51
|
Gajewska A, Herman AP, Wolińska-Witort E, Kochman K, Zwierzchowski L. In vivo oestrogenic modulation of Egr1 and Pitx1 gene expression in female rat pituitary gland. J Mol Endocrinol 2014; 53:355-66. [PMID: 25258388 DOI: 10.1530/jme-14-0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
EGR1 and PITX1 are transcription factors required for gonadotroph cell Lhb promoter activation. To determine changes in Egr1 and Pitx1 mRNA levels in central and peripheral pituitary stimulations, an in vivo model based on i.c.v. pulsatile (1 pulse/0.5 h over 2 h) GnRH agonist (1.5 nM buserelin) or antagonist (2 nM antide) microinjections was used. The microinjections were given to ovariectomised and 17β-oestradiol (E2) (3×20 μg), ERA (ESR1) agonist propyl pyrazole triol (PPT) (3×0.5 mg), ERB (ESR2) agonist diarylpropionitrile (DPN) (3×0.5 mg) s.c. pre-treated rats 30 min after last pulse anterior pituitaries were excised. Relative mRNA expression was determined by quantitative RT-PCR (qRT-PCR). Results revealed a gene-specific response for GnRH and/or oestrogenic stimulations in vivo. Buserelin pulses enhanced Egr1 expression by 66% in ovariectomised rats, whereas the oestradiol-supplemented+i.c.v. NaCl-microinjected group showed a 50% increase in Egr1 mRNA expression. The oestrogenic signal was transmitted via ERA (ESR1) and ERB (ESR2) activation as administration of PPT and DPN resulted in 97 and 62%, respectively, elevation in Egr1 mRNA expression. A synergistic action of GnRH agonist and 17β-oestradiol (E2) stimulation of the Egr1 gene transcription in vivo were found. GnRHR activity did not affect Pitx1 mRNA expression; regardless of NaCl, buserelin or antide i.c.v. pulses, s.c. oestrogenic supplementation (with E2, PPT or DPN) consistently decreased (by -46, -48 and -41% respectively) the Pitx1 mRNA in the anterior pituitary gland. Orchestrated Egr1 and Pitx1 activities depending on specific central and peripheral regulatory inputs could be responsible for physiologically variable Lhb gene promoter activation in vivo.
Collapse
Affiliation(s)
- Alina Gajewska
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Andrzej P Herman
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Wolińska-Witort
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Kazimierz Kochman
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Lech Zwierzchowski
- Department of NeuroendocrinologyThe Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka Street 3, 05-110 Jablonna n. Warsaw, PolandNeuroendocrinology DepartmentMedical Centre for Postgraduate Education, Marymoncka 99/103 Street, 01-813 Warsaw, PolandDepartment of Molecular BiologyInstitute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
| |
Collapse
|
52
|
Fergani C, Routly JE, Jones DN, Pickavance LC, Smith RF, Dobson H. Activation of cells containing estrogen receptor alpha or somatostatin in the medial preoptic area, arcuate nucleus, and ventromedial nucleus of intact ewes during the follicular phase, and alteration after lipopolysaccharide. Biol Reprod 2014; 91:141. [PMID: 25320149 DOI: 10.1095/biolreprod.114.122408] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cells in the medial preoptic area (mPOA), arcuate nucleus (ARC), and ventromedial nucleus (VMN) that possess estrogen receptor alpha (ER alpha) mediate estradiol feedback to regulate endocrine and behavioral events during the estrous cycle. A percentage of ER alpha cells located in the ARC and VMN express somatostatin (SST) and are activated in response to estradiol. The aims of the present study were to investigate the location of c-Fos, a marker for activation, in cells containing ER alpha or SST at various times during the follicular phase and to determine whether lipopolysaccharide (LPS) administration, which leads to disruption of the luteinizing hormone (LH) surge, is accompanied by altered ER alpha and/or SST activation patterns. Follicular phases were synchronized with progesterone vaginal pessaries, and control animals were killed at 0, 16, 31, and 40 h (n = 4-6/group) after progesterone withdrawal (PW [time 0]). At 28 h, other animals received LPS (100 ng/kg) and were subsequently killed at 31 h or 40 h (n = 5/group). Hypothalamic sections were immunostained for c-Fos and ER alpha or SST. LH surges occurred only in control ewes with onset at 36.7 ± 1.3 h after PW; these animals had a marked increase in the percentage of ER alpha cells that colocalized c-Fos (%ER alpha/c-Fos) in the ARC and mPOA from 31 h after PW and throughout the LH surge. In the VMN, %ER alpha/c-Fos was higher in animals that expressed sexual behavior than in those that did not. SST cell activation in the ARC and VMN was greater during the LH surge than in other stages in the follicular phase. At 31 or 40 h after PW (i.e., 3 or 12 h after treatment, respectively), LPS decreased %ER alpha/c-Fos in the ARC and the mPOA, but there was no change in the VMN compared to that in controls. The %SST/c-Fos increased in the VMN at 31 h after PW (i.e., 3 h after LPS) with no change in the ARC compared to controls. These results indicate that there is a distinct temporal pattern of ER alpha cell activation in the hypothalamus during the follicular phase, which begins in the ARC and mPOA at least 6-7 h before the LH surge onset and extends to the VMN after the onset of sexual behavior and LH surge. Furthermore, during the surge, some of these ER alpha-activated cells may be SST-secreting cells. This pattern is markedly altered by LPS administered during the late follicular phase, indicating that the disruptive effects of this stressor are mediated by suppressing ER alpha cell activation at the level of the mPOA and ARC and enhancing SST cell activation in the VMN, leading to the attenuation of the LH surge.
Collapse
Affiliation(s)
- Chrysanthi Fergani
- School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral, United Kingdom
| | - Jean E Routly
- School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral, United Kingdom
| | - David N Jones
- School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral, United Kingdom
| | - Lucy C Pickavance
- School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral, United Kingdom
| | - Robert F Smith
- School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral, United Kingdom
| | - Hilary Dobson
- School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, Wirral, United Kingdom
| |
Collapse
|
53
|
Glidewell-Kenney CA, Trang C, Shao PP, Gutierrez-Reed N, Uzo-Okereke AM, Coss D, Mellon PL. Neurokinin B induces c-fos transcription via protein kinase C and activation of serum response factor and Elk-1 in immortalized GnRH neurons. Endocrinology 2014; 155:3909-19. [PMID: 25057795 PMCID: PMC4164922 DOI: 10.1210/en.2014-1263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in neurokinin B (NKB) and its receptor, NK3R, were identified in human patients with hypogonadotropic hypogonadism, a disorder characterized by lack of puberty and infertility. Further studies have suggested that NKB acts at the level of the hypothalamus to control GnRH neuron activity, either directly or indirectly. We recently reported that treatment with senktide, a NK3R agonist, induced GnRH secretion and expression of c-fos mRNA in GT1-7 cells. Here, we map the responsive region in the murine c-fos promoter to between -400 and -200 bp, identify the signal transducer and activator of transcription (STAT) (-345) and serum response element (-310) sites as required for induction, a modulatory role for the Ets site (-318), and show that induction is protein kinase C dependent. Using gel shift and Gal4 assays, we further show that phosphorylation of Elk-1 leads to binding to DNA in complex with serum response factor at serum response element and Ets sites within the c-fos promoter. Thus, we determine molecular mechanisms involved in NKB regulation of c-fos induction, which may play a role in modulation of GnRH neuron activation.
Collapse
Affiliation(s)
- Christine A Glidewell-Kenney
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | | | | | | | | | | | | |
Collapse
|
54
|
Bartzen-Sprauer J, Klosen P, Ciofi P, Mikkelsen JD, Simonneaux V. Photoperiodic co-regulation of kisseptin, neurokinin B and dynorphin in the hypothalamus of a seasonal rodent. J Neuroendocrinol 2014; 26:510-20. [PMID: 24935671 DOI: 10.1111/jne.12171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/11/2022]
Abstract
In many species, sexual activity varies on a seasonal basis. Kisspeptin (Kp), a hypothalamic neuropeptide acting as a strong activator of gonadotrophin-releasing hormone neurones, plays a critical role in this adaptive process. Recent studies report that two other neuropeptides, namely neurokinin B (NKB) and dynorphin (DYN), are co-expressed with Kp (and therefore termed KNDy neurones) in the arcuate nucleus and that these peptides are also considered to influence GnRH secretion. The present study aimed to establish whether hypothalamic NKB and DYN expression is photoperiod-dependent in a seasonal rodent, the Syrian hamster, which exhibits robust seasonal rhythms in reproductive activity. The majority of Kp neurones in the arcuate nucleus co-express NKB and DYN and the expression of all three peptides is decreased under a short (compared to long) photoperiod, leading to a 60% decrease in the number of KNDy neurones under photo-inhibitory conditions. In seasonal rodents, RFamide-related peptide (RFRP) neurones of the dorsomedial hypothalamus are also critical for seasonal reproduction. Interestingly, NKB and DYN are also expressed in the dorsomedial hypothalamus but do not co-localise with RFRP-immunoreactive neurones, and the expression of both NKB and DYN is higher under a short photoperiod, which is opposite to the short-day inhibition of RFRP expression. In conclusion, the present study shows that NKB and DYN display different photoperiodic variations in the Syrian hamster hypothalamus. In the arcuate nucleus, NKB and DYN, together with Kp, are down-regulated under a short photoperiod, whereas, in the dorsomedial hypothalamus, NKB and DYN are up-regulated under a short photoperiod.
Collapse
Affiliation(s)
- J Bartzen-Sprauer
- Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives, CNRS 3212, Université de Strasbourg, Strasbourg, France
| | | | | | | | | |
Collapse
|
55
|
Wang J, Sun L, Zhang T, Zhou H, Lou Y. Effect of Peripheral Administration of Kisspeptin-10 on Dynamic LH Secretion in Prepubertal Ewes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:785-8. [PMID: 25049626 PMCID: PMC4093094 DOI: 10.5713/ajas.2011.11390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/05/2012] [Accepted: 01/18/2012] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to clarify the effect of kisspeptin-10 on LH secretion in prepubertal ewes. In experiment 1, prepubertal ewes fitted with indwelling jugular catheters were randomly assigned to receive 0, 0.5, 1 or 2 mg of kisspeptin-10 dissolved in saline, and serial blood samples were collected at 15-min intervals for 180 min to analyze the response curves of LH after injection. In experiment 2, prepubertal ewes fitted with indwelling jugular catheters were injected with 0 or 1 mg of kisspeptin-10 dissolved in saline and the injection was repeated 3 times at 1 h interval and serial blood samples were collected at 15-min intervals for 210 min to analyze the response curves of LH after injection. The results showed that single intravenous administration of 0.5, 1 and 2 mg of kisspeptin-10 all could significantly increased LH secretion in prepubertal ewes, and the effect of 1 and 2 mg of kisspeptin-10 on LH secretion was higher than that of 0.5 mg group. The results also showed that repeated intravenous administration of kisspeptin-10 could effectively increase LH secretion and repeated administration did not influence the effect of kisspeptin-10 on LH secretion in prepubertal ewe. In conclusion, the present study indicated that single or repeated intravenous administration of kisspeptin-10 could effectively increase LH secretion in prepubertal ewes.
Collapse
Affiliation(s)
- Jun Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China ; College of Animal Husbandry and Veterinary Medicine, Liaoning Medical University, Jinzhou, 121001, China
| | - Lei Sun
- College of Animal Husbandry and Veterinary Medicine, Liaoning Medical University, Jinzhou, 121001, China
| | - Tao Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China ; Xuelong Industrial Group, Dalian, 116002, China
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
56
|
Bhattarai JP, Roa J, Herbison AE, Han SK. Serotonin acts through 5-HT1 and 5-HT2 receptors to exert biphasic actions on GnRH neuron excitability in the mouse. Endocrinology 2014; 155:513-24. [PMID: 24265447 DOI: 10.1210/en.2013-1692] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of serotonin (5-HT) on the electrical excitability of GnRH neurons was examined using gramicidin perforated-patch electrophysiology in transgenic GnRH-green fluorescent protein mice. In diestrous female, the predominant effect of 5-HT was inhibition (70%) with 50% of these cells also exhibiting a late-onset excitation. Responses were dose dependent (EC(50) = 1.2μM) and persisted in the presence of amino acid receptor antagonists and tetrodotoxin, indicating a predominant postsynaptic action of 5-HT. Studies in neonatal, juvenile, peripubertal, and adult mice revealed that 5-HT exerted less potent responses from GnRH neurons with advancing postnatal age in both sexes. In adult male mice, 5-HT exerted less potent hyperpolarizing responses with more excitations compared with females. In addition, adult proestrous female GnRH neurons exhibited reduced inhibition and a complete absence of biphasic hyperpolarization-excitation responses. Studies using 5-HT receptor antagonists demonstrated that the activation of 5-HT(1A) receptors mediated the inhibitory responses, whereas the excitation was mediated by the activation of 5-HT(2A) receptors. The 5-HT-mediated hyperpolarization involved both potassium channels and adenylate cyclase activation, whereas the 5-HT excitation was dependent on protein kinase C. The effects of exogenous 5-HT were replicated using fluoxetine, which enhances endogenous 5-HT levels. These studies demonstrate that 5-HT exerts a biphasic action on most GnRH neurons whereby a fast 5HT(1A)-mediated inhibition occurs alongside a slow 5-HT(2A) excitation. The balance of 5-HT-evoked inhibition vs excitation is developmentally regulated, sexually differentiated, and variable across the estrous cycle and may play a role in regulation of hypothalamic-pituitary-gonadal axis throughout postnatal development.
Collapse
Affiliation(s)
- Janardhan P Bhattarai
- Department of Oral Physiology (J.P.B., S.K.H.), School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju 561-756, Republic of Korea; and Centre for Neuroendocrinology and Department of Physiology (J.R., A.E.H.), University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
57
|
Bovolin P, Cottone E, Pomatto V, Fasano S, Pierantoni R, Cobellis G, Meccariello R. Endocannabinoids are Involved in Male Vertebrate Reproduction: Regulatory Mechanisms at Central and Gonadal Level. Front Endocrinol (Lausanne) 2014; 5:54. [PMID: 24782832 PMCID: PMC3995072 DOI: 10.3389/fendo.2014.00054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/31/2014] [Indexed: 12/12/2022] Open
Abstract
Endocannabinoids (eCBs) are natural lipids regulating a large array of physiological functions and behaviors in vertebrates. The eCB system is highly conserved in evolution and comprises several specific receptors (type-1 and type-2 cannabinoid receptors), their endogenous ligands (e.g., anandamide and 2-arachidonoylglycerol), and a number of biosynthetic and degradative enzymes. In the last few years, eCBs have been described as critical signals in the control of male and female reproduction at multiple levels: centrally, by targeting hypothalamic gonadotropin-releasing-hormone-secreting neurons and pituitary, and locally, with direct effects on the gonads. These functions are supported by the extensive localization of cannabinoid receptors and eCB metabolic enzymes at different levels of the hypothalamic-pituitary-gonadal axis in mammals, as well as bonyfish and amphibians. In vivo and in vitro studies indicate that eCBs centrally regulate gonadal functions by modulating the gonadotropin-releasing hormone-gonadotropin-steroid network through direct and indirect mechanisms. Several proofs of local eCB regulation have been found in the testis and male genital tracts, since eCBs control Sertoli and Leydig cells activity, germ cell progression, as well as the acquisition of sperm functions. A comparative approach usually is a key step in the study of physiological events leading to the building of a general model. Thus, in this review, we summarize the action of eCBs at different levels of the male reproductive axis, with special emphasis, where appropriate, on data from non-mammalian vertebrates.
Collapse
Affiliation(s)
- Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin, University of Turin, Turin, Italy
- *Correspondence: Patrizia Bovolin, Department of Life Sciences and Systems Biology, University of Turin, via Accademia Albertina 13, 10123 Turin, Italy e-mail:
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Valentina Pomatto
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Naples, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Naples, Italy
| | - Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Naples, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Naples, Italy
| |
Collapse
|
58
|
Borsay BÁ, Skrapits K, Herczeg L, Ciofi P, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z, Hrabovszky E. Hypophysiotropic gonadotropin-releasing hormone projections are exposed to dense plexuses of kisspeptin, neurokinin B and substance p immunoreactive fibers in the human: a study on tissues from postmenopausal women. Neuroendocrinology 2014; 100:141-52. [PMID: 25247878 DOI: 10.1159/000368362] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/03/2014] [Indexed: 11/19/2022]
Abstract
Neuronal populations that synthesize kisspeptin (KP), neurokinin B (NKB) and substance P (SP) in the hypothalamic infundibular nucleus of humans are partly overlapping. These cells are important upstream regulators of gonadotropin-releasing hormone (GnRH) neurosecretion. Homologous neurons in laboratory animals are thought to modulate episodic GnRH secretion primarily via influencing KP receptors on the hypophysiotropic fiber projections of GnRH neurons. To explore the structural basis of this putative axo-axonal communication in humans, we analyzed the anatomical relationship of KP-immunoreactive (IR), NKB-IR and SP-IR axon plexuses with hypophysiotropic GnRH fiber projections. Immunohistochemical studies were carried out on histological samples from postmenopausal women. The neuropeptide-IR axons innervated densely the portal capillary network in the postinfundibular eminence. Subsets of the fibers formed descending tracts in the infundibular stalk, some reaching the neurohypophysis. KP-IR, NKB-IR and SP-IR plexuses intermingled, and established occasional contacts, with hypophysiotropic GnRH fibers in the postinfundibular eminence and through their lengthy course while descending within the infundibular stalk. Triple-immunofluorescent studies also revealed considerable overlap between the KP, NKB and SP signals in individual fibers, providing evidence that these peptidergic projections arise from neurons of the mediobasal hypothalamus. These neuroanatomical observations indicate that the hypophysiotropic projections of human GnRH neurons in the postinfundibular eminence and the descending GnRH tract coursing through the infundibular stalk to the neurohypophysis are exposed to neurotransmitters/neuropeptides released by dense KP-IR, NKB-IR and SP-IR fiber plexuses. Localization and characterization of axonal neuropeptide receptors will be required to clarify the putative autocrine and paracrine interactions in these anatomical regions.
Collapse
Affiliation(s)
- Beáta Á Borsay
- Department of Forensic Medicine, Faculty of Medicine of the University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function. J Neurosci 2013; 33:17874-83. [PMID: 24198376 DOI: 10.1523/jneurosci.2278-13.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.
Collapse
|
60
|
Noel SD, Abreu AP, Xu S, Muyide T, Gianetti E, Tusset C, Carroll J, Latronico AC, Seminara SB, Carroll RS, Kaiser UB. TACR3 mutations disrupt NK3R function through distinct mechanisms in GnRH-deficient patients. FASEB J 2013; 28:1924-37. [PMID: 24376026 DOI: 10.1096/fj.13-240630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurokinin B (NKB) and its G-protein-coupled receptor, NK3R, have been implicated in the neuroendocrine control of GnRH release; however, little is known about the structure-function relationship of this ligand-receptor pair. Moreover, loss-of-function NK3R mutations cause GnRH deficiency in humans. Using missense mutations in NK3R we previously identified in patients with GnRH deficiency, we demonstrate that Y256H and Y315C NK3R mutations in the fifth and sixth transmembrane domains (TM5 and TM6), resulted in reduced whole-cell (79.3±7.2%) or plasma membrane (67.3±7.3%) levels, respectively, compared with wild-type (WT) NK3R, with near complete loss of inositol phosphate (IP) signaling, implicating these domains in receptor trafficking, processing, and/or stability. We further demonstrate in a FRET-based assay that R295S NK3R, in the third intracellular loop (IL3), bound NKB but impaired dissociation of Gq-protein subunits from the receptor compared with WT NK3R, which showed a 10.0 ± 1.3% reduction in FRET ratios following ligand binding, indicating activation of Gq-protein signaling. Interestingly, R295S NK3R, identified in the heterozygous state in a GnRH-deficient patient, also interfered with dissociation of G proteins and IP signaling from wild-type NK3R, indicative of dominant-negative effects. Collectively, our data illustrate roles for TM5 and TM6 in NK3R trafficking and ligand binding and for IL3 in NK3R signaling.
Collapse
Affiliation(s)
- Sekoni D Noel
- 1Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, 221 Longwood Ave., Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Boughton C, Patel S, Thompson E, Patterson M, Curtis A, Amin A, Chen K, Ghatei M, Bloom S, Murphy K. Neuromedin B stimulates the hypothalamic–pituitary–gonadal axis in male rats. ACTA ACUST UNITED AC 2013; 187:6-11. [DOI: 10.1016/j.regpep.2013.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 01/13/2023]
|
62
|
de Croft S, Boehm U, Herbison AE. Neurokinin B activates arcuate kisspeptin neurons through multiple tachykinin receptors in the male mouse. Endocrinology 2013; 154:2750-60. [PMID: 23744641 DOI: 10.1210/en.2013-1231] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Kisspeptin neurons located in the arcuate nucleus (ARN) coexpress dynorphin and neurokinin B (NKB) and may interact to influence gonadotropin secretion. Using a kisspeptin-green fluorescent protein mouse model, the present study examined whether the neuropeptides kisspeptin, dynorphin, and NKB modulate the electrical activity of ARN kisspeptin neurons in the adult male mouse. Cell-attached recordings showed that kisspeptin itself had no effect on kisspeptin neuron firing. Dynorphin and the κ-opioid receptor agonist U50-488 evoked a potent suppression of all ARN kisspeptin neuron firing that was blocked completely by the κ-opioid receptor antagonist nor-Binaltorphimine. Both NKB and Senktide, a neurokinin 3 receptor agonist, exerted a potent stimulatory action on ∼95% of ARN kisspeptin neurons. Although the selective neurokinin 3 receptor antagonists SB222200 and SR142801 blocked the effects of Senktide on kisspeptin neurons, they surprisingly had no effect on NKB activation of firing. Studies with selective neurokinin 1 receptor (SDZ-NKT343) and neurokinin 2 receptor (GR94800) antagonists revealed that the activation of kisspeptin neurons by NKB was only blocked completely by a cocktail of antagonists against all 3 tachykinin receptors. Whole-cell recordings revealed that individual kisspeptin neurons were activated directly by all 3 tachykinins substance, P, neurokinin A, and NKB. These experiments show that dynorphin and NKB have opposing actions on the electrical activity of kisspeptin neurons supporting the existence of an interconnected network of kisspeptin neurons in the ARN. However, the effects of NKB result from an unexpected activation of multiple tachykinin receptors.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Animals
- Arcuate Nucleus of Hypothalamus/cytology
- Arcuate Nucleus of Hypothalamus/metabolism
- Dynorphins/metabolism
- Dynorphins/pharmacology
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Kisspeptins/genetics
- Kisspeptins/metabolism
- Kisspeptins/pharmacology
- Male
- Membrane Potentials/drug effects
- Mice
- Mice, Transgenic
- Neurokinin B/metabolism
- Neurokinin B/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/physiology
- Oligopeptides/pharmacology
- Patch-Clamp Techniques
- Peptide Fragments/pharmacology
- Piperidines/pharmacology
- Quinolines/pharmacology
- Receptors, Neurokinin-2/antagonists & inhibitors
- Receptors, Neurokinin-2/metabolism
- Receptors, Neurokinin-3/agonists
- Receptors, Neurokinin-3/antagonists & inhibitors
- Receptors, Neurokinin-3/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Tachykinin/metabolism
- Substance P/analogs & derivatives
- Substance P/pharmacology
Collapse
Affiliation(s)
- Simon de Croft
- Centre for Neuroendocrinology, University of Otago, Dunedin 9054, New Zealand
| | | | | |
Collapse
|
63
|
Glidewell-Kenney CA, Shao PP, Iyer AK, Grove AMH, Meadows JD, Mellon PL. Neurokinin B causes acute GnRH secretion and repression of GnRH transcription in GT1-7 GnRH neurons. Mol Endocrinol 2013; 27:437-54. [PMID: 23393128 DOI: 10.1210/me.2012-1271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genetic studies in human patients with idiopathic hypogonadotropic hypogonadism (IHH) identified mutations in the genes that encode neurokinin B (NKB) and the neurokinin 3 receptor (NK3R). However, determining the mechanism whereby NKB regulates gonadotropin secretion has been difficult because of conflicting results from in vivo studies investigating the luteinizing hormone (LH) response to senktide, a NK3R agonist. NK3R is expressed in a subset of GnRH neurons and in kisspeptin neurons that are known to regulate GnRH secretion. Thus, one potential source of inconsistency is that NKB could produce opposing direct and indirect effects on GnRH secretion. Here, we employ the GT1-7 cell model to elucidate the direct effects of NKB on GnRH neuron function. We find that GT1-7 cells express NK3R and respond to acute senktide treatment with c-Fos induction and increased GnRH secretion. In contrast, long-term senktide treatment decreased GnRH secretion. Next, we focus on the examination of the mechanism underlying the long-term decrease in secretion and determine that senktide treatment represses transcription of GnRH. We further show that this repression of GnRH transcription may involve enhanced c-Fos protein binding at novel activator protein-1 (AP-1) half-sites identified in enhancer 1 and the promoter, as well as chromatin remodeling at the promoter of the GnRH gene. These data indicate that NKB could directly regulate secretion from NK3R-expressing GnRH neurons. Furthermore, whether the response is inhibitory or stimulatory toward GnRH secretion could depend on the history or length of exposure to NKB because of a repressive effect on GnRH transcription.
Collapse
Affiliation(s)
- Christine A Glidewell-Kenney
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093-0674, USA
| | | | | | | | | | | |
Collapse
|
64
|
Liu X, Herbison AE. Dopamine regulation of gonadotropin-releasing hormone neuron excitability in male and female mice. Endocrinology 2013; 154:340-50. [PMID: 23239814 DOI: 10.1210/en.2012-1602] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Numerous in vivo studies have shown that dopamine is involved in the regulation of LH secretion in mammals. However, the mechanisms through which this occurs are not known. In this study, we used green fluorescent protein-tagged GnRH neurons to examine whether and how dopamine may modulate the activity of adult GnRH neurons in the mouse. Bath-applied dopamine (10-80 μm) potently inhibited the firing of approximately 50% of GnRH neurons. This resulted from direct postsynaptic inhibitory actions through D1-like, D2-like, or both receptors. Further, one third of GnRH neurons exhibited an increase in their basal firing rate after administration of SCH23390 (D1-like antagonist) and/or raclopride (D2-like antagonist) indicating tonic inhibition by endogenous dopamine in the brain slice. The role of dopamine in presynaptic modulation of the anteroventral periventricular nucleus (AVPV) γ-aminobutyric acid/glutamate input to GnRH neurons was examined. Exogenous dopamine was found to presynaptically inhibit AVPV-evoked γ-aminobutyric acid /glutamate postsynaptic currents in about 50% of GnRH neurons. These effects were, again, mediated by both D1- and D2-like receptors. Neither postsynaptic nor presynaptic actions of dopamine were found to be different between diestrous, proestrous, and estrous females, or males. Approximately 20% of GnRH neurons were shown to receive a dopaminergic input from AVPV neurons in male and female mice. Together, these observations show that dopamine is one of the most potent inhibitors of GnRH neuron excitability and that this is achieved through complex pre- and postsynaptic actions that each involve D1- and D2-like receptor activation.
Collapse
MESH Headings
- Animals
- Benzazepines/pharmacology
- Brain/drug effects
- Brain/metabolism
- Dopamine/pharmacology
- Dopamine D2 Receptor Antagonists
- Electrophysiology
- Female
- Gonadotropin-Releasing Hormone/metabolism
- In Vitro Techniques
- Male
- Mice
- Neurons/drug effects
- Neurons/metabolism
- Raclopride/pharmacology
- Receptors, Dopamine/metabolism
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3/antagonists & inhibitors
- Receptors, Dopamine D3/metabolism
- Receptors, Dopamine D4/antagonists & inhibitors
- Receptors, Dopamine D4/metabolism
- Receptors, Dopamine D5/antagonists & inhibitors
- Receptors, Dopamine D5/metabolism
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Xinhuai Liu
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, P.O. Box 913, Dunedin, New Zealand
| | | |
Collapse
|
65
|
Rønnekleiv OK, Kelly MJ. Kisspeptin excitation of GnRH neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:113-31. [PMID: 23550004 PMCID: PMC4019505 DOI: 10.1007/978-1-4614-6199-9_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Kisspeptin binding to its cognate G protein-coupled receptor (GPR54, aka Kiss1R) in gonadotropin-releasing hormone (GnRH) neurons stimulates peptide release and activation of the reproductive axis in mammals. Kisspeptin has pronounced pre- and postsynaptic effects, with the latter dominating the excitability of GnRH neurons. Presynaptically, kisspeptin increases the excitatory drive (both GABA-A and glutamate) to GnRH neurons and postsynaptically, kisspeptin inhibits an A-type and inwardly rectifying K(+) (Kir 6.2 and GIRK) currents and activates nonselective cation (TRPC) currents to cause long-lasting depolarization and increased action potential firing. The signaling cascades and the multiple intracellular targets of kisspeptin actions in native GnRH neurons are continuing to be elucidated. This review summarizes our current state of knowledge about kisspeptin signaling in GnRH neurons.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
66
|
Hemond PJ, O’Boyle MP, Hemond Z, Gay VL, Suter K. Changes in dendritic architecture: not your "usual suspect" in control of the onset of puberty in male rats. Front Endocrinol (Lausanne) 2013; 4:78. [PMID: 23825469 PMCID: PMC3695371 DOI: 10.3389/fendo.2013.00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/13/2013] [Indexed: 12/21/2022] Open
Abstract
Until the recent past, the search for the underlying drive for the pubertal increase in gonadotropin-releasing hormone (GnRH) hormone from the GnRH-containing neurons in the hypothalamus was largely focused on extrinsic factors. The most recent evidence however indicates changes in the structure of GnRH neurons themselves may contribute to this fundamental event in development. Based on our studies in males, dendritic architecture is not static from birth until adulthood. Instead, dendrites undergo a dramatic remodeling during the postnatal period which is independent of testosterone and occurs before the pubertal increase in GnRH release. First, the number of dendrites emanating from somata is reduced between infancy and adulthood. Moreover, a dendrite of adult GnRH neurons invariability arises at angle of 180°from the axon as opposed to the extraordinary variability in location during infancy. In fact, in some neurons from infants, no dendrite even resides in the adult location. Thus, there is a spatially selective remodeling of primary dendrites. Secondly, dendrites of GnRH neurons from infants were highly branched prior to assuming the compact morphology of adults. Finally, other morphological aspects of GnRH neurons such as total dendritic length, the numbers of dendrite branches and the lengths of higher order branches were significantly greater in infants than adults, indicating a consolidation of dendritic arbors. Activity in multi-compartment models of GnRH neurons, suggest the impact of structure on neuronal activity is exerted with both active and passive dendrites. Thus, passive properties make a defining contribution to function. Accordingly, changes in morphology alone are likely to have functional consequences for the pattern of activity in GnRH neurons. Our findings suggest structural remodeling of dendrites during the postnatal period likely facilitates repetitive action potentials and thus, GnRH release at the time of puberty.
Collapse
Affiliation(s)
- Peter J. Hemond
- Department of Biology, University of Texas San Antonio, San Antonio, TX, USA
| | - Michael P. O’Boyle
- Department of Biology, University of Texas San Antonio, San Antonio, TX, USA
| | - Zoe Hemond
- Department of Biology, University of Texas San Antonio, San Antonio, TX, USA
| | - Vernon L. Gay
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kelly Suter
- Department of Biology, University of Texas San Antonio, San Antonio, TX, USA
- Neuroscience Institute, University of Texas San Antonio, San Antonio, TX, USA
- *Correspondence: Kelly Suter, Department of Biology, University of Texas San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA e-mail:
| |
Collapse
|
67
|
Kalló I, Vida B, Bardóczi Z, Szilvásy-Szabó A, Rabi F, Molnár T, Farkas I, Caraty A, Mikkelsen J, Coen CW, Hrabovszky E, Liposits Z. Gonadotropin-releasing hormone neurones innervate kisspeptin neurones in the female mouse brain. Neuroendocrinology 2013; 98:281-9. [PMID: 24080803 DOI: 10.1159/000355623] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022]
Abstract
Kisspeptin (KP) neurones in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (Arc) are important elements in the neuronal circuitry regulating gonadotropin-releasing hormone (GnRH) secretion. KP and co-synthesised neuropeptides/neurotransmitters act directly on GnRH perikarya and processes. GnRH neurones not only form the final output pathway regulating the reproductive functions of the anterior pituitary gland, but also provide neuronal input to sites within the hypothalamus. The current double-label immunohistochemical studies investigated whether GnRH-immunoreactive (IR) projections to the RP3V and/or Arc establish morphological connections with KP-IR neurones at these sites. To optimise visualisation of KP immunoreactivity in, respectively, the RP3V and Arc, ovariectomised (OVX) oestrogen-treated and OVX oil-treated female mice were studied. Confocal laser microscopic analysis of immunofluorescent specimens revealed GnRH-IR axon varicosities in apposition to approximately 25% of the KP-IR neurones in the RP3V and 50% of the KP-IR neurones in the Arc. At the ultrastructural level, GnRH-IR neurones were seen to establish asymmetric synaptic contacts, which usually reflect excitatory neurotransmission, with KP-IR neurones in both the RP3V and Arc. Together with previous data, these findings indicate reciprocal connectivity between both of the KP cell populations and the GnRH neuronal system. The functional significance of the GnRH-IR input to the two separate KP cell populations requires electrophysiological investigation.
Collapse
Affiliation(s)
- Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Navarro VM. Interactions between kisspeptins and neurokinin B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:325-47. [PMID: 23550013 PMCID: PMC3858905 DOI: 10.1007/978-1-4614-6199-9_15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reproductive function is tightly regulated by an intricate network of central and peripheral factors; however, the precise mechanism triggering critical reproductive events, such as puberty onset, remains largely unknown. Recently, the neuropeptides kisspeptin (encoded by Kiss1) and neurokinin B (NKB, encoded by TAC3 in humans and Tac2 in rodents) have been placed as essential gatekeepers of puberty. Studies in humans and rodents have revealed that loss-of-function mutations in the genes encoding either kisspeptin and NKB or their receptors, Kiss1r and neurokinin 3 receptor (NK3R), lead to impaired sexual maturation and infertility. Kisspeptin, NKB, and dynorphin A are co-expressed in neurons of the arcuate nucleus (ARC), so-called Kisspeptin/NKB/Dyn (KNDy) neurons. Importantly, these neurons also co-express NK3R. Compelling evidence suggests a stimulatory role of NKB (or the NK3R agonist, senktide) on LH release in a number of species. This effect is likely mediated by autosynaptic inputs of NKB on KNDy neurons to induce the secretion of gonadotropin-releasing hormone (GnRH) in a kisspeptin--dependent manner, with the coordinated actions of other neuroendocrine factors, such as dynorphin, glutamate, or GABA. Thus, we have proposed a model in which NKB feeds back to the KNDy neuron to shape the pulsatile release of kisspeptin, and hence GnRH, in a mechanism also dependent on the sex steroid level. Additionally, NKB may contribute to the regulation of the reproductive function by metabolic cues. Investigating how NKB and kisspeptin interact to regulate the gonadotropic axis will offer new insights into the control of GnRH release during puberty onset and the maintenance of the reproductive function in adulthood, offering a platform for the understanding and treatment of a number of reproductive disorders.
Collapse
|
69
|
Lee K, Liu X, Herbison AE. Burst firing in gonadotrophin-releasing hormone neurones does not require ionotrophic GABA or glutamate receptor activation. J Neuroendocrinol 2012; 24:1476-83. [PMID: 22831560 DOI: 10.1111/j.1365-2826.2012.02360.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/11/2012] [Accepted: 07/19/2012] [Indexed: 11/28/2022]
Abstract
Burst firing is a feature of many neuroendocrine cell types, including the hypothalamic gonadotrophin-releasing hormone (GnRH) neurones that control fertility. The role of intrinsic and extrinsic influences in generating GnRH neurone burst firing is presently unclear. In the present study, we investigated the role of fast amino acid transmission in burst firing by examining the effects of receptor antagonists on bursting displayed by green fluorescent protein GnRH neurones in sagittal brain slices prepared from adult male mice. Blockade of AMPA and NMDA glutamate receptors with a cocktail of CNQX and AP5 was found to have no effects on burst firing in GnRH neurones. The frequency of bursts, dynamics of individual bursts, or percentage of firing clustered in bursts was not altered. Similarly, GABA(A) receptor antagonists bicuculline and picrotoxin had no effects upon burst firing in GnRH neurones. To examine the importance of both glutamate and GABA ionotrophic signalling, a cocktail including picrotoxin, CNQX and AP5 was used but, again, this was found to have no effects on GnRH neurone burst firing. To further question the impact of endogenous amino acid release on burst firing, electrical activation of anteroventral periventricular nuclei GABA/glutamate inputs to GnRH neurones was undertaken and found to have no impact on burst firing. Taken together, these observations indicate that bursting in GnRH neurones is not dependent upon acute ionotrophic GABA and glutamate signalling and suggest that extrinsic inputs to GnRH neurones acting through AMPA, NMDA and GABA(A) receptors are unlikely to be required for burst initiation in these cells.
Collapse
Affiliation(s)
- K Lee
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
70
|
Hrabovszky E, Sipos MT, Molnár CS, Ciofi P, Borsay BÁ, Gergely P, Herczeg L, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z. Low degree of overlap between kisspeptin, neurokinin B, and dynorphin immunoreactivities in the infundibular nucleus of young male human subjects challenges the KNDy neuron concept. Endocrinology 2012; 153:4978-89. [PMID: 22903610 PMCID: PMC3512020 DOI: 10.1210/en.2012-1545] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous immunohistochemical and in situ hybridization studies of sheep, goats, and rodents indicated that kisspeptin (KP), neurokinin B (NKB), and dynorphin A (DYN) are extensively colocalized in the hypothalamic arcuate nucleus, thus providing a basis for the KP/NKB/DYN (KNDy) neuron concept; in both sexes, KNDy neuropeptides have been implicated in the generation of GnRH neurosecretory pulses and in the negative feedback effects of sexual steroids to the reproductive axis. To test the validity and limitations of the KNDy neuron concept in the human, we carried out the comparative immunohistochemical analysis of the three neuropeptides in the infundibular nucleus (Inf; also known as arcuate nucleus) and stalk of young male human individuals (<37 yr). Results of quantitative immunohistochemical experiments established that the regional densities of NKB immunoreactive (IR) perikarya and fibers, and the incidence of afferent contacts they formed onto GnRH neurons, were about 5 times as high as those of the KP-IR elements. Dual-immunofluorescent studies confirmed that considerable subsets of the NKB-IR and KP-IR cell bodies and fibers are separate, and only about 33% of NKB-IR perikarya and 75% of KP-IR perikarya were dual labeled. Furthermore, very few DYN-IR cell bodies could be visualized in the Inf. DYN-IR fibers were also rare and, with few exceptions, distinct from the KP-IR fibers. The abundance and colocalization patterns of the three immunoreactivities showed similar trends in the infundibular stalk around portal blood vessels. Together these results indicate that most NKB neurons in the Inf do not synthesize detectable amounts of KP and DYN in young male human individuals. These data call for a critical use of the KNDy neuron terminology when referring to the putative pulse generator system of the mediobasal hypothalamus. We conclude that the functional importance of these three neuropeptides in reproductive regulation considerably varies among species, between sexes, and at different ages.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1083 Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol Rev 2012; 92:1235-316. [DOI: 10.1152/physrev.00037.2010] [Citation(s) in RCA: 529] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.
Collapse
Affiliation(s)
- Leonor Pinilla
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Dieguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P. Millar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
72
|
Battista N, Meccariello R, Cobellis G, Fasano S, Di Tommaso M, Pirazzi V, Konje JC, Pierantoni R, Maccarrone M. The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. Mol Cell Endocrinol 2012; 355:1-14. [PMID: 22305972 DOI: 10.1016/j.mce.2012.01.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/05/2011] [Accepted: 01/16/2012] [Indexed: 02/07/2023]
Abstract
Endocannabinoids are natural lipids able to bind to cannabinoid and vanilloid receptors. Their biological actions at the central and peripheral level are under the tight control of the proteins responsible for their synthesis, transport and degradation. In the last few years, several reports have pointed out these lipid mediators as critical signals, together with sex hormones and cytokines, in various aspects of animal and human reproduction. The identification of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in reproductive cells and tissues of invertebrates, vertebrates and mammals highlights the key role played by these endogenous compounds along the evolutionary axis. Here, we review the main actions of endocannabinoids on female and male reproductive events, and discuss the interplay between them, steroid hormones and cytokines in regulating fertility. In addition, we discuss the involvement of endocannabinoid signalling in ensuring a correct chromatin remodeling, and hence a good DNA quality, in sperm cells.
Collapse
Affiliation(s)
- Natalia Battista
- Dipartimento di Scienze Biomediche Comparate, Università di Teramo, 64100 Teramo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Velez IC, Pack JD, Porter MB, Sharp DC, Amstalden M, Williams GL. Secretion of luteinizing hormone into pituitary venous effluent of the follicular and luteal phase mare: novel acceleration of episodic release during constant infusion of gonadotropin-releasing hormone. Domest Anim Endocrinol 2012; 42:121-8. [PMID: 22305208 DOI: 10.1016/j.domaniend.2012.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/04/2012] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
We tested the hypothesis that continuous infusion of native GnRH into mares during the estrous cycle, at a dose of 100 μg/h, would elevate circulating concentrations of LH without disrupting the endogenous, episodic pattern of LH release. Ten cyclic mares were assigned to one of two groups (n = 5/group): (1) Control (saline) and (2) GnRH in saline (100 μg/h). On experimental day 0 (3 to 6 d after ovulation), osmotic pumps containing saline or GnRH were placed subcutaneously and connected to a jugular infusion catheter. Blood samples were collected from jugular catheters daily and at 5-min intervals from catheters placed in the intercavernous sinus (ICS) for 8 h on experimental day 4 (luteal phase; 7 to 10 d after ovulation), followed by an additional 6-h intensive sampling period 36 h after PGF(2α)-induced luteal regression (experimental day 6; follicular phase). Treatment with GnRH increased (P < 0.001) concentrations of LH by 3- to 4-fold in the peripheral circulation and 4- to 5-fold in the ICS. Continuous GnRH treatment accelerated (P < 0.01) the frequency of LH release and decreased the interepisodic interval during both luteal and follicular phases. Treatment with GnRH during the luteal phase eliminated the low-frequency, long-duration pattern of episodic LH release and converted it to a high-frequency, short-duration pattern reminiscent of the follicular phase. These observations appear to be unique to the horse. Further studies that exploit this experimental model are likely to reveal novel mechanisms regulating the control of gonadotrope function in this species.
Collapse
Affiliation(s)
- I C Velez
- Animal Reproduction Laboratory, Texas AgriLife Research, Beeville, TX 78102-8571, USA
| | | | | | | | | | | |
Collapse
|
74
|
Kalló I, Vida B, Deli L, Molnár CS, Hrabovszky E, Caraty A, Ciofi P, Coen CW, Liposits Z. Co-localisation of kisspeptin with galanin or neurokinin B in afferents to mouse GnRH neurones. J Neuroendocrinol 2012; 24:464-76. [PMID: 22129075 DOI: 10.1111/j.1365-2826.2011.02262.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The gonadotrophin-releasing hormone (GnRH) secreting neurones, which form the final common pathway for the central regulation of reproduction, are directly targeted by kisspeptin (KP) via the G protein-coupled receptor, GPR54. In these multiple labelling studies, we used ovariectomised mice treated with 17β-oestradiol (OVX + E(2)) or vehicle (OVX + oil) to determine: (i) the ultrastructural characteristics of KP-immunoreactive (IR) afferents to GnRH neurones; (ii) their galanin or neurokinin B (NKB) content; and (iii) the co-expression of galanin or NKB with KP in the two major subpopulations of KP neurones located in the rostral periventricular area of the third ventricle (RP3V) and the arcuate nucleus (Arc). Electron microscopic investigation of the neuronal juxtapositions revealed axosomatic and axodendritic synapses; these showed symmetrical or asymmetrical characteristics, suggesting a phenotypic diversity of KP afferents. Heterogeneity of afferents was also demonstrated by differential co-expression of neuropeptides; in OVX + E(2) mice, KP afferents to GnRH neurones showed galanin-immunoreactivity with an incidence of 22.50 ± 2.41% and NKB-immunoreactivity with an incidence of 5.61 ± 2.57%. In OVX + oil animals, galanin-immunoreactivity in the KP afferents showed a major reduction, appearing in only 5.78 ± 1.57%. Analysis for co-localisation of galanin or NKB with KP was extended to the perikaryal level in animal models, which showed the highest KP incidence; these were OVX + E(2) females for the RP3V and OVX + oil females for the ARC. In the RP3V of colchicine-treated OVX + E(2) animals, 87.84 ± 2.65% of KP-IR neurones were galanin positive. In the Arc of the colchicine-treated OVX + oil animals, galanin immunoreactivity was detected in only 12.50 ± 1.92% of the KP expressing neurones. By contrast, the incidence of co-localisation with NKB in the Arc of those animals was 98.09 ± 1.30%. In situ hybridisation histochemistry of sections from OVX + E(2) animals identified galanin message in more than a third of the KP neurones in the RP3V (38.67 ± 11.57%) and in the Arc (42.50 ± 12.52%). These data suggest that GnRH neurones are innervated by chemically heterogeneous KP cell populations, with a small proportion deriving from the Arc group. The presence of galanin within KP axons innervating GnRH neurones and the oestrogen-dependent regulation of that presence add a new dimension to the roles played by galanin in the central regulation of reproduction.
Collapse
Affiliation(s)
- I Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Navarro VM. New insights into the control of pulsatile GnRH release: the role of Kiss1/neurokinin B neurons. Front Endocrinol (Lausanne) 2012; 3:48. [PMID: 22649420 PMCID: PMC3355984 DOI: 10.3389/fendo.2012.00048] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/12/2012] [Indexed: 11/24/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the ultimate output signal of an intricate network of neuroendocrine factors that, acting on the pituitary, trigger gonadotropin release. In turn, gonadotropins exert their trophic action on the gonads to stimulate the synthesis of sex steroids thus completing the gonadotropic axis through feedback regulatory mechanisms of GnRH release. These feedback loops are predominantly inhibitory in both sexes, leading to tonic pulsatile release of GnRH from puberty onward. However, in the female, rising levels of estradiol along the estrous cycle evoke an additional positive feedback that prompts a surge-like pattern of GnRH release prior to ovulation. Kisspeptins, secreted from hypothalamic Kiss1 neurons, are poised as major conduits to regulate this dual secretory pathway. Kiss1 neurons are diverse in origin, nature, and function, convening distinct neuronal populations in two main hypothalamic nuclei: the arcuate nucleus (ARC) and the anteroventral periventricular nucleus. Recent studies from our group and others point out Kiss1 neurons in the ARC as the plausible generator of GnRH pulses through a system of pulsatile kisspeptin release shaped by the coordinated action of neurokinin B (NKB) and dynorphin A (Dyn) that are co-expressed in Kiss1 neurons (so-called KNDy neurons). In this review, we aim to document the recent findings and working models directed toward the identification of the Kiss1-dependent mechanisms of GnRH release through a synoptic overview of the state-of-the-art in the field.
Collapse
Affiliation(s)
- Víctor M Navarro
- Department of Cell Biology, Physiology and Immunology, University of Córdoba Córdoba, Spain.
| |
Collapse
|
76
|
Tillet Y, Tourlet S, Picard S, Sizaret PY, Caraty A. Morphofunctional interactions between galanin and GnRH-containing neurones in the diencephalon of the ewe. The effect of oestradiol. J Chem Neuroanat 2012; 43:14-9. [DOI: 10.1016/j.jchemneu.2011.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 08/17/2011] [Accepted: 09/16/2011] [Indexed: 11/28/2022]
|
77
|
Constantin S, Jasoni C, Romanò N, Lee K, Herbison AE. Understanding calcium homeostasis in postnatal gonadotropin-releasing hormone neurons using cell-specific Pericam transgenics. Cell Calcium 2011; 51:267-76. [PMID: 22177387 DOI: 10.1016/j.ceca.2011.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/07/2011] [Accepted: 11/17/2011] [Indexed: 12/11/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) neurons are the key output cells of a complex neuronal network controlling fertility in mammals. To examine calcium homeostasis in postnatal GnRH neurons, we generated a transgenic mouse line in which the genetically encodable calcium indicator ratiometric Pericam (rPericam) was targeted to the GnRH neurons. This mouse model enabled real-time imaging of calcium concentrations in GnRH neurons in the acute brain slice preparation. Investigations in GnRH-rPericam mice revealed that GnRH neurons exhibited spontaneous, long-duration (~8s) calcium transients. Dual electrical-calcium recordings revealed that the calcium transients were correlated perfectly with burst firing in GnRH neurons and that calcium transients in GnRH neurons regulated two calcium-activated potassium channels that, in turn, determined burst firing dynamics in these cells. Curiously, the occurrence of calcium transients in GnRH neurons across puberty or through the estrous cycle did not correlate well with the assumption that GnRH neuron burst firing was contributory to changing patterns of pulsatile GnRH release at these times. The GnRH-rPericam mouse was also valuable in determining differential mechanisms of GABA and glutamate control of calcium levels in GnRH neurons as well as effects of G-protein-coupled receptors for GnRH and kisspeptin. The simultaneous measurement of calcium levels in multiple GnRH neurons was hampered by variable rPericam fluorescence in different GnRH neurons. Nevertheless, in the multiple recordings that were achieved no evidence was found for synchronous calcium transients. Together, these observations show the great utility of transgenic targeting strategies for investigating the roles of calcium with specified neuronal cell types.
Collapse
Affiliation(s)
- Stéphanie Constantin
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
78
|
Abstract
Recent human genetic studies have established that neurokinin B (NKB) signalling via the neurokinin 3 receptor (NK3R) is required for normal developmental activation of pulsatile GnRH secretion from the hypothalamus. As increasing numbers of patients with loss-of-function mutations have been described, evidence has emerged that peripheral NKB is not necessary for normal pregnancy despite high placental expression and high plasma levels of NKB in late gestation. Nevertheless many key questions about the role of NKB in the function of the GnRH pulse generator remain to be answered. Differences in requirement for NKB/NK3R for hypothalamic-pituitary-gonadal (HPG) maturation amongst different species, and their varied responses to stimulation with NKB represent a challenge for higher resolution studies. Neuroanatomical investigation has, however, identified key "KNDy" (Kisspeptin, Neurokinin B, Dynorphin) arcuate neurones that are conserved amongst different species and that are intimately connected both to each other and to the GnRH nerve termini. Several lines of evidence suggest that these may be the core of the GnRH pulse generator, and with experimental tools now in place in humans, monkeys and other experimental animals to pursue the function of these interconnected neurones and the functional hierarchy of their neuroendocrine inputs, understanding of the enigmatic GnRH pulse generator may at last be within reach.
Collapse
Affiliation(s)
- A Kemal Topaloglu
- Cukurova University, Department of Pediatric Endocrinology, Balcali, Adana, Turkey.
| | | |
Collapse
|
79
|
Porteous R, Petersen SL, Yeo SH, Bhattarai JP, Ciofi P, D'anglemont de Tassigny X, Colledge WH, Caraty A, Herbison AE. Kisspeptin neurons co-express met-enkephalin and galanin in the rostral periventricular region of the female mouse hypothalamus. J Comp Neurol 2011; 519:3456-69. [DOI: 10.1002/cne.22716] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
80
|
Lasaga M, Debeljuk L. Tachykinins and the hypothalamo-pituitary-gonadal axis: An update. Peptides 2011; 32:1972-8. [PMID: 21801774 DOI: 10.1016/j.peptides.2011.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 11/22/2022]
Abstract
Tachykinins play a critical role in neuroendocrine regulation of reproduction. The best known members of the family are substance P (SP), neurokinin A and neurokinin B. Tachykinins mediate their biological actions through three G protein-coupled receptors, named NK1, NK2, and NK3. SP was suggested to play an important role in the ovulatory process in mammals and humans. Recent findings suggest a role of tachykinins in the aging of the hypothalamo-pituitary-gonadal axis. A high presence of SP was found in the sheep pars tuberalis and evidence indicates that it may have some role in the control of prolactin secretion. The presence of SP was confirmed in Leydig cells of the rat testes of animals submitted to constant light or treated with estrogens. Tachykinins were found to increase the motility of human spermatozoa. Tachykinins were also found to be present in the mouse ovary and more specifically, in the granulose cells. It is possible that tachykinins may play an important role in the ovarian function. NKB has been implicated in the steroid feedback control of GnRH release. Human mutations in the gene encoding this peptide or its receptor (TACR3) lead to a defect in the control of GnRH. A specific subset of neurons in the arcuate nucleus of the hypothalamus, colocalized three neuropeptides, kisspeptin, NKB and dynorphin. This subpopulation of neurons mediates the gonadal hormone feedback control of GnRH secretion. NKB/NK3 signaling plays a role in puberty onset and fertility in humans. This minireview summarizes the recent data about the action of tachykinins on the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Mercedes Lasaga
- Research Institute for Reproduction, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
81
|
Herbison AE, Moenter SM. Depolarising and hyperpolarising actions of GABA(A) receptor activation on gonadotrophin-releasing hormone neurones: towards an emerging consensus. J Neuroendocrinol 2011; 23:557-69. [PMID: 21518033 PMCID: PMC3518440 DOI: 10.1111/j.1365-2826.2011.02145.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gonadotrophin-releasing hormone (GnRH) neurones represent the final output neurones of a complex neuronal network that controls fertility. It is now appreciated that GABAergic neurones within this network provide an important regulatory influence on GnRH neurones. However, the consequences of direct GABA(A) receptor activation on adult GnRH neurones have been controversial for nearly a decade now, with both hyperpolarising and depolarising effects being reported. This review provides: (i) an overview of GABA(A) receptor function and its investigation using electrophysiological approaches and (ii) re-examines the past and present results relating to GABAergic regulation of the GnRH neurone, with a focus on mouse brain slice data. Although it remains difficult to reconcile the results of the early studies, there is a growing consensus that GABA can act through the GABA(A) receptor to exert both depolarising and hyperpolarising effects on GnRH neurones. The most recent studies examining the effects of endogenous GABA release on GnRH neurones indicate that the predominant action is that of excitation. However, we are still far from a complete understanding of the effects of GABA(A) receptor activation upon GnRH neurones. We argue that this will require not only a better understanding of chloride ion homeostasis in individual GnRH neurones, and within subcellular compartments of the GnRH neurone, but also a more integrative view of how multiple neurotransmitters, neuromodulators and intrinsic conductances act together to regulate the activity of these important cells.
Collapse
Affiliation(s)
- A E Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand.
| | | |
Collapse
|
82
|
Abstract
Gonadotrophin-releasing hormone (GnRH)-secreting neurones are the final output of the central nervous system driving fertility in all mammals. Although it has been known for decades that the efficiency of communication between the hypothalamus and the pituitary depends on the pulsatile profile of GnRH secretion, how GnRH neuronal activity is patterned to generate pulses at the median eminence is unknown. To date, the scattered distribution of the GnRH cell bodies remains the main limitation to assessing the cellular events that could lead to pulsatile GnRH secretion. Taking advantage of the unique developmental feature of GnRH neurones, the nasal explant model allows primary GnRH neurones to be maintained within a micro-network where pulsatile secretion is preserved and where individual cellular activity can be monitored simultaneously across the cell population. This review summarises the data obtained from work using this in vitro model, and brings some insights into GnRH cellular physiology.
Collapse
Affiliation(s)
- S Constantin
- Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
83
|
Wen S, Götze IN, Mai O, Schauer C, Leinders-Zufall T, Boehm U. Genetic identification of GnRH receptor neurons: a new model for studying neural circuits underlying reproductive physiology in the mouse brain. Endocrinology 2011; 152:1515-26. [PMID: 21303944 DOI: 10.1210/en.2010-1208] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH signaling regulates reproductive physiology in vertebrates via the hypothalamic-pituitary-gonadal axis. In addition, GnRH signaling has been postulated to act on the brain. However, elucidating its functional role in the central nervous system has been hampered because of the difficulty in identifying direct GnRH signaling targets in live brain tissue. Here we used a binary genetic strategy to visualize GnRH receptor (GnRHR) neurons in the mouse brain and started to characterize these cells. First, we expressed different fluorescent proteins in GnRHR neurons and mapped their precise distribution throughout the brain. Remarkably, neuronal GnRHR expression was only initiated after postnatal day 16, suggesting peri- and postpubertal functions of GnRH signaling in this organ. GnRHR neurons were found in different brain areas. Many GnRHR neurons were identified in areas influencing sexual behaviors. Furthermore, GnRHR neurons were detected in brain areas that process olfactory and pheromonal cues, revealing one efferent pathway by which the neuroendocrine hypothalamus may influence the sensitivity towards chemosensory cues. Using confocal Ca(2+) imaging in brain slices, we show that GnRHR neurons respond reproducibly to extracellular application of GnRH or its analog [D-TRP(6)]-LH-RH, indicating that these neurons express functional GnRHR. Interestingly, the duration and shape of the Ca(2+) responses were similar within and different between brain areas, suggesting that GnRH signaling may differentially influence brain functions to affect reproductive success. Our new mouse model sets the stage to analyze the next level of GnRH signaling in reproductive physiology and behavior.
Collapse
Affiliation(s)
- Shuping Wen
- Institute for Neural Signal Transduction, Center for Molecular Neurobiology, Falkenried 94, D-20251 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
84
|
Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnar Z, O’Donnell M, Povlishock J, Saunders N, Sharp F, Stanimirovic D, Watts R, Drewes L. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 2011; 12:169-82. [PMID: 21331083 PMCID: PMC3335275 DOI: 10.1038/nrn2995] [Citation(s) in RCA: 403] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The delivery of many potentially therapeutic and diagnostic compounds to specific areas of the brain is restricted by brain barriers, of which the most well known are the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier. Recent studies have shown numerous additional roles of these barriers, including an involvement in neurodevelopment, in the control of cerebral blood flow, and--when barrier integrity is impaired--in the pathology of many common CNS disorders such as Alzheimer's disease, Parkinson's disease and stroke.
Collapse
Affiliation(s)
- Edward A. Neuwelt
- Oregon Health & Science University, Portland, Oregon
- Portland Veterans Affairs Medical Center, Portland, Oregon
| | | | | | | | | | | | | | | | | | | | | | - Frank Sharp
- University of California at Davis, Davis, California
| | | | - Ryan Watts
- Genentech, Inc., South San Francisco, California
| | | |
Collapse
|
85
|
True C, Grove KL, Smith MS. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance. Front Endocrinol (Lausanne) 2011; 2:53. [PMID: 22645510 PMCID: PMC3355832 DOI: 10.3389/fendo.2011.00053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022] Open
Abstract
Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance.
Collapse
Affiliation(s)
- Cadence True
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Kevin L. Grove
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
| | - M. Susan Smith
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
- *Correspondence: M. Susan Smith, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. e-mail:
| |
Collapse
|
86
|
Ramaswamy S, Seminara SB, Plant TM. Evidence from the agonadal juvenile male rhesus monkey (Macaca mulatta) for the view that the action of neurokinin B to trigger gonadotropin-releasing hormone release is upstream from the kisspeptin receptor. Neuroendocrinology 2011; 94:237-45. [PMID: 21832818 PMCID: PMC3238032 DOI: 10.1159/000329045] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/05/2011] [Indexed: 11/19/2022]
Abstract
Human genetics have revealed that kisspeptin signaling and neurokinin B (NKB) signaling are both required for robust pulsatile gonadotropin-releasing hormone (GnRH) release, and therefore for puberty and maintenance of adult gonadal function. How these two peptides interact to affect GnRH pulse generation remains a mystery. To address the hierarchy of the NKB and kisspeptin signaling pathways that are essential for GnRH release, two experiments were conducted using agonadal, juvenile male monkeys. Pituitary responsiveness to GnRH was first heightened by a pulsatile GnRH infusion to use the in situ pituitary as a bioassay for GnRH release. In the first experiment (n = 3), the kisspeptin receptor (KISS1R) was desensitized by a continuous 99-hour i.v. infusion of kisspeptin-10 (100 μg/h). During the last 4 h of continuous kisspeptin-10 infusion, desensitization of KISS1R was confirmed by failure of an i.v. bolus of kisspeptin-10 to elicit GnRH release. Desensitization of KISS1R was associated with a markedly blunted GnRH response to senktide. The response to senktide was progressively restored during the 72 h following termination of continuous kisspeptin-10. An analogous design was employed in the second experiment (n = 2) to desensitize the NKB receptor (neurokinin 3 receptor, NK3R) by administration of a continuous 48-hour i.v. infusion of senktide (200 μg/h). While a bolus of senktide during the last 3 h of continuous senktide administration failed to elicit GnRH release, thus confirming desensitization of NK3R, the ability of kisspeptin to stimulate GnRH was unimpaired. The foregoing findings support the view that NKB stimulation of GnRH release is upstream from KISS1R.
Collapse
Affiliation(s)
- Suresh Ramaswamy
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pa., USA
| | | | - Tony M. Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, and Magee-Womens Research Institute, Pittsburgh, Pa., USA
- *Tony M. Plant, Department of Obstetrics, Gynecology and Reproductive Sciences, B331 Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (USA), Tel. +1 412 641 7663, E-Mail
| |
Collapse
|
87
|
Wierman ME, Kiseljak-Vassiliades K, Tobet S. Gonadotropin-releasing hormone (GnRH) neuron migration: initiation, maintenance and cessation as critical steps to ensure normal reproductive function. Front Neuroendocrinol 2011; 32:43-52. [PMID: 20650288 PMCID: PMC3008544 DOI: 10.1016/j.yfrne.2010.07.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 12/23/2022]
Abstract
GnRH neurons follow a carefully orchestrated journey from their birth in the olfactory placode area. Initially, they migrate along with the vomeronasal nerve into the brain at the cribriform plate, then progress caudally to sites within the hypothalamus where they halt and send projections to the median eminence to activate pituitary gonadotropes. Many factors controlling this precise journey have been elucidated by the silencing or over-expression of candidate genes in mouse models. Importantly, a number of these factors may not only play a role in normal physiology of the hypothalamic-pituitary-gonadal axis but also be mis-expressed to cause human disorders of GnRH deficiency, presenting as a failure to undergo normal pubertal development. This review outlines the current cadre of candidates thought to modulate GnRH neuronal migration. The further elucidation and characterization of these factors that impact GnRH neuron development may shed new light on human reproductive disorders and provide potential targets to develop new pro-fertility or contraceptive agents.
Collapse
Affiliation(s)
- Margaret E Wierman
- Department of Medicine, University of Colorado-Denver, Aurora, CO 80045, USA
| | | | | |
Collapse
|
88
|
Rønnekleiv OK, Bosch MA, Zhang C. Regulation of endogenous conductances in GnRH neurons by estrogens. Brain Res 2010; 1364:25-34. [PMID: 20816765 PMCID: PMC2992606 DOI: 10.1016/j.brainres.2010.08.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/24/2010] [Accepted: 08/27/2010] [Indexed: 11/20/2022]
Abstract
17β-estradiol (E2) regulates the activity of the gonadotropin-releasing hormone (GnRH) neurons through both presynaptic and postsynaptic mechanisms, and this ovarian steroid hormone is essential for cyclical GnRH neuronal activity and secretion. E2 has significant actions to modulate the mRNA expression of numerous ion channels in GnRH neurons and/or to enhance (suppress) endogenous conductances (currents) including potassium (K(ATP), A-type) and calcium low voltage T-type and high voltage L-type currents. Also, it is well documented that E2 can alter the excitability of GnRH neurons via direct action, but the intracellular signaling cascades mediating these actions are not well understood. As an example, K(ATP) channels are critical ion channels needed for maintaining GnRH neurons in a hyperpolarized state for recruiting T-type calcium channels that are important for burst firing in GnRH neurons. E2 modulates the activity of K(ATP) channels via a membrane-initiated signaling pathway in GnRH neurons. Obviously there are other channels, including the small conductance activated K(+) (SK) channels, that maybe modulated by this signaling pathway, but the ensemble of mER-, ERα-, and ERβ-mediated effects both pre- and post-synaptic will ultimately dictate the excitability of GnRH neurons.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
89
|
Cravo RM, Margatho LO, Osborne-Lawrence S, Donato J, Atkin S, Bookout AL, Rovinsky S, Frazão R, Lee CE, Gautron L, Zigman JM, Elias CF. Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 2010; 173:37-56. [PMID: 21093546 DOI: 10.1016/j.neuroscience.2010.11.022] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
Humans and mice with loss-of-function mutations of the genes encoding kisspeptins (Kiss1) or kisspeptin receptor (Kiss1r) are infertile due to hypogonadotropic hypogonadism. Within the hypothalamus, Kiss1 mRNA is expressed in the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (Arc). In order to better study the different populations of kisspeptin cells we generated Kiss1-Cre transgenic mice. We obtained one line with Cre activity specifically within Kiss1 neurons (line J2-4), as assessed by generating mice with Cre-dependent expression of green fluorescent protein or β-galactosidase. Also, we demonstrated Kiss1 expression in the cerebral cortex and confirmed previous data showing Kiss1 mRNA in the medial nucleus of amygdala and anterodorsal preoptic nucleus. Kiss1 neurons were more concentrated towards the caudal levels of the Arc and higher leptin-responsivity was observed in the most caudal population of Arc Kiss1 neurons. No evidence for direct action of leptin in AVPV Kiss1 neurons was observed. Melanocortin fibers innervated subsets of Kiss1 neurons of the preoptic area and Arc, and both populations expressed melanocortin receptors type 4 (MC4R). Specifically in the preoptic area, 18-28% of Kiss1 neurons expressed MC4R. In the Arc, 90% of Kiss1 neurons were glutamatergic, 50% of which also were GABAergic. In the AVPV, 20% of Kiss1 neurons were glutamatergic whereas 75% were GABAergic. The differences observed between the Kiss1 neurons in the preoptic area and the Arc likely represent neuronal evidence for their differential roles in metabolism and reproduction.
Collapse
Affiliation(s)
- R M Cravo
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Moenter SM. Identified GnRH neuron electrophysiology: a decade of study. Brain Res 2010; 1364:10-24. [PMID: 20920482 DOI: 10.1016/j.brainres.2010.09.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 12/27/2022]
Abstract
Over the past decade, the existence of transgenic mouse models in which reporter genes are expressed under the control of the gonadotropin-releasing hormone (GnRH) promoter has made possible the electrophysiological study of these cells. Here, we review the intrinsic and synaptic properties of these cells that have been revealed by these approaches, with a particular regard to burst generation. Advances in our understanding of neuromodulation of GnRH neurons and synchronization of this network are also discussed.
Collapse
Affiliation(s)
- Suzanne M Moenter
- Department of Molecular and Integrative Physiology, 7725 Med Sci II, 1301 E Catherine St., Ann Arbor, MI 48109-5622, USA.
| |
Collapse
|
91
|
Matsuwaki T, Nishihara M, Sato T, Yoda T, Iwakura Y, Chida D. Functional hypothalamic amenorrhea due to increased CRH tone in melanocortin receptor 2-deficient mice. Endocrinology 2010; 151:5489-96. [PMID: 20881239 DOI: 10.1210/en.2010-0687] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to chronic stressors results in dysregulation of the hypothalamic-pituitary-adrenal axis and a disruption in reproduction. CRH, the principal regulator of the hypothalamic-pituitary-adrenal axis induces the secretion of ACTH from the pituitary, which stimulates adrenal steroidogenesis via the specific cell-surface melanocortin 2 receptor (MC2R). Previously, we demonstrated that MC2R(-/-) mice had undetectable levels of corticosterone despite high ACTH levels. Here, we evaluated the reproductive functions of female MC2R(-/-) mice and analyzed the mechanism of the disrupted cyclicity of these mice. The expression of CRH in the paraventricular nucleus was significantly increased in MC2R(-/-) mice under nonstressed conditions. Although MC2R(-/-) females were fertile, they showed a prolonged estrous cycle. After hormonal stimulation, MC2R(-/-) females produced nearly-normal numbers of eggs, but slightly less than MC2R(+/-) females, and showed near-normal ovarian histology. During diestrus, the number of GnRH-positive cells in the medial preoptic area was significantly reduced in MC2R(-/-) females. CRH type 1 receptor antagonist restored estrous cyclicity in MC2R(-/-) females. Kisspeptin-positive areas in the arcuate nucleus were comparable, whereas kisspeptin-positive areas in the anteroventral periventricular nucleus in MC2R(-/-) females were significantly reduced compared with MC2R(+/-) females, suggesting that arcuate nucleus kisspeptin is not involved, but anteroventral periventricular nucleus kisspeptin may be involved, in the maintenance of estrous cyclicity. Our findings show that high levels of hypothalamic CRH disturb estrous cyclicity in the female animals and that the MC2R(-/-) female is a unique animal model of functional hypothalamic amenorrhea.
Collapse
Affiliation(s)
- Takashi Matsuwaki
- Department of Veterinary Physiology, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
92
|
Abstract
Starting from an historical overview of lasting Cannabis use over the centuries, we will focus on a description of the cannabinergic system, with a comprehensive analysis of chemical and pharmacological properties of endogenous and synthetic cannabimimetic analogues. The metabolic pathways and the signal transduction mechanisms, activated by cannabinoid receptors stimulation, will also be discussed. In particular, we will point out the action of cannabinoids and endocannabinoids on the different neuronal networks involved in reproductive axis, and locally, on male and female reproductive tracts, by emphasizing the pivotal role played by this system in the control of fertility.
Collapse
|
93
|
Rance NE, Krajewski SJ, Smith MA, Cholanian M, Dacks PA. Neurokinin B and the hypothalamic regulation of reproduction. Brain Res 2010; 1364:116-28. [PMID: 20800582 DOI: 10.1016/j.brainres.2010.08.059] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
Loss-of-function mutations in the genes encoding either neurokinin B (NKB) or its receptor, NK3 (NK3R), result in hypogonadotropic hypogonadism, characterized by an absence of pubertal development and low circulating levels of LH and gonadal steroids. These studies implicate NKB and NK3R as essential elements of the human reproductive axis. Studies over the last two decades provide evidence that a group of neurons in the hypothalamic infundibular/arcuate nucleus form an important component of this regulatory circuit. These neurons are steroid-responsive and coexpress NKB, kisspeptin, dynorphin, NK3R, and estrogen receptor α (ERα) in a variety of mammalian species. Compelling evidence in the human indicates these neurons function in the hypothalamic circuitry regulating estrogen negative feedback on gonadotropin-releasing hormone (GnRH) secretion. Moreover, in the rat, they form a bilateral, interconnected network that projects to NK3R-expressing GnRH terminals in the median eminence. This network provides an anatomical framework to explain how coordination among NKB/kisspeptin/dynorphin/NK3R/ERα neurons could mediate feedback information from the gonads to modulate pulsatile GnRH secretion. There is substantial (but indirect) evidence that this network may be part of the neural circuitry known as the "GnRH pulse generator," with NK3R signaling as an important component. This theory provides a compelling explanation for the occurrence of hypogonadotropic hypogonadism in patients with inactivating mutations in the TAC3 or TACR3 genes. Future studies will be needed to determine whether NKB signaling plays a permissive role in the onset of puberty or is part of the driving force initiating the maturation of reproductive function.
Collapse
Affiliation(s)
- Naomi E Rance
- Department of Pathology, and the Evelyn F. McNight Brain Research Institute, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | | | | | | | | |
Collapse
|
94
|
Colledge WH, Mei H, d'Anglemont de Tassigny X. Mouse models to study the central regulation of puberty. Mol Cell Endocrinol 2010; 324:12-20. [PMID: 20083157 DOI: 10.1016/j.mce.2010.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 01/08/2023]
Abstract
At puberty, the mammalian reproductive axis is activated by neuroendocrine events within the hypothalamus that initiate pulsatile secretion of gonadotropin releasing hormone (GnRH) to activate the pituitary/gonadal axis. Thus, puberty is critically dependent on the integrity of GnRH neuronal activity. Defects in the migration of GnRH neurons into the forebrain during development or in GnRH synthesis or release prevent pubertal maturation of the reproductive axis. Both naturally occurring and genetically modified mutant mice have provided valuable information about the cellular and molecular events required for normal pubertal development. This review focuses specifically on the molecules that have been identified from studies in mutant mice that act centrally to control entry into puberty.
Collapse
Affiliation(s)
- William H Colledge
- Reproductive Physiology Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | |
Collapse
|
95
|
Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev 2010; 31:544-77. [PMID: 20237240 PMCID: PMC3365847 DOI: 10.1210/er.2009-0023] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 02/18/2010] [Indexed: 12/14/2022]
Abstract
Ovarian steroids normally exert homeostatic negative feedback on GnRH release. During sustained exposure to elevated estradiol in the late follicular phase of the reproductive cycle, however, the feedback action of estradiol switches to positive, inducing a surge of GnRH release from the brain, which signals the pituitary LH surge that triggers ovulation. In rodents, this switch appears dependent on a circadian signal that times the surge to a specific time of day (e.g., late afternoon in nocturnal species). Although the precise nature of this daily signal and the mechanism of the switch from negative to positive feedback have remained elusive, work in the past decade has provided much insight into the role of circadian/diurnal and estradiol-dependent signals in GnRH/LH surge regulation and timing. Here we review the current knowledge of the neurobiology of the GnRH surge, in particular the actions of estradiol on GnRH neurons and their synaptic afferents, the regulation of GnRH neurons by fast synaptic transmission mediated by the neurotransmitters gamma-aminobutyric acid and glutamate, and the host of excitatory and inhibitory neuromodulators including kisspeptin, vasoactive intestinal polypeptide, catecholamines, neurokinin B, and RFamide-related peptides, that appear essential for GnRH surge regulation, and ultimately ovulation and fertility.
Collapse
Affiliation(s)
- Catherine A Christian
- Departments of Medicine and Cell Biology, University of Virginia, Charlottesville, 22908, USA.
| | | |
Collapse
|
96
|
Bhattarai JP, Kaszás A, Park SA, Yin H, Park SJ, Herbison AE, Han SK, Abrahám IM. Somatostatin inhibition of gonadotropin-releasing hormone neurons in female and male mice. Endocrinology 2010; 151:3258-66. [PMID: 20410192 DOI: 10.1210/en.2010-0148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous studies indicate that somatostatin regulates gonadotropin secretion. We investigated here whether somatostatin has direct effects on GnRH neurons in the adult male and female mice. Dual-labeling immunofluorescence experiments revealed the presence of somatostatin-immunoreactive fibers adjacent to GnRH neurons, and three-dimensional confocal reconstructions demonstrated apparent somatostatin fiber appositions with 50-60% of GnRH neurons located throughout the brain in both male and female mice. Perforated patch-clamp recordings from GnRH-green fluorescent protein neurons revealed that approximately 70% of GnRH neurons responded in a dose-dependent manner to 10-300 nm somatostatin with an acute membrane hyperpolarization and cessation of firing. This effect persisted in the presence of tetrodotoxin and amino acid receptor antagonists, indicating a direct postsynaptic site of action on the GnRH neuron. The identity of the somatostatin receptors underlying this action was assessed using GnRH neuron single-cell RT-PCR. Of the somatostatin receptor subtypes, the sstr2 transcript was the most prevalent and detected in both males and females. The expression of sstr2 by GnRH neurons was confirmed in the sstr2 knockout/LacZ knock-in mouse line. Electrophysiological studies demonstrated that the sstr2-selective agonist seglitide exerted acute hyperpolarizing actions on GnRH neurons identical to those of somatostatin. Together, these studies reveal somatostatin, acting through sstr2, to be one of the most potent inhibitors of electrical excitability of male and female GnRH neurons identified thus far.
Collapse
Affiliation(s)
- Janardhan P Bhattarai
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Duck-jin dong, Duck-jin Ku, Jeonju, 561-756, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Altered GABAA receptor-mediated synaptic transmission disrupts the firing of gonadotropin-releasing hormone neurons in male mice under conditions that mimic steroid abuse. J Neurosci 2010; 30:6497-506. [PMID: 20463213 DOI: 10.1523/jneurosci.5383-09.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the central regulators of reproduction. GABAergic transmission plays a critical role in pubertal activation of pulsatile GnRH secretion. Self-administration of excessive doses of anabolic androgenic steroids (AAS) disrupts reproductive function and may have critical repercussions for pubertal onset in adolescent users. Here, we demonstrate that chronic treatment of adolescent male mice with the AAS 17alpha-methyltestosterone significantly decreased action potential frequency in GnRH neurons, reduced the serum gonadotropin levels, and decreased testes mass. AAS treatment did not induce significant changes in GABAA receptor subunit mRNA levels or alter the amplitude or decay kinetics of GABAA receptor-mediated spontaneous postsynaptic currents (sPSCs) or tonic currents in GnRH neurons. However, AAS treatment significantly increased action potential frequency in neighboring medial preoptic area (mPOA) neurons and GABAA receptor-mediated sPSC frequency in GnRH neurons. In addition, physical isolation of the more lateral aspects of the mPOA from the medially localized GnRH neurons abrogated the AAS-induced increase in GABAA receptor-mediated sPSC frequency and the decrease in action potential firing in the GnRH cells. Our results indicate that AAS act predominantly on steroid-sensitive presynaptic neurons within the mPOA to impart significant increases in GABAA receptor-mediated inhibitory tone onto downstream GnRH neurons, resulting in diminished activity of these pivotal mediators of reproductive function. These AAS-induced changes in central GABAergic circuits of the forebrain may significantly contribute to the disruptive actions of these drugs on pubertal maturation and the development of reproductive competence in male steroid abusers.
Collapse
|
98
|
Klenke U, Constantin S, Wray S. Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors. Endocrinology 2010; 151:2736-46. [PMID: 20351316 PMCID: PMC2875836 DOI: 10.1210/en.2009-1198] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY), a member of the pancreatic polypeptide family, is an orexigenic hormone. GnRH-1 neurons express NPY receptors. This suggests a direct link between metabolic function and reproduction. However, the effect of NPY on GnRH-1 cells has been variable, dependent on metabolic and reproductive status of the animal. This study circumvents these issues by examining the role of NPY on GnRH-1 neuronal activity in an explant model that is based on the extra-central nervous system origin of GnRH-1 neurons. These prenatal GnRH-1 neurons express many receptors found in GnRH-1 neurons in the brain and use similar transduction pathways. In addition, these GnRH-1 cells exhibit spontaneous and ligand-induced oscillations in intracellular calcium as well as pulsatile calcium-controlled GnRH-1 release. Single-cell PCR determined that prenatal GnRH-1 neurons express the G protein-coupled Y1 receptor (Y1R). To address the influence of NPY on GnRH-1 neuronal activity, calcium imaging was used to monitor individual and population dynamics. NPY treatment, mimicked with Y1R agonist, significantly decreased the number of calcium peaks per minute in GnRH-1 neurons and was prevented by a Y1R antagonist. Pertussis toxin blocked the effect of NPY on GnRH-1 neuronal activity, indicating the coupling of Y1R to inhibitory G protein. The NPY-induced inhibition was independent of the adenylate cyclase pathway but mediated by the activation of G protein-coupled inwardly rectifying potassium channels. These results indicate that at an early developmental stage, GnRH-1 neuronal activity can be directly inhibited by NPY via its Y1R.
Collapse
Affiliation(s)
- Ulrike Klenke
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
99
|
Krajewski SJ, Burke MC, Anderson MJ, McMullen NT, Rance NE. Forebrain projections of arcuate neurokinin B neurons demonstrated by anterograde tract-tracing and monosodium glutamate lesions in the rat. Neuroscience 2010; 166:680-97. [PMID: 20038444 PMCID: PMC2823949 DOI: 10.1016/j.neuroscience.2009.12.053] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/08/2009] [Accepted: 12/21/2009] [Indexed: 11/19/2022]
Abstract
Neurokinin B (NKB) and kisspeptin receptor signaling are essential components of the reproductive axis. A population of neurons resides within the arcuate nucleus of the rat that expresses NKB, kisspeptin, dynorphin, NK3 receptors and estrogen receptor alpha (ERalpha). Here we investigate the projections of these neurons using NKB-immunocytochemistry as a marker. First, the loss of NKB-immunoreactive (ir) somata and fibers was characterized after ablation of the arcuate nucleus by neonatal injections of monosodium glutamate. Second, biotinylated dextran amine was injected into the arcuate nucleus and anterogradely labeled NKB-ir fibers were identified using dual-labeled immunofluorescence. Four major projection pathways are described: (1) local projections within the arcuate nucleus bilaterally, (2) projections to the median eminence including the lateral palisade zone, (3) projections to a periventricular pathway extending rostrally to multiple hypothalamic nuclei, the septal region and BNST and dorsally to the dorsomedial nucleus and (4) Projections to a ventral hypothalamic tract to the lateral hypothalamus and medial forebrain bundle. The diverse projections provide evidence that NKB/kisspeptin/dynorphin neurons could integrate the reproductive axis with multiple homeostatic, behavioral and neuroendocrine processes. Interestingly, anterograde tract-tracing revealed NKB-ir axons originating from arcuate neurons terminating on other NKB-ir somata within the arcuate nucleus. Combined with previous studies, these experiments reveal a bilateral interconnected network of sex-steroid responsive neurons in the arcuate nucleus of the rat that express NKB, kisspeptin, dynorphin, NK3 receptors and ERalpha and project to GnRH terminals in the median eminence. This circuitry provides a mechanism for bilateral synchronization of arcuate NKB/kisspeptin/dynorphin neurons to modulate the pulsatile secretion of GnRH.
Collapse
Affiliation(s)
- Sally J. Krajewski
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ USA
| | - Michelle C. Burke
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ USA
| | - Miranda J. Anderson
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ USA
| | - Nathaniel T. McMullen
- Department of Cell Biology and Anatomy, University of Arizona College of Medicine, Tucson, AZ USA
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ USA
| | - Naomi E. Rance
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ USA
- Department of Cell Biology and Anatomy, University of Arizona College of Medicine, Tucson, AZ USA
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ USA
- Evelyn F. McKnight Brain Institute, University of Arizona College of Medicine, Tucson, AZ USA
| |
Collapse
|
100
|
Han SK, Lee K, Bhattarai JP, Herbison AE. Gonadotrophin-releasing hormone (GnRH) exerts stimulatory effects on GnRH neurons in intact adult male and female mice. J Neuroendocrinol 2010; 22:188-95. [PMID: 20041983 DOI: 10.1111/j.1365-2826.2009.01950.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There is substantial evidence for a role of the neuropeptide gonadotrophin-releasing hormone (GnRH) in the regulation of GnRH neurone secretion but how this is achieved is not understood. We examined here the effects of GnRH on the electrical excitability and intracellular calcium concentration ([Ca2+](i)) of GnRH neurones in intact adult male and female mice. Perforated-patch electrophysiological recordings from GnRH-green fluorescent protein-tagged GnRH neurones revealed that 3 nm-3 mum GnRH evoked gradual approximately 3 mV depolarisations in membrane potential from up to 50% of GnRH neurones in male and female mice. The depolarising effect of GnRH was observed on approximately 50% of GnRH neurones throughout the oestrous cycle. However, at pro-oestrus alone, GnRH was also found to transiently hyperpolarise approximately 30% of GnRH neurones. Both hyperpolarising and depolarising responses were maintained in the presence of tetrodotoxin. Calcium imaging studies undertaken in transgenic GnRH-pericam mice showed that GnRH suppressed [Ca2+](i) in approximately 50% of GnRH neurones in dioestrous and oestrous mice. At pro-oestrus, 25% of GnRH neurones exhibited a suppressive [Ca2+](i) response to GnRH, whereas 17% were stimulated. These results demonstrate that nm to mum concentrations of GnRH exert depolarising actions on approximately 50% of GnRH neurones in males and females throughout the oestrous cycle. This is associated with a reduction in [Ca2+](i). At pro-oestrus, however, a further population of GnRH neurones exhibit a hyperpolarising response to GnRH. Taken together, these studies indicate that GnRH acts predominantly as a neuromodulator at the level of the GnRH cell bodies to exert a predominant excitatory influence upon GnRH neurones in intact adult male and female mice.
Collapse
Affiliation(s)
- S-K Han
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry and BK21 program, Chonbuk National University, Jeonju, South Korea
| | | | | | | |
Collapse
|