OFF activity can have a more complex temporal structure than the purely phasic firing that has often been interpreted as just marking the end of stimuli. While diverse and still incompletely understood mechanisms are likely involved in generating phasic and tonic OFF firing, more studies point to the continuing post-stimulus activity serving a short-term, stimulus-specific mnemonic function that is enhanced when the stimuli are particularly salient. We summarize these results with a conceptual model highlighting how more neurons within the auditory cortical population fire for longer duration after a sound's termination during an active behavior and can continue to do so even while passively listening to behaviorally salient stimuli. Overall, these studies increasingly suggest that tonic auditory cortical OFF activity holds an echoic memory of specific, salient sounds to guide behavioral decisions.
Collapse
Affiliation(s)
- Dakshitha B. Anandakumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States
| |
Collapse
|
54
|
Almeida VN, Radanovic M. Semantic processing and neurobiology in Alzheimer's disease and Mild Cognitive Impairment. Neuropsychologia 2022; 174:108337. [DOI: 10.1016/j.neuropsychologia.2022.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
|
55
|
Suri H, Rothschild G. Enhanced stability of complex sound representations relative to simple sounds in the auditory cortex. eNeuro 2022; 9:ENEURO.0031-22.2022. [PMID: 35868858 PMCID: PMC9347310 DOI: 10.1523/eneuro.0031-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Typical everyday sounds, such as those of speech or running water, are spectrotemporally complex. The ability to recognize complex sounds (CxS) and their associated meaning is presumed to rely on their stable neural representations across time. The auditory cortex is critical for processing of CxS, yet little is known of the degree of stability of auditory cortical representations of CxS across days. Previous studies have shown that the auditory cortex represents CxS identity with a substantial degree of invariance to basic sound attributes such as frequency. We therefore hypothesized that auditory cortical representations of CxS are more stable across days than those of sounds that lack spectrotemporal structure such as pure tones (PTs). To test this hypothesis, we recorded responses of identified L2/3 auditory cortical excitatory neurons to both PTs and CxS across days using two-photon calcium imaging in awake mice. Auditory cortical neurons showed significant daily changes of responses to both types of sounds, yet responses to CxS exhibited significantly lower rates of daily change than those of PTs. Furthermore, daily changes in response profiles to PTs tended to be more stimulus-specific, reflecting changes in sound selectivity, as compared to changes of CxS responses. Lastly, the enhanced stability of responses to CxS was evident across longer time intervals as well. Together, these results suggest that spectrotemporally CxS are more stably represented in the auditory cortex across time than PTs. These findings support a role of the auditory cortex in representing CxS identity across time.Significance statementThe ability to recognize everyday complex sounds such as those of speech or running water is presumed to rely on their stable neural representations. Yet, little is known of the degree of stability of single-neuron sound responses across days. As the auditory cortex is critical for complex sound perception, we hypothesized that the auditory cortical representations of complex sounds are relatively stable across days. To test this, we recorded sound responses of identified auditory cortical neurons across days in awake mice. We found that auditory cortical responses to complex sounds are significantly more stable across days as compared to those of simple pure tones. These findings support a role of the auditory cortex in representing complex sound identity across time.
Collapse
Affiliation(s)
- Harini Suri
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
56
|
Price BH, Gavornik JP. Efficient Temporal Coding in the Early Visual System: Existing Evidence and Future Directions. Front Comput Neurosci 2022; 16:929348. [PMID: 35874317 PMCID: PMC9298461 DOI: 10.3389/fncom.2022.929348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 01/16/2023] Open
Abstract
While it is universally accepted that the brain makes predictions, there is little agreement about how this is accomplished and under which conditions. Accurate prediction requires neural circuits to learn and store spatiotemporal patterns observed in the natural environment, but it is not obvious how such information should be stored, or encoded. Information theory provides a mathematical formalism that can be used to measure the efficiency and utility of different coding schemes for data transfer and storage. This theory shows that codes become efficient when they remove predictable, redundant spatial and temporal information. Efficient coding has been used to understand retinal computations and may also be relevant to understanding more complicated temporal processing in visual cortex. However, the literature on efficient coding in cortex is varied and can be confusing since the same terms are used to mean different things in different experimental and theoretical contexts. In this work, we attempt to provide a clear summary of the theoretical relationship between efficient coding and temporal prediction, and review evidence that efficient coding principles explain computations in the retina. We then apply the same framework to computations occurring in early visuocortical areas, arguing that data from rodents is largely consistent with the predictions of this model. Finally, we review and respond to criticisms of efficient coding and suggest ways that this theory might be used to design future experiments, with particular focus on understanding the extent to which neural circuits make predictions from efficient representations of environmental statistics.
Collapse
Affiliation(s)
| | - Jeffrey P. Gavornik
- Center for Systems Neuroscience, Graduate Program in Neuroscience, Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|
57
|
Pérez-González D, Schreiner TG, Llano DA, Malmierca MS. Alzheimer's Disease, Hearing Loss, and Deviance Detection. Front Neurosci 2022; 16:879480. [PMID: 35720686 PMCID: PMC9201340 DOI: 10.3389/fnins.2022.879480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Age-related hearing loss is a widespread condition among the elderly, affecting communication and social participation. Given its high incidence, it is not unusual that individuals suffering from age-related hearing loss also suffer from other age-related neurodegenerative diseases, a scenario which severely impacts their quality of life. Furthermore, recent studies have identified hearing loss as a relevant risk factor for the development of dementia due to Alzheimer's disease, although the underlying associations are still unclear. In order to cope with the continuous flow of auditory information, the brain needs to separate repetitive sounds from rare, unexpected sounds, which may be relevant. This process, known as deviance detection, is a key component of the sensory perception theory of predictive coding. According to this framework, the brain would use the available incoming information to make predictions about the environment and signal the unexpected stimuli that break those predictions. Such a system can be easily impaired by the distortion of auditory information processing that accompanies hearing loss. Changes in cholinergic neuromodulation have been found to alter auditory deviance detection both in humans and animal models. Interestingly, some theories propose a role for acetylcholine in the development of Alzheimer's disease, the most common type of dementia. Acetylcholine is involved in multiple neurobiological processes such as attention, learning, memory, arousal, sleep and/or cognitive reinforcement, and has direct influence on the auditory system at the levels of the inferior colliculus and auditory cortex. Here we comment on the possible links between acetylcholine, hearing loss, and Alzheimer's disease, and association that is worth further investigation.
Collapse
Affiliation(s)
- David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Thomas G. Schreiner
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, “Gheorghe Asachi” Technical University of Iasi, Iaşi, Romania
- Department of Neurology, “Gr. T. Popa” University of Medicine and Pharmacy, Iaşi, Romania
| | - Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- The Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Carle Neuroscience Institute, Urbana, IL, United States
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
58
|
Francis NA, Mukherjee S, Koçillari L, Panzeri S, Babadi B, Kanold PO. Sequential transmission of task-relevant information in cortical neuronal networks. Cell Rep 2022; 39:110878. [PMID: 35649366 PMCID: PMC9387204 DOI: 10.1016/j.celrep.2022.110878] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Cortical processing of task-relevant information enables recognition of behaviorally meaningful sensory events. It is unclear how task-related information is represented within cortical networks by the activity of individual neurons and their functional interactions. Here, we use two-photon imaging to record neuronal activity from the primary auditory cortex of mice during a pure-tone discrimination task. We find that a subset of neurons transiently encode sensory information used to inform behavioral choice. Using Granger causality analysis, we show that these neurons form functional networks in which information transmits sequentially. Network structures differ for target versus non-target tones, encode behavioral choice, and differ between correct versus incorrect behavioral choices. Correct behavioral choices are associated with shorter communication timescales, larger functional correlations, and greater information redundancy. In summary, specialized neurons in primary auditory cortex integrate task-related information and form functional networks whose structures encode both sensory input and behavioral choice. Francis et al. find that, as mice perform an auditory discrimination task, cortical neurons form functional networks in which task-relevant information transmits sequentially between neurons. Network structures encode behavioral choice, and correct behavioral choices are associated with shorter communication timescales, larger functional correlations, and greater information redundancy between neurons.
Collapse
Affiliation(s)
- Nikolas A Francis
- Department of Biology & Brain and Behavior Institute, University of Maryland, College Park, MD 20742, USA
| | - Shoutik Mukherjee
- Department of Electrical and Computer Engineering & Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Loren Koçillari
- Laboratory of Neural Computation, Istituto Italiano di Tecnologia, Rovereto 38068, Italy; Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, D-20251 Hamburg, Germany
| | - Stefano Panzeri
- Laboratory of Neural Computation, Istituto Italiano di Tecnologia, Rovereto 38068, Italy; Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, D-20251 Hamburg, Germany.
| | - Behtash Babadi
- Department of Electrical and Computer Engineering & Institute for Systems Research, University of Maryland, College Park, MD 20742, USA.
| | - Patrick O Kanold
- Department of Biology & Brain and Behavior Institute, University of Maryland, College Park, MD 20742, USA; Department of Biomedical Engineering & Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
59
|
The role of inhibitory circuits in hippocampal memory processing. Nat Rev Neurosci 2022; 23:476-492. [DOI: 10.1038/s41583-022-00599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
|
60
|
Corbo J, McClure JP, Erkat OB, Polack PO. Dynamic Distortion of Orientation Representation after Learning in the Mouse Primary Visual Cortex. J Neurosci 2022; 42:4311-4325. [PMID: 35477902 PMCID: PMC9145234 DOI: 10.1523/jneurosci.2272-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Learning is an essential cognitive mechanism allowing behavioral adaptation through adjustments in neuronal processing. It is associated with changes in the activity of sensory cortical neurons evoked by task-relevant stimuli. However, the exact nature of those modifications and the computational advantages they may confer are still debated. Here, we investigated how learning an orientation discrimination task alters the neuronal representations of the cues orientations in the primary visual cortex (V1) of male and female mice. When comparing the activity evoked by the task stimuli in naive mice and the mice performing the task, we found that the representations of the orientation of the rewarded and nonrewarded cues were more accurate and stable in trained mice. This better cue representation in trained mice was associated with a distortion of the orientation representation space such that stimuli flanking the task-relevant orientations were represented as the task stimuli themselves, suggesting that those stimuli were generalized as the task cues. This distortion was context dependent as it was absent in trained mice passively viewing the task cues and enhanced in the behavioral sessions where mice performed best. Those modifications of the V1 population orientation representation in performing mice were supported by a suppression of the activity of neurons tuned for orientations neighboring the orientations of the task cues. Thus, visual processing in V1 is dynamically adapted to enhance the reliability of the representation of the learned cues and favor generalization in the task-relevant computational space.SIGNIFICANCE STATEMENT Performance improvement in a task often requires facilitating the extraction of the information necessary to its execution. Here, we demonstrate the existence of a suppression mechanism that improves the representation of the orientations of the task stimuli in the V1 of mice performing an orientation discrimination task. We also show that this mechanism distorts the V1 orientation representation space, leading stimuli flanking the task stimuli orientations to be generalized as the task stimuli themselves.
Collapse
Affiliation(s)
- Julien Corbo
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
| | - John P McClure
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
- Behavioral and Neural Sciences Graduate Program, Rutgers University-Newark, Newark, New Jersey 07102
| | - O Batuhan Erkat
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
- Behavioral and Neural Sciences Graduate Program, Rutgers University-Newark, Newark, New Jersey 07102
| | - Pierre-Olivier Polack
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
| |
Collapse
|
61
|
Onodera K, Kato HK. Translaminar recurrence from layer 5 suppresses superficial cortical layers. Nat Commun 2022; 13:2585. [PMID: 35546553 PMCID: PMC9095870 DOI: 10.1038/s41467-022-30349-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/26/2022] [Indexed: 12/23/2022] Open
Abstract
Information flow in the sensory cortex has been described as a predominantly feedforward sequence with deep layers as the output structure. Although recurrent excitatory projections from layer 5 (L5) to superficial L2/3 have been identified by anatomical and physiological studies, their functional impact on sensory processing remains unclear. Here, we use layer-selective optogenetic manipulations in the primary auditory cortex to demonstrate that feedback inputs from L5 suppress the activity of superficial layers regardless of the arousal level, contrary to the prediction from their excitatory connectivity. This suppressive effect is predominantly mediated by translaminar circuitry through intratelencephalic neurons, with an additional contribution of subcortical projections by pyramidal tract neurons. Furthermore, L5 activation sharpened tone-evoked responses of superficial layers in both frequency and time domains, indicating its impact on cortical spectro-temporal integration. Together, our findings establish a translaminar inhibitory recurrence from deep layers that sharpens feature selectivity in superficial cortical layers.
Collapse
Affiliation(s)
- Koun Onodera
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroyuki K Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
62
|
Chaloner FA, Cooke SF. Multiple Mechanistically Distinct Timescales of Neocortical Plasticity Occur During Habituation. Front Cell Neurosci 2022; 16:840057. [PMID: 35465612 PMCID: PMC9033275 DOI: 10.3389/fncel.2022.840057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Recognizing familiar but innocuous stimuli and suppressing behavioral response to those stimuli are critical steps in dedicating cognitive resources to significant elements of the environment. Recent work in the visual system has uncovered key neocortical mechanisms of this familiarity that emerges over days. Specifically, exposure to phase-reversing gratings of a specific orientation causes long-lasting stimulus-selective response potentiation (SRP) in layer 4 of mouse primary visual cortex (V1) as the animal's behavioral responses are reduced through habituation. This plasticity and concomitant learning require the NMDA receptor and the activity of parvalbumin-expressing (PV+) inhibitory neurons. Changes over the course of seconds and minutes have been less well studied in this paradigm, so we have here characterized cortical plasticity occurring over seconds and minutes, as well as days, to identify separable forms of plasticity accompanying familiarity. In addition, we show evidence of interactions between plasticity over these different timescales and reveal key mechanistic differences. Layer 4 visual-evoked potentials (VEPs) are potentiated over days, and they are depressed over minutes, even though both forms of plasticity coincide with significant reductions in behavioral response. Adaptation, classically described as a progressive reduction in synaptic or neural activity, also occurs over the course of seconds, but appears mechanistically separable over a second as compared to tens of seconds. Interestingly, these short-term forms of adaptation are modulated by long-term familiarity, such that they occur for novel but not highly familiar stimuli. Genetic knock-down of NMDA receptors within V1 prevents all forms of plasticity while, importantly, the modulation of short-term adaptation by long-term familiarity is gated by PV+ interneurons. Our findings demonstrate that different timescales of adaptation/habituation have divergent but overlapping mechanisms, providing new insight into how the brain is modified by experience to encode familiarity.
Collapse
Affiliation(s)
- Francesca A. Chaloner
- MRC Centre for Neurodevelopmental Disorders (CNDD), King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom
| | - Sam F. Cooke
- MRC Centre for Neurodevelopmental Disorders (CNDD), King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
63
|
Neuronal activity in sensory cortex predicts the specificity of learning in mice. Nat Commun 2022; 13:1167. [PMID: 35246528 PMCID: PMC8897443 DOI: 10.1038/s41467-022-28784-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022] Open
Abstract
Learning to avoid dangerous signals while preserving normal responses to safe stimuli is essential for everyday behavior and survival. Following identical experiences, subjects exhibit fear specificity ranging from high (specializing fear to only the dangerous stimulus) to low (generalizing fear to safe stimuli), yet the neuronal basis of fear specificity remains unknown. Here, we identified the neuronal code that underlies inter-subject variability in fear specificity using longitudinal imaging of neuronal activity before and after differential fear conditioning in the auditory cortex of mice. Neuronal activity prior to, but not after learning predicted the level of specificity following fear conditioning across subjects. Stimulus representation in auditory cortex was reorganized following conditioning. However, the reorganized neuronal activity did not relate to the specificity of learning. These results present a novel neuronal code that determines individual patterns in learning. The neural mechanisms underpinning the specificity of fear memories remains poorly understood. Here, the authors highlight how neural activity prior to fear learning impacts fear memory specificity.
Collapse
|
64
|
Poort J, Wilmes KA, Blot A, Chadwick A, Sahani M, Clopath C, Mrsic-Flogel TD, Hofer SB, Khan AG. Learning and attention increase visual response selectivity through distinct mechanisms. Neuron 2022; 110:686-697.e6. [PMID: 34906356 PMCID: PMC8860382 DOI: 10.1016/j.neuron.2021.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/31/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Selectivity of cortical neurons for sensory stimuli can increase across days as animals learn their behavioral relevance and across seconds when animals switch attention. While both phenomena occur in the same circuit, it is unknown whether they rely on similar mechanisms. We imaged primary visual cortex as mice learned a visual discrimination task and subsequently performed an attention switching task. Selectivity changes due to learning and attention were uncorrelated in individual neurons. Selectivity increases after learning mainly arose from selective suppression of responses to one of the stimuli but from selective enhancement and suppression during attention. Learning and attention differentially affected interactions between excitatory and PV, SOM, and VIP inhibitory cells. Circuit modeling revealed that cell class-specific top-down inputs best explained attentional modulation, while reorganization of local functional connectivity accounted for learning-related changes. Thus, distinct mechanisms underlie increased discriminability of relevant sensory stimuli across longer and shorter timescales.
Collapse
Affiliation(s)
- Jasper Poort
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK; Department of Psychology, University of Cambridge, Cambridge, UK.
| | | | - Antonin Blot
- Biozentrum, University of Basel, Basel, Switzerland; Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Angus Chadwick
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Maneesh Sahani
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | | | - Thomas D Mrsic-Flogel
- Biozentrum, University of Basel, Basel, Switzerland; Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Sonja B Hofer
- Biozentrum, University of Basel, Basel, Switzerland; Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Adil G Khan
- Biozentrum, University of Basel, Basel, Switzerland; Centre for Developmental Neurobiology, King's College London, London, UK.
| |
Collapse
|
65
|
Somatostatin and Somatostatin-Containing Interneurons—From Plasticity to Pathology. Biomolecules 2022; 12:biom12020312. [PMID: 35204812 PMCID: PMC8869243 DOI: 10.3390/biom12020312] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the obvious differences in the pathophysiology of distinct neuropsychiatric diseases or neurodegenerative disorders, some of them share some general but pivotal mechanisms, one of which is the disruption of excitation/inhibition balance. Such an imbalance can be generated by changes in the inhibitory system, very often mediated by somatostatin-containing interneurons (SOM-INs). In physiology, this group of inhibitory interneurons, as well as somatostatin itself, profoundly shapes the brain activity, thus influencing the behavior and plasticity; however, the changes in the number, density and activity of SOM-INs or levels of somatostatin are found throughout many neuropsychiatric and neurological conditions, both in patients and animal models. Here, we (1) briefly describe the brain somatostatinergic system, characterizing the neuropeptide somatostatin itself, its receptors and functions, as well the physiology and circuitry of SOM-INs; and (2) summarize the effects of the activity of somatostatin and SOM-INs in both physiological brain processes and pathological brain conditions, focusing primarily on learning-induced plasticity and encompassing selected neuropsychological and neurodegenerative disorders, respectively. The presented data indicate the somatostatinergic-system-mediated inhibition as a substantial factor in the mechanisms of neuroplasticity, often disrupted in a plethora of brain pathologies.
Collapse
|
66
|
Auerbach BD, Gritton HJ. Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss. Front Neurosci 2022; 16:799787. [PMID: 35221899 PMCID: PMC8866963 DOI: 10.3389/fnins.2022.799787] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Listening in noisy or complex sound environments is difficult for individuals with normal hearing and can be a debilitating impairment for those with hearing loss. Extracting meaningful information from a complex acoustic environment requires the ability to accurately encode specific sound features under highly variable listening conditions and segregate distinct sound streams from multiple overlapping sources. The auditory system employs a variety of mechanisms to achieve this auditory scene analysis. First, neurons across levels of the auditory system exhibit compensatory adaptations to their gain and dynamic range in response to prevailing sound stimulus statistics in the environment. These adaptations allow for robust representations of sound features that are to a large degree invariant to the level of background noise. Second, listeners can selectively attend to a desired sound target in an environment with multiple sound sources. This selective auditory attention is another form of sensory gain control, enhancing the representation of an attended sound source while suppressing responses to unattended sounds. This review will examine both “bottom-up” gain alterations in response to changes in environmental sound statistics as well as “top-down” mechanisms that allow for selective extraction of specific sound features in a complex auditory scene. Finally, we will discuss how hearing loss interacts with these gain control mechanisms, and the adaptive and/or maladaptive perceptual consequences of this plasticity.
Collapse
Affiliation(s)
- Benjamin D. Auerbach
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach,
| | - Howard J. Gritton
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
67
|
Learning-induced biases in the ongoing dynamics of sensory representations predict stimulus generalization. Cell Rep 2022; 38:110340. [PMID: 35139386 DOI: 10.1016/j.celrep.2022.110340] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/16/2021] [Accepted: 01/14/2022] [Indexed: 11/22/2022] Open
Abstract
Sensory stimuli have long been thought to be represented in the brain as activity patterns of specific neuronal assemblies. However, we still know relatively little about the long-term dynamics of sensory representations. Using chronic in vivo calcium imaging in the mouse auditory cortex, we find that sensory representations undergo continuous recombination, even under behaviorally stable conditions. Auditory cued fear conditioning introduces a bias into these ongoing dynamics, resulting in a long-lasting increase in the number of stimuli activating the same subset of neurons. This plasticity is specific for stimuli sharing representational similarity to the conditioned sound prior to conditioning and predicts behaviorally observed stimulus generalization. Our findings demonstrate that learning-induced plasticity leading to a representational linkage between the conditioned stimulus and non-conditioned stimuli weaves into ongoing dynamics of the brain rather than acting on an otherwise static substrate.
Collapse
|
68
|
Lee C, Harkin EF, Yin X, Naud R, Chen S. Cell-type specific responses to associative learning in the primary motor cortex. eLife 2022; 11:72549. [PMID: 35113017 PMCID: PMC8856656 DOI: 10.7554/elife.72549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
The primary motor cortex (M1) is known to be a critical site for movement initiation and motor learning. Surprisingly, it has also been shown to possess reward-related activity, presumably to facilitate reward-based learning of new movements. However, whether reward-related signals are represented among different cell types in M1, and whether their response properties change after cue–reward conditioning remains unclear. Here, we performed longitudinal in vivo two-photon Ca2+ imaging to monitor the activity of different neuronal cell types in M1 while mice engaged in a classical conditioning task. Our results demonstrate that most of the major neuronal cell types in M1 showed robust but differential responses to both the conditioned cue stimulus (CS) and reward, and their response properties undergo cell-type-specific modifications after associative learning. PV-INs’ responses became more reliable to the CS, while VIP-INs’ responses became more reliable to reward. Pyramidal neurons only showed robust responses to novel reward, and they habituated to it after associative learning. Lastly, SOM-INs’ responses emerged and became more reliable to both the CS and reward after conditioning. These observations suggest that cue- and reward-related signals are preferentially represented among different neuronal cell types in M1, and the distinct modifications they undergo during associative learning could be essential in triggering different aspects of local circuit reorganization in M1 during reward-based motor skill learning.
Collapse
Affiliation(s)
- Candice Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Emerson F Harkin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Xuming Yin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Richard Naud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Simon Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
69
|
Montgomery DP, Hayden DJ, Chaloner FA, Cooke SF, Bear MF. Stimulus-Selective Response Plasticity in Primary Visual Cortex: Progress and Puzzles. Front Neural Circuits 2022; 15:815554. [PMID: 35173586 PMCID: PMC8841555 DOI: 10.3389/fncir.2021.815554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022] Open
Abstract
Stimulus-selective response plasticity (SRP) is a robust and lasting modification of primary visual cortex (V1) that occurs in response to exposure to novel visual stimuli. It is readily observed as a pronounced increase in the magnitude of visual evoked potentials (VEPs) recorded in response to phase-reversing grating stimuli in neocortical layer 4. The expression of SRP at the individual neuron level is equally robust, but the qualities vary depending on the neuronal type and how activity is measured. This form of plasticity is highly selective for stimulus features such as stimulus orientation, spatial frequency, and contrast. Several key insights into the significance and underlying mechanisms of SRP have recently been made. First, it occurs concomitantly and shares core mechanisms with behavioral habituation, indicating that SRP reflects the formation of long-term familiarity that can support recognition of innocuous stimuli. Second, SRP does not manifest within a recording session but only emerges after an off-line period of several hours that includes sleep. Third, SRP requires not only canonical molecular mechanisms of Hebbian synaptic plasticity within V1, but also the opposing engagement of two key subclasses of cortical inhibitory neuron: the parvalbumin- and somatostatin-expressing GABAergic interneurons. Fourth, pronounced shifts in the power of cortical oscillations from high frequency (gamma) to low frequency (alpha/beta) oscillations provide respective readouts of the engagement of these inhibitory neuronal subtypes following familiarization. In this article we will discuss the implications of these findings and the outstanding questions that remain to gain a deeper understanding of this striking form of experience-dependent plasticity.
Collapse
Affiliation(s)
- Daniel P. Montgomery
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Dustin J. Hayden
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Francesca A. Chaloner
- MRC Centre for Neurodevelopmental Disorders (CNDD), King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Samuel F. Cooke
- MRC Centre for Neurodevelopmental Disorders (CNDD), King’s College London, London, United Kingdom
- Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Mark F. Bear
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
70
|
Waiblinger C, McDonnell ME, Reedy AR, Borden PY, Stanley GB. Emerging experience-dependent dynamics in primary somatosensory cortex reflect behavioral adaptation. Nat Commun 2022; 13:534. [PMID: 35087056 PMCID: PMC8795122 DOI: 10.1038/s41467-022-28193-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Behavioral experience and flexibility are crucial for survival in a constantly changing environment. Despite evolutionary pressures to develop adaptive behavioral strategies in a dynamically changing sensory landscape, the underlying neural correlates have not been well explored. Here, we use genetically encoded voltage imaging to measure signals in primary somatosensory cortex (S1) during sensory learning and behavioral adaptation in the mouse. In response to changing stimulus statistics, mice adopt a strategy that modifies their detection behavior in a context dependent manner as to maintain reward expectation. Surprisingly, neuronal activity in S1 shifts from simply representing stimulus properties to transducing signals necessary for adaptive behavior in an experience dependent manner. Our results suggest that neuronal signals in S1 are part of an adaptive framework that facilitates flexible behavior as individuals gain experience, which could be part of a general scheme that dynamically distributes the neural correlates of behavior during learning. Waiblinger et al. investigate the role of primary sensory cortex in flexible behaviors. They show that neuronal signals in S1 are part of an adaptive and dynamic framework that facilitates flexible behavior as an individual gains experience, indicating a role for S1 in long-term adaptive strategies.
Collapse
Affiliation(s)
- Christian Waiblinger
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Megan E McDonnell
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - April R Reedy
- Integrated Cellular Imaging Core, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Peter Y Borden
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
71
|
Task-induced modulations of neuronal activity along the auditory pathway. Cell Rep 2021; 37:110115. [PMID: 34910908 DOI: 10.1016/j.celrep.2021.110115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/29/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
Sensory processing varies depending on behavioral context. Here, we ask how task engagement modulates neurons in the auditory system. We train mice in a simple tone-detection task and compare their neuronal activity during passive hearing and active listening. Electrophysiological extracellular recordings in the inferior colliculus, medial geniculate body, primary auditory cortex, and anterior auditory field reveal widespread modulations across all regions and cortical layers and in both putative regular- and fast-spiking cortical neurons. Clustering analysis unveils ten distinct modulation patterns that can either enhance or suppress neuronal activity. Task engagement changes the tone-onset response in most neurons. Such modulations first emerge in subcortical areas, ruling out cortical feedback as the only mechanism underlying subcortical modulations. Half the neurons additionally display late modulations associated with licking, arousal, or reward. Our results reveal the presence of functionally distinct subclasses of neurons, differentially sensitive to specific task-related variables but anatomically distributed along the auditory pathway.
Collapse
|
72
|
Inhibition in the auditory cortex. Neurosci Biobehav Rev 2021; 132:61-75. [PMID: 34822879 DOI: 10.1016/j.neubiorev.2021.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023]
Abstract
The auditory system provides us with extremely rich and precise information about the outside world. Once a sound reaches our ears, the acoustic information it carries travels from the cochlea all the way to the auditory cortex, where its complexity and nuances are integrated. In the auditory cortex, functional circuits are formed by subpopulations of intermingled excitatory and inhibitory cells. In this review, we discuss recent evidence of the specific contributions of inhibitory neurons in sound processing and integration. We first examine intrinsic properties of three main classes of inhibitory interneurons in the auditory cortex. Then, we describe how inhibition shapes the responsiveness of the auditory cortex to sound. Finally, we discuss how inhibitory interneurons contribute to the sensation and perception of sounds. Altogether, this review points out the crucial role of cortical inhibitory interneurons in integrating information about the context, history, or meaning of a sound. It also highlights open questions to be addressed for increasing our understanding of the staggering complexity leading to the subtlest auditory perception.
Collapse
|
73
|
Slonina ZA, Poole KC, Bizley JK. What can we learn from inactivation studies? Lessons from auditory cortex. Trends Neurosci 2021; 45:64-77. [PMID: 34799134 PMCID: PMC8897194 DOI: 10.1016/j.tins.2021.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Inactivation experiments in auditory cortex (AC) produce widely varying results that complicate interpretations regarding the precise role of AC in auditory perception and ensuing behaviour. The advent of optogenetic methods in neuroscience offers previously unachievable insight into the mechanisms transforming brain activity into behaviour. With a view to aiding the design and interpretation of future studies in and outside AC, here we discuss the methodological challenges faced in manipulating neural activity. While considering AC’s role in auditory behaviour through the prism of inactivation experiments, we consider the factors that confound the interpretation of the effects of inactivation on behaviour, including the species, the type of inactivation, the behavioural task employed, and the exact location of the inactivation. Wide variation in the outcome of auditory cortex inactivation has been an impediment to clear conclusions regarding the roles of the auditory cortex in behaviour. Inactivation methods differ in their efficacy and specificity. The likelihood of observing a behavioural deficit is additionally influenced by factors such as the species being used, task design and reward. A synthesis of previous results suggests that auditory cortex involvement is critical for tasks that require integrating across multiple stimulus features, and less likely to be critical for simple feature discriminations. New methods of neural silencing provide opportunities for spatially and temporally precise manipulation of activity, allowing perturbation of individual subfields and specific circuits.
Collapse
|
74
|
Carreño-Muñoz MI, Chattopadhyaya B, Agbogba K, Côté V, Wang S, Lévesque M, Avoli M, Michaud JL, Lippé S, Di Cristo G. Sensory processing dysregulations as reliable translational biomarkers in SYNGAP1 haploinsufficiency. Brain 2021; 145:754-769. [PMID: 34791091 DOI: 10.1093/brain/awab329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Amongst the numerous genes associated with intellectual disability, SYNGAP1 stands out for its frequency and penetrance of loss-of-function variants found in patients, as well as the wide range of co-morbid disorders associated with its mutation. Most studies exploring the pathophysiological alterations caused by Syngap1 haploinsufficiency in mouse models have focused on cognitive problems and epilepsy, however whether and to what extent sensory perception and processing are altered by Syngap1 haploinsufficiency is less clear. By performing EEG recordings in awake mice, we identified specific alterations in multiple aspects of auditory and visual processing, including increased baseline gamma oscillation power, increased theta/gamma phase amplitude coupling following stimulus presentation and abnormal neural entrainment in response to different sensory modality-specific frequencies. We also report lack of habituation to repetitive auditory stimuli and abnormal deviant sound detection. Interestingly, we found that most of these alterations are present in human patients as well, thus making them strong candidates as translational biomarkers of sensory-processing alterations associated with SYNGAP1/Syngap1 haploinsufficiency.
Collapse
Affiliation(s)
- Maria Isabel Carreño-Muñoz
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | | | - Kristian Agbogba
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada
| | - Valérie Côté
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Siyan Wang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Maxime Lévesque
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Jacques L Michaud
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Sarah Lippé
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Graziella Di Cristo
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
75
|
Lee J, Rothschild G. Encoding of acquired sound-sequence salience by auditory cortical offset responses. Cell Rep 2021; 37:109927. [PMID: 34731615 DOI: 10.1016/j.celrep.2021.109927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Behaviorally relevant sounds are often composed of distinct acoustic units organized into specific temporal sequences. The meaning of such sound sequences can therefore be fully recognized only when they have terminated. However, the neural mechanisms underlying the perception of sound sequences remain unclear. Here, we use two-photon calcium imaging in the auditory cortex of behaving mice to test the hypothesis that neural responses to termination of sound sequences ("Off-responses") encode their acoustic history and behavioral salience. We find that auditory cortical Off-responses encode preceding sound sequences and that learning to associate a sound sequence with a reward induces enhancement of Off-responses relative to responses during the sound sequence ("On-responses"). Furthermore, learning enhances network-level discriminability of sound sequences by Off-responses. Last, learning-induced plasticity of Off-responses but not On-responses lasts to the next day. These findings identify auditory cortical Off-responses as a key neural signature of acquired sound-sequence salience.
Collapse
Affiliation(s)
- Joonyeup Lee
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
76
|
Chen C, She Z, Tang P, Qin Z, He J, Qu JY. Study of neurovascular coupling by using mesoscopic and microscopic imaging. iScience 2021; 24:103176. [PMID: 34693226 PMCID: PMC8511898 DOI: 10.1016/j.isci.2021.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 09/22/2021] [Indexed: 12/05/2022] Open
Abstract
Neuronal activation is often accompanied by the regulation of cerebral hemodynamics via a process known as neurovascular coupling (NVC) which is essential for proper brain function and has been observed to be disrupted in a variety of neuropathologies. A comprehensive understanding of NVC requires imaging capabilities with high spatiotemporal resolution and a field-of-view that spans different orders of magnitude. Here, we present an approach for concurrent multi-contrast mesoscopic and two-photon microscopic imaging of neurovascular dynamics in the cortices of live mice. We investigated the spatiotemporal correlation between sensory-evoked neuronal and vascular responses in the auditory cortices of living mice using four imaging modalities. Our findings unravel drastic differences in the NVC at the regional and microvascular levels and the distinctive effects of different brain states on NVC. We further investigated the brain-state-dependent changes of NVC in large cortical networks and revealed that anesthesia and sedation caused spatiotemporal disruption of NVC. Concurrent mesoscopic and microscopic imaging of neurovascular dynamics Spatiotemporal characteristics of neurovascular responses across multiple scales Distinct effects of anesthesia and sedation on neurovascular coupling Cortex-wide correlation of neuronal activity and cerebral hemodynamics
Collapse
Affiliation(s)
- Congping Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhentao She
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Peng Tang
- Department of Neuroscience (NS), City University of Hong Kong, Hong Kong, P.R. China.,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China
| | - Zhongya Qin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jufang He
- Department of Neuroscience (NS), City University of Hong Kong, Hong Kong, P.R. China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
77
|
Schulz A, Miehl C, Berry MJ, Gjorgjieva J. The generation of cortical novelty responses through inhibitory plasticity. eLife 2021; 10:e65309. [PMID: 34647889 PMCID: PMC8516419 DOI: 10.7554/elife.65309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Animals depend on fast and reliable detection of novel stimuli in their environment. Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli. Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses. Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli remains low, leading to a network novelty response. The generation of novelty responses does not depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli, enabling us to make experimentally testable predictions.
Collapse
Affiliation(s)
- Auguste Schulz
- Max Planck Institute for Brain ResearchFrankfurtGermany
- Technical University of Munich, Department of Electrical and Computer EngineeringMunichGermany
| | - Christoph Miehl
- Max Planck Institute for Brain ResearchFrankfurtGermany
- Technical University of Munich, School of Life SciencesFreisingGermany
| | - Michael J Berry
- Princeton University, Princeton Neuroscience InstitutePrincetonUnited States
| | - Julijana Gjorgjieva
- Max Planck Institute for Brain ResearchFrankfurtGermany
- Technical University of Munich, School of Life SciencesFreisingGermany
| |
Collapse
|
78
|
Amaro D, Ferreiro DN, Grothe B, Pecka M. Source identity shapes spatial preference in primary auditory cortex during active navigation. Curr Biol 2021; 31:3875-3883.e5. [PMID: 34192513 DOI: 10.1016/j.cub.2021.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/10/2021] [Accepted: 06/09/2021] [Indexed: 01/05/2023]
Abstract
Information about the position of sensory objects and identifying their concurrent behavioral relevance is vital to navigate the environment. In the auditory system, spatial information is computed in the brain based on the position of the sound source relative to the observer and thus assumed to be egocentric throughout the auditory pathway. This assumption is largely based on studies conducted in either anesthetized or head-fixed and passively listening animals, thus lacking self-motion and selective listening. Yet these factors are fundamental components of natural sensing1 that may crucially impact the nature of spatial coding and sensory object representation.2 How individual objects are neuronally represented during unrestricted self-motion and active sensing remains mostly unexplored. Here, we trained gerbils on a behavioral foraging paradigm that required localization and identification of sound sources during free navigation. Chronic tetrode recordings in primary auditory cortex during task performance revealed previously unreported sensory object representations. Strikingly, the egocentric angle preference of the majority of spatially sensitive neurons changed significantly depending on the task-specific identity (outcome association) of the sound source. Spatial tuning also exhibited large temporal complexity. Moreover, we encountered egocentrically untuned neurons whose response magnitude differed between source identities. Using a neural network decoder, we show that, together, these neuronal response ensembles provide spatiotemporally co-existent information about both the egocentric location and the identity of individual sensory objects during self-motion, revealing a novel cortical computation principle for naturalistic sensing.
Collapse
Affiliation(s)
- Diana Amaro
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dardo N Ferreiro
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; Department of General Psychology and Education, Ludwig-Maximilians-Universität München, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Michael Pecka
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
79
|
The Impact of SST and PV Interneurons on Nonlinear Synaptic Integration in the Neocortex. eNeuro 2021; 8:ENEURO.0235-21.2021. [PMID: 34400470 PMCID: PMC8425965 DOI: 10.1523/eneuro.0235-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 01/19/2023] Open
Abstract
Excitatory synaptic inputs arriving at the dendrites of a neuron can engage active mechanisms that nonlinearly amplify the depolarizing currents. This supralinear synaptic integration is subject to modulation by inhibition. However, the specific rules by which different subtypes of interneurons affect the modulation have remained largely elusive. To examine how inhibition influences active synaptic integration, we optogenetically manipulated the activity of the following two subtypes of interneurons: dendrite-targeting somatostatin-expressing (SST) interneurons; and perisomatic-targeting parvalbumin-expressing (PV) interneurons. In acute slices of mouse primary visual cortex, electrical stimulation evoked nonlinear synaptic integration that depended on NMDA receptors. Optogenetic activation of SST interneurons in conjunction with electrical stimulation resulted in predominantly divisive inhibitory gain control, reducing the magnitude of the supralinear response without affecting its threshold. PV interneuron activation, on the other hand, had a minimal effect on the supralinear response. Together, these results delineate the roles for SST and PV neurons in active synaptic integration. Differential effects of inhibition by SST and PV interneurons likely increase the computational capacity of the pyramidal neurons in modulating the nonlinear integration of synaptic output.
Collapse
|
80
|
Development, Diversity, and Death of MGE-Derived Cortical Interneurons. Int J Mol Sci 2021; 22:ijms22179297. [PMID: 34502208 PMCID: PMC8430628 DOI: 10.3390/ijms22179297] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
In the mammalian brain, cortical interneurons (INs) are a highly diverse group of cells. A key neurophysiological question concerns how each class of INs contributes to cortical circuit function and whether specific roles can be attributed to a selective cell type. To address this question, researchers are integrating knowledge derived from transcriptomic, histological, electrophysiological, developmental, and functional experiments to extensively characterise the different classes of INs. Our hope is that such knowledge permits the selective targeting of cell types for therapeutic endeavours. This review will focus on two of the main types of INs, namely the parvalbumin (PV+) or somatostatin (SOM+)-containing cells, and summarise the research to date on these classes.
Collapse
|
81
|
Kline AM, Aponte DA, Tsukano H, Giovannucci A, Kato HK. Inhibitory gating of coincidence-dependent sensory binding in secondary auditory cortex. Nat Commun 2021; 12:4610. [PMID: 34326331 PMCID: PMC8322099 DOI: 10.1038/s41467-021-24758-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
Integration of multi-frequency sounds into a unified perceptual object is critical for recognizing syllables in speech. This "feature binding" relies on the precise synchrony of each component's onset timing, but little is known regarding its neural correlates. We find that multi-frequency sounds prevalent in vocalizations, specifically harmonics, preferentially activate the mouse secondary auditory cortex (A2), whose response deteriorates with shifts in component onset timings. The temporal window for harmonics integration in A2 was broadened by inactivation of somatostatin-expressing interneurons (SOM cells), but not parvalbumin-expressing interneurons (PV cells). Importantly, A2 has functionally connected subnetworks of neurons preferentially encoding harmonic over inharmonic sounds. These subnetworks are stable across days and exist prior to experimental harmonics exposure, suggesting their formation during development. Furthermore, A2 inactivation impairs performance in a discrimination task for coincident harmonics. Together, we propose A2 as a locus for multi-frequency integration, which may form the circuit basis for vocal processing.
Collapse
Affiliation(s)
- Amber M Kline
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Destinee A Aponte
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hiroaki Tsukano
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea Giovannucci
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Hiroyuki K Kato
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
82
|
Hayden DJ, Montgomery DP, Cooke SF, Bear MF. Visual Recognition Is Heralded by Shifts in Local Field Potential Oscillations and Inhibitory Networks in Primary Visual Cortex. J Neurosci 2021; 41:6257-6272. [PMID: 34103358 PMCID: PMC8287992 DOI: 10.1523/jneurosci.0391-21.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
Learning to recognize and filter familiar, irrelevant sensory stimuli eases the computational burden on the cerebral cortex. Inhibition is a candidate mechanism in this filtration process, and oscillations in the cortical local field potential (LFP) serve as markers of the engagement of different inhibitory neurons. We show here that LFP oscillatory activity in visual cortex is profoundly altered as male and female mice learn to recognize an oriented grating stimulus-low-frequency (∼15 Hz peak) power sharply increases, whereas high-frequency (∼65 Hz peak) power decreases. These changes report recognition of the familiar pattern as they disappear when the stimulus is rotated to a novel orientation. Two-photon imaging of neuronal activity reveals that parvalbumin-expressing inhibitory neurons disengage with familiar stimuli and reactivate to novelty, whereas somatostatin-expressing inhibitory neurons show opposing activity patterns. We propose a model in which the balance of two interacting interneuron circuits shifts as novel stimuli become familiar.SIGNIFICANCE STATEMENT Habituation, familiarity, and novelty detection are fundamental cognitive processes that enable organisms to adaptively filter meaningless stimuli and focus attention on potentially important elements of their environment. We have shown that this process can be studied fruitfully in the mouse primary visual cortex by using simple grating stimuli for which novelty and familiarity are defined by orientation and by measuring stimulus-evoked and continuous local field potentials. Altered event-related and spontaneous potentials, and deficient habituation, are well-documented features of several neurodevelopmental psychiatric disorders. The paradigm described here will be valuable to interrogate the origins of these signals and the meaning of their disruption more deeply.
Collapse
Affiliation(s)
- Dustin J Hayden
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Daniel P Montgomery
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Samuel F Cooke
- Medical Research Council Centre for Neurodevelopmental Disorders, Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 9RT, England
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
83
|
Romero S, Hight AE, Clayton KK, Resnik J, Williamson RS, Hancock KE, Polley DB. Cellular and Widefield Imaging of Sound Frequency Organization in Primary and Higher Order Fields of the Mouse Auditory Cortex. Cereb Cortex 2021; 30:1603-1622. [PMID: 31667491 DOI: 10.1093/cercor/bhz190] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mouse auditory cortex (ACtx) contains two core fields-primary auditory cortex (A1) and anterior auditory field (AAF)-arranged in a mirror reversal tonotopic gradient. The best frequency (BF) organization and naming scheme for additional higher order fields remain a matter of debate, as does the correspondence between smoothly varying global tonotopy and heterogeneity in local cellular tuning. Here, we performed chronic widefield and two-photon calcium imaging from the ACtx of awake Thy1-GCaMP6s reporter mice. Data-driven parcellation of widefield maps identified five fields, including a previously unidentified area at the ventral posterior extreme of the ACtx (VPAF) and a tonotopically organized suprarhinal auditory field (SRAF) that extended laterally as far as ectorhinal cortex. Widefield maps were stable over time, where single pixel BFs fluctuated by less than 0.5 octaves throughout a 1-month imaging period. After accounting for neuropil signal and frequency tuning strength, BF organization in neighboring layer 2/3 neurons was intermediate to the heterogeneous salt and pepper organization and the highly precise local organization that have each been described in prior studies. Multiscale imaging data suggest there is no ultrasonic field or secondary auditory cortex in the mouse. Instead, VPAF and a dorsal posterior (DP) field emerged as the strongest candidates for higher order auditory areas.
Collapse
Affiliation(s)
- Sandra Romero
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ariel E Hight
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Kameron K Clayton
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Jennifer Resnik
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Ross S Williamson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
84
|
Schoonover CE, Ohashi SN, Axel R, Fink AJP. Representational drift in primary olfactory cortex. Nature 2021; 594:541-546. [PMID: 34108681 DOI: 10.1038/s41586-021-03628-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Perceptual constancy requires the brain to maintain a stable representation of sensory input. In the olfactory system, activity in primary olfactory cortex (piriform cortex) is thought to determine odour identity1-5. Here we present the results of electrophysiological recordings of single units maintained over weeks to examine the stability of odour-evoked responses in mouse piriform cortex. Although activity in piriform cortex could be used to discriminate between odorants at any moment in time, odour-evoked responses drifted over periods of days to weeks. The performance of a linear classifier trained on the first recording day approached chance levels after 32 days. Fear conditioning did not stabilize odour-evoked responses. Daily exposure to the same odorant slowed the rate of drift, but when exposure was halted the rate increased again. This demonstration of continuous drift poses the question of the role of piriform cortex in odour perception. This instability might reflect the unstructured connectivity of piriform cortex6-12, and may be a property of other unstructured cortices.
Collapse
Affiliation(s)
- Carl E Schoonover
- Howard Hughes Medical Institute, Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
| | - Sarah N Ohashi
- Howard Hughes Medical Institute, Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.,Immunobiology Graduate Program, Yale School of Medicine, New Haven, CT, USA
| | - Richard Axel
- Howard Hughes Medical Institute, Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
| | - Andrew J P Fink
- Howard Hughes Medical Institute, Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
| |
Collapse
|
85
|
Zelenka O, Novak O, Brunova A, Syka J. Heterogeneous associative plasticity in the auditory cortex induced by fear learning - novel insight into the classical conditioning paradigm. Physiol Res 2021; 70:447-460. [PMID: 33982575 DOI: 10.33549/physiolres.934559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We used two-photon calcium imaging with single-cell and cell-type resolution. Fear conditioning induced heterogeneous tuning shifts at single-cell level in the auditory cortex, with shifts both to CS+ frequency and to the control CS- stimulus frequency. We thus extend the view of simple expansion of CS+ tuned regions. Instead of conventional freezing reactions only, we observe selective orienting responses towards the conditioned stimuli. The orienting responses were often followed by escape behavior.
Collapse
Affiliation(s)
- O Zelenka
- Department of Physiology, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | | | |
Collapse
|
86
|
Harpaz M, Jankowski MM, Khouri L, Nelken I. Emergence of abstract sound representations in the ascending auditory system. Prog Neurobiol 2021; 202:102049. [PMID: 33845166 DOI: 10.1016/j.pneurobio.2021.102049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/27/2022]
Abstract
Auditory processing begins by decomposing sounds into their frequency components, raising the question of where the representation of sounds as wholes emerges in the auditory system. To address this question, we used stimulus-specific adaptation (SSA), the reduction in the responses of a neuron to a common sound (standard) which does not generalize to another, rare sound (deviant). SSA to tone frequency has been demonstrated in multiple stations of the auditory pathway, including the inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex. We designed wideband stimuli (tone clouds) that have identical frequency components but are nevertheless distinct. Tone clouds evoked early and substantial SSA in primary auditory cortex (A1) but only late and minor SSA in IC and MGB. These results imply that while in IC and MGB sounds are largely represented in terms of their frequency components, in A1 they are represented as abstract entities.
Collapse
Affiliation(s)
- Mor Harpaz
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maciej M Jankowski
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Leila Khouri
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Israel Nelken
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
87
|
Song YH, Yoon J, Lee SH. The role of neuropeptide somatostatin in the brain and its application in treating neurological disorders. Exp Mol Med 2021; 53:328-338. [PMID: 33742131 PMCID: PMC8080805 DOI: 10.1038/s12276-021-00580-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Somatostatin (SST) is a well-known neuropeptide that is expressed throughout the brain. In the cortex, SST is expressed in a subset of GABAergic neurons and is known as a protein marker of inhibitory interneurons. Recent studies have identified the key functions of SST in modulating cortical circuits in the brain and cognitive function. Furthermore, reduced expression of SST is a hallmark of various neurological disorders, including Alzheimer's disease and depression. In this review, we summarize the current knowledge on SST expression and function in the brain. In particular, we describe the physiological roles of SST-positive interneurons in the cortex. We further describe the causal relationship between pathophysiological changes in SST function and various neurological disorders, such as Alzheimer's disease. Finally, we discuss potential treatments and possibility of novel drug developments for neurological disorders based on the current knowledge on the function of SST and SST analogs in the brain derived from experimental and clinical studies.
Collapse
Affiliation(s)
- You-Hyang Song
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 Republic of Korea
| | - Jiwon Yoon
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 Republic of Korea
| | - Seung-Hee Lee
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 Republic of Korea
| |
Collapse
|
88
|
Asokan MM, Williamson RS, Hancock KE, Polley DB. Inverted central auditory hierarchies for encoding local intervals and global temporal patterns. Curr Biol 2021; 31:1762-1770.e4. [PMID: 33609455 DOI: 10.1016/j.cub.2021.01.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 01/02/2023]
Abstract
In sensory systems, representational features of increasing complexity emerge at successive stages of processing. In the mammalian auditory pathway, the clearest change from brainstem to cortex is defined by what is lost, not by what is gained, in that high-fidelity temporal coding becomes increasingly restricted to slower acoustic modulation rates.1,2 Here, we explore the idea that sluggish temporal processing is more than just an inability for fast processing, but instead reflects an emergent specialization for encoding sound features that unfold on very slow timescales.3,4 We performed simultaneous single unit ensemble recordings from three hierarchical stages of auditory processing in awake mice - the inferior colliculus (IC), medial geniculate body of the thalamus (MGB) and primary auditory cortex (A1). As expected, temporal coding of brief local intervals (0.001 - 0.1 s) separating consecutive noise bursts was robust in the IC and declined across MGB and A1. By contrast, slowly developing (∼1 s period) global rhythmic patterns of inter-burst interval sequences strongly modulated A1 spiking, were weakly captured by MGB neurons, and not at all by IC neurons. Shifts in stimulus regularity were not represented by changes in A1 spike rates, but rather in how the spikes were arranged in time. These findings show that low-level auditory neurons with fast timescales encode isolated sound features but not the longer gestalt, while the extended timescales in higher-level areas can facilitate sensitivity to slower contextual changes in the sensory environment.
Collapse
Affiliation(s)
- Meenakshi M Asokan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA; Division of Medical Sciences, Harvard Medical School, Boston MA 02114 USA
| | - Ross S Williamson
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| | - Kenneth E Hancock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston MA 02114 USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston MA 02114 USA.
| |
Collapse
|
89
|
Bale MR, Bitzidou M, Giusto E, Kinghorn P, Maravall M. Sequence Learning Induces Selectivity to Multiple Task Parameters in Mouse Somatosensory Cortex. Curr Biol 2021; 31:473-485.e5. [PMID: 33186553 PMCID: PMC7883307 DOI: 10.1016/j.cub.2020.10.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 11/20/2022]
Abstract
Sequential temporal ordering and patterning are key features of natural signals, used by the brain to decode stimuli and perceive them as sensory objects. To explore how cortical neuronal activity underpins sequence discrimination, we developed a task in which mice distinguished between tactile "word" sequences constructed from distinct vibrations delivered to the whiskers, assembled in different orders. Animals licked to report the presence of the target sequence. Mice could respond to the earliest possible cues allowing discrimination, effectively solving the task as a "detection of change" problem, but enhanced their performance when responding later. Optogenetic inactivation showed that the somatosensory cortex was necessary for sequence discrimination. Two-photon imaging in layer 2/3 of the primary somatosensory "barrel" cortex (S1bf) revealed that, in well-trained animals, neurons had heterogeneous selectivity to multiple task variables including not just sensory input but also the animal's action decision and the trial outcome (presence or absence of the predicted reward). Many neurons were activated preceding goal-directed licking, thus reflecting the animal's learned action in response to the target sequence; these neurons were found as soon as mice learned to associate the rewarded sequence with licking. In contrast, learning evoked smaller changes in sensory response tuning: neurons responding to stimulus features were found in naive mice, and training did not generate neurons with enhanced temporal integration or categorical responses. Therefore, in S1bf, sequence learning results in neurons whose activity reflects the learned association between target sequence and licking rather than a refined representation of sensory features.
Collapse
Affiliation(s)
- Michael R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Malamati Bitzidou
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Elena Giusto
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Paul Kinghorn
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
90
|
Developmental PCB Exposure Disrupts Synaptic Transmission and Connectivity in the Rat Auditory Cortex, Independent of Its Effects on Peripheral Hearing Threshold. eNeuro 2021; 8:ENEURO.0321-20.2021. [PMID: 33483323 PMCID: PMC7901149 DOI: 10.1523/eneuro.0321-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/01/2021] [Accepted: 01/06/2021] [Indexed: 12/03/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are enduring environmental toxicants and exposure is associated with neurodevelopmental deficits. The auditory system appears particularly sensitive, as previous work has shown that developmental PCB exposure causes both hearing loss and gross disruptions in the organization of the rat auditory cortex. However, the mechanisms underlying PCB-induced changes are not known, nor is it known whether the central effects of PCBs are a consequence of peripheral hearing loss. Here, we study changes in both peripheral and central auditory function in rats with developmental PCB exposure using a combination of optical and electrophysiological approaches. Female rats were exposed to an environmental PCB mixture in utero and until weaning. At adulthood, auditory brainstem responses (ABRs) were measured, and synaptic currents were recorded in slices from auditory cortex layer 2/3 neurons. Spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSCs) were more frequent in PCB-exposed rats compared with controls and the normal relationship between IPSC parameters and peripheral hearing was eliminated in PCB-exposed rats. No changes in spontaneous EPSCs were found. Conversely, when synaptic currents were evoked by laser photostimulation of caged-glutamate, PCB exposure did not affect evoked inhibitory transmission, but increased the total excitatory charge, the number and distance of sites that evoke a significant response. Together, these findings indicate that early developmental exposure to PCBs causes long-lasting changes in both inhibitory and excitatory neurotransmission in the auditory cortex that are independent of peripheral hearing changes, suggesting the effects are because of the direct impact of PCBs on the developing auditory cortex.
Collapse
|
91
|
Gallero-Salas Y, Han S, Sych Y, Voigt FF, Laurenczy B, Gilad A, Helmchen F. Sensory and Behavioral Components of Neocortical Signal Flow in Discrimination Tasks with Short-Term Memory. Neuron 2020; 109:135-148.e6. [PMID: 33159842 DOI: 10.1016/j.neuron.2020.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/13/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
In the neocortex, each sensory modality engages distinct sensory areas that route information to association areas. Where signal flow converges for maintaining information in short-term memory and how behavior may influence signal routing remain open questions. Using wide-field calcium imaging, we compared cortex-wide neuronal activity in layer 2/3 for mice trained in auditory and tactile tasks with delayed response. In both tasks, mice were either active or passive during stimulus presentation, moving their body or sitting quietly. Irrespective of behavioral strategy, auditory and tactile stimulation activated distinct subdivisions of the posterior parietal cortex, anterior area A and rostrolateral area RL, which held stimulus-related information necessary for the respective tasks. In the delay period, in contrast, behavioral strategy rather than sensory modality determined short-term memory location, with activity converging frontomedially in active trials and posterolaterally in passive trials. Our results suggest behavior-dependent routing of sensory-driven cortical signals flow from modality-specific posterior parietal cortex (PPC) subdivisions to higher association areas.
Collapse
Affiliation(s)
- Yasir Gallero-Salas
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Shuting Han
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Yaroslav Sych
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Balazs Laurenczy
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Ariel Gilad
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland.
| |
Collapse
|
92
|
Wang D, Chen Y, Chen Y, Li X, Liu P, Yin Z, Li A. Improved Separation of Odor Responses in Granule Cells of the Olfactory Bulb During Odor Discrimination Learning. Front Cell Neurosci 2020; 14:579349. [PMID: 33192325 PMCID: PMC7581703 DOI: 10.3389/fncel.2020.579349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
In the olfactory bulb, olfactory information is translated into ensemble representations by mitral/tufted cells, and these representations change dynamically in a context-dependent manner. In particular, odor representations in mitral/tufted cells display pattern separation during odor discrimination learning. Although granule cells provide major inhibitory input to mitral/tufted cells and play an important role in pattern separation and olfactory learning, the dynamics of odor responses in granule cells during odor discrimination learning remain largely unknown. Here, we studied odor responses in granule cells of the olfactory bulb using fiber photometry recordings in awake behaving mice. We found that odors evoked reliable, excitatory responses in the granule cell population. Intriguingly, during odor discrimination learning, odor responses in granule cells exhibited improved separation and contained information about odor value. In conclusion, we show that granule cells in the olfactory bulb display learning-related plasticity, suggesting that they may mediate pattern separation in mitral/tufted cells.
Collapse
Affiliation(s)
- Dejuan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Yang Chen
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Yiling Chen
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Xiaowen Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Zhaoyang Yin
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
93
|
Liang F, Li H, Chou XL, Zhou M, Zhang NK, Xiao Z, Zhang KK, Tao HW, Zhang LI. Sparse Representation in Awake Auditory Cortex: Cell-type Dependence, Synaptic Mechanisms, Developmental Emergence, and Modulation. Cereb Cortex 2020; 29:3796-3812. [PMID: 30307493 DOI: 10.1093/cercor/bhy260] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 01/25/2023] Open
Abstract
Sparse representation is considered an important coding strategy for cortical processing in various sensory modalities. It remains unclear how cortical sparseness arises and is being regulated. Here, unbiased recordings from primary auditory cortex of awake adult mice revealed salient sparseness in layer (L)2/3, with a majority of excitatory neurons exhibiting no increased spiking in response to each of sound types tested. Sparse representation was not observed in parvalbumin (PV) inhibitory neurons. The nonresponding neurons did receive auditory-evoked synaptic inputs, marked by weaker excitation and lower excitation/inhibition (E/I) ratios than responding cells. Sparse representation arises during development in an experience-dependent manner, accompanied by differential changes of excitatory input strength and a transition from unimodal to bimodal distribution of E/I ratios. Sparseness level could be reduced by suppressing PV or L1 inhibitory neurons. Thus, sparse representation may be dynamically regulated via modulating E/I balance, optimizing cortical representation of the external sensory world.
Collapse
Affiliation(s)
- Feixue Liang
- Department of Medical Engineering, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Haifu Li
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiao-Lin Chou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Mu Zhou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicole K Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ke K Zhang
- Department of Pathology, the University of North Dakota, Grand Forks, ND, USA
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
94
|
Razorenova AM, Chernyshev BV, Nikolaeva AY, Butorina AV, Prokofyev AO, Tyulenev NB, Stroganova TA. Rapid Cortical Plasticity Induced by Active Associative Learning of Novel Words in Human Adults. Front Neurosci 2020; 14:895. [PMID: 33013296 PMCID: PMC7516206 DOI: 10.3389/fnins.2020.00895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022] Open
Abstract
Human speech requires that new words are routinely memorized, yet neurocognitive mechanisms of such acquisition of memory remain highly debatable. Major controversy concerns the question whether cortical plasticity related to word learning occurs in neocortical speech-related areas immediately after learning, or neocortical plasticity emerges only on the second day after a prolonged time required for consolidation after learning. The functional spatiotemporal pattern of cortical activity related to such learning also remains largely unknown. In order to address these questions, we examined magnetoencephalographic responses elicited in the cerebral cortex by passive presentations of eight novel pseudowords before and immediately after an operant conditioning task. This associative procedure forced participants to perform an active search for unique meaning of four pseudowords that referred to movements of left and right hands and feet. The other four pseudowords did not require any movement and thus were not associated with any meaning. Familiarization with novel pseudowords led to a bilateral repetition suppression of cortical responses to them; the effect started before or around the uniqueness point and lasted for more than 500 ms. After learning, response amplitude to pseudowords that acquired meaning was greater compared with response amplitude to pseudowords that were not assigned meaning; the effect was significant within 144-362 ms after the uniqueness point, and it was found only in the left hemisphere. Within this time interval, a learning-related selective response initially emerged in cortical areas surrounding the Sylvian fissure: anterior superior temporal sulcus, ventral premotor cortex, the anterior part of intraparietal sulcus and insula. Later within this interval, activation additionally spread to more anterior higher-tier brain regions, and reached the left temporal pole and the triangular part of the left inferior frontal gyrus extending to its orbital part. Altogether, current findings evidence rapid plastic changes in cortical representations of meaningful auditory word-forms occurring almost immediately after learning. Additionally, our results suggest that familiarization resulting from stimulus repetition and semantic acquisition resulting from an active learning procedure have separable effects on cortical activity.
Collapse
Affiliation(s)
- Alexandra M Razorenova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
- Center for Computational and Data-Intensive Science and Engineering (CDISE), Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Boris V Chernyshev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
- Department of Psychology, Higher School of Economics, Moscow, Russia
- Department of Higher Nervous Activity, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia Yu Nikolaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Anna V Butorina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
- Center for Computational and Data-Intensive Science and Engineering (CDISE), Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andrey O Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Nikita B Tyulenev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia
| |
Collapse
|
95
|
Inhibitory plasticity in layer 1 - dynamic gatekeeper of neocortical associations. Curr Opin Neurobiol 2020; 67:26-33. [PMID: 32818814 DOI: 10.1016/j.conb.2020.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Neocortical layer 1 is a major site of convergence for a variety of brain wide afferents carrying experience-dependent top-down information, which are integrated and processed in the apical tuft dendrites of pyramidal cells. Two types of local inhibitory interneurons, Martinotti cells and layer 1 interneurons, dominantly shape dendritic integration, and work from recent years has significantly advanced our understanding of the role of these interneurons in circuit plasticity and learning. Both cell types instruct plasticity in local pyramidal cells, and are themselves subject to robust plastic changes. Despite these similarities, the emerging hypothesis is that they fulfill different, and potentially opposite roles, as they receive different inputs, employ distinct inhibitory dynamics and are implicated in different behavioral contexts.
Collapse
|
96
|
Interhemispheric Callosal Projections Sharpen Frequency Tuning and Enforce Response Fidelity in Primary Auditory Cortex. eNeuro 2020; 7:ENEURO.0256-20.2020. [PMID: 32769158 PMCID: PMC7438056 DOI: 10.1523/eneuro.0256-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 01/29/2023] Open
Abstract
Sensory cortical areas receive glutamatergic callosal projections that link information processing between brain hemispheres. In primary auditory cortex (A1), ipsilateral principal cells from a particular tonotopic region project to neurons in matching frequency space of the contralateral cortex. However, the role of interhemispheric projections in shaping cortical responses to sound and frequency tuning in awake animals is unclear. Here, we use translaminar single-unit recordings and optogenetic approaches to probe how callosal inputs modulate spontaneous and tone-evoked activity in A1 of awake mice. Brief activation of callosal inputs drove either short-latency increases or decreases in firing of individual neurons. Across all cortical layers, the majority of responsive regular spiking (RS) cells received short-latency inhibition, whereas fast spiking (FS) cells were almost exclusively excited. Consistent with the callosal-evoked increases in FS cell activity in vivo, brain slice recordings confirmed that parvalbumin (PV)-expressing cells received stronger callosal input than pyramidal cells or other interneuron subtypes. Acute in vivo silencing of the contralateral cortex generally increased spontaneous firing across cortical layers and linearly transformed responses to pure tones via both divisive and additive operations. The net effect was a decrease in signal-to-noise ratio for evoked responses and a broadening of frequency tuning curves. Together, these results suggest that callosal input regulates both the salience and tuning sharpness of tone responses in A1 via PV cell-mediated feedforward inhibition.
Collapse
|
97
|
Sadahiro M, Demars MP, Burman P, Yevoo P, Zimmer A, Morishita H. Activation of Somatostatin Interneurons by Nicotinic Modulator Lypd6 Enhances Plasticity and Functional Recovery in the Adult Mouse Visual Cortex. J Neurosci 2020; 40:5214-5227. [PMID: 32467358 PMCID: PMC7329312 DOI: 10.1523/jneurosci.1373-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/27/2023] Open
Abstract
The limitation of plasticity in the adult brain impedes functional recovery later in life from brain injury or disease. This pressing clinical issue may be resolved by enhancing plasticity in the adult brain. One strategy for triggering robust plasticity in adulthood is to reproduce one of the hallmark physiological events of experience-dependent plasticity observed during the juvenile critical period: to rapidly reduce the activity of parvalbumin (PV)-expressing interneurons and disinhibit local excitatory neurons. This may be achieved through the enhancement of local inhibitory inputs, particularly those of somatostatin (SST)-expressing interneurons. However, to date the means for manipulating SST interneurons for enhancing cortical plasticity in the adult brain are not known. We show that SST interneuron-selective overexpression of Lypd6, an endogenous nicotinic signaling modulator, enhances ocular dominance plasticity in the adult primary visual cortex (V1). Lypd6 overexpression mediates a rapid experience-dependent increase in the visually evoked activity of SST interneurons as well as a simultaneous reduction in PV interneuron activity and disinhibition of excitatory neurons. Recapitulating this transient activation of SST interneurons using chemogenetics similarly enhanced V1 plasticity. Notably, we show that SST-selective Lypd6 overexpression restores visual acuity in amblyopic mice that underwent early long-term monocular deprivation. Our data in both male and female mice reveal selective modulation of SST interneurons and a putative downstream circuit mechanism as an effective method for enhancing experience-dependent cortical plasticity as well as functional recovery in adulthood.SIGNIFICANCE STATEMENT The decline of cortical plasticity after closure of juvenile critical period consolidates neural circuits and behavior, but this limits functional recovery from brain diseases and dysfunctions in later life. Here we show that activation of cortical somatostatin (SST) interneurons by Lypd6, an endogenous modulator of nicotinic acetylcholine receptors, enhances experience-dependent plasticity and recovery from amblyopia in adulthood. This manipulation triggers rapid reduction of PV interneuron activity and disinhibition of excitatory neurons, which are known hallmarks of cortical plasticity during juvenile critical periods. Our study demonstrates modulation of SST interneurons by Lypd6 to achieve robust levels of cortical plasticity in the adult brain and may provide promising targets for restoring brain function in the event of brain trauma or disease.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Dominance, Ocular/genetics
- Evoked Potentials, Visual/genetics
- Evoked Potentials, Visual/physiology
- Female
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/physiology
- Immunohistochemistry
- Interneurons/physiology
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Neuronal Plasticity/genetics
- Neuronal Plasticity/physiology
- Phosphatidylinositols/pharmacology
- Receptors, Nicotinic/genetics
- Recovery of Function/genetics
- Somatostatin/physiology
- Vision, Monocular/genetics
- Vision, Monocular/physiology
- Visual Acuity/genetics
- Visual Cortex/physiology
Collapse
Affiliation(s)
- Masato Sadahiro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael P Demars
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Poromendro Burman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Priscilla Yevoo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
98
|
Liu J, Whiteway MR, Sheikhattar A, Butts DA, Babadi B, Kanold PO. Parallel Processing of Sound Dynamics across Mouse Auditory Cortex via Spatially Patterned Thalamic Inputs and Distinct Areal Intracortical Circuits. Cell Rep 2020; 27:872-885.e7. [PMID: 30995483 DOI: 10.1016/j.celrep.2019.03.069] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/24/2018] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Natural sounds have rich spectrotemporal dynamics. Spectral information is spatially represented in the auditory cortex (ACX) via large-scale maps. However, the representation of temporal information, e.g., sound offset, is unclear. We perform multiscale imaging of neuronal and thalamic activity evoked by sound onset and offset in awake mouse ACX. ACX areas differed in onset responses (On-Rs) and offset responses (Off-Rs). Most excitatory L2/3 neurons show either On-Rs or Off-Rs, and ACX areas are characterized by differing fractions of On and Off-R neurons. Somatostatin and parvalbumin interneurons show distinct temporal dynamics, potentially amplifying Off-Rs. Functional network analysis shows that ACX areas contain distinct parallel onset and offset networks. Thalamic (MGB) terminals show either On-Rs or Off-Rs, indicating a thalamic origin of On and Off-R pathways. Thus, ACX areas spatially represent temporal features, and this representation is created by spatial convergence and co-activation of distinct MGB inputs and is refined by specific intracortical connectivity.
Collapse
Affiliation(s)
- Ji Liu
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Matthew R Whiteway
- Applied Mathematics and Statistics and Scientific Computation Program, University of Maryland, College Park, MD 20742, USA
| | - Alireza Sheikhattar
- Department of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Daniel A Butts
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Applied Mathematics and Statistics and Scientific Computation Program, University of Maryland, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| | - Behtash Babadi
- Department of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
99
|
Takahashi H, Shiramatsu TI, Hitsuyu R, Ibayashi K, Kawai K. Vagus nerve stimulation (VNS)-induced layer-specific modulation of evoked responses in the sensory cortex of rats. Sci Rep 2020; 10:8932. [PMID: 32488047 PMCID: PMC7265555 DOI: 10.1038/s41598-020-65745-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
Neuromodulation achieved by vagus nerve stimulation (VNS) induces various neuropsychiatric effects whose underlying mechanisms of action remain poorly understood. Innervation of neuromodulators and a microcircuit structure in the cerebral cortex informed the hypothesis that VNS exerts layer-specific modulation in the sensory cortex and alters the balance between feedforward and feedback pathways. To test this hypothesis, we characterized laminar profiles of auditory-evoked potentials (AEPs) in the primary auditory cortex (A1) of anesthetized rats with an array of microelectrodes and investigated the effects of VNS on AEPs and stimulus specific adaptation (SSA). VNS predominantly increased the amplitudes of AEPs in superficial layers, but this effect diminished with depth. In addition, VNS exerted a stronger modulation of the neural responses to repeated stimuli than to deviant stimuli, resulting in decreased SSA across all layers of the A1. These results may provide new insights that the VNS-induced neuropsychiatric effects may be attributable to a sensory gain mechanism: VNS strengthens the ascending input in the sensory cortex and creates an imbalance in the strength of activities between superficial and deep cortical layers, where the feedfoward and feedback pathways predominantly originate, respectively.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Department of Mechano-informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
| | - Tomoyo I Shiramatsu
- Department of Mechano-informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Rie Hitsuyu
- Department of Mechano-informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kenji Ibayashi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
100
|
Podoly TY, Ben Sasson A. When It’s Impossible to Ignore: Development and Validation of the Sensory Habituation Questionnaire. Am J Occup Ther 2020; 74:7403205040p1-7403205040p10. [DOI: 10.5014/ajot.2020.033878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abstract
Importance: Sensory overresponsivity (SOR) in adults is frequently overlooked and misdiagnosed. In some cases, the sensory symptoms are attributed to psychopathology or negative emotionality. Developing sound tools for examining various dimensions of sensory overresponsivity in adults, particularly sensitivity versus habituation, can more precisely guide scientific and intervention efforts.
Objective: To evaluate the psychometric properties, content validity, internal reliability, and construct validity of the new Sensory Habituation Questionnaire.
Design: A Classical Test Theory approach and a multitrait–multimethod matrix was used to evaluate the questionnaire’s psychometric properties.
Participants: A nonclinical sample of 160 adults ages 18–65 yr (mean = 31.85, standard deviation = 10.72); 56.87% were female.
Measures: Participants completed the Sensory Habituation Questionnaire, Sensory Perception Quotient, Adolescent/Adult Sensory Profile, and the Brief Symptom Inventory.
Results: The Sensory Habituation Questionnaire had high internal reliability (α = .88) and was significantly correlated with other standardized SOR questionnaires (rs = .57–.61). In contrast to the Adolescent/Adult Sensory Profile overresponsivity score, the perceptually oriented measures (the Sensory Perception Quotient and the Sensory Habituation Questionnaire) were not associated with the Brief Symptom Inventory.
Conclusions and Relevance: The Sensory Habituation Questionnaire is a tool that can evaluate the ability to ignore daily sensations independent of psychopathology symptoms. It can guide practitioners and researchers in breaking down the dimensions of SOR.
What This Article Adds: This article introduces a questionnaire for evaluating the rate of sensory habituation in adults, a dimension of SOR that greatly affects daily functioning. The questionnaire is also advantageous in identifying sensory difficulties that differ from psychopathological symptoms. Habituation is a crucial factor to consider in intervention, because it calls for work on the capacity to adjust to bothersome sensations.
Collapse
Affiliation(s)
- Tamar Y. Podoly
- Tamar Y. Podoly, MA Psy, BOT, is PhD Candidate, Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Mount Carmel, Israel, and Clinical Psychologist, Cognetica–The Israeli Center for Cognitive Behavioral Therapy, Tel Aviv, Israel;
| | - Ayelet Ben Sasson
- Ayelet Ben Sasson, ScD, OT, is Professor, Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Mount Carmel, Israel
| |
Collapse
|