51
|
Carroll JC, Rosario ER, Pike CJ. Progesterone blocks estrogen neuroprotection from kainate in middle-aged female rats. Neurosci Lett 2008; 445:229-32. [PMID: 18790007 PMCID: PMC2591925 DOI: 10.1016/j.neulet.2008.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 08/26/2008] [Accepted: 09/04/2008] [Indexed: 01/18/2023]
Abstract
The neuroprotective effects of estrogen in young adult rodents are well established. Less well understood is how estrogen neuroprotection is affected by aging and interactions with progesterone. In this study, we investigated the effects of estrogen and continuous progesterone, both alone and in combination, on hippocampal neuron survival following kainate lesion in 14-month-old female rats entering reproductive senescence. Our results show that ovariectomy-induced hormone depletion did not significantly affect the extent of kainate-induced neuron loss. Treatment of ovariectomized rats with estrogen significantly reduced neuron loss, however this effect was blocked by co-administration of continuous progesterone. Treatment of ovariectomized rats with progesterone alone did not significantly affect kainate toxicity. These results provide new insight into factors that regulate estrogen neuroprotection, which has important implications for hormone therapy in postmenopausal women.
Collapse
Affiliation(s)
- Jenna C Carroll
- Neuroscience Graduate Program, Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | | | | |
Collapse
|
52
|
Androgen receptor function in motor neuron survival and degeneration. Phys Med Rehabil Clin N Am 2008; 19:479-94, viii. [PMID: 18625411 DOI: 10.1016/j.pmr.2008.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polyglutamine repeat expansion in the androgen receptor is responsible for the motor neuron degeneration in X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease). This mutation, like the other polyglutamine repeat expansions, has proven to be toxic itself by a gain-of-function effect; however, a growing body of evidence indicates that loss of androgen receptor normal function simultaneously contributes to SBMA disease pathology, and, conversely, that normal androgen receptor signaling mediates important trophic effects upon motor neurons. This review considers the trophic requirements of motor neurons, focusing upon the role of known neurotrophic factors in motor neuron disease natural history, and the interactions of androgen receptor signaling pathways with motor neuron disease pathogenesis and progression. A thorough understanding of androgen receptor signaling in motor neurons should provide important inroads toward the development of effective treatments for a variety of devastating motor neuron diseases.
Collapse
|
53
|
Thompson CK, Brenowitz EA. Caspase inhibitor infusion protects an avian song control circuit from seasonal-like neurodegeneration. J Neurosci 2008; 28:7130-6. [PMID: 18614682 PMCID: PMC2600584 DOI: 10.1523/jneurosci.0663-08.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 05/19/2008] [Accepted: 05/28/2008] [Indexed: 01/29/2023] Open
Abstract
Sex steroids such as androgens and estrogens have trophic effects on the brain and can ameliorate neurodegeneration, and the withdrawal of circulating steroids induces neurodegeneration in several hormone-sensitive brain areas. Very little is known about the underlying molecular mechanisms that mediate neuronal regression caused by hormone-withdrawal, however. Here we show that reduction of programmed cell death by local infusion of caspase inhibitors rescues a telencephalic nucleus in the adult avian song control system from neurodegeneration that is induced by hormone withdrawal. This treatment also has trans-synaptic effects that provide some protection of an efferent target region. We found that unilateral infusion of caspase inhibitors in vivo in adult white-crowned sparrows rescued neurons within the hormone-sensitive song nucleus HVC (used as a proper name) from programmed cell death for as long as seven days after withdrawal of testosterone and a shift to short-day photoperiod and that the activation of caspase-3 was reduced by 59% on average in the ipsilateral HVC compared with the unmanipulated contralateral HVC. Caspase inhibitor infusion near HVC was sufficient to preserve neuron size ipsilaterally in a downstream nucleus, the robust nucleus of the arcopallium. This is the first report that sustained local application of caspase inhibitors can protect a telencephalic brain area from neurodegeneration in vivo and that a degenerating neural circuit rescued with caspase inhibitors produces sufficient trophic support to protect attributes of a downstream target that would otherwise degenerate. These results strengthen the case for the possible therapeutic use of caspase inhibitors under certain neurodegenerative conditions.
Collapse
Affiliation(s)
- Christopher K Thompson
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington 98195-1525, USA.
| | | |
Collapse
|
54
|
Meitzen J, Thompson CK. Seasonal-like growth and regression of the avian song control system: neural and behavioral plasticity in adult male Gambel's white-crowned sparrows. Gen Comp Endocrinol 2008; 157:259-65. [PMID: 18457836 PMCID: PMC2518090 DOI: 10.1016/j.ygcen.2008.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 12/16/2022]
Abstract
Birdsong is regulated by a series of discrete brain nuclei known as the song control system. In seasonally-breeding male songbirds, seasonal changes in steroid sex hormones regulate the structure and electrophysiology of song control system neurons, resulting in dramatic changes in singing behavior. Male songbirds can be brought into the laboratory, where circulating levels of steroid hormone and photoperiod can be abruptly manipulated, providing controlled conditions under which rapid "seasonal-like" changes in behavior and morphology can be carefully studied. In this mini-review, we discuss the steroidal and cellular mechanisms underlying seasonal-like growth and regression of the song control system in adult male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii), and its impact on song behavior. Specifically, we discuss recent advances concerning: (1) the role of androgen and estrogen receptors in inducing seasonal-like growth of the song control system; (2) how photoperiod modulates the time course of testosterone-induced growth of the song control system; (3) how bilateral intracerebral infusion of androgen and estrogen receptor antagonists near the song control nucleus HVC prevents seasonal-like increases in song stereotypy but not song rate; and (4) the steroidal and cellular mechanisms that mediate rapid regression of the song control system. Throughout this mini-review we compare data collected from white-crowned sparrows to that from other songbird species. We conclude by outlining avenues of future research.
Collapse
Affiliation(s)
- John Meitzen
- Graduate Program in Neurobiology and Behavior, University of Washington, Box 356515, Seattle, WA 98195-6515, USA.
| | | |
Collapse
|
55
|
McCord MC, Lorenzana A, Bloom CS, Chancer ZO, Schauwecker PE. Effect of age on kainate-induced seizure severity and cell death. Neuroscience 2008; 154:1143-53. [PMID: 18479826 PMCID: PMC2481509 DOI: 10.1016/j.neuroscience.2008.03.082] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/26/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
While the onset and extent of epilepsy increases in the aged population, the reasons for this increased incidence remain unexplored. The present study used two inbred strains of mice (C57BL/6J and FVB/NJ) to address the genetic control of age-dependent neurodegeneration by building upon previous experiments that have identified phenotypic differences in susceptibility to hippocampal seizure-induced cell death. We determined if seizure induction and seizure-induced cell death are affected differentially in young adult, mature, and aged male C57BL/6J and FVB/NJ mice administered the excitotoxin, kainic acid. Dose response testing was performed in three to four groups of male mice from each strain. Following kainate injections, mice were scored for seizure activity and brains from mice in each age group were processed for light microscopic histopathologic evaluation 7 days following kainate administration to evaluate the severity of seizure-induced brain damage. Irrespective of the dose of kainate administered or the age group examined, resistant strains of mice (C57BL/6J) continued to be resistant to seizure-induced cell death. In contrast, aged animals of the FVB/NJ strain were more vulnerable to the induction of behavioral seizures and associated neuropathology after systemic injection of kainic acid than young or middle-aged mice. Results from these studies suggest that the age-related increased susceptibility to the neurotoxic effects of seizure induction and seizure-induced injury is regulated in a strain-dependent manner, similar to previous observations in young adult mice.
Collapse
Affiliation(s)
- M C McCord
- Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, BMT 403, 1333 San Pablo Street, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
56
|
Pike CJ, Nguyen TVV, Ramsden M, Yao M, Murphy MP, Rosario ER. Androgen cell signaling pathways involved in neuroprotective actions. Horm Behav 2008; 53:693-705. [PMID: 18222446 PMCID: PMC2424283 DOI: 10.1016/j.yhbeh.2007.11.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/31/2007] [Accepted: 11/05/2007] [Indexed: 11/15/2022]
Abstract
As a normal consequence of aging in men, testosterone levels significantly decline in both serum and brain. Age-related testosterone depletion results in increased risk of dysfunction and disease in androgen-responsive tissues, including brain. Recent evidence indicates that one deleterious effect of age-related testosterone loss in men is increased risk for Alzheimer's disease (AD). We discuss recent findings from our laboratory and others that identify androgen actions implicated in protecting the brain against neurodegenerative diseases and begin to define androgen cell signaling pathways that underlie these protective effects. Specifically, we focus on the roles of androgens as (1) endogenous negative regulators of beta-amyloid accumulation, a key event in AD pathogenesis, and (2) neuroprotective factors that utilize rapid non-genomic signaling to inhibit neuronal apoptosis. Continued elucidation of cell signaling pathways that contribute to protective actions of androgens should facilitate the development of targeted therapeutic strategies to combat AD and other age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Sarkey S, Azcoitia I, Garcia-Segura LM, Garcia-Ovejero D, DonCarlos LL. Classical androgen receptors in non-classical sites in the brain. Horm Behav 2008; 53:753-64. [PMID: 18402960 PMCID: PMC2413135 DOI: 10.1016/j.yhbeh.2008.02.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/13/2008] [Accepted: 02/14/2008] [Indexed: 02/02/2023]
Abstract
Androgen receptors are expressed in many different neuronal populations in the central nervous system where they often act as transcription factors in the cell nucleus. However, recent studies have detected androgen receptor immunoreactivity in neuronal and glial processes of the adult rat neocortex, hippocampal formation, and amygdala as well as in the telencephalon of eastern fence and green anole lizards. This review discusses previously published findings on extranuclear androgen receptors, as well as new experimental results that begin to establish a possible functional role for androgen receptors in axons within cortical regions. Electron microscopic studies have revealed that androgen receptor immunoreactive processes in the rat brain correspond to axons, dendrites and glial processes. New results show that lesions of the dorsal CA1 region by local administration of ibotenic acid reduce the density of androgen receptor immunoreactive axons in the cerebral cortex and the amygdala, suggesting that these axons may originate in the hippocampus. Androgen receptor immunoreactivity in axons is also decreased by the intracerebroventricular administration of colchicine, suggesting that androgen receptor protein is transported from the perikaryon to the axons by fast axonal transport. Androgen receptors in axons located in the cerebral cortex and amygdala and originating in the hippocampus may play an important role in the rapid behavioral effects of androgens.
Collapse
Affiliation(s)
- Sara Sarkey
- Neuroscience Graduate Program and Neuroscience Institute, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA
| | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain. Tel: +34-913944861Fax: +34-913944981 e-mail:
| | | | - Daniel Garcia-Ovejero
- Laboratorio de Neuroinflamación, Unidad de Neurología Experimental (assocciated with the Instituto Cajal, CSIC, Madrid, Spain), Hospital Nacional de Parapléjicos, SESCAM, 45071-Toledo, Spain. Tel:+34-925247754; e-mail:
| | - Lydia L. DonCarlos
- Neuroscience Graduate Program and Neuroscience Institute, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA
- Department of Cell Biology, Neurobiology and Anatomy, and Neuroscience Institute, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA
| |
Collapse
|
58
|
Foradori CD, Weiser MJ, Handa RJ. Non-genomic actions of androgens. Front Neuroendocrinol 2008; 29:169-81. [PMID: 18093638 PMCID: PMC2386261 DOI: 10.1016/j.yfrne.2007.10.005] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/12/2007] [Accepted: 10/24/2007] [Indexed: 11/25/2022]
Abstract
Previous work in the endocrine and neuroendocrine fields has viewed the androgen receptor (AR) as a transcription factor activated by testosterone or one of its many metabolites. The bound AR acts as transcription regulatory element by binding to specific DNA response elements in target gene promoters, causing activation or repression of transcription and subsequently protein synthesis. Over the past two decades evidence at the cellular and organismal level has accumulated to implicate rapid responses to androgens, dependent or independent of the AR. Androgen's rapid time course of action; its effects in the absence or inhibition of the cellular machinery necessary for transcription/translation; and in the absence of translocation to the nucleus suggest a method of androgen action not initially dependent on genomic mechanisms (i.e. non-genomic in nature). In the present paper, the non-genomic effects of androgens are reviewed, along with a discussion of the possible role non-genomic androgen actions have on animal physiology and behavior.
Collapse
Affiliation(s)
- C D Foradori
- Department of Biomedical Sciences, Neurobiology Section, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
59
|
Rosario ER, Pike CJ. Androgen regulation of beta-amyloid protein and the risk of Alzheimer's disease. BRAIN RESEARCH REVIEWS 2008; 57:444-53. [PMID: 17658612 PMCID: PMC2390933 DOI: 10.1016/j.brainresrev.2007.04.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/25/2007] [Accepted: 04/27/2007] [Indexed: 01/08/2023]
Abstract
Advancing age is the most significant risk factor for the development of Alzheimer's disease (AD), however the age-related changes that underlie this effect remain unclear. In men, one normal consequence of aging is a robust decline in circulating and brain levels of the sex steroid hormone testosterone. Testosterone depletion leads to functional impairments and increased risk of disease in androgen-responsive tissues throughout the body, including brain. In this review we discuss the relationship between age-related testosterone depletion and the development of AD. Specifically, we focus on androgen regulation of beta-amyloid protein (Abeta), the accumulation of which is a key initiating factor in AD pathogenesis. Emerging data suggest that the regulatory actions of androgens on both Abeta and the development of AD support consideration of androgen therapy for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Emily R Rosario
- Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | | |
Collapse
|
60
|
LaPrairie JL, Murphy AZ. Female rats are more vulnerable to the long-term consequences of neonatal inflammatory injury. Pain 2007; 132 Suppl 1:S124-S133. [PMID: 17904745 PMCID: PMC2121098 DOI: 10.1016/j.pain.2007.08.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 08/06/2007] [Accepted: 08/10/2007] [Indexed: 02/06/2023]
Abstract
Premature infants are routinely exposed to invasive medical procedures during neonatal intensive care treatment that are largely performed in the absence of anesthetics or analgesics. Data collected to date suggest that exposure to early insult during this time of increased plasticity alters the development of the CNS and influences future pain responses. As previous studies examining the impact of neonatal injury on nociception have been conducted primarily in males, the potential adverse effects on females are not known. Therefore, the present studies were conducted to determine whether neonatal injury differentially impacts male and female sensory thresholds in adulthood. A short lasting inflammatory response was evoked in male and female rats on the day of birth with an injection of carrageenan (CGN; 1% or 2%) into the right hindpaw. Nociceptive thresholds were assessed using a noxious thermal stimulus at both adolescence (P40) and adulthood (P60). A more persistent inflammation was subsequently evoked in adult rats with an intraplantar injection of Complete Freund's adjuvant (CFA). Neonatally injured females exhibited significantly greater hypoalgesia at P60, and displayed enhanced inflammatory hyperalgesia following re-injury in adulthood compared to neonatally injured males and controls. These results demonstrate that the long-term adverse effects of neonatal injury are exacerbated in females, and may contribute to the higher prevalence, severity and duration of pain syndromes noted in women compared to men.
Collapse
Affiliation(s)
- Jamie L LaPrairie
- Department of Biology, Center for Behavioral Neuroscience, Georgia State University, 24 Peachtree Center Ave, 402 Kell Hall, Atlanta, GA 30303-3088, USA
| | | |
Collapse
|
61
|
Thompson CK, Bentley GE, Brenowitz EA. Rapid seasonal-like regression of the adult avian song control system. Proc Natl Acad Sci U S A 2007; 104:15520-5. [PMID: 17875989 PMCID: PMC2000488 DOI: 10.1073/pnas.0707239104] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We analyzed how rapidly avian song control nuclei regress after testosterone (T) withdrawal. Regression of neuronal attributes resulting from T withdrawal has been observed in several animal models. The time course over which regression occurs is not known, however. To address this issue, we castrated adult male white-crowned sparrows and rapidly shifted them to short-day photoperiods after being held under breeding conditions (long-day photoperiod and systemic T exposure) for 3 weeks. We found that the volume of one song nucleus, HVC, regressed 22% within 12 h after T withdrawal. Changes in HVC neuron density after T withdrawal were dynamic; density increased at 12 h and then decreased by 4 days. HVC neuron number was reduced by 26% by 4 days. The volumes of Area X and the robust nucleus of the arcopallium (RA) were significantly regressed by 7 and 20 days, respectively. RA somatic area and neuronal spacing were significantly reduced by 2 days. The rapidity of HVC regression is unprecedented among vertebrate models of hormone-sensitive neural circuits. These results reveal that the rapid regression of the song control system provides a model for the important role sex steroid hormones play in mediating adult neural plasticity and in neuroprotection.
Collapse
Affiliation(s)
- Christopher K Thompson
- Graduate Program in Neurobiology and Behavior, University of Washington, Box 351525, Seattle, WA 98195-1525, USA.
| | | | | |
Collapse
|
62
|
Management of mild to moderate Alzheimer's disease and dementia. Alzheimers Dement 2007; 3:355-84. [DOI: 10.1016/j.jalz.2007.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 07/12/2007] [Indexed: 11/17/2022]
|
63
|
Foradori CD, Werner SB, Sandau US, Clapp TR, Handa RJ. Activation of the androgen receptor alters the intracellular calcium response to glutamate in primary hippocampal neurons and modulates sarco/endoplasmic reticulum calcium ATPase 2 transcription. Neuroscience 2007; 149:155-64. [PMID: 17870249 DOI: 10.1016/j.neuroscience.2007.06.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/28/2007] [Accepted: 06/16/2007] [Indexed: 10/23/2022]
Abstract
Androgens have been shown to have a number of effects on hippocampal function. Although androgen receptors (AR) are found at high levels in hippocampal neurons, the intracellular mechanisms responsible for androgen's actions are unknown. If androgens were capable of altering internal calcium concentration ([Ca(2+)](i)), they could influence a variety of intracellular signaling pathways, maintain neuronal homeostasis and Ca(2+) induced excitotoxicity. In the present study, calcium imaging was used to measure the [Ca(2+)](i) in rat primary hippocampal neurons treated with either the AR agonist dihydrotestosterone (DHT), DHT+flutamide (AR antagonist), flutamide alone, or vehicle for 24 h and subsequently presented with an excitatory glutamate stimulus. In the absence of glutamate stimulation, DHT treatment caused a significant upward shift in baseline [Ca(2+)](i) when compared with neurons from all other groups. Glutamate had a greater effect on [Ca(2+)](i) in DHT-treated neurons and DHT-treated neurons returned to baseline levels significantly faster than all other groups. Cyclopiazonic acid, an inhibitor of sarco/endoplasmic reticulum calcium ATPase (SERCA) had a larger response in DHT-treated neurons compared with controls, suggesting increased Ca(2+) stores in DHT-treated neurons. In all cases the effects of DHT were blocked by treatment with flutamide indicating an AR-mediated mechanism. To determine a possible mechanism by which AR activation could be influencing [Ca(2+)](i), SERCA2 mRNA levels were measured in primary hippocampal neurons. SERCA2 is inserted into the endoplasmic reticulum (ER) membrane and functions to rapidly pump [Ca(2+)](i) into the ER. Following treatment of primary hippocampal neurons with DHT, SERCA2 mRNA was increased, an effect that was blocked in the presence of flutamide. Taken together these results indicate that DHT, working through AR, causes an up-regulation of SERCA2, which increases the sequestering of [Ca(2+)](i) in the endoplasmic reticulum of hippocampal neurons. Such changes may allow the neurons to respond more robustly to a stimulus and recover more quickly following a highly stimulatory challenge.
Collapse
Affiliation(s)
- C D Foradori
- Department of Biomedical Sciences, Anatomy and Neurobiology Section, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
64
|
Orlando R, Caruso A, Molinaro G, Motolese M, Matrisciano F, Togna G, Melchiorri D, Nicoletti F, Bruno V. Nanomolar concentrations of anabolic-androgenic steroids amplify excitotoxic neuronal death in mixed mouse cortical cultures. Brain Res 2007; 1165:21-9. [PMID: 17662261 DOI: 10.1016/j.brainres.2007.06.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 06/19/2007] [Accepted: 06/20/2007] [Indexed: 11/21/2022]
Abstract
The use of anabolic-androgenic steroids (AASs) in the world of sport has raised a major concern for the serious, sometimes life-threatening, side effects associated with these drugs. Most of the CNS effects are of psychiatric origin, and whether or not AASs are toxic to neurons is yet unknown. We compared the effect of testosterone with that of the AASs, 19-nortestosterone (nandrolone), stanozolol, and gestrinone, on excitotoxic neuronal death induced by N-methyl-d-aspartate (NMDA) in primary cultures of mouse cortical cells. In the most relevant experiments, steroids were applied to the cultures once daily during the 4 days preceding the NMDA pulse. Under these conditions, testosterone amplified excitotoxic neuronal death only at very high concentrations (10 muM), whereas it was protective at concentrations of 10 nM and inactive at intermediate concentrations. Low concentrations of testosterone became neurotoxic in the presence of the aromatase inhibitors, i.e. anastrozole and aminoglutethimide, suggesting that the intrinsic toxicity of testosterone was counterbalanced by its aromatization into 17beta-estradiol. As opposed to testosterone, nortestosterone, stanozolol and gestrinone amplified NMDA toxicity at nanomolar concentrations; their action was insensitive to aromatase inhibitors, but was abrogated by the androgen receptor antagonist, flutamide. None of the AASs were toxic in the absence of NMDA. These data suggest that AASs increase neuronal vulnerability to an excitotoxic insult and may therefore facilitate neuronal death associated with acute or chronic CNS disorders.
Collapse
Affiliation(s)
- Rosamaria Orlando
- Department of Human Physiology and Pharmacology, University of Rome La Sapienza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Fargo KN, Sengelaub DR. Androgenic, but not estrogenic, protection of motoneurons from somal and dendritic atrophy induced by the death of neighboring motoneurons. Dev Neurobiol 2007; 67:1094-106. [PMID: 17565709 PMCID: PMC2747260 DOI: 10.1002/dneu.20454] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Motoneuron loss is a significant medical problem, capable of causing severe movement disorders or even death. We have been investigating the effects of motoneuron loss on surviving motoneurons in a lumbar motor nucleus, the spinal nucleus of the bulbocavernosus (SNB). SNB motoneurons undergo marked dendritic and somal atrophy following the experimentally induced death of other nearby SNB motoneurons. However, treatment with testosterone at the time of lesioning attenuates this atrophy. Because testosterone can be metabolized into the estrogen estradiol (as well as other physiologically active steroid hormones), it was unknown whether the protective effect of testosterone was an androgen effect, an estrogen effect, or both. In the present experiment, we used a retrogradely transported neurotoxin to kill the majority of SNB motoneurons on one side of the spinal cord only in adult male rats. Some animals were also treated with either testosterone, the androgen dihydrotestosterone (which cannot be converted into estradiol), or the estrogen estradiol. As seen previously, partial motoneuron loss led to reductions in soma area and in dendritic length and extent in surviving motoneurons. Testosterone and dihydrotestosterone attenuated these reductions, but estradiol had no protective effect. These results indicate that the neuroprotective effect of testosterone on the morphology of SNB motoneurons following partial motoneuron depletion is an androgen effect rather than an estrogen effect.
Collapse
Affiliation(s)
- Keith N Fargo
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
66
|
Gatson JW, Singh M. Activation of a membrane-associated androgen receptor promotes cell death in primary cortical astrocytes. Endocrinology 2007; 148:2458-64. [PMID: 17303658 DOI: 10.1210/en.2006-1443] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the central nervous system, androgens can exert either protective or damage-promoting effects. For example, testosterone protects neurons against beta-amyloid toxicity, whereas in other studies, testosterone exacerbated stroke-induced lesion size. The mechanism underlying this duality of androgens is still unclear. Recently, our laboratory reported that androgens elicit opposite effects on the ERK/MAPK and Akt signaling pathways, depending on whether a membrane androgen receptor (AR) or intracellular AR was activated. By extension, we hypothesized that androgens may affect cell viability differently depending on which receptor is activated. Here, we found that dihydrotestosterone (DHT) protected primary cortical astrocytes from the metabolic and oxidative insult associated with iodoacetic acid-induced toxicity, whereas DHT-BSA, a cell impermeable analog of DHT that preferentially targets the membrane AR, suppressed Akt signaling, increased caspase 3/7 activity, and enhanced iodoacetic acid-induced cell death. Interestingly, DHT-BSA also blocked the protective effects of DHT and estradiol. Collectively, these data support the existence of two, potentially competing, pathways for androgens in a given cell or tissue that may provide insight into the controversy of whether androgen therapy is beneficial or detrimental.
Collapse
Affiliation(s)
- Joshua W Gatson
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas 76107-2699, USA
| | | |
Collapse
|
67
|
Túnez I, Feijóo M, Collado JA, Medina FJ, Peña J, Muñoz MDC, Jimena I, Franco F, Rueda I, Muntané J, Montilla P. Effect of testosterone on oxidative stress and cell damage induced by 3-nitropropionic acid in striatum of ovariectomized rats. Life Sci 2007; 80:1221-7. [PMID: 17266993 DOI: 10.1016/j.lfs.2006.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 10/02/2006] [Accepted: 12/14/2006] [Indexed: 11/30/2022]
Abstract
This paper evaluates the effects of testosterone (0.5 mg/kg subcutaneously (s.c.) for 8 days) on oxidative stress and cell damage induced by 3-nitropropionic acid (20 mg/kg intraperitoneally (i.p.) for 4 days) in ovariectomized rats. Gonadectomy triggered oxidative damage and cell loss, evaluated by the detection of caspase-3, whereas 3-nitropropionic acid increased the levels of oxidative stress induced by ovariectomy and prompted cell damage characterized by enhanced levels of lactate dehydrogenase. These changes were blocked by testosterone administration. Our results support the following conclusions: i) ovariectomy triggers oxidative and cell damage via caspase-3 in the striatum; ii) 3-nitropropionic acid exacerbates oxidative stress induced by ovariectomy and leads to cell damage characterized by increased levels of lactate dehydrogenase; iii) testosterone administration decreases oxidative stress and cell damage. Additionally, these data support the hypothesis that testosterone might play an important role in the onset and development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Isaac Túnez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Avda. Menendez Pidal s/n, 14004 Cordoba, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Spritzer MD, Galea LAM. Testosterone and dihydrotestosterone, but not estradiol, enhance survival of new hippocampal neurons in adult male rats. Dev Neurobiol 2007; 67:1321-33. [PMID: 17638384 DOI: 10.1002/dneu.20457] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Past research suggested that androgens may play a role in the regulation of adult neurogenesis within the dentate gyrus. We tested this hypothesis by manipulating androgen levels in male rats. Castrated or sham castrated male rats were injected with 5-Bromo-2'deoxyuridine (BrdU). BrdU-labeled cells in the dentate gryus were visualized and phenotyped (neural or glial) using immunohistochemistry. Castrated males showed a significant decrease in 30-day cell survival within the dentate gyrus but there was no significant change in cell proliferation relative to control males, indicating that androgens positively affect cell survival, but not cell proliferation. To examine the role of testosterone on hippocampal cell survival, males were injected with testosterone s.c. for 30 days starting the day after BrdU injection. Higher doses (0.5 and 1.0 mg/kg) but not a lower dose (0.25 mg/kg) of testosterone resulted in a significant increase in neurogenesis relative to controls. We next tested the role of testosterone's two major metabolites, dihydrotestosterone (DHT), and estradiol, upon neurogenesis. Thirty days of injections of DHT (0.25 and 0.50 mg/kg) but not estradiol (0.010 and 0.020 mg/kg) resulted in a significant increase in hippocampal neurogenesis. These results suggest that testosterone enhances hippocampal neurogenesis via increased cell survival in the dentate gyrus through an androgen-dependent mechanism.
Collapse
Affiliation(s)
- Mark D Spritzer
- Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | |
Collapse
|
69
|
Estrada M, Varshney A, Ehrlich BE. Elevated testosterone induces apoptosis in neuronal cells. J Biol Chem 2006; 281:25492-501. [PMID: 16803879 DOI: 10.1074/jbc.m603193200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Testosterone plays a crucial role in neuronal function, but elevated concentrations can have deleterious effects. Here we show that supraphysiological levels of testosterone (micromolar range) initiate the apoptotic cascade. We used three criteria, annexin V labeling, caspase activity, and DNA fragmentation, to determine that apoptotic pathways were activated by testosterone. Micromolar, but not nanomolar, testosterone concentrations increased the response in all three assays of apoptosis. In addition, testosterone induced different concentration-dependent Ca2+ signaling patterns: at low concentrations of testosterone (100 nm), Ca2+ oscillations were produced, whereas high concentrations (1-10 microm) induced a sustained Ca2+ increase. Elevated testosterone concentrations increase cell death, and this effect was abolished in the presence of either inhibitors of caspases or the inositol 1,4,5-trisphosphate receptor (InsP3R)-mediated Ca2+ release. Knockdown of InsP3R type 1 with specific small interfering RNA also abolished the testosterone-induced cell death and the prolonged Ca2+ signals. In contrast, knockdown of InsP3R type 3 modified neither the apoptotic response nor the Ca2+ signals. These results support our hypothesis that elevated testosterone alters InsP3R type 1-mediated intracellular Ca2+ signaling and that the prolonged Ca2+ signals lead to apoptotic cell death. These effects of testosterone on neurons will have long term effects on brain function.
Collapse
Affiliation(s)
- Manuel Estrada
- Department of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520,
| | | | | |
Collapse
|
70
|
Rosario ER, Ramsden M, Pike CJ. Progestins inhibit the neuroprotective effects of estrogen in rat hippocampus. Brain Res 2006; 1099:206-10. [PMID: 16793026 DOI: 10.1016/j.brainres.2006.03.127] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/10/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
Although estrogen has beneficial actions in brain, recent clinical trials demonstrated adverse neural effects of hormone therapy in postmenopausal women. The cause(s) of this disconnect between experimental and clinical findings may include unanticipated effects of progestins. We report that both natural progesterone and the clinical progestin medroxyprogesterone acetate block estrogen neuroprotection. These findings underscore the need to evaluate neural actions of progestins in the rational design of hormone therapy.
Collapse
Affiliation(s)
- Emily R Rosario
- Neuroscience Graduate Program, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, 90089-0191, USA
| | | | | |
Collapse
|
71
|
Abstract
Androgen deprivation leads to a profound loss of synaptic density in the hippocampus and changes in learning and memory in animal models. The authors examined group differences in verbal memory between men on androgen deprivation therapy (ADT), a commonly used treatment for prostate cancer, and healthy men. The authors found that men on ADT have a specific impairment of retention but normal encoding and retrieval processes on a word list-learning task. Speed and accuracy for both perceptual and semantic encoding, as well as retrieval at a very short retention interval, were not affected; however, recognition fell to chance after a 2-min retention interval in men on ADT. Healthy men showed only moderate forgetting, and performance was still above chance at 12 min. This pattern of preserved encoding and retrieval but impaired retention suggests that androgens play a role in hippocampally mediated memory processes, possibly having a specific affect on consolidation.
Collapse
Affiliation(s)
- Joseph R Bussiere
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
72
|
Pike CJ, Rosario ER, Nguyen TVV. Androgens, aging, and Alzheimer's disease. Endocrine 2006; 29:233-41. [PMID: 16785599 DOI: 10.1385/endo:29:2:233] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 01/03/2023]
Abstract
Testosterone depletion is a normal consequence of aging in men that is associated with senescent effects in androgen- responsive tissues. We discuss new evidence that one consequence of testosterone depletion in men is an increased risk for the development of Alzheimer's disease (AD). Furthermore, we discuss two candidate mechanisms by which testosterone may affect AD pathogenesis. First, testosterone has been identified as an endogenous regulator of beta-amyloid, a protein that abnormally accumulates in AD brain and is implicated as a causal factor in the disease. Second, findings from several different paradigms indicate that testosterone has both neurotrophic and neuroprotective functions. These new findings support the clinical evaluation of androgen-based therapies for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Christian J Pike
- Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA.
| | | | | |
Collapse
|
73
|
DonCarlos LL, Sarkey S, Lorenz B, Azcoitia I, Garcia-Ovejero D, Huppenbauer C, Garcia-Segura LM. Novel cellular phenotypes and subcellular sites for androgen action in the forebrain. Neuroscience 2006; 138:801-7. [PMID: 16310968 DOI: 10.1016/j.neuroscience.2005.06.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 06/07/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
Historically, morphological studies of the distribution of androgen receptors in the brain led to conclusions that the major regional targets of androgen action are involved in reproduction, that the primary cellular targets are neurons, and that functional androgen receptors are exclusively nuclear, consistent with the classical view of steroid receptors as ligand-dependent transcription factors. In this review, we discuss three separate but interrelated recent studies highlighting observations made with newer methodologies while assessing the regional, cellular or subcellular distribution of androgen receptors containing cells in the forebrain. Regional studies demonstrated that the largest forebrain target for androgen action in terms of the number of androgen receptor expressing cells is the cerebral cortex, rather than the main hypothalamic and limbic centers for reproductive function. Cellular studies to determine the phenotype of androgen receptor expressing cells confirmed that most of these cells are neurons but also revealed that small subpopulations are astrocytes. The expression of androgen receptors in astrocytes is both region and age dependent. In contrast, reactive astrocytes in the lesioned adult rat brain do not express androgen receptors whereas reactive microglia do. Finally, androgen receptor immunoreactive axons were identified in the cerebral cortex of the rat and human. These observations do not overturn classical views of the cellular and subcellular locus of steroid action in the nervous system, but rather broaden our view of the potential direct impact of gonadal steroid hormones on cellular function and emphasize the regional and developmental specificity of these effects on the nervous system.
Collapse
Affiliation(s)
- L L DonCarlos
- Department of Cell Biology, Neurobiology and Anatomy, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Meyer RP, Hagemeyer CE, Knoth R, Kaufmann MR, Volk B. Anti-epileptic drug phenytoin enhances androgen metabolism and androgen receptor expression in murine hippocampus. J Neurochem 2006; 96:460-72. [PMID: 16336225 DOI: 10.1111/j.1471-4159.2005.03555.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epilepsy is very often related to strong impairment of neuronal networks, particularly in the hippocampus. Previous studies of brain tissue have demonstrated that long-term administration of the anti-epileptic drug (AED) phenytoin leads to enhanced metabolism of testosterone mediated by cytochrome P450 (CYP) isoforms. Thus, we speculate that AEDs affect androgen signalling in the hippocampus. In the present study, we investigated how the AED phenytoin influences the levels of testosterone, 17beta-oestradiol, and androgen receptor (AR) in the hippocampus of male C57Bl/6J mice. Phenytoin administration led to a 61.24% decreased hippocampal testosterone level as compared with controls, while serum levels were slightly enhanced. 17beta-Oestradiol serum level was elevated 2.6-fold. Concomitantly, the testosterone metabolizing CYP isoforms CYP3A11 and CYP19 (aromatase) have been found to be induced 2.4- and 4.2-fold, respectively. CYP3A-mediated depletion of testosterone-forming 2beta-, and 6beta-hydroxytestosterone was significantly enhanced. Additionally, AR expression was increased 2-fold (mRNA) and 1.8-fold (protein), predominantly in the CA1 region. AR was shown to concentrate in nuclei of CA1 pyramidal neurons. We conclude that phenytoin affects testosterone metabolism via induction of CYP isoforms. The increased metabolism of testosterone leading to augmented androgen metabolite formation most likely led to enhanced expression of CYP19 and AR in hippocampus. Phenytoin obviously modulates the androgen signalling in the hippocampus.
Collapse
Affiliation(s)
- Ralf Peter Meyer
- Pathologisches Institut, Abt. Neuropathologie, Neurozentrum, Universitätsklinik Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
75
|
Abstract
Male hypogonadism has a multifactorial etiology that includes genetic conditions, anatomic abnormalities, infection, tumor, and injury. Defects in the hypothalamic-pituitary-gonadal axis may also result from type II diabetes mellitus and treatment with a range of medications. Circulating testosterone levels have been associated with sexual function, cognitive function, and body composition. Apart from reduced levels of testosterone, clinical hallmarks of hypogonadism include absence or regression of secondary sex characteristics, reduced fertility (oligospermia, azoospermia), anemia, muscle wasting, reduced bone mass (and bone mineral density), and/or abdominal adiposity. Some patients, particularly those with partial androgen deficiency of the aging male, also experience sexual dysfunction, reduced sense of vitality, depressed mood, increased irritability, difficulty concentrating, and/or hot flushes in certain cases of acute onset. As many patients with male hypogonadism-like patients with erectile dysfunction-do not seek medical attention, it is important for clinicians to be acquainted with the signs and symptoms of hypogonadism, and to conduct appropriate laboratory testing and other assessments to determine the causes and inform the treatment of this condition.
Collapse
Affiliation(s)
- A Seftel
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
76
|
Nguyen TVV, Yao M, Pike CJ. Androgens activate mitogen-activated protein kinase signaling: role in neuroprotection. J Neurochem 2005; 94:1639-51. [PMID: 16011741 DOI: 10.1111/j.1471-4159.2005.03318.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent evidence indicates that testosterone is neuroprotective, however, the underlying mechanism(s) remains to be elucidated. In this study, we investigated the hypothesis that androgens induce mitogen-activated protein kinase (MAPK) signaling in neurons, which subsequently drives neuroprotection. We observed that testosterone and its non-aromatizable metabolite dihydrotestosterone (DHT) rapidly and transiently activate MAPK in cultured hippocampal neurons, as evidenced by phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2. Importantly, pharmacological suppression of MAPK/ERK signaling blocked androgen-mediated neuroprotection against beta-amyloid toxicity. Androgen activation of MAPK/ERK and neuroprotection also was observed in PC12 cells stably transfected with androgen receptor (AR), but in neither wild-type nor empty vector-transfected PC12 cells. Downstream of ERK phosphorylation, we observed that DHT sequentially increases p90 kDa ribosomal S6 kinase (Rsk) phosphorylation and phosphorylation-dependent inactivation of Bcl-2-associated death protein (Bad). Prevention of androgen-induced phosphorylation of Rsk and Bad blocked androgen neuroprotection. These findings demonstrate AR-dependent androgen activation of MAPK/ERK signaling in neurons, and specifically identify a neuroprotective pathway involving downstream activation of Rsk and inactivation of Bad. Elucidation of androgen-mediated neural signaling cascades will provide important insights into the mechanisms of androgen action in brain, and may present a framework for therapeutic intervention of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Thuy-Vi V Nguyen
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089-0191, USA
| | | | | |
Collapse
|
77
|
Tabori NE, Stewart LS, Znamensky V, Romeo RD, Alves SE, McEwen BS, Milner TA. Ultrastructural evidence that androgen receptors are located at extranuclear sites in the rat hippocampal formation. Neuroscience 2005; 130:151-63. [PMID: 15561432 DOI: 10.1016/j.neuroscience.2004.08.048] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2004] [Indexed: 11/18/2022]
Abstract
Like estrogens in female rats, androgens can affect dendritic spine density in the CA1 subfield of the male rat hippocampus [J Neurosci 23:1588 (2003)]. Previous light microscopic studies have shown that androgen receptors (ARs) are present in the nuclei of CA1 pyramidal cells. However, androgens may also exert their effects through rapid non-genomic mechanisms, possibly by binding to membranes. Thus, to investigate whether ARs are at potential extranuclear sites of ARs, antibodies to ARs were localized by light and electron microscopy in the male rat hippocampal formation. By light microscopy, AR immunoreactivity (-ir) was found in CA1 pyramidal cell nuclei and in disperse, punctate processes that were most dense in the pyramidal cell layer. Additionally, diffuse AR-ir was found in the mossy fiber pathway. Ultrastructural analysis revealed AR-ir at several extranuclear sites in all hippocampal subregions. AR-ir was found in dendritic spines, many arising from pyramidal and granule cell dendrites. AR-ir was associated with clusters of small, synaptic vesicles within preterminal axons and axon terminals. Labeled preterminal axons were most prominent in stratum lucidum of the CA3 region. AR-containing terminals formed asymmetric synapses or did not form synaptic junctions in the plane of section analyzed. AR-ir also was detected in astrocytic profiles, many of which apposed terminals synapsing on unlabeled dendritic spines or formed gap junctions with other AR-labeled or unlabeled astrocytes. Collectively, these results suggest that ARs may serve as both a genomic and non-genomic transducer of androgen action in the hippocampal formation.
Collapse
Affiliation(s)
- N E Tabori
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Zhang Y, Champagne N, Beitel LK, Goodyer CG, Trifiro M, LeBlanc A. Estrogen and androgen protection of human neurons against intracellular amyloid beta1-42 toxicity through heat shock protein 70. J Neurosci 2004; 24:5315-21. [PMID: 15190103 PMCID: PMC6729301 DOI: 10.1523/jneurosci.0913-04.2004] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intracellular amyloidbeta peptide (iAbeta1-42) accumulates in the Alzheimer's disease brain before plaque and tangle formation (Gouras et al., 2000) and is extremely toxic to human neurons (Zhang et al., 2002). Here, we investigated whether androgen and estrogen could prevent iAbeta1-4) toxicity, because both these hormones have a wide range of neuroprotective actions. At physiological concentrations, 17-beta-estradiol, testosterone, and methyl testosterone reduce iAbeta1-42-induced cell death by 50% in neurons treated after the injection and by 80-90% in neurons treated 1 hr before the injection. The neuroprotective action of the hormones is mediated by receptors, because the estrogen receptor (ER) antagonist tamoxifen and the androgen receptor (AR) antagonist flutamide completely block the estrogen- and androgen-mediated neuroprotection, respectively. Transcriptional activity is required for the neuroprotective action, because dominant negative forms of the receptors that block the transcriptional activity of the ER and AR prevent estrogen- and androgen-mediated neuroprotection. Proteomics followed by Western blot analyses identified increased levels of heat shock protein 70 (Hsp70) in testosterone- and estrogen-treated human neurons. Comicroinjection of Hsp70 with the iAbeta1-42 blocks the toxicity of iAbeta1-42. We conclude that estrogen and androgens protect human neurons against iAbeta1-42 toxicity by increasing the levels of Hsp70 in the neurons.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurology, McGill University, Montreal QB H3A 1B1, Canada
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
Increasing evidence indicates that there are reductions in estrogen and androgen levels in aged men and women. These hormonal reductions might be risk factors for cognitive impairments and the development of Alzheimer's disease (AD). Aged people show improved cognition after treatments with sex steroids. Therefore, ongoing clinical AD trials have been designed to evaluate the potential benefits of estrogen therapy in women and testosterone therapy in men. Apolipoprotein E (apoE) plays an important role in the metabolism and redistribution of lipoproteins and cholesterol. The three major human apoE isoforms, apoE2, apoE3, and apoE4, differ in their effects on AD risk and pathology. Here I review various mechanisms proposed to mediate the differential effects of apoE isoforms on brain function and highlight the potential contribution of detrimental isoform-dependent effects of apoE on androgen- and androgen receptor (AR)-mediated pathways. I also discuss potential interactions of androgens with other AD-related factors.
Collapse
Affiliation(s)
- Jacob Raber
- Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|