51
|
Peng X, Wang J, Peng J, Jiang H, Le K. Resveratrol Improves Synaptic Plasticity in Hypoxic-Ischemic Brain Injury in Neonatal Mice via Alleviating SIRT1/NF-κB Signaling-Mediated Neuroinflammation. J Mol Neurosci 2021; 72:113-125. [PMID: 34549339 DOI: 10.1007/s12031-021-01908-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is an obstinate disease that troubles neonatologists. At present, cognitive impairment after HIE has received increasing attention. Synaptic plasticity determines the development of cognitive function, so it is urgent to develop new drugs that can improve HIE-induced cognitive impairment. Hypoxia-ischemia (HI)-induced neuroinflammation affects synaptic plasticity. As a SIRT1 agonist, resveratrol has a powerful anti-inflammatory effect, but whether it has an effect on impaired synaptic plasticity in HIE and the potential mechanism remain unclear. In the present study, resveratrol was used to intervene in hypoxic-ischemic brain injury (HIBI) mice, and the effects on hippocampal synaptic plasticity and further mechanisms were explored through performing neurobehavioral, morphological observations, Golgi sliver staining, western blotting, and quantitative real-time polymerase chain reaction experiments. We first found that resveratrol improves HI-induced long-term cognitive and memory deficits, and then we found that resveratrol reduces hippocampal neuronal damage and increases dendritic spine density and the expression of synaptic proteins. Finally, we found that this effect may be exerted by regulating the neuroinflammatory response mediated by the SIRT1/NF-κB axis. This study provides a new theoretical basis for resveratrol to prevent long-term neurological dysfunction following HIBI.
Collapse
Affiliation(s)
- Xin Peng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China.,Department of Otolaryngology, Jiangxi Province Children's Hospital, No.122 Yangming Road, Nanchang, Jiangxi Province, 330006, China
| | - Jun Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
| | - Juan Peng
- Department of Rehabilitation Medicine, PingXiang No.2 People's Hospital, No. 89 Pingan South Avenue, Danjiang Street, PingXiang, Jiangxi Province, 337000, China
| | - Hongqun Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng Street, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
52
|
Gawlińska K, Gawliński D, Borczyk M, Korostyński M, Przegaliński E, Filip M. A Maternal High-Fat Diet during Early Development Provokes Molecular Changes Related to Autism Spectrum Disorder in the Rat Offspring Brain. Nutrients 2021; 13:3212. [PMID: 34579089 PMCID: PMC8467420 DOI: 10.3390/nu13093212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is a disruptive neurodevelopmental disorder manifested by abnormal social interactions, communication, emotional circuits, and repetitive behaviors and is more often diagnosed in boys than in girls. It is postulated that ASD is caused by a complex interaction between genetic and environmental factors. Epigenetics provides a mechanistic link between exposure to an unbalanced maternal diet and persistent modifications in gene expression levels that can lead to phenotype changes in the offspring. To better understand the impact of the early development environment on the risk of ASD in offspring, we assessed the effect of maternal high-fat (HFD), high-carbohydrate, and mixed diets on molecular changes in adolescent and young adult offspring frontal cortex and hippocampus. Our results showed that maternal HFD significantly altered the expression of 48 ASD-related genes in the frontal cortex of male offspring. Moreover, exposure to maternal HFD led to sex- and age-dependent changes in the protein levels of ANKRD11, EIF4E, NF1, SETD1B, SHANK1 and TAOK2, as well as differences in DNA methylation levels in the frontal cortex and hippocampus of the offspring. Taken together, it was concluded that a maternal HFD during pregnancy and lactation periods can lead to abnormal brain development within the transcription and translation of ASD-related genes mainly in male offspring.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna Street 12, 31-343 Kraków, Poland; (K.G.); (E.P.); (M.F.)
| | - Dawid Gawliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna Street 12, 31-343 Kraków, Poland; (K.G.); (E.P.); (M.F.)
| | - Małgorzata Borczyk
- Maj Institute of Pharmacology Polish Academy of Sciences, Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Smętna Street 12, 31-343 Kraków, Poland; (M.B.); (M.K.)
| | - Michał Korostyński
- Maj Institute of Pharmacology Polish Academy of Sciences, Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Smętna Street 12, 31-343 Kraków, Poland; (M.B.); (M.K.)
| | - Edmund Przegaliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna Street 12, 31-343 Kraków, Poland; (K.G.); (E.P.); (M.F.)
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna Street 12, 31-343 Kraków, Poland; (K.G.); (E.P.); (M.F.)
| |
Collapse
|
53
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
54
|
Gawlińska K, Gawliński D, Kowal-Wiśniewska E, Jarmuż-Szymczak M, Filip M. Alteration of the Early Development Environment by Maternal Diet and the Occurrence of Autistic-like Phenotypes in Rat Offspring. Int J Mol Sci 2021; 22:ijms22189662. [PMID: 34575826 PMCID: PMC8472469 DOI: 10.3390/ijms22189662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Epidemiological and preclinical studies suggest that maternal obesity increases the risk of autism spectrum disorder (ASD) in offspring. Here, we assessed the effects of exposure to modified maternal diets limited to pregnancy and lactation on brain development and behavior in rat offspring of both sexes. Among the studied diets, a maternal high-fat diet (HFD) disturbed the expression of ASD-related genes (Cacna1d, Nlgn3, and Shank1) and proteins (SHANK1 and TAOK2) in the prefrontal cortex of male offspring during adolescence. In addition, a maternal high-fat diet induced epigenetic changes by increasing cortical global DNA methylation and the expression of miR-423 and miR-494. As well as the molecular changes, behavioral studies have shown male-specific disturbances in social interaction and an increase in repetitive behavior during adolescence. Most of the observed changes disappeared in adulthood. In conclusion, we demonstrated the contribution of a maternal HFD to the predisposition to an ASD-like phenotype in male adolescent offspring, while a protective effect occurred in females.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (D.G.); (M.F.)
- Correspondence:
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (D.G.); (M.F.)
| | - Ewelina Kowal-Wiśniewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (E.K.-W.); (M.J.-S.)
| | - Małgorzata Jarmuż-Szymczak
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (E.K.-W.); (M.J.-S.)
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (D.G.); (M.F.)
| |
Collapse
|
55
|
Lo LHY, Dong R, Lyu Q, Lai KO. The Protein Arginine Methyltransferase PRMT8 and Substrate G3BP1 Control Rac1-PAK1 Signaling and Actin Cytoskeleton for Dendritic Spine Maturation. Cell Rep 2021; 31:107744. [PMID: 32521269 DOI: 10.1016/j.celrep.2020.107744] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/01/2020] [Accepted: 05/18/2020] [Indexed: 01/25/2023] Open
Abstract
Excitatory synapses of neurons are located on dendritic spines. Spine maturation is essential for the stability of synapses and memory consolidation, and overproduction of the immature filopodia is associated with brain disorders. The structure and function of synapses can be modulated by protein post-translational modification (PTM). Arginine methylation is a major PTM that regulates chromatin structure, transcription, and splicing within the nucleus. Here we find that the protein arginine methyltransferase PRMT8 is present at neuronal synapses and its expression is upregulated in the hippocampus when dendritic spine maturation occurs. Depletion of PRMT8 leads to overabundance of filopodia and mis-localization of excitatory synapses. Mechanistically, PRMT8 promotes dendritic spine morphology through methylation of the dendritic RNA-binding protein G3BP1 and suppression of the Rac1-PAK1 signaling pathway to control synaptic actin dynamics. Our findings unravel arginine methylation as a crucial regulatory mechanism for actin cytoskeleton during synapse development.
Collapse
Affiliation(s)
- Louisa Hoi-Ying Lo
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Rui Dong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Quanwei Lyu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Kwok-On Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
56
|
16p11.2 deletion is associated with hyperactivation of human iPSC-derived dopaminergic neuron networks and is rescued by RHOA inhibition in vitro. Nat Commun 2021; 12:2897. [PMID: 34006844 PMCID: PMC8131375 DOI: 10.1038/s41467-021-23113-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
Reciprocal copy number variations (CNVs) of 16p11.2 are associated with a wide spectrum of neuropsychiatric and neurodevelopmental disorders. Here, we use human induced pluripotent stem cells (iPSCs)-derived dopaminergic (DA) neurons carrying CNVs of 16p11.2 duplication (16pdup) and 16p11.2 deletion (16pdel), engineered using CRISPR-Cas9. We show that 16pdel iPSC-derived DA neurons have increased soma size and synaptic marker expression compared to isogenic control lines, while 16pdup iPSC-derived DA neurons show deficits in neuronal differentiation and reduced synaptic marker expression. The 16pdel iPSC-derived DA neurons have impaired neurophysiological properties. The 16pdel iPSC-derived DA neuronal networks are hyperactive and have increased bursting in culture compared to controls. We also show that the expression of RHOA is increased in the 16pdel iPSC-derived DA neurons and that treatment with a specific RHOA-inhibitor, Rhosin, rescues the network activity of the 16pdel iPSC-derived DA neurons. Our data suggest that 16p11.2 deletion-associated iPSC-derived DA neuron hyperactivation can be rescued by RHOA inhibition.
Collapse
|
57
|
Delayed motor learning in a 16p11.2 deletion mouse model of autism is rescued by locus coeruleus activation. Nat Neurosci 2021; 24:646-657. [PMID: 33753944 DOI: 10.1038/s41593-021-00815-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/05/2021] [Indexed: 01/30/2023]
Abstract
Children with autism spectrum disorder often exhibit delays in achieving motor developmental milestones such as crawling, walking and speech articulation. However, little is known about the neural mechanisms underlying motor-related deficits. Here, we reveal that mice with a syntenic deletion of the chromosome 16p11.2, a common copy number variation associated with autism spectrum disorder, also exhibit delayed motor learning without showing gross motor deficits. Using in vivo two-photon imaging in awake mice, we find that layer 2/3 excitatory neurons in the motor cortex of adult male 16p11.2-deletion mice show abnormally high activity during the initial phase of learning, and the process of learning-induced spine reorganization is prolonged. Pharmacogenetic activation of locus coeruleus noradrenergic neurons was sufficient to rescue the circuit deficits and the delayed motor learning in these mice. Our results unveil an unanticipated role of noradrenergic neuromodulation in improving the delayed motor learning in 16p11.2-deletion male mice.
Collapse
|
58
|
Morson S, Yang Y, Price DJ, Pratt T. Expression of Genes in the 16p11.2 Locus during Development of the Human Fetal Cerebral Cortex. Cereb Cortex 2021; 31:4038-4052. [PMID: 33825894 PMCID: PMC8328201 DOI: 10.1093/cercor/bhab067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/27/2022] Open
Abstract
The 593 kbp 16p11.2 copy number variation (CNV) affects the gene dosage of 29 protein coding genes, with heterozygous 16p11.2 microduplication or microdeletion implicated in about 1% of autism spectrum disorder (ASD) cases. The 16p11.2 CNV is frequently associated with macrocephaly or microcephaly indicating early defects of neurogenesis may contribute to subsequent ASD symptoms, but it is unknown which 16p11.2 transcripts are expressed in progenitors and whose levels are likely, therefore, to influence neurogenesis. Analysis of human fetal gene expression data revealed that KIF22, ALDOA, HIRIP3, PAGR1, and MAZ transcripts are expressed in neural progenitors with ALDOA and KIF22 significantly enriched compared to post-mitotic cells. To investigate the possible roles of ALDOA and KIF22 proteins in human cerebral cortex development we used immunohistochemical staining to describe their expression in late first and early second trimester human cerebral cortex. KIF22 protein is restricted to proliferating cells with its levels increasing during the cell cycle and peaking at mitosis. ALDOA protein is expressed in all cell types and does not vary with cell-cycle phase. Our expression analysis suggests the hypothesis that altered neurogenesis in the cerebral cortex contributes to ASD in 16p11.2 CNV patients.
Collapse
Affiliation(s)
- Sarah Morson
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Yifei Yang
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - David J Price
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Thomas Pratt
- Simons Initiative for the Developing Brain, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
59
|
Phatarpekar PV, Overlee BL, Leehan A, Wilton KM, Ham H, Billadeau DD. The septin cytoskeleton regulates natural killer cell lytic granule release. J Cell Biol 2021; 219:152040. [PMID: 32841357 PMCID: PMC7594501 DOI: 10.1083/jcb.202002145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
Natural killer (NK) cell–mediated killing involves the membrane fusion of preformed lytic granules. While the roles of actin and microtubules are well accepted during this process, the function of septins, another cytoskeletal component that associates with actin and microtubules, has not been investigated. Here we show that genetic depletion or pharmacologic stabilization of the septin cytoskeleton significantly inhibited NK cell cytotoxicity. Although the stabilization of septin filaments impaired conjugate formation, depletion of septin proteins had no impact on conjugate formation, lytic granule convergence, or MTOC polarization to the cytotoxic synapse (CS). Interestingly, septins copurify and accumulate near the polarized lytic granules at the CS, where they regulate lytic granule release. Mechanistically, we find that septin 7 interacts with the SNARE protein syntaxin 11 and facilitates its interaction with syntaxin binding protein 2 to promote lytic granule fusion. Altogether, our data identify a critical role for septins in regulating the release of lytic granule contents during NK cell–mediated killing.
Collapse
Affiliation(s)
| | - Brittany L Overlee
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Alexander Leehan
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Katelynn M Wilton
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Hyoungjun Ham
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Daniel D Billadeau
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
60
|
Hu C, Feng P, Yang Q, Xiao L. Clinical and Neurobiological Aspects of TAO Kinase Family in Neurodevelopmental Disorders. Front Mol Neurosci 2021; 14:655037. [PMID: 33867937 PMCID: PMC8044823 DOI: 10.3389/fnmol.2021.655037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the complexity of neurodevelopmental disorders (NDDs), from their genotype to phenotype, in the last few decades substantial progress has been made in understanding their pathophysiology. Recent accumulating evidence shows the relevance of genetic variants in thousand and one (TAO) kinases as major contributors to several NDDs. Although it is well-known that TAO kinases are a highly conserved family of STE20 kinase and play important roles in multiple biological processes, the emerging roles of TAO kinases in neurodevelopment and NDDs have yet to be intensively discussed. In this review article, we summarize the potential roles of the TAO kinases based on structural and biochemical analyses, present the genetic data from clinical investigations, and assess the mechanistic link between the mutations of TAO kinases, neuropathology, and behavioral impairment in NDDs. We then offer potential perspectives from basic research to clinical therapies, which may contribute to fully understanding how TAO kinases are involved in NDDs.
Collapse
Affiliation(s)
- Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Pan Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qian Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
61
|
Xu Y, Song X, Wang D, Wang Y, Li P, Li J. Proteomic insights into synaptic signaling in the brain: the past, present and future. Mol Brain 2021; 14:37. [PMID: 33596935 PMCID: PMC7888154 DOI: 10.1186/s13041-021-00750-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Chemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.
Collapse
Affiliation(s)
- Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
62
|
Nourbakhsh K, Yadav S. Kinase Signaling in Dendritic Development and Disease. Front Cell Neurosci 2021; 15:624648. [PMID: 33642997 PMCID: PMC7902504 DOI: 10.3389/fncel.2021.624648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dendrites undergo extensive growth and remodeling during their lifetime. Specification of neurites into dendrites is followed by their arborization, maturation, and functional integration into synaptic networks. Each of these distinct developmental processes is spatially and temporally controlled in an exquisite fashion. Protein kinases through their highly specific substrate phosphorylation regulate dendritic growth and plasticity. Perturbation of kinase function results in aberrant dendritic growth and synaptic function. Not surprisingly, kinase dysfunction is strongly associated with neurodevelopmental and psychiatric disorders. Herein, we review, (a) key kinase pathways that regulate dendrite structure, function and plasticity, (b) how aberrant kinase signaling contributes to dendritic dysfunction in neurological disorders and (c) emergent technologies that can be applied to dissect the role of protein kinases in dendritic structure and function.
Collapse
Affiliation(s)
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
63
|
Chang H, Cai X, Li HJ, Liu WP, Zhao LJ, Zhang CY, Wang JY, Liu JW, Ma XL, Wang L, Yao YG, Luo XJ, Li M, Xiao X. Functional Genomics Identify a Regulatory Risk Variation rs4420550 in the 16p11.2 Schizophrenia-Associated Locus. Biol Psychiatry 2021; 89:246-255. [PMID: 33246552 DOI: 10.1016/j.biopsych.2020.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Genome-wide association studies (GWASs) have reported hundreds of genomic loci associated with schizophrenia, yet identifying the functional risk variations is a key step in elucidating the underlying mechanisms. METHODS We applied multiple bioinformatics and molecular approaches, including expression quantitative trait loci analyses, epigenome signature identification, luciferase reporter assay, chromatin conformation capture, homology-directed genome editing by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9), RNA sequencing, and ATAC-Seq (assay for transposase-accessible chromatin using sequencing). RESULTS We found that the schizophrenia GWAS risk variations at 16p11.2 were significantly associated with messenger RNA levels of multiple genes in human brain, and one of the leading expression quantitative trait loci genes, MAPK3, is located ∼200 kb away from these risk variations in the genome. Further analyses based on the epigenome marks in human brain and cell lines suggested that a noncoding single nucleotide polymorphism, rs4420550 (p = 2.36 × 10-9 in schizophrenia GWAS), was within a DNA enhancer region, which was validated via in vitro luciferase reporter assays. The chromatin conformation capture experiment showed that the rs4420550 region physically interacted with the MAPK3 promoter and TAOK2 promoter. Precise CRISPR/Cas9 editing of a single base pair in cells followed by RNA sequencing further confirmed the regulatory effects of rs4420550 on the transcription of 16p11.2 genes, and ATAC-Seq demonstrated that rs4420550 affected chromatin accessibility at the 16p11.2 region. The rs4420550-[A/A] cells showed significantly higher proliferation rates compared with rs4420550-[G/G] cells. CONCLUSIONS These results together suggest that rs4420550 is a functional risk variation, and this study illustrates an example of comprehensive functional characterization of schizophrenia GWAS risk loci.
Collapse
Affiliation(s)
- Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Wei-Peng Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Li-Juan Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Jun-Yang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Shanghai, China
| | - Jie-Wei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Lei Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Shanghai, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
64
|
Ye J, Shi M, Chen W, Zhu F, Duan Q. Research Advances in the Molecular Functions and Relevant Diseases of TAOKs, Novel STE20 Kinase Family Members. Curr Pharm Des 2021; 26:3122-3133. [PMID: 32013821 DOI: 10.2174/1381612826666200203115458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
Abstract
As serine/threonine-protein kinases, Thousand and One Kinases(TAOKs) are members of the GCKlike superfamily, one of two well-known branches of the Ste20 kinase family. Within the last two decades, three functionally similar kinases, namely TAOK1-3, were identified. TAOKs are involved in many molecular and cellular events. Scholars widely believe that TAOKs act as kinases upstream of the MAPK cascade and as factors that interact with MST family kinases, the cytoskeleton, and apoptosis-associated proteins. Therefore, TAOKs are thought to function in tumorigenesis. Additionally, TAOKs participate in signal transduction induced by Notch, TCR, and IL-17. Recent studies found that TAOKs play roles in a series of diseases and conditions, such as the central nervous system dysfunction, herpes viral infection, immune system imbalance, urogenital system malformation during development, cardiovascular events, and childhood obesity. Therefore, inhibitory chemicals targeting TAOKs may be of great significance as potential drugs for these diseases.
Collapse
Affiliation(s)
- Junjie Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingjun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541000, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
65
|
Ageta-Ishihara N, Kinoshita M. Developmental and postdevelopmental roles of septins in the brain. Neurosci Res 2020; 170:6-12. [PMID: 33159992 DOI: 10.1016/j.neures.2020.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022]
Abstract
Morphogenetic processes during brain development and postdevelopmental remodeling of neural architecture depend on the exquisite interplay between the microtubule- and actin-based cytoskeletal systems. Accumulation of evidence indicates cooperative roles of another cytoskeletal system composed of the septin family. Here we overview experimental findings on mammalian septins and their hypothetical roles in the proliferation of neural progenitor cells, neurite development, synapse formation and regulations. The diverse, mostly unexpected phenotypes obtained from gain- and loss-of-function mutants point to unknown molecular network to be elucidated, which may underlie pathogenetic processes of infectious diseases and neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Natsumi Ageta-Ishihara
- Division of Biological Science, Nagoya University Graduate School of Science, Furo, Chikusa, Nagoya 464-8602, Japan.
| | - Makoto Kinoshita
- Division of Biological Science, Nagoya University Graduate School of Science, Furo, Chikusa, Nagoya 464-8602, Japan.
| |
Collapse
|
66
|
Fang CY, Lai TC, Hsiao M, Chang YC. The Diverse Roles of TAO Kinases in Health and Diseases. Int J Mol Sci 2020; 21:E7463. [PMID: 33050415 PMCID: PMC7589832 DOI: 10.3390/ijms21207463] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Thousand and one kinases (TAOKs) are members of the MAP kinase kinase kinase (MAP3K) family. Three members of this subfamily, TAOK1, 2, and 3, have been identified in mammals. It has been shown that TAOK1, 2 and 3 regulate the p38 MAPK and Hippo signaling pathways, while TAOK 1 and 2 modulate the SAPK/JNK cascade. Furthermore, TAOKs are involved in additional interactions with other cellular proteins and all of these pathways modulate vital physiological and pathophysiological responses in cells and tissues. Dysregulation of TAOK-related pathways is implicated in the development of diseases including inflammatory and immune disorders, cancer and drug resistance, and autism and Alzheimer's diseases. This review collates current knowledge concerning the roles of TAOKs in protein-protein interaction, signal transduction, physiological regulation, and pathogenesis and summarizes the recent development of TAOK-specific inhibitors that have the potential to ameliorate TAOKs' effects in pathological situations.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Science, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
67
|
Rein B, Yan Z. 16p11.2 Copy Number Variations and Neurodevelopmental Disorders. Trends Neurosci 2020; 43:886-901. [PMID: 32993859 DOI: 10.1016/j.tins.2020.09.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Copy number variations (CNVs) of the human 16p11.2 genetic locus are associated with a range of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and epilepsy. In this review, we delineate genetic information and diverse phenotypes in individuals with 16p11.2 CNVs, and synthesize preclinical findings from transgenic mouse models of 16p11.2 CNVs. Mice with 16p11.2 deletions or duplications recapitulate many core behavioral phenotypes, including social and cognitive deficits, and exhibit altered synaptic function across various brain areas. Mechanisms of transcriptional dysregulation and cortical maldevelopment are reviewed, along with potential therapeutic intervention strategies.
Collapse
Affiliation(s)
- Benjamin Rein
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA.
| |
Collapse
|
68
|
Cai X, Yang ZH, Li HJ, Xiao X, Li M, Chang H. A Human-Specific Schizophrenia Risk Tandem Repeat Affects Alternative Splicing of a Human-Unique Isoform AS3MTd2d3 and Mushroom Dendritic Spine Density. Schizophr Bull 2020; 47:219-227. [PMID: 32662510 PMCID: PMC7825093 DOI: 10.1093/schbul/sbaa098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent advances in functional genomics have facilitated the identification of multiple genes and isoforms associated with the genetic risk of schizophrenia, yet the causal variations remain largely unclear. A previous study reported that the schizophrenia risk single-nucleotide polymorphism (SNP) rs7085104 at 10q24.32 was in high linkage disequilibrium (LD) with a human-specific variable number of tandem repeat (VNTR), and both were significantly associated with the brain mRNA expression of a human-unique AS3MTd2d3 isoform in Europeans and African Americans. In this study, we have shown the direct regulation of the AS3MTd2d3 mRNA expression by this VNTR through an in vitro minigene splicing assay, suggesting that it is likely a causative functional variation. Intriguingly, we have further confirmed that the VNTR and rs7085104 are significantly associated with AS3MTd2d3 mRNA expression in brains of Han Chinese donors, and rs7085104 is also associated with risk of schizophrenia in East Asians. Finally, the overexpression of AS3MTd2d3 in cultured primary hippocampal neurons results in significantly reduced densities of mushroom dendritic spines, implicating its potential functional impact. Considering the crucial roles of dendritic spines in neuroplasticity, these results reveal the potential regulatory impact of the schizophrenia risk VNTR on AS3MTd2d3 and provide insights into the underlying biological mechanisms.
Collapse
Affiliation(s)
- Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhi-Hui Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China,KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China,To whom correspondence should be addressed; Kunming Institute of Zoology, Chinese Academy of Sciences, NO 32 Jiao-Chang Donglu, Kunming, Yunnan 650223, China; tel: +86-871-65190612, fax: +86-871-65190612, e-mail:
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
69
|
Vascular contributions to 16p11.2 deletion autism syndrome modeled in mice. Nat Neurosci 2020; 23:1090-1101. [PMID: 32661394 DOI: 10.1038/s41593-020-0663-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
While the neuronal underpinnings of autism spectrum disorder (ASD) are being unraveled, vascular contributions to ASD remain elusive. Here, we investigated postnatal cerebrovascular development in the 16p11.2df/+ mouse model of 16p11.2 deletion ASD syndrome. We discover that 16p11.2 hemizygosity leads to male-specific, endothelium-dependent structural and functional neurovascular abnormalities. In 16p11.2df/+ mice, endothelial dysfunction results in impaired cerebral angiogenesis at postnatal day 14, and in altered neurovascular coupling and cerebrovascular reactivity at postnatal day 50. Moreover, we show that there is defective angiogenesis in primary 16p11.2df/+ mouse brain endothelial cells and in induced-pluripotent-stem-cell-derived endothelial cells from human carriers of the 16p11.2 deletion. Finally, we find that mice with an endothelium-specific 16p11.2 deletion (16p11.2ΔEC) partially recapitulate some of the behavioral changes seen in 16p11.2 syndrome, specifically hyperactivity and impaired motor learning. By showing that developmental 16p11.2 haploinsufficiency from endothelial cells results in neurovascular and behavioral changes in adults, our results point to a potential role for endothelial impairment in ASD.
Collapse
|
70
|
Hisanaga SI, Wei R, Huo A, Tomomura M. LMTK1, a Novel Modulator of Endosomal Trafficking in Neurons. Front Mol Neurosci 2020; 13:112. [PMID: 32714146 PMCID: PMC7344150 DOI: 10.3389/fnmol.2020.00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons extend long processes known as axons and dendrites, through which they communicate with each other. The neuronal circuits formed by the axons and dendrites are the structural basis of higher brain functions. The formation and maintenance of these processes are essential for physiological brain activities. Membrane components, both lipids, and proteins, that are required for process formation are supplied by vesicle transport. Intracellular membrane trafficking is regulated by a family of Rab small GTPases. A group of Rabs regulating endosomal trafficking has been studied mainly in nonpolarized culture cell lines, and little is known about their regulation in polarized neurons with long processes. As shown in our recent study, lemur tail (former tyrosine) kinase 1 (LMTK1), an as yet uncharacterized Ser/Thr kinase associated with Rab11-positive recycling endosomes, modulates the formation of axons, dendrites, and spines in cultured primary neurons. LMTK1 knockdown or knockout (KO) or the expression of a kinase-negative mutant stimulates the transport of endosomal vesicles in neurons, leading to the overgrowth of axons, dendrites, and spines. More recently, we found that LMTK1 regulates TBC1D9B Rab11 GAP and proposed the Cdk5/p35-LMTK1-TBC1D9B-Rab11 pathway as a signaling cascade that regulates endosomal trafficking. Here, we summarize the biochemical, cell biological, and physiological properties of LMTK1.
Collapse
Affiliation(s)
- Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Ran Wei
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Anni Huo
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, Urayasu, Japan
| |
Collapse
|
71
|
Quereda JJ, Morel C, Lopez-Montero N, Ziveri J, Rolland S, Grenier T, Aulner N, Danckaert A, Charbit A, Enninga J, Cossart P, Pizarro-Cerdá J. A role for Taok2 in Listeria monocytogenes vacuolar escape. J Infect Dis 2020; 225:1005-1010. [PMID: 32582947 PMCID: PMC8922001 DOI: 10.1093/infdis/jiaa367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/19/2020] [Indexed: 01/28/2023] Open
Abstract
The bacterial pathogen Listeria monocytogenes invades host cells, ruptures the internalization vacuole, and reaches the cytosol for replication. A high-content small interfering RNA (siRNA) microscopy screen allowed us to identify epithelial cell factors involved in L. monocytogenes vacuolar rupture, including the serine/threonine kinase Taok2. Kinase activity inhibition using a specific drug validated a role for Taok2 in favoring L. monocytogenes cytoplasmic access. Furthermore, we showed that Taok2 recruitment to L. monocytogenes vacuoles requires the presence of pore-forming toxin listeriolysin O. Overall, our study identified the first set of host factors modulating L. monocytogenes vacuolar rupture and cytoplasmic access in epithelial cells.
Collapse
Affiliation(s)
- Juan J Quereda
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France.,Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos. Facultad de Veterinaria. Universidad Cardenal Herrera-CEU, CEU Universities. Valencia,. Spain
| | - Camille Morel
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
| | - Noelia Lopez-Montero
- Institut Pasteur, Unité Dynamique des Interactions Hôte-Pathogène, Paris, France.,CNRS UMR3691, Paris, France
| | - Jason Ziveri
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Steven Rolland
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
| | - Théodore Grenier
- Univ Lyon, Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS UMR 5242, Lyon, France
| | - Nathalie Aulner
- Institut Pasteur, UTechS Photonics Bioimaging/C2RT , Paris, France
| | - Anne Danckaert
- Institut Pasteur, UTechS Photonics Bioimaging/C2RT , Paris, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France
| | - Jost Enninga
- Institut Pasteur, Unité Dynamique des Interactions Hôte-Pathogène, Paris, France.,CNRS UMR3691, Paris, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, France
| | | |
Collapse
|
72
|
Yusuff T, Jensen M, Yennawar S, Pizzo L, Karthikeyan S, Gould DJ, Sarker A, Gedvilaite E, Matsui Y, Iyer J, Lai ZC, Girirajan S. Drosophila models of pathogenic copy-number variant genes show global and non-neuronal defects during development. PLoS Genet 2020; 16:e1008792. [PMID: 32579612 PMCID: PMC7313740 DOI: 10.1371/journal.pgen.1008792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/23/2020] [Indexed: 11/25/2022] Open
Abstract
While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non-neuronal phenotypes, functional studies evaluating these regions have focused on the molecular basis of neuronal defects. We report a systematic functional analysis of non-neuronal defects for homologs of 59 genes within ten pathogenic CNVs and 20 neurodevelopmental genes in Drosophila melanogaster. Using wing-specific knockdown of 136 RNA interference lines, we identified qualitative and quantitative phenotypes in 72/79 homologs, including 21 lines with severe wing defects and six lines with lethality. In fact, we found that 10/31 homologs of CNV genes also showed complete or partial lethality at larval or pupal stages with ubiquitous knockdown. Comparisons between eye and wing-specific knockdown of 37/45 homologs showed both neuronal and non-neuronal defects, but with no correlation in the severity of defects. We further observed disruptions in cell proliferation and apoptosis in larval wing discs for 23/27 homologs, and altered Wnt, Hedgehog and Notch signaling for 9/14 homologs, including AATF/Aatf, PPP4C/Pp4-19C, and KIF11/Klp61F. These findings were further supported by tissue-specific differences in expression patterns of human CNV genes, as well as connectivity of CNV genes to signaling pathway genes in brain, heart and kidney-specific networks. Our findings suggest that multiple genes within each CNV differentially affect both global and tissue-specific developmental processes within conserved pathways, and that their roles are not restricted to neuronal functions. Rare copy-number variants (CNVs), or large deletions and duplications in the genome, are associated with both neuronal and non-neuronal clinical features. Previous functional studies for these disorders have primarily focused on understanding the cellular mechanisms for neurological and behavioral phenotypes. To understand how genes within these CNVs contribute to developmental defects in non-neuronal tissues, we assessed 79 homologs of CNV and known neurodevelopmental genes in Drosophila models. We found that most homologs showed developmental defects when knocked down in the adult fly wing, ranging from mild size changes to severe wrinkled wings or lethality. Although a majority of tested homologs showed defects when knocked down specifically in wings or eyes, we found no correlation in the severity of the observed defects in these two tissues. A subset of the homologs showed disruptions in cellular processes in the developing fly wing, including alterations in cell proliferation, apoptosis, and cellular signaling pathways. Furthermore, human CNV genes also showed differences in gene expression patterns and interactions with signaling pathway genes across multiple human tissues. Our findings suggest that genes within CNV disorders affect global developmental processes in both neuronal and non-neuronal tissues.
Collapse
Affiliation(s)
- Tanzeen Yusuff
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sneha Yennawar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Siddharth Karthikeyan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dagny J. Gould
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Avik Sarker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Erika Gedvilaite
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yurika Matsui
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Janani Iyer
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Zhi-Chun Lai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
73
|
Marquardt J, Yao LL, Okada H, Svitkina T, Bi E. The LKB1-like Kinase Elm1 Controls Septin Hourglass Assembly and Stability by Regulating Filament Pairing. Curr Biol 2020; 30:2386-2394.e4. [PMID: 32386534 PMCID: PMC7314651 DOI: 10.1016/j.cub.2020.04.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/20/2020] [Accepted: 04/16/2020] [Indexed: 01/22/2023]
Abstract
Septins form rod-shaped hetero-oligomeric complexes that assemble into filaments and other higher-order structures, such as rings or hourglasses, at the cell division site in fungal and animal cells [1-4] to carry out a wide range of functions, including cytokinesis and cell morphogenesis. However, the architecture of septin higher-order assemblies and their control mechanisms, including regulation by conserved kinases [5, 6], remain largely unknown. In the budding yeast Saccharomyces cerevisiae, the five mitotic septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) localize to the bud neck and form an hourglass before cytokinesis that acts as a scaffold for proteins involved in multiple processes as well as a membrane-diffusible barrier between the mother and developing bud [7-9]. The hourglass is remodeled into a double ring that sandwiches the actomyosin ring at the onset of cytokinesis [10-13]. How septins are assembled into a highly ordered hourglass structure at the division site [13] is largely unexplored. Here we show that the LKB1-like kinase Elm1, which has been implicated in septin organization [14], cell morphogenesis [15], and mitotic exit [16, 17], specifically associates with the septin hourglass during the cell cycle and controls hourglass assembly and stability, especially for the daughter half, by regulating filament pairing and the functionality of its substrate, the septin-binding protein Bni5. This study illustrates how a protein kinase regulates septin architecture at the filament level and suggests that filament pairing is a highly regulated process during septin assembly and remodeling in vivo.
Collapse
Affiliation(s)
- Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Lin-Lin Yao
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
74
|
Dexmedetomidine Attenuates Neurotoxicity in Developing Rats Induced by Sevoflurane through Upregulating BDNF-TrkB-CREB and Downregulating ProBDNF-P75NRT-RhoA Signaling Pathway. Mediators Inflamm 2020; 2020:5458061. [PMID: 32655312 PMCID: PMC7322616 DOI: 10.1155/2020/5458061] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022] Open
Abstract
To investigate the mechanism dexmedetomidine in relieving the neurotoxicity of a developing brain induced by sevoflurane. Sprague-Dawley rats, 6 days old, were randomly divided into three groups. Rats in the control group were inhaled with air after injection of normal saline; rats in the sevoflurane group were injected with normal saline and inhaled with 3% sevoflurane for 2 h in three consecutive day; rats in the dexmedetomidine group were inhaled with 3% sevoflurane after intraperitoneal injection of dexmedetomidine 25 μg/kg. WB results showed that mBDNF, pTrkB/TrkB, and CREB were significantly decreased in the hippocampus of the sevoflurane group, which are significantly upregulated in the dexmedetomidine group. In the sevoflurane group, proBDNF, P75NRT, and RhoA were significantly increased, which were significantly lower than those in the dexmedetomidine group than those in the sevoflurane group. The expression BDNF was downregulated in the sevoflurane group, while the proBDNF was upregulated in the sevoflurane group. In the Morris water maze test, the escape latency of the sevoflurane group was significantly prolonged. In sevoflurane groups, the number of crossing platform was significantly reduced, the synaptic protein decreased significantly, and this effect was reversed in rats of the dexmedetomidine group. Dexmedetomidine could reduce synaptic plasticity decline in developing rats induced by sevoflurane, through downregulating the proBDNF-p75NTR-RhoA pathway and upregulating BDNF-TrkB-CREB.
Collapse
|
75
|
Ligon C, Seong E, Schroeder EJ, DeKorver NW, Yuan L, Chaudoin TR, Cai Y, Buch S, Bonasera SJ, Arikkath J. δ-Catenin engages the autophagy pathway to sculpt the developing dendritic arbor. J Biol Chem 2020; 295:10988-11001. [PMID: 32554807 DOI: 10.1074/jbc.ra120.013058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/14/2020] [Indexed: 01/21/2023] Open
Abstract
The development of the dendritic arbor in pyramidal neurons is critical for neural circuit function. Here, we uncovered a pathway in which δ-catenin, a component of the cadherin-catenin cell adhesion complex, promotes coordination of growth among individual dendrites and engages the autophagy mechanism to sculpt the developing dendritic arbor. Using a rat primary neuron model, time-lapse imaging, immunohistochemistry, and confocal microscopy, we found that apical and basolateral dendrites are coordinately sculpted during development. Loss or knockdown of δ-catenin uncoupled this coordination, leading to retraction of the apical dendrite without altering basolateral dendrite dynamics. Autophagy is a key cellular pathway that allows degradation of cellular components. We observed that the impairment of the dendritic arbor resulting from δ-catenin knockdown could be reversed by knockdown of autophagy-related 7 (ATG7), a component of the autophagy machinery. We propose that δ-catenin regulates the dendritic arbor by coordinating the dynamics of individual dendrites and that the autophagy mechanism may be leveraged by δ-catenin and other effectors to sculpt the developing dendritic arbor. Our findings have implications for the management of neurological disorders, such as autism and intellectual disability, that are characterized by dendritic aberrations.
Collapse
Affiliation(s)
- Cheryl Ligon
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eunju Seong
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ethan J Schroeder
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nicholas W DeKorver
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Li Yuan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy R Chaudoin
- Division of Geriatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yu Cai
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Stephen J Bonasera
- Division of Geriatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jyothi Arikkath
- Department of Anatomy, Howard University, Washington, D. C., USA
| |
Collapse
|
76
|
Chen D, Ren K, Liu H, Mao H, Li Z, Mo H, Xie S, Shi Y, Chen Q, Wang W. A Whole-Brain Cell-Type-Specific Sparse Neuron Labeling Method and Its Application in a Shank3 Autistic Mouse Model. Front Cell Neurosci 2020; 14:145. [PMID: 32581718 PMCID: PMC7291601 DOI: 10.3389/fncel.2020.00145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Single neurons, as the basic unit of the brain, consist of a cell body and processes, including dendrites and axons. Even neurons of the same type show various subtle process characteristics to fit into the diverse neural circuits. Different cell types of neurons form complicated circuits in the brain. Therefore, detailed neuronal morphology is required to understand normal neuronal function and pathological mechanisms, such as those that occur in autism. Here, we developed a strategy to sparsely label the same type of neurons throughout the whole brain and tested its application in an autistic animal model—Shank3 knockout (KO) mice. To achieve this, we designed an adeno-associated virus (AAV) that expresses Cre recombinase-dependent regular and membrane-targeted enhanced green fluorescent protein (EGFP) under a human synapsin 1 promoter and verified it in several Cre transgenic mice. We could sparsely label the projection neurons in multiple brain areas by retro-ocular injection of the virus into CaMKIIα-Cre mice. Then, we analyzed the morphology of the projection neurons in Shank3 KO mice with this method. We found differential dendritic complexity and dendritic spine changes in projection neurons in Shank3 KO mice crossed with CaMKIIα-Cre mice compared with littermate control mice in the striatum, cortex, and hippocampus. By combining this method with various Cre mouse lines crossed with mouse models of disease, we can screen the morphological traits of distinct types of neurons throughout the whole brain that will help us to understand the exact role of the specific cell types of neurons not only in autism spectrum disorder (ASD) mouse models but also in other psychiatric disorder mouse models.
Collapse
Affiliation(s)
- Di Chen
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zongyan Li
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiming Mo
- Department of Physiology, Medical College of Yan'an University, Yan'an, China
| | - Shengjun Xie
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yiwu Shi
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Chen
- Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
77
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
78
|
Garg R, Koo CY, Infante E, Giacomini C, Ridley AJ, Morris JDH. Rnd3 interacts with TAO kinases and contributes to mitotic cell rounding and spindle positioning. J Cell Sci 2020; 133:jcs235895. [PMID: 32041905 DOI: 10.1242/jcs.235895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 01/22/2023] Open
Abstract
Rnd3 is an atypical Rho family protein that is constitutively GTP bound, and acts on membranes to induce loss of actin stress fibers and cell rounding. Phosphorylation of Rnd3 promotes 14-3-3 binding and its relocation to the cytosol. Here, we show that Rnd3 binds to the thousand-and-one amino acid kinases TAOK1 and TAOK2 in vitro and in cells. TAOK1 and TAOK2 can phosphorylate serine residues 210, 218 and 240 near the C-terminus of Rnd3, and induce Rnd3 translocation from the plasma membrane to the cytosol. TAOKs are activated catalytically during mitosis and Rnd3 phosphorylation on serine 210 increases in dividing cells. Rnd3 depletion by RNAi inhibits mitotic cell rounding and spindle centralization, and delays breakdown of the intercellular bridge between two daughter cells. Our results show that TAOKs bind, phosphorylate and relocate Rnd3 to the cytosol and that Rnd3 contributes to mitotic cell rounding, spindle positioning and cytokinesis. Rnd3 can therefore participate in the regulation of early and late mitosis and may also act downstream of TAOKs to affect the cytoskeleton.
Collapse
Affiliation(s)
- Ritu Garg
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Chuay-Yeng Koo
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Elvira Infante
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Caterina Giacomini
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jonathan D H Morris
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
79
|
Hu C, Kanellopoulos AK, Richter M, Petersen M, Konietzny A, Tenedini FM, Hoyer N, Cheng L, Poon CLC, Harvey KF, Windhorst S, Parrish JZ, Mikhaylova M, Bagni C, Calderon de Anda F, Soba P. Conserved Tao Kinase Activity Regulates Dendritic Arborization, Cytoskeletal Dynamics, and Sensory Function in Drosophila. J Neurosci 2020; 40:1819-1833. [PMID: 31964717 PMCID: PMC7046460 DOI: 10.1523/jneurosci.1846-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Dendritic arborization is highly regulated and requires tight control of dendritic growth, branching, cytoskeletal dynamics, and ion channel expression to ensure proper function. Abnormal dendritic development can result in altered network connectivity, which has been linked to neurodevelopmental disorders, including autism spectrum disorders (ASDs). How neuronal growth control programs tune dendritic arborization to ensure function is still not fully understood. Using Drosophila dendritic arborization (da) neurons as a model, we identified the conserved Ste20-like kinase Tao as a negative regulator of dendritic arborization. We show that Tao kinase activity regulates cytoskeletal dynamics and sensory channel localization required for proper sensory function in both male and female flies. We further provide evidence for functional conservation of Tao kinase, showing that its ASD-linked human ortholog, Tao kinase 2 (Taok2), could replace Drosophila Tao and rescue dendritic branching, dynamic microtubule alterations, and behavioral defects. However, several ASD-linked Taok2 variants displayed impaired rescue activity, suggesting that Tao/Taok2 mutations can disrupt sensory neuron development and function. Consistently, we show that Tao kinase activity is required in developing and as well as adult stages for maintaining normal dendritic arborization and sensory function to regulate escape and social behavior. Our data suggest an important role for Tao kinase signaling in cytoskeletal organization to maintain proper dendritic arborization and sensory function, providing a strong link between developmental sensory aberrations and behavioral abnormalities relevant for Taok2-dependent ASDs.SIGNIFICANCE STATEMENT Autism spectrum disorders (ASDs) are linked to abnormal dendritic arbors. However, the mechanisms of how dendritic arbors develop to promote functional and proper behavior are unclear. We identified Drosophila Tao kinase, the ortholog of the ASD risk gene Taok2, as a regulator of dendritic arborization in sensory neurons. We show that Tao kinase regulates cytoskeletal dynamics, controls sensory ion channel localization, and is required to maintain somatosensory function in vivo Interestingly, ASD-linked human Taok2 mutations rendered it nonfunctional, whereas its WT form could restore neuronal morphology and function in Drosophila lacking endogenous Tao. Our findings provide evidence for a conserved role of Tao kinase in dendritic development and function of sensory neurons, suggesting that aberrant sensory function might be a common feature of ASDs.
Collapse
Affiliation(s)
- Chun Hu
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | | | - Melanie Richter
- Neuronal Development Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Meike Petersen
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Anja Konietzny
- Neuronal Protein Transport Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Federico M Tenedini
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Nina Hoyer
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lin Cheng
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Carole L C Poon
- Peter MacCallum Cancer Centre, Melbourne, 3000 Victoria, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, Melbourne, 3000 Victoria, Australia
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia
| | - Sabine Windhorst
- Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, 98195 Washington, and
| | - Marina Mikhaylova
- Neuronal Protein Transport Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Froylan Calderon de Anda
- Neuronal Development Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Peter Soba
- Neuronal Patterning and Connectivity Laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany,
| |
Collapse
|
80
|
Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules. Biomolecules 2020; 10:biom10020167. [PMID: 31978946 PMCID: PMC7072219 DOI: 10.3390/biom10020167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Spatiotemporal translational regulation plays a key role in determining cell fate and function. Specifically, in neurons, local translation in dendrites is essential for synaptic plasticity and long-term memory formation. To achieve local translation, RNA-binding proteins in RNA granules regulate target mRNA stability, localization, and translation. To date, mRNAs localized to dendrites have been identified by comprehensive analyses. In addition, mRNAs associated with and regulated by RNA-binding proteins have been identified using various methods in many studies. However, the results obtained from these numerous studies have not been compiled together. In this review, we have catalogued mRNAs that are localized to dendrites and are associated with and regulated by the RNA-binding proteins fragile X mental retardation protein (FMRP), RNA granule protein 105 (RNG105, also known as Caprin1), Ras-GAP SH3 domain binding protein (G3BP), cytoplasmic polyadenylation element binding protein 1 (CPEB1), and staufen double-stranded RNA binding proteins 1 and 2 (Stau1 and Stau2) in RNA granules. This review provides comprehensive information on dendritic mRNAs, the neuronal functions of mRNA-encoded proteins, the association of dendritic mRNAs with RNA-binding proteins in RNA granules, and the effects of RNA-binding proteins on mRNA regulation. These findings provide insights into the mechanistic basis of protein-synthesis-dependent synaptic plasticity and memory formation and contribute to future efforts to understand the physiological implications of local regulation of dendritic mRNAs in neurons.
Collapse
|
81
|
The genome-wide risk alleles for psychiatric disorders at 3p21.1 show convergent effects on mRNA expression, cognitive function, and mushroom dendritic spine. Mol Psychiatry 2020; 25:48-66. [PMID: 31723243 DOI: 10.1038/s41380-019-0592-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
Schizophrenia and bipolar disorder (BPD) are believed to share clinical features, etiological factors, and disease pathologies (such as impaired cognitive functions and dendritic spine pathology). Meanwhile, there is growing evidence of shared genetic risk between schizophrenia and BPD, despite that our knowledge of the functional risk variations and biological mechanisms is still limited. Here, we conduct summary data-based Mendelian randomization (SMR) analyses through combining the statistical data from genome-wide association studies (GWAS) of both schizophrenia and BPD and multiple expression quantitative trait loci (eQTL) datasets of the human brain dorsolateral prefrontal cortex (DLPFC) tissues. These integrative investigations identify a lead risk locus at the chromosome 3p21.1 region, which contains numerous single-nucleotide polymorphisms (SNPs) in varied linkage disequilibrium (LD) and encompasses more than 20 genes. Further analyses suggest that many SNPs at 3p21.1 are significantly associated with both schizophrenia and BPD, and even depression, and the psychiatric risk alleles at 3p21.1 are correlated with mRNA expression of multiple genes such as NEK4, GNL3, and PBRM1. We also identify a 335-bp functional Alu polymorphism rs71052682 in significant LD with the psychiatric GWAS risk SNP rs2251219, and confirm the regulatory effects of this Alu polymorphism on transcription activities. We then explore the involvement of the 3p21.1 locus in the common clinical features and etiology of these illnesses. We reveal that psychiatric risk alleles at 3p21.1 in low-to-high LD consistently predict worse cognitive functions in humans, and manipulating the gene expression (NEK4, GNL3, and PBRM1) linked with higher genetic risk could reduce the density of mushroom dendritic spines in rat primary cortical neurons, mirroring the spine pathology in the prefrontal cortex of psychiatric patients. Our results find that, although the risk alleles at 3p21.1 are in low-to-moderate LD spanning a large genomic area, their underlying biological mechanisms in psychiatric disorders likely converge. These results provide essential insights into the neural mechanisms underlying the chromosome 3p21.1 risk locus in the shared pathological and etiological features of both schizophrenia and BPD.
Collapse
|
82
|
Qiu R, Runxiang Q, Geng A, Liu J, Xu CW, Menon MB, Gaestel M, Lu Q. SEPT7 Interacts with KIF20A and Regulates the Proliferative State of Neural Progenitor Cells During Cortical Development. Cereb Cortex 2019; 30:3030-3043. [PMID: 31813992 DOI: 10.1093/cercor/bhz292] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/01/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
Balanced proliferation and differentiation of neural progenitor cells (NPCs) are critical for brain development, but how the process is regulated and what components of the cell division machinery is involved are not well understood. Here we report that SEPT7, a cell division regulator originally identified in Saccharomyces cerevisiae, interacts with KIF20A in the intercellular bridge of dividing NPCs and plays an essential role in maintaining the proliferative state of NPCs during cortical development. Knockdown of SEPT7 in NPCs results in displacement of KIF20A from the midbody and early neuronal differentiation. NPC-specific inducible knockout of Sept7 causes early cell cycle exit, precocious neuronal differentiation, and ventriculomegaly in the cortex, but surprisingly does not lead to noticeable cytokinesis defect. Our data uncover an interaction of SEPT7 and KIF20A during NPC divisions and demonstrate a crucial role of SEPT7 in cell fate determination. In addition, this study presents a functional approach for identifying additional cell fate regulators of the mammalian brain.
Collapse
Affiliation(s)
- Runxiang Qiu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Qiu Runxiang
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Anqi Geng
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.,Institute of Medical Research, Northwestern Polytechnical University, Xian, Shaanxi Province, China
| | - Jiancheng Liu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - C Wilson Xu
- Balto Pharmaceuticals, Inc., South Pasadena, CA 91030, USA
| | - Manoj B Menon
- Institute of Cell Biochemistry, Hannover Medical School, Hannover 30625, Germany.,Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New-Delhi 110016, India
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover 30625, Germany
| | - Qiang Lu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
83
|
Bucher M, Fanutza T, Mikhaylova M. Cytoskeletal makeup of the synapse: Shaft versus spine. Cytoskeleton (Hoboken) 2019; 77:55-64. [PMID: 31762205 DOI: 10.1002/cm.21583] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
The ability of neurons to communicate and store information depends on the activity of synapses which can be located on small protrusions (dendritic spines) or directly on the dendritic shaft. The formation, plasticity, and stability of synapses are regulated by the neuronal cytoskeleton. Actin filaments together with microtubules, neurofilaments, septins, and scaffolding proteins orchestrate the structural organization of both shaft and spine synapses, enabling their efficacy in response to synaptic activation. Synapses critically depend on several factors, which are also mediated by the cytoskeleton, including transport and delivery of proteins from the soma, protein synthesis, as well as surface diffusion of membrane proteins. In this minireview, we focus on recent progress made in the field of cytoskeletal elements of the postsynapse and discuss the differences and similarities between synapses located in the spines versus dendritic shaft.
Collapse
Affiliation(s)
- Michael Bucher
- DFG Emmy Noether Group 'Neuronal Protein Transport', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tomas Fanutza
- DFG Emmy Noether Group 'Neuronal Protein Transport', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Mikhaylova
- DFG Emmy Noether Group 'Neuronal Protein Transport', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
84
|
Bitar M, Kuiper S, O'Brien EA, Barry G. Genes with human-specific features are primarily involved with brain, immune and metabolic evolution. BMC Bioinformatics 2019; 20:406. [PMID: 31757203 PMCID: PMC6873653 DOI: 10.1186/s12859-019-2886-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
Background Humans have adapted to widespread changes during the past 2 million
years in both environmental and lifestyle factors. This is evident in overall
body alterations such as average height and brain size. Although we can
appreciate the uniqueness of our species in many aspects, molecular variations
that drive such changes are far from being fully known and explained.
Comparative genomics is able to determine variations in genomic sequence that
may provide functional information to better understand species-specific
adaptations. A large number of human-specific genomic variations have been
reported but no currently available dataset comprises all of these, a problem
which contributes to hinder progress in the field. Results Here we critically update high confidence human-specific genomic
variants that mostly associate with protein-coding regions and find 856 related
genes. Events that create such human-specificity are mainly gene duplications,
the emergence of novel gene regions and sequence and structural alterations.
Functional analysis of these human-specific genes identifies adaptations to
brain, immune and metabolic systems to be highly involved. We further show that
many of these genes may be functionally associated with neural activity and
generating the expanded human cortex in dynamic spatial and temporal
contexts. Conclusions This comprehensive study contributes to the current knowledge by
considerably updating the number of human-specific genes following a critical
bibliographic survey. Human-specific genes were functionally assessed for the
first time to such extent, thus providing unique information. Our results are
consistent with environmental changes, such as immune challenges and alterations
in diet, as well as neural sophistication, as significant contributors to recent
human evolution. Electronic supplementary material The online version of this article (10.1186/s12859-019-2886-2) contains supplementary material, which is available to authorized
users.
Collapse
Affiliation(s)
- Mainá Bitar
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia.
| | - Stefanie Kuiper
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia
| | - Elizabeth A O'Brien
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Guy Barry
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia.,The School of Medicine, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
85
|
The LMTK1-TBC1D9B-Rab11A Cascade Regulates Dendritic Spine Formation via Endosome Trafficking. J Neurosci 2019; 39:9491-9502. [PMID: 31628178 DOI: 10.1523/jneurosci.3209-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/30/2022] Open
Abstract
Dendritic spines are postsynaptic protrusions at excitatory synapses that are critical for proper neuronal synaptic transmission. While lipid and protein membrane components are necessary for spine formation, it is largely unknown how they are recruited to developing spines. Endosomal trafficking is one mechanism that may influence this development. We recently reported that Lemur kinase 1A (LMTK1A), a membrane-bound Ser/Thr kinase, regulates trafficking of endosomes in neurons. LMTK1 has been shown to be a p35 Cdk5 activator-binding protein and a substrate for Cdk5-p35; however, its neuronal function has not been sufficiently studied. Here, we investigate the role of LMTK1 in spine formation. Depletion of LMTK1 increases spine formation, maturation, and density in primary cultured neurons and in mouse brain of either sex. Additionally, expression of kinase-negative LMTK1 stimulates spine formation in primary neurons and in vivo LMTK1 controls spine formation through Rab11, a regulator of recycling endosome trafficking. We identify TBC1D9B, a Rab11A GTPase-activating protein (Rab11A GAP), as a LMTK1 binding protein, and find that TBC1D9B mediates LMTK1 activity on Rab11A. TBC1D9B inactivates Rab11A under the control of LMTK1A. Further, by analyzing the effect of decreased TBC1D9B expression in primary neurons, we demonstrate that TBC1D9B indeed regulates spine formation. This is the first demonstration of the biological function of TBC1D9B. Together, with the regulation of LMTK1 by Cdk5-p35, we propose the Cdk5-LMTK1-TBC1D9B-Rab11A cascade as a novel signaling mechanism regulating endosomal transport for synapse formation and function.SIGNIFICANCE STATEMENT Dendritic spines are postsynaptic specializations essential for synaptic transmission. However, it is not known how critical membrane components are recruited to spines for their formation. Endosomal trafficking is one such mechanism that may mediate this process. Here we investigate regulators of endosomal trafficking and their contribution to spine formation. We identify two novel factors, LMTK1 and TBC1D9B, which regulate spine formation upstream of Rab11A, a small GTPase. LMTK1 is a membrane bound Ser/Thr kinase regulated by Cdk5-p35, and TBC1D9B is a recently identified Rab11 GAP. LMTK1 controls the GAP activity of TBC1D9B on Rab11A, and TBC1D9B mediates the LMTK1 activity on Rab11A. We propose the Cdk5-LMTK1-TBC1D9B-Rab11A cascade as a novel mechanism controlling spine formation and function.
Collapse
|
86
|
Nakos K, Radler MR, Spiliotis ET. Septin 2/6/7 complexes tune microtubule plus-end growth and EB1 binding in a concentration- and filament-dependent manner. Mol Biol Cell 2019; 30:2913-2928. [PMID: 31577529 PMCID: PMC6822581 DOI: 10.1091/mbc.e19-07-0362] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septins (SEPTs) are filamentous guanosine-5′-triphosphate (GTP)-binding proteins, which affect microtubule (MT)-dependent functions including membrane trafficking and cell division, but their precise role in MT dynamics is poorly understood. Here, in vitro reconstitution of MT dynamics with SEPT2/6/7, the minimal subunits of septin heteromers, shows that SEPT2/6/7 has a biphasic concentration-dependent effect on MT growth. Lower concentrations of SEPT2/6/7 enhance MT plus-end growth and elongation, while higher and intermediate concentrations inhibit and pause plus-end growth, respectively. We show that SEPT2/6/7 has a modest preference for GTP- over guanosine diphosphate (GDP)-bound MT lattice and competes with end-binding protein 1 (EB1) for binding to guanosine 5′-O-[γ-thio]triphosphate (GTPγS)-stabilized MTs, which mimic the EB1-preferred GDP-Pi state of polymerized tubulin. Strikingly, SEPT2/6/7 triggers EB1 dissociation from plus-end tips in cis by binding to the MT lattice and in trans when MT plus ends collide with SEPT2/6/7 filaments. At these intersections, SEPT2/6/7 filaments were more potent barriers than actin filaments in pausing MT growth and dissociating EB1 in vitro and in live cells. These data demonstrate that SEPT2/6/7 complexes and filaments can directly impact MT plus-end growth and the tracking of plus end–binding proteins and thereby may facilitate the capture of MT plus ends at intracellular sites of septin enrichment.
Collapse
Affiliation(s)
| | - Megan R Radler
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | |
Collapse
|
87
|
Tenedini FM, Sáez González M, Hu C, Pedersen LH, Petruzzi MM, Spitzweck B, Wang D, Richter M, Petersen M, Szpotowicz E, Schweizer M, Sigrist SJ, Calderon de Anda F, Soba P. Maintenance of cell type-specific connectivity and circuit function requires Tao kinase. Nat Commun 2019; 10:3506. [PMID: 31383864 PMCID: PMC6683158 DOI: 10.1038/s41467-019-11408-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/13/2019] [Indexed: 01/05/2023] Open
Abstract
Sensory circuits are typically established during early development, yet how circuit specificity and function are maintained during organismal growth has not been elucidated. To gain insight we quantitatively investigated synaptic growth and connectivity in the Drosophila nociceptive network during larval development. We show that connectivity between primary nociceptors and their downstream neurons scales with animal size. We further identified the conserved Ste20-like kinase Tao as a negative regulator of synaptic growth required for maintenance of circuit specificity and connectivity. Loss of Tao kinase resulted in exuberant postsynaptic specializations and aberrant connectivity during larval growth. Using functional imaging and behavioral analysis we show that loss of Tao-induced ectopic synapses with inappropriate partner neurons are functional and alter behavioral responses in a connection-specific manner. Our data show that fine-tuning of synaptic growth by Tao kinase is required for maintaining specificity and behavioral output of the neuronal network during animal growth.
Collapse
Affiliation(s)
- Federico Marcello Tenedini
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Maria Sáez González
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Chun Hu
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Lisa Hedegaard Pedersen
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Mabel Matamala Petruzzi
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Bettina Spitzweck
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Denan Wang
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Melanie Richter
- Neuronal Development laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Meike Petersen
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Emanuela Szpotowicz
- Electron microscopy unit, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Michaela Schweizer
- Electron microscopy unit, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Stephan J Sigrist
- Institute of Biology, Free University Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Froylan Calderon de Anda
- Neuronal Development laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany
| | - Peter Soba
- Neuronal Patterning and Connectivity laboratory, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251, Hamburg, Germany.
| |
Collapse
|
88
|
Falk J, Boubakar L, Castellani V. Septin functions during neuro-development, a yeast perspective. Curr Opin Neurobiol 2019; 57:102-109. [DOI: 10.1016/j.conb.2019.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/24/2022]
|
89
|
Arbogast T, Razaz P, Ellegood J, McKinstry SU, Erdin S, Currall B, Aneichyk T, Lerch JP, Qiu LR, Rodriguiz RM, Henkelman RM, Talkowski ME, Wetsel WC, Golzio C, Katsanis N. Kctd13-deficient mice display short-term memory impairment and sex-dependent genetic interactions. Hum Mol Genet 2019; 28:1474-1486. [PMID: 30590535 PMCID: PMC6489413 DOI: 10.1093/hmg/ddy436] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/12/2018] [Accepted: 12/14/2018] [Indexed: 01/31/2023] Open
Abstract
The 16p11.2 BP4-BP5 deletion and duplication syndromes are associated with a complex spectrum of neurodevelopmental phenotypes that includes developmental delay and autism spectrum disorder, with a reciprocal effect on head circumference, brain structure and body mass index. Mouse models of the 16p11.2 copy number variant have recapitulated some of the patient phenotypes, while studies in flies and zebrafish have uncovered several candidate contributory genes within the region, as well as complex genetic interactions. We evaluated one of these loci, KCTD13, by modeling haploinsufficiency and complete knockout in mice. In contrast to the zebrafish model, and in agreement with recent data, we found normal brain structure in heterozygous and homozygous mutants. However, recapitulating previously observed genetic interactions, we discovered sex-specific brain volumetric alterations in double heterozygous Kctd13xMvp and Kctd13xLat mice. Behavioral testing revealed a significant deficit in novel object recognition, novel location recognition and social transmission of food preference in Kctd13 mutants. These phenotypes were concomitant with a reduction in density of mature spines in the hippocampus, but potentially independent of RhoA abundance, which was unperturbed postnatally in our mutants. Furthermore, transcriptome analyses from cortex and hippocampus highlighted the dysregulation of pathways important in neurodevelopment, the most significant of which was synaptic formation. Together, these data suggest that KCTD13 contributes to the neurocognitive aspects of patients with the BP4-BP5 deletion, likely through genetic interactions with other loci.
Collapse
Affiliation(s)
- Thomas Arbogast
- Center for Human Disease Modeling and Department of Cell Biology, Duke University, Durham, NC, USA
| | - Parisa Razaz
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacob Ellegood
- Mouse Imaging Center, the Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer U McKinstry
- Center for Human Disease Modeling and Department of Cell Biology, Duke University, Durham, NC, USA
| | - Serkan Erdin
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin Currall
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tanya Aneichyk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason P Lerch
- Mouse Imaging Center, the Hospital for Sick Children, Toronto, ON, Canada
| | - Lily R Qiu
- Mouse Imaging Center, the Hospital for Sick Children, Toronto, ON, Canada
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, USA
| | - R M Henkelman
- Mouse Imaging Center, the Hospital for Sick Children, Toronto, ON, Canada
| | - Michael E Talkowski
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, USA
- Departments of Neurobiology and Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Christelle Golzio
- UMR 7104/INSERM U1258 and Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Nicholas Katsanis
- Center for Human Disease Modeling and Department of Cell Biology, Duke University, Durham, NC, USA
| |
Collapse
|
90
|
Miller CJ, Lou HJ, Simpson C, van de Kooij B, Ha BH, Fisher OS, Pirman NL, Boggon TJ, Rinehart J, Yaffe MB, Linding R, Turk BE. Comprehensive profiling of the STE20 kinase family defines features essential for selective substrate targeting and signaling output. PLoS Biol 2019; 17:e2006540. [PMID: 30897078 PMCID: PMC6445471 DOI: 10.1371/journal.pbio.2006540] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/02/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Specificity within protein kinase signaling cascades is determined by direct and indirect interactions between kinases and their substrates. While the impact of localization and recruitment on kinase-substrate targeting can be readily assessed, evaluating the relative importance of direct phosphorylation site interactions remains challenging. In this study, we examine the STE20 family of protein serine-threonine kinases to investigate basic mechanisms of substrate targeting. We used peptide arrays to define the phosphorylation site specificity for the majority of STE20 kinases and categorized them into four distinct groups. Using structure-guided mutagenesis, we identified key specificity-determining residues within the kinase catalytic cleft, including an unappreciated role for the kinase β3-αC loop region in controlling specificity. Exchanging key residues between the STE20 kinases p21-activated kinase 4 (PAK4) and Mammalian sterile 20 kinase 4 (MST4) largely interconverted their phosphorylation site preferences. In cells, a reprogrammed PAK4 mutant, engineered to recognize MST substrates, failed to phosphorylate PAK4 substrates or to mediate remodeling of the actin cytoskeleton. In contrast, this mutant could rescue signaling through the Hippo pathway in cells lacking multiple MST kinases. These observations formally demonstrate the importance of catalytic site specificity for directing protein kinase signal transduction pathways. Our findings further suggest that phosphorylation site specificity is both necessary and sufficient to mediate distinct signaling outputs of STE20 kinases and imply broad applicability to other kinase signaling systems.
Collapse
Affiliation(s)
- Chad J. Miller
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig Simpson
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bert van de Kooij
- Departments of Biological Engineering and Biology, MIT Center for Precision Cancer Medicine and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Byung Hak Ha
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Oriana S. Fisher
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Natasha L. Pirman
- Department of Cellular and Molecular Physiology and Systems Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Titus J. Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology and Systems Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Michael B. Yaffe
- Departments of Biological Engineering and Biology, MIT Center for Precision Cancer Medicine and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rune Linding
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
91
|
Lima Caldeira G, Peça J, Carvalho AL. New insights on synaptic dysfunction in neuropsychiatric disorders. Curr Opin Neurobiol 2019; 57:62-70. [PMID: 30743178 DOI: 10.1016/j.conb.2019.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
Growing evidence implicates synaptic proteins in the pathogenesis of neuropsychiatric disorders such as autism spectrum disorder (ASD), intellectual disability (ID) and schizophrenia. In fact, mutations in genes encoding synaptic proteins are enriched and overlap among different conditions highlighting the complex and pleiotropic nature of these disorders. In this review, we discuss recently described candidate genes that affect excitatory synapse function and result in changes in spine number and morphology. Spine pathology has been observed in several animal models of disease and in human brain post-mortem samples from ID, ASD, and schizophrenia patients. Recent data point to convergent mechanisms, such as dysregulation of the actin cytoskeleton and dysfunction of microglia synaptic remodeling, underlying dendritic spine dysgenesis. Interestingly, the reversion of important pathologic features, including spine abnormalities, has been observed in adult animal models of neuropsychiatric disorders, suggesting that therapies may not be restricted to a specific developmental window. Shedding light on the specific mechanisms impacted in neuropsychiatric disorders will undeniably contribute to the development of more directed and personalized therapies.
Collapse
Affiliation(s)
- Gladys Lima Caldeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Interdisciplinary Research Institute, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Peça
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; IIIUC-Interdisciplinary Research Institute, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
92
|
Matt L, Kim K, Chowdhury D, Hell JW. Role of Palmitoylation of Postsynaptic Proteins in Promoting Synaptic Plasticity. Front Mol Neurosci 2019; 12:8. [PMID: 30766476 PMCID: PMC6365469 DOI: 10.3389/fnmol.2019.00008] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
Many postsynaptic proteins undergo palmitoylation, the reversible attachment of the fatty acid palmitate to cysteine residues, which influences trafficking, localization, and protein interaction dynamics. Both palmitoylation by palmitoyl acyl transferases (PAT) and depalmitoylation by palmitoyl-protein thioesterases (PPT) is regulated in an activity-dependent, localized fashion. Recently, palmitoylation has received attention for its pivotal contribution to various forms of synaptic plasticity, the dynamic modulation of synaptic strength in response to neuronal activity. For instance, palmitoylation and depalmitoylation of the central postsynaptic scaffold protein postsynaptic density-95 (PSD-95) is important for synaptic plasticity. Here, we provide a comprehensive review of studies linking palmitoylation of postsynaptic proteins to synaptic plasticity.
Collapse
Affiliation(s)
- Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Karam Kim
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Dhrubajyoti Chowdhury
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
93
|
Richter M, Murtaza N, Scharrenberg R, White SH, Johanns O, Walker S, Yuen RKC, Schwanke B, Bedürftig B, Henis M, Scharf S, Kraus V, Dörk R, Hellmann J, Lindenmaier Z, Ellegood J, Hartung H, Kwan V, Sedlacik J, Fiehler J, Schweizer M, Lerch JP, Hanganu-Opatz IL, Morellini F, Scherer SW, Singh KK, Calderon de Anda F. Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling. Mol Psychiatry 2019; 24:1329-1350. [PMID: 29467497 PMCID: PMC6756231 DOI: 10.1038/s41380-018-0025-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 11/24/2022]
Abstract
Atypical brain connectivity is a major contributor to the pathophysiology of neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASDs). TAOK2 is one of several genes in the 16p11.2 microdeletion region, but whether it contributes to NDDs is unknown. We performed behavioral analysis on Taok2 heterozygous (Het) and knockout (KO) mice and found gene dosage-dependent impairments in cognition, anxiety, and social interaction. Taok2 Het and KO mice also have dosage-dependent abnormalities in brain size and neural connectivity in multiple regions, deficits in cortical layering, dendrite and synapse formation, and reduced excitatory neurotransmission. Whole-genome and -exome sequencing of ASD families identified three de novo mutations in TAOK2 and functional analysis in mice and human cells revealed that all the mutations impair protein stability, but they differentially impact kinase activity, dendrite growth, and spine/synapse development. Mechanistically, loss of Taok2 activity causes a reduction in RhoA activation, and pharmacological enhancement of RhoA activity rescues synaptic phenotypes. Together, these data provide evidence that TAOK2 is a neurodevelopmental disorder risk gene and identify RhoA signaling as a mediator of TAOK2-dependent synaptic development.
Collapse
Affiliation(s)
- Melanie Richter
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadeem Murtaza
- 0000 0004 1936 8227grid.25073.33Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada ,0000 0004 1936 8227grid.25073.33Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario Canada
| | - Robin Scharrenberg
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sean H. White
- 0000 0004 1936 8227grid.25073.33Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada ,0000 0004 1936 8227grid.25073.33Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario Canada
| | - Ole Johanns
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susan Walker
- 0000 0004 0473 9646grid.42327.30The Centre for Applied Genomics and Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario Canada ,0000 0001 2157 2938grid.17063.33Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario Canada
| | - Ryan K. C. Yuen
- 0000 0004 0473 9646grid.42327.30The Centre for Applied Genomics and Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario Canada ,0000 0001 2157 2938grid.17063.33Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario Canada
| | - Birgit Schwanke
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bianca Bedürftig
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melad Henis
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,0000 0000 8632 679Xgrid.252487.eDepartment of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Sarah Scharf
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Behavioral Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Kraus
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Behavioral Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronja Dörk
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Behavioral Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Hellmann
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Behavioral Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Zsuzsa Lindenmaier
- 0000 0004 0473 9646grid.42327.30Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario Canada ,0000 0001 2157 2938grid.17063.33Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
| | - Jacob Ellegood
- 0000 0004 0473 9646grid.42327.30Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario Canada
| | - Henrike Hartung
- 0000 0001 2180 3484grid.13648.38Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,0000 0004 0410 2071grid.7737.4Present Address: Laboratory of Neurobiology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Vickie Kwan
- 0000 0004 1936 8227grid.25073.33Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada ,0000 0004 1936 8227grid.25073.33Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario Canada
| | - Jan Sedlacik
- 0000 0001 2180 3484grid.13648.38Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Fiehler
- 0000 0001 2180 3484grid.13648.38Department of Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Core Facility Morphology and Electronmicroscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jason P. Lerch
- 0000 0004 0473 9646grid.42327.30Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario Canada ,0000 0001 2157 2938grid.17063.33Department of Medical Biophysics, University of Toronto, Toronto, Ontario Canada
| | - Ileana L. Hanganu-Opatz
- 0000 0001 2180 3484grid.13648.38Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabio Morellini
- 0000 0001 2180 3484grid.13648.38Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Behavioral Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen W. Scherer
- 0000 0004 0473 9646grid.42327.30The Centre for Applied Genomics and Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario Canada ,0000 0001 2157 2938grid.17063.33Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, Ontario Canada
| | - Karun K. Singh
- 0000 0004 1936 8227grid.25073.33Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario Canada ,0000 0004 1936 8227grid.25073.33Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote School of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario Canada
| | - Froylan Calderon de Anda
- Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
94
|
Abstract
Variably expressive copy-number variants (CNVs) are characterized by extensive phenotypic heterogeneity of neuropsychiatric phenotypes. Approaches to identify single causative genes for these phenotypes within each CNV have not been successful. Here, we posit using multiple lines of evidence, including pathogenicity metrics, functional assays of model organisms, and gene expression data, that multiple genes within each CNV region are likely responsible for the observed phenotypes. We propose that candidate genes within each region likely interact with each other through shared pathways to modulate the individual gene phenotypes, emphasizing the genetic complexity of CNV-associated neuropsychiatric features.
Collapse
Affiliation(s)
- Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Bioinformatics and Genomics Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Bioinformatics and Genomics Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
95
|
Abbey M, Gaestel M, Menon MB. Septins: Active GTPases or just GTP-binding proteins? Cytoskeleton (Hoboken) 2018; 76:55-62. [PMID: 29747238 DOI: 10.1002/cm.21451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 01/19/2023]
Abstract
Septins are conserved cytoskeletal proteins with unique filament forming capabilities and roles in cytokinesis and cell morphogenesis. Septins undergo hetero-oligomerization and assemble into higher order structures including filaments, rings, and cages. Hetero- and homotypic interactions of septin isoforms involve alternating GTPase (G)-domain interfaces and those mediated by N- and C-terminal extensions. While most septins bind GTP, display weak GTP-hydrolysis activity and incorporate guanine nucleotides in their interaction interfaces, studies using GTPase-inactivating mutations have failed to conclusively establish a crucial role for GTPase activity in mediating septin functions. In this mini-review, we will critically assess the role of GTP-binding and -hydrolysis on septin assembly and function. The relevance of G-domain activity will also be discussed in the context of human septin mutations as well as the development of specific small-molecules targeting septin polymerization. As structural determinants of septin oligomer interfaces, G-domains are attractive targets for ligand-based inhibition of septin assembly. Whether such an intervention can predictably alter septin function is a major question for future research.
Collapse
Affiliation(s)
- Megha Abbey
- Hannover Medical School, Institute of Cell Biochemistry, Hannover, 30625, Germany
| | - Matthias Gaestel
- Hannover Medical School, Institute of Cell Biochemistry, Hannover, 30625, Germany
| | - Manoj B Menon
- Hannover Medical School, Institute of Cell Biochemistry, Hannover, 30625, Germany
| |
Collapse
|
96
|
Zhao QR, Lu JM, Li ZY, Mei YA. Neuritin promotes neurite and spine growth in rat cerebellar granule cells via L-type calcium channel-mediated calcium influx. J Neurochem 2018; 147:40-57. [PMID: 29920676 PMCID: PMC6220818 DOI: 10.1111/jnc.14535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/21/2018] [Accepted: 06/13/2018] [Indexed: 01/15/2023]
Abstract
Neuritin is a neurotrophic factor that is activated by neural activity and neurotrophins. Its major function is to promote neurite growth and branching; however, the underlying mechanisms are not fully understood. To address this issue, this study investigated the effects of neuritin on neurite and spine growth and intracellular Ca2+ concentration in rat cerebellar granule neurons (CGNs). Incubation of CGNs for 24 h with neuritin increased neurite length and spine density; this effect was mimicked by insulin and abolished by inhibiting insulin receptor (IR) or mitogen‐activated protein kinase kinase/extracellular signal‐regulated kinase (ERK) activity. Calcium imaging and western blot analysis revealed that neuritin enhanced the increase in intracellular Ca2+ level induced by high K+, and stimulated the cell surface expression of CaV1.2 and CaV1.3 α subunits of the L‐type calcium channel, which was suppressed by inhibition of IR or mitogen‐activated protein kinase kinase/ERK. Treatment with inhibitors of L‐type calcium channels, calmodulin, and calcineurin (CaN) abrogated the effects of neuritin on neurite length and spine density. A similar result was obtained by silencing nuclear factor of activated T cells c4, which is known to be activated by neuritin in CGNs. These results indicate that IR and ERK signaling as well as the Ca2+/CaN/nuclear factor of activated T cells c4 axis mediate the effects of neuritin on neurite and spine growth in CGNs. Open Practices
Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ ![]()
Cover Image for this issue: doi: 10.1111/jnc.14195.
Collapse
Affiliation(s)
- Qian-Ru Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, China
| | - Jun-Mei Lu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, China
| | - Zhao-Yang Li
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, China
| | - Yan-Ai Mei
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
97
|
Cellular Phenotypes in Human iPSC-Derived Neurons from a Genetic Model of Autism Spectrum Disorder. Cell Rep 2018; 21:2678-2687. [PMID: 29212016 DOI: 10.1016/j.celrep.2017.11.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 09/01/2017] [Accepted: 11/10/2017] [Indexed: 01/26/2023] Open
Abstract
A deletion or duplication in the 16p11.2 region is associated with neurodevelopmental disorders, including autism spectrum disorder and schizophrenia. In addition to clinical characteristics, carriers of the 16p11.2 copy-number variant (CNV) manifest opposing neuroanatomical phenotypes-e.g., macrocephaly in deletion carriers (16pdel) and microcephaly in duplication carriers (16pdup). Using fibroblasts obtained from 16pdel and 16pdup carriers, we generated induced pluripotent stem cells (iPSCs) and differentiated them into neurons to identify causal cellular mechanisms underlying neurobiological phenotypes. Our study revealed increased soma size and dendrite length in 16pdel neurons and reduced neuronal size and dendrite length in 16pdup neurons. The functional properties of iPSC-derived neurons corroborated aspects of these contrasting morphological differences that may underlie brain size. Interestingly, both 16pdel and 16pdup neurons displayed reduced synaptic density, suggesting that distinct mechanisms may underlie brain size and neuronal connectivity at this locus.
Collapse
|
98
|
Wang X, Fei F, Qu J, Li C, Li Y, Zhang S. The role of septin 7 in physiology and pathological disease: A systematic review of current status. J Cell Mol Med 2018; 22:3298-3307. [PMID: 29602250 PMCID: PMC6010854 DOI: 10.1111/jcmm.13623] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Septins are a conserved family of cytoskeletal GTPases present in different organisms, including yeast, drosophila, Caenorhabditis elegans and humans. In humans, septins are involved in various cellular processes, including exocytosis, apoptosis, leukemogenesis, carcinogenesis and neurodegeneration. Septin 7 is unique out of 13 human septins. Mammalian septin 6, septin 7, septin 2 and septin 9 coisolate together in complexes to form the core unit for the generation of the septin filaments. Physiological septin filaments are hetero-oligomeric complexes consisting of core septin hexamers and octamers. Furthermore, septin 7 plays a crucial role in cytokinesis and mitosis. Septin 7 is localized to the filopodia and branches of developing hippocampal neurons, and is the most abundant septin in the adult rat forebrain as well as a structural component of the human and mouse sperm annuli. Septin 7 is crucial to the spine morphogenesis and dendrite growth in neurons, and is also a structural constituent of the annulus in human and mouse sperm. It can suppress growth of some tumours such as glioma and papillary thyroid carcinoma. However, the molecular mechanisms of involvement of septin 7 in human disease, especially in the development of cancer, remain unclear. This review focuses on the structure, function and mechanism of septin 7 in vivo, and summarizes the role of septin 7 in cell proliferation, cytokinesis, nervous and reproductive systems, as well as the underlying molecular events linking septin 7 to various diseases, such as Alzheimer's disease, schizophrenia, neuropsychiatric systemic lupus erythematosus, tumour and so on.
Collapse
Affiliation(s)
- Xinlu Wang
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Fei Fei
- Department of PathologyTianjin Union Medical CenterTianjinChina
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Jie Qu
- Department of PathologyTianjin Union Medical CenterTianjinChina
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Chunyuan Li
- Department of PathologyTianjin Union Medical CenterTianjinChina
- Nankai University School of MedicineNankai UniversityTianjinChina
| | - Yuwei Li
- Department of Colorectal SurgeryTianjin Union Medical CenterTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
99
|
Baltussen LL, Rosianu F, Ultanir SK. Kinases in synaptic development and neurological diseases. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:343-352. [PMID: 29241837 DOI: 10.1016/j.pnpbp.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
Abstract
Neuronal morphogenesis and synapse development is essential for building a functioning nervous system, and defects in these processes are associated with neurological disorders. Our understanding of molecular components and signalling events that contribute to neuronal development and pathogenesis is limited. Genes associated with neurodevelopmental and neurodegenerative diseases provide entry points for elucidating molecular events that contribute to these conditions. Several protein kinases, enzymes that regulate protein function by phosphorylating their substrates, are genetically linked to neurological disorders. Identifying substrates of these kinases is key to discovering their function and providing insight for possible therapies. In this review, we describe how various methods for kinase-substrate identification helped elucidate kinase signalling pathways important for neuronal development and function. We describe recent advances on roles of kinases TAOK2, TNIK and CDKL5 in neuronal development and the converging pathways of LRRK2, PINK1 and GAK in Parkinson's Disease.
Collapse
Affiliation(s)
- Lucas L Baltussen
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Flavia Rosianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.
| |
Collapse
|
100
|
Kumar VJ, Grissom NM, McKee SE, Schoch H, Bowman N, Havekes R, Kumar M, Pickup S, Poptani H, Reyes TM, Hawrylycz M, Abel T, Nickl-Jockschat T. Linking spatial gene expression patterns to sex-specific brain structural changes on a mouse model of 16p11.2 hemideletion. Transl Psychiatry 2018; 8:109. [PMID: 29844452 PMCID: PMC5974415 DOI: 10.1038/s41398-018-0157-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 02/02/2023] Open
Abstract
Neurodevelopmental disorders, such as ASD and ADHD, affect males about three to four times more often than females. 16p11.2 hemideletion is a copy number variation that is highly associated with neurodevelopmental disorders. Previous work from our lab has shown that a mouse model of 16p11.2 hemideletion (del/+) exhibits male-specific behavioral phenotypes. We, therefore, aimed to investigate with magnetic resonance imaging (MRI), whether del/+ animals also exhibited a sex-specific neuroanatomical endophenotype. Using the Allen Mouse Brain Atlas, we analyzed the expression patterns of the 27 genes within the 16p11.2 region to identify which gene expression patterns spatially overlapped with brain structural changes. MRI was performed ex vivo and the resulting images were analyzed using Voxel-based morphometry for T1-weighted sequences and tract-based spatial statistics for diffusion-weighted images. In a subsequent step, all available in situ hybridization (ISH) maps of the genes involved in the 16p11.2 hemideletion were aligned to Waxholm space and clusters obtained by sex-specific group comparisons were analyzed to determine which gene(s) showed the highest expression in these regions. We found pronounced sex-specific changes in male animals with increased fractional anisotropy in medial fiber tracts, especially in those proximate to the striatum. Moreover, we were able to identify gene expression patterns spatially overlapping with male-specific structural changes that were associated with neurite outgrowth and the MAPK pathway. Of note, previous molecular studies have found convergent changes that point to a sex-specific dysregulation of MAPK signaling. This convergent evidence supports the idea that ISH maps can be used to meaningfully analyze imaging data sets.
Collapse
Affiliation(s)
- Vinod Jangir Kumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Juelich-Aachen Research Alliance Brain, Juelich/Aachen, Germany
- Max Planck Institute for Biological Cybernetics, Tubingen, Germany
| | - Nicola M Grissom
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Sarah E McKee
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah Schoch
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Bowman
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Manoj Kumar
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Teresa M Reyes
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati, Cincinnati, OH, USA
| | | | - Ted Abel
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa, IA, USA
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- Juelich-Aachen Research Alliance Brain, Juelich/Aachen, Germany.
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa, IA, USA.
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA.
| |
Collapse
|