51
|
Zhu L, Wang HD, Yu XG, Jin W, Qiao L, Lu TJ, Hu ZL, Zhou J. Erythropoietin prevents zinc accumulation and neuronal death after traumatic brain injury in rat hippocampus: in vitro and in vivo studies. Brain Res 2009; 1289:96-105. [PMID: 19615349 DOI: 10.1016/j.brainres.2009.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 07/02/2009] [Accepted: 07/04/2009] [Indexed: 02/07/2023]
Abstract
Erythropoietin (Epo) has been gaining great interest for its potential neuroprotective effect in various neurological insults. However, the molecular mechanism underlying how Epo exerts the function is not clear. Recent studies have indicated that Zn(2+) may have a key role in selective cell death in excitotoxicity after injury. In the present study, we studied the effect of recombinant human Epo (rhEpo) in zinc-induced neurotoxicity both in vitro and in vivo. Exposure of cultured hippocampal neurons to 200 muM ZnC1(2) for 20 min resulted in remarkable neuronal injury, revealed by assessing neuronal morphology. By measuring mitochondrial function using MTT assay, we found that application of rhEpo (0.1 U/ml) 24 h before zinc exposure resulted in a significant increase of neuronal survival (0.6007+/-0.2280 Epo group vs 0.2333+/-0.1249 in control group; n=4, p<0.01). Furthermore, we demonstrated that administration of rhEpo (5,000 IU/kg, intraperitoneal) 30 min after traumatic brain injury (TBI) in rats dramatically protected neuronal death indicated by ZP4 staining, a new zinc-specific fluorescent sensor which has been widely used to indicate neuronal damage after excitotoxic injury (n=5/group, p<0.05). Neuronal damage was also assessed by Fluoro-Jade B (FJB) staining, a highly specific fluorescent marker for the degenerating neurons. Consistent with ZP4 staining, we found the beneficial effects of rhEpo on neuronal survival in hippocampus after TBI (n=5/group, p<0.05). Our results suggest that rhEpo can significantly reduce the pathological Zn(2+) accumulation in rat hippocampus after TBI as well as zinc-induced cell death in cultured cells, which may potentially contribute to its neuronal protection after excitotoxic brain damage.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurosurgery, Jinling Hospital, Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Intracellular Zn2+ accumulation contributes to synaptic failure, mitochondrial depolarization, and cell death in an acute slice oxygen-glucose deprivation model of ischemia. J Neurosci 2009; 29:1105-14. [PMID: 19176819 DOI: 10.1523/jneurosci.4604-08.2009] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite considerable evidence for contributions of both Zn(2+) and Ca(2+) in ischemic brain damage, the relative importance of each cation to very early events in injury cascades is not well known. We examined Ca(2+) and Zn(2+) dynamics in hippocampal slices subjected to oxygen-glucose deprivation (OGD). When single CA1 pyramidal neurons were loaded via a patch pipette with a Ca(2+)-sensitive indicator (fura-6F) and an ion-insensitive indicator (AlexaFluor-488), small dendritic fura-6F signals were noted after several (approximately 6-8) minutes of OGD, followed shortly by sharp somatic signals, which were attributed to Ca(2+) ("Ca(2+) deregulation"). At close to the time of Ca(2+) deregulation, neurons underwent a terminal increase in plasma membrane permeability, indicated by loss of AlexaFluor-488 fluorescence. In neurons coloaded with fura-6F and a Zn(2+)-selective indicator (FluoZin-3), progressive rises in cytosolic Zn(2+) levels were detected before Ca(2+) deregulation. Addition of the Zn(2+) chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) significantly delayed both Ca(2+) deregulation and the plasma membrane permeability increases, indicating that Zn(2+) contributes to the degenerative signaling. Present observations further indicate that Zn(2+) is rapidly taken up into mitochondria, contributing to their early depolarization. Also, TPEN facilitated recovery of the mitochondrial membrane potential and of field EPSPs after transient OGD, and combined removal of Ca(2+) and Zn(2+) markedly extended the duration of OGD tolerated. These data provide new clues that Zn(2+) accumulates rapidly in neurons during slice OGD, is taken up by mitochondria, and contributes to consequent mitochondrial dysfunction, cessation of synaptic transmission, Ca(2+) deregulation, and cell death.
Collapse
|
53
|
Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 2008; 108:1517-49. [PMID: 18426241 DOI: 10.1021/cr078203u] [Citation(s) in RCA: 1560] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Emily L Que
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
54
|
Aguilar-Alonso P, Martinez-Fong D, Pazos-Salazar NG, Brambila E, Gonzalez-Barrios JA, Mejorada A, Flores G, Millan-Perezpeña L, Rubio H, Leon-Chavez BA. The increase in zinc levels and upregulation of zinc transporters are mediated by nitric oxide in the cerebral cortex after transient ischemia in the rat. Brain Res 2008; 1200:89-98. [PMID: 18289514 DOI: 10.1016/j.brainres.2007.11.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 11/19/2022]
Abstract
The transient occlusion of cerebral arteries causes an increase in zinc levels in the brain, which is associated with a production of nitric oxide (NO). The types of zinc transporters (ZnT) involved in zinc homeostasis in the cerebral cortex after hypoxia-ischemia are not completely known. We studied the effect of the transient occlusion (10 min) of the common carotid artery (CCA) on NO-induced zinc levels, ZnT mRNA expression, and cell-death markers in the cerebral cortex-hippocampus of the rat. Nitrites, zinc, and lipoperoxidation were quantified by colorimetric methods, ZnT expression was determined by RT-PCR, caspase-3 by ELISA and immunohistochemistry, and histopathological alterations by H&E staining. After restoration of the blood flow, the basal levels of NO and zinc increased in a biphasic manner over time, but the peaks of NO levels appeared earlier (2 h and 24 h) than those of zinc (6 h and 36 h). Upregulation of ZnT1, ZnT2, and ZnT4 mRNAs was determined after 8-h postreperfusion, but ZnT3 RNA levels were unaffected. Lipoperoxidation and caspase-3 levels were also increased, and necrosis and apoptosis were present at 24 h postreperfusion. All the effects determined were prevented by l-nitro-arginine methyl ester injected 1 h before the occlusion of the CCA. Our results suggest that the upregulation of ZnT1, ZnT2, and ZnT4 was to decrease the cytosolic zinc levels caused by NO after transient occlusion of the CCA, although this was unable to lead to physiological levels of zinc and to prevent cell damage in the cerebral cortex-hippocampus of the rat.
Collapse
Affiliation(s)
- Patricia Aguilar-Alonso
- Area de Bioquímica y Biología Molecular, Facultad de Ciencias químicas, BUAP. 14 sur y Av. San Claudio, 72570, Puebla, Pue. México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S, Suzuki T. Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol 2008; 97:149-76. [PMID: 18501770 DOI: 10.1016/s0065-2776(08)00003-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Zinc (Zn) is an essential nutrient required for cell growth, differentiation, and survival, and its deficiency causes growth retardation, immunodeficiency, and other health problems. Therefore, Zn homeostasis must be tightly controlled in individual cells. Zn is known to be important in the immune system, although its precise roles and mechanisms have not yet been resolved. Zn has been suggested to act as a kind of neurotransmitter. In addition, Zn has been shown to bind and affect the activity of several signaling molecules, such as protein tyrosine phosphatases (PTPs). However, it has not been known whether Zn itself might act as an intracellular signaling molecule, that is, a molecule whose intracellular status is altered in response to an extracellular stimulus, and that is capable of transducing the extracellular stimulus into an intracellular signaling event. Here we propose that Zn acts as a signaling molecule and that there are at least two kinds of Zn signaling: "late Zn signaling," which is dependent on a change in the expression profile of Zn transporters, and "early Zn signaling," which involves a "Zn wave" and is directly induced by an extracellular stimulus. We also review recent progress in uncovering the roles of Zn in the immune system.
Collapse
Affiliation(s)
- Toshio Hirano
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
56
|
Lee M, Lee SJ, Choi HJ, Jung YW, Frøkiaer J, Nielsen S, Kwon TH. Regulation of AQP4 protein expression in rat brain astrocytes: role of P2X7 receptor activation. Brain Res 2007; 1195:1-11. [PMID: 18206860 DOI: 10.1016/j.brainres.2007.12.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/05/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
ATP has been recognized as an important extracellular signaling molecule and P2X receptors are membrane ion channels activated by the binding of extracellular ATP. Since both AQP4 and P2X7 receptor (P2X7R) are known to be present in astrocytes, we examined whether P2X7R activation plays a role in the regulation of AQP4 expression in astrocytes. Immunoblotting and immunocytochemistry confirmed the expression of both P2X7R and AQP4 in primary cultured rat astrocytes. Co-immunoprecipitation assays of the HEK293 cells expressing both proteins revealed no protein-protein interaction. An activation of P2X7R in primary cultured astrocytes by a P2X7R agonist significantly decreased the AQP4 protein expression, which was abolished by the pre-treatment of a P2X7R antagonist. In addition, AQP4 expression was not affected by high extracellular copper, zinc, or iron concentrations. In a rat model with anoxia-induced brain injury where extracellular ATP levels could be increased, whole brain AQP4 expression was significantly decreased, whereas P2X7R expression was unchanged. Importantly, pre-treatment of P2X7R antagonist in rats significantly inhibited the AQP4 down-regulation in anoxic brain injury, consistent with the in vitro results observed in astrocytes. In conclusion, P2X7R activation in astrocytes was associated with down-regulation of AQP4 in rat brain astrocytes in vitro and in vivo, and this was prevented by P2X7 receptor blockade. Thus, an activation of P2X7R in astrocytes in response to brain injury is likely to play a role in the protective down-regulation of AQP4, which might inhibit water influx to the cells and attenuate the acute cytotoxic brain edema after acute brain injury.
Collapse
Affiliation(s)
- MoonHee Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Dongin-dong 101, Taegu 700-422, South Korea
| | | | | | | | | | | | | |
Collapse
|
57
|
Doering P, Danscher G, Larsen A, Bruhn M, Søndergaard C, Stoltenberg M. Changes in the vesicular zinc pattern following traumatic brain injury. Neuroscience 2007; 150:93-103. [DOI: 10.1016/j.neuroscience.2007.09.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 08/13/2007] [Accepted: 09/11/2007] [Indexed: 02/05/2023]
|
58
|
Frederickson C, Frederickson CJ, Maret W, Sandstead H, Giblin L, Thompson R. Meeting Report: Zinc Signals 2007 Expanding Roles of the Free Zinc Ion in Biology. ACTA ACUST UNITED AC 2007; 2007:pe61. [DOI: 10.1126/stke.4112007pe61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
59
|
Bakalova R. Fluorescent molecular sensors and multi-photon microscopy in brain studies. Brain Res Bull 2007; 73:150-3. [PMID: 17499649 DOI: 10.1016/j.brainresbull.2007.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 02/09/2007] [Accepted: 02/18/2007] [Indexed: 11/25/2022]
Abstract
To clarify the brain phenomena, to prove directly the major biochemical pathways in cerebral tissue, and to discover the crucial steps in brain pathology, it is necessary to develop a high speed deep-tissue imaging techniques with high spatial and temporal resolution, and ultra-fast and highly selective molecular sensors, giving a possibility to monitor target molecules directly in their physiological environment. This technical comment accents on the perspectives for development of direct approach for investigation of function/flow coupling phenomenon and zinc transport into the brain, based on the current progress in development of ultra-fast molecular sensors for direct visualization of biochemical mediators and neurotransmitters, and high speed multi-photon deep-tissue imaging.
Collapse
Affiliation(s)
- Rumiana Bakalova
- On-Site Sensing and Diagnosis Research Laboratory, AIST-Kyushy, 807-1 Shuku-machi, Tosu, Saga 841-0052, Japan.
| |
Collapse
|
60
|
Nolan EM, Ryu JW, Jaworski J, Feazell RP, Sheng M, Lippard SJ. Zinspy sensors with enhanced dynamic range for imaging neuronal cell zinc uptake and mobilization. J Am Chem Soc 2006; 128:15517-28. [PMID: 17132019 PMCID: PMC2002492 DOI: 10.1021/ja065759a] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thiophene moieties were incorporated into previously described Zinspy (ZS) fluorescent Zn(II) sensor motifs (Nolan, E. M.; Lippard, S. J. Inorg. Chem. 2004, 43, 8310-8317) to provide enhanced fluorescence properties, low-micromolar dissociation constants for Zn(II), and improved Zn(II) selectivity. Halogenation of the xanthenone and benzoate moieties of the fluorescein platform systematically modulates the excitation and emission profiles, pH-dependent fluorescence, Zn(II) affinity, and Zn(II) complexation rates, offering a general strategy for tuning multiple properties of xanthenone-based metal ion sensors. Extensive biological studies in cultured cells and primary neuronal cultures demonstrate 2-{6-hydroxy-3-oxo-4,5-bis[(pyridin-2-ylmethylthiophen-2-ylmethylamino)methyl]-3H-xanthen-9-yl}benzoic acid (ZS5) to be a versatile imaging tool for detecting Zn(II) in vivo. ZS5 localizes to the mitochondria of HeLa cells and allows visualization of glutamate-mediated Zn(II) uptake in dendrites and Zn(II) release resulting from nitrosative stress in neurons.
Collapse
|
61
|
Stork CJ, Li YV. Intracellular zinc elevation measured with a "calcium-specific" indicator during ischemia and reperfusion in rat hippocampus: a question on calcium overload. J Neurosci 2006; 26:10430-7. [PMID: 17035527 PMCID: PMC6674692 DOI: 10.1523/jneurosci.1588-06.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Much of our current evidence concerning of the role of calcium (Ca2+) as a second messenger comes from its interaction with fluorescent probes; however, many Ca2+ probes also have a higher affinity for another divalent cation: zinc (Zn2+). In this study, using a selective Zn2+ probe (Newport Green), we investigated the accumulation of intracellular Zn2+ transients in acute rat hippocampal slices during ischemia, simulated by oxygen and glucose deprivation (OGD). Subsequent reperfusion with glucose-containing oxygenated medium resulted in an additional increase in intracellular Zn2+. Such observations compelled us to investigate the contribution of Zn2+ to the alleged intracellular Ca2+ overload occurring in ischemia and reperfusion. Using confocal fluorescent microscopy of Calcium Green-1, a widely used Ca2+ indicator, we detected increases in fluorescence intensity during OGD and reperfusion. However, application of a Zn2+ chelator, at the peak of the fluorescence elevation (interpreted as Ca2+ overload), resulted in a significant drop in intensity, suggesting that rising Zn2+ is the primary source of the increasing Calcium Green-1 fluorescence. Finally, staining with the cell viability indicator propidium iodide revealed that Zn2+ is responsible for the ischemic neuronal cell death, because Zn2+ chelation prevented cells from sustaining ischemic damage. Current cellular models of ischemic injury center on Ca2+-mediated excitotoxicity. Our results indicate that Zn2+ elevation contributes to conventionally recognized Ca2+ overload and also suggest that the role of Ca2+ in neurotoxicity described previously using Ca2+ probes may need to be re-examined to determine whether effect previously attributed to Ca2+ could, in part, be attributable to Zn2+.
Collapse
Affiliation(s)
- Christian J. Stork
- Department of Biomedical Science, Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio 45701
| | - Yang V. Li
- Department of Biomedical Science, Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio 45701
| |
Collapse
|
62
|
Martin JL, Stork CJ, Li YV. Determining zinc with commonly used calcium and zinc fluorescent indicators, a question on calcium signals. Cell Calcium 2006; 40:393-402. [PMID: 16764924 DOI: 10.1016/j.ceca.2006.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/14/2006] [Accepted: 04/20/2006] [Indexed: 01/09/2023]
Abstract
Investigations into the roles of Ca(2+) and Zn(2+) in cell biology have been facilitated by the development of sensitive fluorometric probes that have enabled the measurement of Ca(2+) or Zn(2+) in both extracellular and intracellular environments. It is critical to be aware of the specificity and relative selectivity of a probe for the targeted ion. Here, we investigated metal-ion responses by screening nominally Zn(2+)- or Ca(2+)-selective fluorophores in solutions containing various concentrations of Ca(2+), as a potential interferent for Zn(2+), or Zn(2+), as a potential interferent for Ca(2+). The results suggested that Zn(2+)-sensitive dyes were more specific for their targeted ion than dyes that targeted Ca(2+). Ca(2+)-sensitive dyes such as Calcium Green-1, Fura-2, and Fluo-3 showed a wide range of interaction with Zn(2+), even responding to Zn(2+) in the presence of high concentrations of Ca(2+). We demonstrate that these Ca(2+) indicators can effectively measure dynamic changes of cytosolic Zn(2+). Our results appeal for a new generation of Ca(2+) fluorophores that are more specific for Ca(2+) over Zn(2+). One implication of these results is that data obtained using Ca(2+)-sensitive dyes may need to be re-examined to determine if results previously attributed to Ca(2+) could, in part, be due to Zn(2+).
Collapse
Affiliation(s)
- Jennifer L Martin
- Department of Biomedical Sciences, Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | | | | |
Collapse
|
63
|
Stork CJ, Li YV. Measuring cell viability with membrane impermeable zinc fluorescent indicator. J Neurosci Methods 2006; 155:180-6. [PMID: 16466804 DOI: 10.1016/j.jneumeth.2005.12.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 11/21/2022]
Abstract
Recent findings suggest that the accumulation of cytoplasmic zinc [Zn2+]i is a ubiquitous component in the cell death cascade. Zn2+ can be liberated from intracellular stores following oxidative stress and contribute to cell death processes. Here we show that the membrane/cell impermeable Zn2+ fluorescent indicator Newport Green (NG), which is non-toxic and impermeable to the membranes of healthy cells, can label unhealthy cells in tissue slices in a manner comparable to the traditional viability indicator propidium iodide (PI). Using confocal microscopy, we detected PI labeled nuclei colocalized with NG fluorescence. Our results indicate that cells which absorbed PI into their nuclei also allowed cell-impermeable Zn2+ dye to penetrate their plasma membranes, subsequently exhibiting cytosolic and nuclear fluorescence. As in PI staining, we observed marked increases in NG fluorescence in damaged/dead cells of tissue slices. Two other cell impermeable fluorescent Zn2+ dyes, Fluozin-3 and Zinpyr-4, also stained cytosolic Zn2+ in PI labeled cells. Our data indicates that the application of a Zn2+ fluorescent indicator is a fast, simple, non-toxic and reliable method for visualizing cell viability within in vitro tissue preparations. Accordingly, we demonstrate that intracellular accumulation of Zn2+ correlates with neuronal death.
Collapse
Affiliation(s)
- Christian J Stork
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
64
|
Kitamura Y, Iida Y, Abe J, Mifune M, Kasuya F, Ohta M, Igarashi K, Saito Y, Saji H. Release of vesicular Zn2+ in a rat transient middle cerebral artery occlusion model. Brain Res Bull 2006; 69:622-5. [PMID: 16716828 DOI: 10.1016/j.brainresbull.2006.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 03/07/2006] [Indexed: 11/24/2022]
Abstract
In the brain, Zn(2+) is stored in synaptic vesicles of a subgroup of glutamatergic nerve terminals. Although it has been reported that this Zn(2+) is released upon the excitation of nerves in vitro, there has been little study of the release of Zn(2+) during ischemia in vivo. Here, using brain microdialysis, the release of vesicular Zn(2+) was investigated in vivo. When the vesicular Zn(2+) was released into the synaptic cleft by a depolarizing stimulation achieved by perfusion with Ringer's solution containing high K(+) (100mM KCl), a significant increase in the extracellular concentration of Zn(2+) could be detected by microdialysis. Then, we investigated the release of vesicular Zn(2+) in a rat transient middle cerebral artery occlusion model using microdialysis. Consequently, the extracellular Zn(2+) level in the cortex increased within 15 min of the start of occlusion and reached a peak at 30 min, which was about twice the basal level. After 30 min, it declined with time returning to the basal level 15 min after reperfusion, which was performed after 60 min of occlusion. The results suggest that vesicular Zn(2+) would be released into the synaptic cleft during brain ischemia in vivo.
Collapse
Affiliation(s)
- Youji Kitamura
- Graduate School of Medicine and Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Mueller RN, Muelle RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM, de Valdenebro M, Prough DS, Zornow MH. Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 2006; 198:285-93. [PMID: 16443223 DOI: 10.1016/j.expneurol.2005.08.030] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/05/2005] [Accepted: 08/26/2005] [Indexed: 11/19/2022]
Abstract
"Free Zn2+" (rapidly exchangeable Zn2+) is stored along with glutamate in the presynaptic terminals of specific specialized (gluzinergic) cerebrocortical neurons. This synaptically releasable Zn2+ has been recognized as a potent modulator of glutamatergic transmission and as a key toxin in excitotoxic neuronal injury. Surprisingly (despite abundant work on bound zinc), neither the baseline concentration of free Zn2+ in the brain nor the presumed co-release of free Zn2+ and glutamate has ever been directly observed in the intact brain in vivo. Here, we show for the first time in dialysates of rat and rabbit brain and human CSF samples from lumbar punctures that: (i) the resting or "tonic" level of free Zn2+ signal in the extracellular fluid of the rat, rabbit and human being is approximately 19 nM (95% range: 5-25 nM). This concentration is 15,000-fold lower than the "300 microM" concentration which is often used as the "physiological" concentration of free zinc for stimulating neural tissue. (ii) During ischemia and reperfusion in the rabbit, free zinc and glutamate are (as has often been presumed) released together into the extracellular fluid. (iii) Unexpectedly, Zn2+ is also released alone (without glutamate) at a variable concentration for several hours during the reperfusion aftermath following ischemia. The source(s) of this latter prolonged release of Zn2+ is/are presumed to be non-synaptic and is/are now under investigation. We conclude that both Zn2+ and glutamate signaling occur in excitotoxicity, perhaps by two (or more) different release mechanisms.
Collapse
Affiliation(s)
- C J Frederickson
- NeuroBioTex, Inc., 101 Christopher Columbus Blvd., Galveston, TX 77550, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized.
Collapse
Affiliation(s)
- Jae-Yong Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
67
|
Houtani T, Munemoto Y, Kase M, Sakuma S, Tsutsumi T, Sugimoto T. Cloning and expression of ligand-gated ion-channel receptor L2 in central nervous system. Biochem Biophys Res Commun 2005; 335:277-85. [PMID: 16083862 DOI: 10.1016/j.bbrc.2005.07.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 07/13/2005] [Indexed: 11/22/2022]
Abstract
An orphan receptor of ligand-gated ion-channel type (L2, also termed ZAC according to the presence of zinc ion for channel activation) was identified by computer-assisted search programs on human genome database. The L2 protein shares partial homology with serotonin receptors 5HT3A and 5HT3B. We have cloned L2 cDNA derived from human caudate nucleus and characterized the exon-intron structure as follows: (1) The L2 protein has four transmembrane regions (M1-M4) and a long cytoplasmic loop between M3 and M4. (2) The sequence is conserved in species including chimpanzee, dog, cow, and opossum. (3) Nine exons form its protein-coding region and especially exon 5 corresponds to a disulfide bond region on the amino-terminal side. Our analysis using multiple tissue cDNA panels revealed that at least two splicing variants of L2 mRNA are present. The cDNA PCR amplification study revealed that L2 mRNA is expressed in tissues including brain, pancreas, liver, lung, heart, kidney, and skeletal muscle while 5HT3A mRNA could be detected in brain, heart, placenta, lung, kidney, pancreas, and skeletal muscle, and 5HT3B mRNA in brain, kidney, and skeletal muscle, suggesting different significance in tissue expression of these receptors. Regional expression of L2 mRNA and protein was examined in brain. The RT-PCR studies confirmed L2 mRNA expression in hippocampus, striatum, amygdala, and thalamus in adult brain. The L2 protein was immunolocalized by using antipeptide antibodies. Immunostained tissue sections revealed that L2-like immunoreactivity was dominantly expressed in the hippocampal CA3 pyramidal cells and in the polymorphic layer of the dentate gyrus. We analyzed the expression of L2 protein in HEK293 cells using GFP fusion protein reporter system. Western blots revealed that L2 protein confers sugar chains on the extracellular side. In transfected HEK293 cells, cellular membranes and intracellular puncta were densely labeled with GFP, suggesting selective dispatch to the final destination.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Blotting, Southern
- Blotting, Western
- Brain/metabolism
- Cattle
- Caudate Nucleus/metabolism
- Cell Line
- Cell Membrane/metabolism
- Central Nervous System/metabolism
- Cloning, Molecular
- Cysteine Loop Ligand-Gated Ion Channel Receptors
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Dogs
- Exons
- Gene Expression Regulation
- Genes, Reporter
- Green Fluorescent Proteins/metabolism
- Hippocampus/metabolism
- Humans
- Introns
- Ion Channels/biosynthesis
- Ion Channels/genetics
- Ions
- Kidney/metabolism
- Male
- Middle Aged
- Molecular Sequence Data
- Muscle, Skeletal/metabolism
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Opossums
- Pan troglodytes
- Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/chemistry
- Polymerase Chain Reaction
- Protein Sorting Signals
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Receptors, Serotonin/chemistry
- Receptors, Serotonin/physiology
- Recombinant Fusion Proteins/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transfection
Collapse
Affiliation(s)
- Takeshi Houtani
- Department of Anatomy and Brain Science, Kansai Medical University, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | | | |
Collapse
|
68
|
Hoedemaker JR, Peake BM, Kerr DS. Reduction in functional potency of the neurotoxin domoic acid in the presence of cadmium and zinc ions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 20:175-181. [PMID: 21783586 DOI: 10.1016/j.etap.2004.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2004] [Accepted: 12/13/2004] [Indexed: 05/31/2023]
Abstract
The tricarboxylic neurotoxin domoic acid (DA) binds trace metals such as iron and copper. In vitro brain slice recording (area CA1 of rat hippocampal slices) was used to assess changes in DA potency in the presence of cadmium and zinc. Cadmium or zinc alone had little or no effect on CA1 responses. DA alone produced hyperexcitability and, with prolonged administration, a robust suppression of CA1 responses. Coadministration of DA with either 2 or 4μM Cd(2+) produced significant reductions in the potency of DA; less striking effects were seen in the presence of 4μM Zn(2+). These findings suggest that interactions of Cd(2+) and Zn(2+) with DA result in the formation of trace metal-neurotoxin complexes which are either unavailable for binding to ionotropic glutamate receptors, or bind without producing full agonist activity.
Collapse
Affiliation(s)
- José R Hoedemaker
- Department of Pharmacology and Toxicology, University of Otago School of Medical Sciences, P.O. Box 913, Dunedin, New Zealand; Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | |
Collapse
|
69
|
Abstract
The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'.
Collapse
|
70
|
Wei G, Hough CJ, Sarvey JM. The mitochondrial toxin, 3-nitropropionic acid, induces extracellular Zn2+ accumulation in rat hippocampus slices. Neurosci Lett 2005; 370:118-22. [PMID: 15488306 DOI: 10.1016/j.neulet.2004.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 08/03/2004] [Accepted: 08/04/2004] [Indexed: 11/27/2022]
Abstract
3-nitropropionic acid (3-NPA), a suicide inhibitor of succinate dehydrogenase (SDH; complex II), has been used to provide useful experimental models of Huntington's disease (HD) and "chemical hypoxia" in rodents. The trace ion Zn2+ has been shown to cause neurodegeneration. Employing real-time Newport Green fluorescence imaging of extracellular Zn2+, we found that 3-NPA (10-100 microM) caused a concentration-dependent increase in the concentration of extracellular Zn2+ ([Zn2+]o) in acute rat hippocampus slices. This increase in [Zn2+]o was abolished by 10 mM CaEDTA. The increase of [Zn2+]o was also accompanied by a rapid increase of cytoplasmic-free Zn2+ concentration ([Zn2+]i). The induction of Zn2+ release by 3-MPA in hippocampus slices points to a potential mechanism by which 3-NPA might induce neurodegeneration.
Collapse
Affiliation(s)
- Guo Wei
- Department of Pharmacology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
71
|
|