51
|
van den Hoek TC, Perenboom MJL, Terwindt GM, Tolner EA, van de Ruit M. Bi-sinusoidal light stimulation reveals an enhanced response power and reduced phase coherence at the visual cortex in migraine. Front Neurol 2024; 14:1274059. [PMID: 38348113 PMCID: PMC10860712 DOI: 10.3389/fneur.2023.1274059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction Migraine is associated with enhanced visual sensitivity during and outside attacks. Processing of visual information is a highly non-linear process involving complex interactions across (sub)cortical networks. In this exploratory study, we combined electroencephalography with bi-sinusoidal light stimulation to assess non-linear features of visual processing in participants with migraine. Methods Twenty participants with migraine (10 with aura, 10 without aura) and ten non-headache controls were measured (outside attacks). Participants received bi-sinusoidal 13 + 23 Hz red light visual stimulation. Electroencephalography spectral power and multi-spectral phase coherence were compared between groups at the driving stimulation frequencies together with multiples and combinations of these frequencies (harmonic and intermodulation frequencies) caused by non-linearities. Results Only at the driving frequency of 13 Hz higher spectral power was found in migraine with aura participants compared with those with migraine without aura and controls. Differences in phase coherence were present for 2nd, 4th, and 5th-order non-linearities in those with migraine (migraine with and without aura) compared with controls. Bi-sinusoidal light stimulation revealed evident non-linearities in the brain's electroencephalography response up to the 5th order with reduced phase coherence for higher order interactions in interictal participants with migraine. Discussion Insight into interictal non-linear visual processing may help understand brain dynamics underlying migraine attack susceptibility. Future research is needed to determine the clinical value of the results.
Collapse
Affiliation(s)
| | | | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Else A. Tolner
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Mark van de Ruit
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
52
|
Sudershan A, Sudershan S, Sharma I, Kumar H, Panjaliya RK, Kumar P. Role of TNF -α in the Pathogenesis of Migraine. Pain Res Manag 2024; 2024:1377143. [PMID: 38213956 PMCID: PMC10781531 DOI: 10.1155/2024/1377143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/12/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024]
Abstract
Background Neurogenic neuroinflammation has a wide role in migraine pathogenesis including the transition from episodic migraine to chronic one. The seed molecule of neurogenic neuroinflammation, i.e., the TNF-α proinflammatory molecule, has gathered a lot of attention. This pleiotropic cytokine is a classical component of inflammatory soup, secreted by the microglial cell, and promotes a wide range of inflammatory reactions. Aim In this review, we aimed to provide a culminating and comprehending glimpse into the TNF-α in association with the migraine. Method A systematic literature survey method with a mixture of keywords was utilized to grasp the different elements that represent the association between TNF-α and migraine. Discussion. Highlighted the probable involvement of the TNF-α with migraine, the complexity of the matter such as activation of NF-KB signaling cascade, autoactivation, sensitization, and increased likelihood of transition cannot be neglected. Being TNF-α as a core node, it becomes the factor for linking diseases such as chronic inflammatory disorders, including COVID-19, and also interaction with other genes to develop severe conditions. Conclusion To this end, TNF-α plays a critical role in chronification, and inhibiting its signaling would likely be a crucial strategy for migraine therapy.
Collapse
Affiliation(s)
- Amrit Sudershan
- Department of Human Genetics, Sri Pratap College Srinagar, Cluster University Srinagar, Srinagar 190001, Jammu and Kashmir, India
- Institute of Human Genetics, University of Jammu, Jammu 180006, Jammu & Kashmir, India
| | - Srishty Sudershan
- Department of Zoology, University of Jammu, Jammu 180006, Jammu & Kashmir, India
| | - Isha Sharma
- Institute of Human Genetics, University of Jammu, Jammu 180006, Jammu & Kashmir, India
- Department of Zoology, University of Jammu, Jammu 180006, Jammu & Kashmir, India
| | - Hardeep Kumar
- Department of Neurology, Super Specialty Hospital, Jammu 180006, Jammu and Kashmir, India
| | - Rakesh K. Panjaliya
- Department of Zoology, University of Jammu, Jammu 180006, Jammu & Kashmir, India
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu 180006, Jammu & Kashmir, India
- Department of Zoology, University of Jammu, Jammu 180006, Jammu & Kashmir, India
| |
Collapse
|
53
|
Powell K, Lin K, Tambo W, Saavedra AP, Sciubba D, Al Abed Y, Li C. Trigeminal nerve stimulation: a current state-of-the-art review. Bioelectron Med 2023; 9:30. [PMID: 38087375 PMCID: PMC10717521 DOI: 10.1186/s42234-023-00128-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 09/26/2024] Open
Abstract
Nearly 5 decades ago, the effect of trigeminal nerve stimulation (TNS) on cerebral blood flow was observed for the first time. This implication directly led to further investigations and TNS' success as a therapeutic intervention. Possessing unique connections with key brain and brainstem regions, TNS has been observed to modulate cerebral vasodilation, brain metabolism, cerebral autoregulation, cerebral and systemic inflammation, and the autonomic nervous system. The unique range of effects make it a prime therapeutic modality and have led to its clinical usage in chronic conditions such as migraine, prolonged disorders of consciousness, and depression. This review aims to present a comprehensive overview of TNS research and its broader therapeutic potentialities. For the purpose of this review, PubMed and Google Scholar were searched from inception to August 28, 2023 to identify a total of 89 relevant studies, both clinical and pre-clinical. TNS harnesses the release of vasoactive neuropeptides, modulation of neurotransmission, and direct action upon the autonomic nervous system to generate a suite of powerful multitarget therapeutic effects. While TNS has been applied clinically to chronic pathological conditions, these powerful effects have recently shown great potential in a number of acute/traumatic pathologies. However, there are still key mechanistic and methodologic knowledge gaps to be solved to make TNS a viable therapeutic option in wider clinical settings. These include bimodal or paradoxical effects and mechanisms, questions regarding its safety in acute/traumatic conditions, the development of more selective stimulation methods to avoid potential maladaptive effects, and its connection to the diving reflex, a trigeminally-mediated protective endogenous reflex. The address of these questions could overcome the current limitations and allow TNS to be applied therapeutically to an innumerable number of pathologies, such that it now stands at the precipice of becoming a ground-breaking therapeutic modality.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Emory University, Atlanta, GA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Daniel Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al Abed
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
54
|
Kim SJ, Yeo JH, Yoon SY, Roh DH. GV16 acupoint stimulation with bee venom reduces peripheral hypersensitivity via activation of α2 adrenoceptors in a nitroglycerin-induced migraine mouse model. Integr Med Res 2023; 12:100999. [PMID: 37953754 PMCID: PMC10638029 DOI: 10.1016/j.imr.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/23/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Background Peripheral hypersensitivities develop in the face and hindpaws of mice with nitroglycerin (NTG)-induced migraine. We evaluated whether diluted bee venom (DBV) injections at acupoints prevented these peripheral hypersensitivities and c-Fos expression in the trigeminal nucleus caudalis (TNC). Methods NTG (10 mg/kg, intraperitoneal, i.p.) was administered every other day for nine days. DBV (0.1 mg/kg) was subcutaneously injected into the ST36 (Zusanli), LI4 (Hegu), or GV16 (Fengfu) acupoints 75 min after each NTG injection. Mice were pretreated with naloxone (5 mg/kg, i.p.) or yohimbine (5 mg/kg, i.p.) 30 min before the DBV injections. Results NTG injection caused facial cold allodynia, hindpaw mechanical allodynia, and increased c-Fos-immunoreactive (ir) cells in the TNC. Repetitive DBV injections at GV16, but not the ST36, or LI4 acupoints, suppressed NTG-induced hindpaw mechanical allodynia and facial cold allodynia. The number of c-Fos-ir cells also decreased in response to DBV injections at the GV16 acupoint. Remarkably, pretreatment with yohimbine reversed the anti-allodynic effects of DBV injections and attenuated the decreased c-Fos expression in response to GV16 DBV treatment. Naloxone did not block the effects of GV16 DBV stimulation. Conclusion These findings demonstrate that repetitive DBV treatment at the GV16 acupoint relieves NTG-induced facial and hindpaw hypersensitivities and decreases in c-Fos expression in the TNC via activation of the alpha-2 adrenoceptors, but not the opioid receptors.
Collapse
Affiliation(s)
- Sol-Ji Kim
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Hee Yeo
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seo-Yeon Yoon
- Department of Companion Animals, Yuhan University, Bucheon-si, Gyeonggi-do 14780, Republic of Korea
| | - Dae-Hyun Roh
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
55
|
Derbarsegian A, Adams SM, Phillips KM, Sedaghat AR. The Burden of Migraine on Quality of Life in Chronic Rhinosinusitis. Laryngoscope 2023; 133:3279-3284. [PMID: 36971228 DOI: 10.1002/lary.30662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE To determine the impact of comorbid migraine on quality of life (QOL) in chronic rhinosinusitis (CRS). METHODS A total of 213 adult patients with CRS were recruited. All participants completed the 22-item Sinonasal Outcome Test (SNOT-22), from which total and validated nasal, ear/facial pain, sleep, and emotional subdomain scores were calculated, and the 5-dimension EuroQol general health questionnaire (EQ-5D), from which the visual analogue scale (VAS) and health utility value (HUV) were calculated. The presence of comorbid migraine was determined by a score of ≥4 on the 5-item Migraine Screen Questionnaire (MS-Q). RESULTS Of the participants, 36.2% were screened positive for having comorbid migraine. The mean SNOT-22 score was 64.9 (SD: 18.7) in participants with migraine and 41.5 (SD: 21.1) in participants without migraine (p < 0.001). The mean EQ-5D VAS and HUV were 60.2 (SD: 21.9) and 0.69 (SD: 0.18), respectively, in participants with migraine and 71.4 (SD: 19.4) and 0.84 (SD: 0.13), respectively, in participants without migraine (p < 0.001 for both). Higher ear/facial pain (OR = 1.22, 95% CI: 1.10-1.36, p < 0.001) and sleep (OR = 1.11, 95% CI: 1.04-1.18, p = 0.002) SNOT-22 subdomain scores were positively associated with migraine. The SNOT-22 item scores related to dizziness, reduced concentration, and facial pain, in descending order, were most associated with migraine. The presence of nasal polyps (OR = 0.24, 95% CI: 0.07 - 0.80, p = 0.020) was negatively associated with migraine. CONCLUSION Comorbid migraine may be relatively common amongst CRS patients, and its presence is associated with significantly worse QOL. Dizziness as a symptom in CRS patients may be particularly indicative of migraine. LEVEL OF EVIDENCE 3 Laryngoscope, 133:3279-3284, 2023.
Collapse
Affiliation(s)
- Armo Derbarsegian
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, U.S.A
| | - Sarah M Adams
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, U.S.A
| | - Katie M Phillips
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, U.S.A
| | - Ahmad R Sedaghat
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, U.S.A
| |
Collapse
|
56
|
Abstract
Targeting CGRP-pathways has substantially expanded our options for treating individuals with migraine. Although the efficacy of these drugs on migraine aura is yet to be fully revealed, it seems from existing studies that CGRP antagonism reduces the number of migraine auras. The present perspective summarizes the evidence linking CGRP to the migraine aura and proposes a model by which targeting the CGRP-pathways and, thus, inhibition the interaction between C- and Aδ-trigeminal fibers might reverse a possible high cortical glutamate level leading to a reduced number of migraine auras.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
57
|
Liu Y, Wu D. Bi-directional nasal drug delivery systems: A scoping review of nasal particle deposition patterns and clinical application. Laryngoscope Investig Otolaryngol 2023; 8:1484-1499. [PMID: 38130248 PMCID: PMC10731484 DOI: 10.1002/lio2.1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Objectives To compare the deposition patterns within the nasal cavity between the bi-directional and unilateral nasal delivery systems. And to summarize the clinical application of the bi-directional nasal drug delivery devices. Data source PubMed, Cochrane Library, Embase, and Web of Science databases. Methods A scoping review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). We included studies exploring patterns and influencing factors of particle depositions within the nasal cavity among patients, healthy controls, and nose cast models using the bi-directional and unilateral nasal delivery system. The clinical application of the bi-directional delivery devices was also summarized. Results A total of 24 studies were included in this review. Bi-directional nasal delivery systems utilize forced exhalation to power the delivery of drugs to deeper areas of the nasal cavity and paranasal sinuses. Unilateral nasal delivery systems included traditional liquid spray pumps, the aerosol mask system, nebulization, and conventional nasal inhalation. Compared with unilateral delivery systems, the bi-directional nasal delivery system provided a more extensive and efficient nasal deposition in the nasal cavity, especially in the olfactory cleft, without lung deposition. Several parameters, including particle size, pulsatile flow, and nasal geometry, could significantly influence nasal deposition. The bi-directional nasal delivery system enables better delivery of steroids or sumatriptan to the sinonasal cavity's high and deep target sites. This bi-directional delivery device demonstrated an effective and well-tolerated treatment that produced high drug utilization, rapid absorption, and sustained symptom improvement among patients with chronic rhinosinusitis (CRS) or migraine. Conclusion The bi-directional nasal drug delivery systems demonstrated significantly higher drug deposition in superior and posterior regions of the nasal cavity than unilateral nasal delivery systems. Further studies should explore its potential role in delivering drugs to the olfactory cleft among patients with olfactory disorders and central nervous system diseases. Level of evidence N/A.
Collapse
Affiliation(s)
- Yuxing Liu
- Department of Otolaryngology‐Head and Neck SurgeryPeking University Third HospitalBeijingPR China
- Department of MedicinePeking UniversityBeijingPR China
| | - Dawei Wu
- Department of Otolaryngology‐Head and Neck SurgeryPeking University Third HospitalBeijingPR China
| |
Collapse
|
58
|
Kim SJ, Yang K, Kim D. Quantitative electroencephalography as a potential biomarker in migraine. Brain Behav 2023; 13:e3282. [PMID: 37815172 PMCID: PMC10726885 DOI: 10.1002/brb3.3282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the utility of quantitative electroencephalography (QEEG) as a diagnostic tool for migraine and as an indicator of treatment response by comparing QEEG characteristics between migraine patients and controls, and monitoring changes in these characteristics alongside clinical symptoms in response to treatment BACKGROUND: We hypothesized that patients with migraine exhibit distinctive characteristics in QEEG measurements, which could be used as potential diagnostic biomarkers and as a tool for monitoring treatment response. METHODS A total of 720 patients were included in the study, comprising 619 patients with migraine and 101 subjects as a control group. QEEG measurements were analyzed for absolute power across specific frequency bands: delta wave (0.5-4 Hz), theta wave (4-8 Hz), alpha wave (8-12 Hz), beta wave (12-25 Hz), and high beta wave (25-30 Hz). The absolute power was normalized against a normative dataset from NeuroGuide, with electrodes being highlighted for significance if they exceeded 1.96. Clinical symptoms were also monitored for correlation with QEEG changes. RESULTS Our analysis showed that patients with migraine exhibited significantly higher absolute power across all frequencies, most markedly within the high beta frequency range. When considering electrodes with z-scores exceeding the threshold of 1.96 in the high beta range, a significant association with migraine diagnosis was observed (per 1 electrode increase, OR 1.06; 95% CI 1.01-1.11; p = .012). Moreover, pre- and posttreatment changes in QEEG measurements corresponded with changes in clinical symptoms. CONCLUSION Patients with migraine have distinctive QEEG measurements, particularly regarding absolute power and the number of electrodes that surpassed the z-score threshold in high beta wave activity. These findings suggest the potential of QEEG as a diagnostic biomarker and as a tool for monitoring treatment response in migraine patients, warranting further large-scale studies for confirmation and expansion.
Collapse
Affiliation(s)
- Suk Jae Kim
- Samsung Smart Neurology ClinicCheonanChungcheongnam‐doSouth Korea
| | - Kyungjin Yang
- PE Research Lab, SK Hynix Inc.IcheonGyeonggi‐doSouth Korea
| | - Daeyoung Kim
- Department of NeurologyChungnam National University College of Medicine, Chungnam National University HospitalDaejeonSouth Korea
| |
Collapse
|
59
|
Lipton RB, Buse DC, Nahas SJ, Tietjen GE, Martin VT, Löf E, Brevig T, Cady R, Diener HC. Risk factors for migraine disease progression: a narrative review for a patient-centered approach. J Neurol 2023; 270:5692-5710. [PMID: 37615752 PMCID: PMC10632231 DOI: 10.1007/s00415-023-11880-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND In individuals with migraine, attacks may increase in frequency, severity, or both. Preventing migraine progression has emerged as a treatment goal in headache subspecialty practice, but there may be less awareness in general neurology or primary care settings where most people with migraine who seek treatment consult. Herein, we review the definition of and risk factors for migraine progression and consider strategies that could reduce its risk. METHODS A group of headache expert healthcare professionals, clinicians, and researchers reviewed published evidence documenting factors associated with increased or decreased rates of migraine progression and established expert opinions for disease management recommendations. Strength of evidence was rated as good, moderate, or based solely on expert opinion, using modified criteria for causation developed by AB Hill. RESULTS Migraine progression is commonly operationally defined as the transition from ≤ 15 to ≥ 15 monthly headache days among people with migraine; however, this does not necessarily constitute a fundamental change in migraine biology and other definitions should be considered. Established and theoretical key risk factors for migraine progression were categorized into five domains: migraine disease characteristics, treatment-related factors, comorbidities, lifestyle/exogenous factors, and demographic factors. Within these domains, good evidence supports the following risk factors: poorly optimized acute headache treatment, cutaneous allodynia, acute medication overuse, selected psychiatric symptoms, extra-cephalic chronic pain conditions, metabolism-related comorbidities, sleep disturbances, respiratory conditions, former/current high caffeine intake, physical inactivity, financial constraints, tobacco use, and personal triggers as risk factors. Protective actions that may mitigate migraine progression are sparsely investigated in published literature; our discussion of these factors is primarily based on expert opinion. CONCLUSIONS Recognizing risk factors for migraine progression will allow healthcare providers to suggest protective actions against migraine progression (Supplementary Fig. 1). Intervention studies are needed to weight the risk factors and test the clinical benefit of hypothesized mitigation strategies that emerge from epidemiological evidence.
Collapse
Affiliation(s)
- Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dawn C Buse
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Vector Psychometric Group, LLC, Chapel Hill, NC, USA
| | - Stephanie J Nahas
- Department of Neurology, Thomas Jefferson University, Jefferson Headache Center, Philadelphia, PA, USA
| | - Gretchen E Tietjen
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Vincent T Martin
- University of Cincinnati Headache and Facial Pain Center, Cincinnati, OH, USA
| | - Elin Löf
- H. Lundbeck A/S, Copenhagen, Denmark
| | | | - Roger Cady
- Lundbeck LLC, Deerfield, IL, USA
- RK Consults, Ozark, MO, USA
- Missouri State University, Springfield, MO, USA
| | - Hans-Christoph Diener
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
60
|
Spekker E, Nagy-Grócz G, Vécsei L. Ion Channel Disturbances in Migraine Headache: Exploring the Potential Role of the Kynurenine System in the Context of the Trigeminovascular System. Int J Mol Sci 2023; 24:16574. [PMID: 38068897 PMCID: PMC10706278 DOI: 10.3390/ijms242316574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Migraine is a primary headache disorder, which is an enormous burden to the healthcare system. While some aspects of the pathomechanism of migraines remain unknown, the most accepted theory is that activation and sensitization of the trigeminovascular system are essential during migraine attacks. In recent decades, it has been suggested that ion channels may be important participants in the pathogenesis of migraine. Numerous ion channels are expressed in the peripheral and central nervous systems, including the trigeminovascular system, affecting neuron excitability, synaptic energy homeostasis, inflammatory signaling, and pain sensation. Dysfunction of ion channels could result in neuronal excitability and peripheral or central sensitization. This narrative review covers the current understanding of the biological mechanisms leading to activation and sensitization of the trigeminovascular pain pathway, with a focus on recent findings on ion channel activation and modulation. Furthermore, we focus on the kynurenine pathway since this system contains kynurenic acid, which is an endogenous glutamate receptor antagonist substance, and it has a role in migraine pathophysiology.
Collapse
Affiliation(s)
| | - Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, H-6726 Szeged, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
61
|
de Lahoz ME, Barjola P, Peláez I, Ferrera D, Fernandes-Magalhaes R, Mercado F. Unveiling the Role of Contingent Negative Variation (CNV) in Migraine: A Review of Electrophysiological Studies in Adults and Children. Biomedicines 2023; 11:3030. [PMID: 38002030 PMCID: PMC10669837 DOI: 10.3390/biomedicines11113030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Migraine has been considered a chronic neuronal-based pain disorder characterized by the presence of cortical hyperexcitability. The Contingent Negative Variation (CNV) is the most explored electrophysiological index in migraine. However, the findings show inconsistencies regarding its functional significance. To address this, we conducted a review in both adults and children with migraine without aura to gain a deeper understanding of it and to derive clinical implications. The literature search was conducted in the PubMed, SCOPUS and PsycINFO databases until September 2022m and 34 articles were retrieved and considered relevant for further analysis. The main results in adults showed higher CNV amplitudes (with no habituation) in migraine patients. Electrophysiological abnormalities, particularly focused on the early CNV subcomponent (eCNV), were especially prominent a few days before the onset of a migraine attack, normalizing during and after the attack. We also explored various modulatory factors, including pharmacological treatments-CNV amplitude was lower after the intake of drugs targeting neural hyperexcitability-and other factors such as psychological, hormonal or genetic/familial influences on CNV. Although similar patterns were found in children, the evidence is particularly scarce and less consistent, likely due to the brain's maturation process during childhood. As the first review exploring the relationship between CNV and migraine, this study supports the role of the CNV as a potential neural marker for migraine pathophysiology and the prediction of pain attacks. The importance of further exploring the relationship between this neurophysiological index and childhood migraine is critical for identifying potential therapeutic targets for managing migraine symptoms during its development.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco Mercado
- Department of Psychology, School of Health Sciences, Universidad Rey Juan Carlos, 28922 Madrid, Spain; (M.E.d.L.); (P.B.); (I.P.); (D.F.); (R.F.-M.)
| |
Collapse
|
62
|
Shafique U, Din FU, Sohail S, Batool S, Almari AH, Lahiq AA, Fatease AA, Alharbi HM. Quality by design for sumatriptan loaded nano-ethosomal mucoadhesive gel for the therapeutic management of nitroglycerin induced migraine. Int J Pharm 2023; 646:123480. [PMID: 37797784 DOI: 10.1016/j.ijpharm.2023.123480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Migraine is a progressive neurological condition often accompanied by nausea and vomiting. Various drugs have recently been used in the treatment of migraine, including sumatriptan (SUT). However, SUT has poor pharmacological effects mainly due to its reduced permeability, blood brain barrier (BBB) effect, half-life and bioavailability. Herein, we developed SUT loaded nano-ethosomes (SUT-NEs) for intranasal (IN) delivery, after their incorporation into chitosan based mucoadhesive gel (SUT-NEsG). The observed mean particle size of SUT-NEs was 109.45 ± 4.03 nm with spherical morphology, mono dispersion (0.191 ± 0.001), negatively charged (-20.90 ± 1.98 mV) and with excellent entrapment efficiency (96.90 ± 1.85 %). Fourier-transform infrared (FTIR) spectra have depicted the compatibility of the components. Moreover, SUT-NEsG was homogeneous having suitable viscosity and mucoadhesive strength. In vitro release and ex vivo permeation analysis showed sustained release and improved permeation of the SUT-NEsG, respectively. Additionally, histopathological studies of nasal membrane affirmed the safety of SUT-NEsG after IN application. In vivo pharmacokinetic study demonstrated improved brain bioavailability of SUT-NEsG as compared to orally administered sumatriptan solution (SUT-SL). Furthermore, significantly enhanced pharmacological effect of SUT-NEsG was observed in behavioral and biochemical analysis, immunohistochemistry for NF-κB, and enzyme linked immuno assay (ELISA) for IL-1β and TNF-α in Nitroglycerin (NTG) induced migraine model. It can be concluded that migraine may be successfully managed through IN application of SUT-NEsG owing to the direct targeted delivery to the brain.
Collapse
Affiliation(s)
- Uswa Shafique
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | - Saba Sohail
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Ali H Almari
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ahmed A Lahiq
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66262, Saudi Arabi
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Hanan M Alharbi
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
63
|
Rudolph M, Kopruszinski C, Wu C, Navratilova E, Schwedt TJ, Dodick DW, Porreca F, Anderson T. Identification of brain areas in mice with peak neural activity across the acute and persistent phases of post-traumatic headache. Cephalalgia 2023; 43:3331024231217469. [PMID: 38016977 PMCID: PMC11149587 DOI: 10.1177/03331024231217469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Post-traumatic headache is very common after a mild traumatic brain injury. Post-traumatic headache may persist for months to years after an injury in a substantial proportion of people. The pathophysiology underlying post-traumatic headache remains unknown but is likely distinct from other headache disorders. Identification of brain areas activated in acute and persistent phases of post-traumatic headache can provide insights into the underlying circuits mediating headache pain. We used an animal model of mild traumatic brain injury-induced post-traumatic headache and c-fos immunohistochemistry to identify brain regions with peak activity levels across the acute and persistent phases of post-traumatic headache. METHODS Male and female C57BL/6 J mice were briefly anesthetized and subjected to a sham procedure or a weight drop closed-head mild traumatic brain injury . Cutaneous allodynia was assessed in the periorbital and hindpaw regions using von Frey filaments. Immunohistochemical c-fos based neural activity mapping was then performed on sections from whole brain across the development of post-traumatic headache (i.e. peak of the acute phase at 2 days post- mild traumatic brain injury), start of the persistent phase (i.e. >14 days post-mild traumatic brain injury) or after provocation with stress (bright light). Brain areas with consistent and peak levels of c-fos expression across mild traumatic brain injury induced post-traumatic headache were identified and included for further analysis. RESULTS Following mild traumatic brain injury, periorbital and hindpaw allodynia was observed in both male and female mice. This allodynia was transient and subsided within the first 14 days post-mild traumatic brain injury and is representative of acute post-traumatic headache. After this acute post-traumatic headache phase, exposure of mild traumatic brain injury mice to a bright light stress reinstated periorbital and hindpaw allodynia for several hours - indicative of the development of persistent post-traumatic headache. Acute post-traumatic headache was coincident with an increase in neuronal c-fos labeling in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and the nucleus accumbens. Neuronal activation returned to baseline levels by the persistent post-traumatic headache phase in the spinal nucleus of the trigeminal caudalis and primary somatosensory cortex but remained elevated in the nucleus accumbens. In the persistent post-traumatic headache phase, coincident with allodynia observed following bright light stress, we observed bright light stress-induced c-fos neural activation in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens. CONCLUSION Examination of mild traumatic brain injury-induced changes in peak c-fos expression revealed brain regions with significantly increased neural activity across the acute and persistent phases of post-traumatic headache. Our findings suggest mild traumatic brain injury-induced post-traumatic headache produces neural activation along pain relevant pathways at time-points matching post-traumatic headache-like pain behaviors. These observations suggest that the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens may contribute to both the induction and maintenance of post-traumatic headache.
Collapse
Affiliation(s)
- Megan Rudolph
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Caroline Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Chen Wu
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Neurology, Mayo Clinic, Phoenix, USA
| | | | - David W Dodick
- Mayo Clinic College of Medicine, Scottsdale, Arizona, USA
- Atria Academy of Science and Medicine, New York City, New York, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Trent Anderson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
64
|
Merli E, Rustici A, Gramegna LL, Di Donato M, Agati R, Tonon C, Lodi R, Favoni V, Pierangeli G, Cortelli P, Cevoli S, Cirillo L. Vessel-wall MRI in primary headaches: The role of neurogenic inflammation. Headache 2023; 63:1372-1379. [PMID: 35137395 DOI: 10.1111/head.14253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate if vessel-wall magnetic resonance imaging (VW-MRI) could differentiate among primary headaches disorders, such as migraine and cluster headache (CH), and detect the presence of neurogenic inflammation. BACKGROUND The pathophysiology of primary headaches disorders is complex and not completely clarified. The activation of nociceptive trigeminal afferents through the release of vasoactive neuropeptides, termed "neurogenic inflammation," has been hypothesized. VW-MRI can identify vessel wall changes, reflecting the inflammatory remodeling of the vessel walls despite different etiologies. METHODS In this case series, we enrolled seven patients with migraine and eight patients with CH. They underwent a VW-MRI study before and after the intravenous administration of contrast medium, during and outside a migraine attack or cluster period. Two expert neuroradiologists analyzed the magnetic resonance imaging (MRI) studies to identify the presence of vessel wall enhancement or other vascular abnormalities. RESULTS Fourteen out of 15 patients had no enhancement. One out of 15, with migraine, showed a focal parietal enhancement in the intracranial portion of a vertebral artery, unmodified during and outside the attack, thus attributable to atherosclerosis. No contrast enhancement attributable to neurogenic inflammation was observed in VW-MRI, both during and outside the attack/cluster in all patients. Moreover, MRI angiography registered slight diffuse vasoconstriction in one of seven patients with migraine during the attack and in one of eight patients with cluster headache during the cluster period; both patients had taken triptans as symptomatic therapy for pain. CONCLUSIONS These preliminary results suggest that VW-MRI studies are negative in patients with primary headache disorders even during migraine attacks or cluster periods. The VW-MRI studies did not detect signs of neurogenic inflammation in the intracranial intradural vessels of patients with migraine or CH.
Collapse
Affiliation(s)
- Elena Merli
- UOC Neurologia e Rete Stroke metropolitana, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Arianna Rustici
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Laura Ludovica Gramegna
- Programma di Neuroimmagini Funzionali e Molecolari, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Di Donato
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Raffaele Agati
- Programma Neuroradiologia con Tecniche ad Elevata Complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Caterina Tonon
- Programma di Neuroimmagini Funzionali e Molecolari, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- Programma di Neuroimmagini Funzionali e Molecolari, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valentina Favoni
- UO Clinica Neurologica NeuroMet, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giulia Pierangeli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- UO Clinica Neurologica NeuroMet, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- UO Clinica Neurologica NeuroMet, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Cevoli
- UO Clinica Neurologica NeuroMet, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luigi Cirillo
- Programma di Neuroimmagini Funzionali e Molecolari, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Programma Neuroradiologia con Tecniche ad Elevata Complessità, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
65
|
Ioannidou E, Tsakiris C, Goulis DG, Christoforidis A, Zafeiriou D. The association of serum vitamin D concentrations in paediatric migraine. Eur J Paediatr Neurol 2023; 47:60-66. [PMID: 37738749 DOI: 10.1016/j.ejpn.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
INTRODUCTION Migraine is a neurologic condition characterized by hypersensitivity to auditory, olfactory, visual, and cutaneous stimuli; vomiting and nausea; and severe headache. It is the most frequent headache syndrome in children and can be categorized in chronic and/or episodic. Multiple dietary supplements have been inaugurated for the management of migraine, the most prevalent of which is vitamin D. BACKGROUND In recent years, vitamin D deficiency has been a global public health problem, with 30-80% of the worldwide population having vitamin D deficiency. The significant role of vitamin D in neurological disorders is underlined by its key role in the brain function of the central nervous system (CNS). Current approaches in paediatric neurology include nonsteroidal anti-inflammatory drugs (NSAID) for the treatment of paediatric migraine, among others. Vitamin D is one of the dietary factors that has been linked to migraine, however, this association has mostly been examined in the adult population. OBJECTIVE The aim of this study is to investigate the association between serum vitamin D and paediatric migraine by conducting a review of existing literature. The main question is described with the PICO format (population, intervention, control, and outcomes), while the assessment of the present research is under the PRISMA guidelines for systematic reviews. RESULTS/CONCLUSION A systematic review of the literature reveals a remarkable association between vitamin D and migraine presentation in the paediatric population, affecting the frequency and duration of the episodes. That being the case, vitamin D supplementation could potentially improve the quality of life of paediatric patients suffering from migraine headaches.
Collapse
Affiliation(s)
- Evangelia Ioannidou
- Paediatric Specialty Trainee RCPCH, Aristotle University of Thessaloniki | AUTH, MSc Medical Research and Methodology, Greece
| | - Charalampos Tsakiris
- Core Surgical Trainee RCSEng, Aristotle University of Thessaloniki | AUTH, MSc Medical Research and Methodology, Greece.
| | - Dimitrios G Goulis
- Reproductive Endocrinology, Medical School, Aristotle University of Thessaloniki, Greece
| | | | - Dimitrios Zafeiriou
- Aristotle University of Thessaloniki | AUTH, Department of Paediatrics I, Greece
| |
Collapse
|
66
|
Temporomandibular Joint Surgery. J Oral Maxillofac Surg 2023; 81:E195-E220. [PMID: 37833023 DOI: 10.1016/j.joms.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
|
67
|
Sturaro C, Fakhoury B, Targowska-Duda KM, Zribi G, Schoch J, Ruzza C, Calò G, Toll L, Cippitelli A. Preclinical effects of cannabidiol in an experimental model of migraine. Pain 2023; 164:2540-2552. [PMID: 37310430 DOI: 10.1097/j.pain.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/25/2023] [Indexed: 06/14/2023]
Abstract
ABSTRACT Migraine is a disabling disorder characterized by recurrent headaches, accompanied by abnormal sensory sensitivity and anxiety. Despite extensive historical use of cannabis in headache disorders, there is limited research on the nonpsychoactive cannabidiol (CBD) for migraine and there is no scientific evidence to prove that CBD is an effective treatment. The effects of CBD are examined here using a calcitonin gene-related peptide (CGRP)-induced migraine model that provides measures of cephalic allodynia, spontaneous pain, altered light sensitivity (photophobia), and anxiety-like behavior in C57BL/6J mice. A single administration of CGRP induced facial hypersensitivity in both female and male mice. Repeated CGRP treatment produced progressively decreased levels in basal thresholds of allodynia in females, but not in males. A single CBD administration protected both females and males from periorbital allodynia induced by a single CGRP injection. Repeated CBD administration prevented increased levels of basal allodynia induced by repeated CGRP treatment in female mice and did not lead to responses consistent with migraine headache as occurs with triptans. Cannabidiol, injected after CGRP, reversed CGRP-evoked allodynia. Cannabidiol also reduced spontaneous pain traits induced by CGRP administration in female mice. Finally, CBD blocked CGRP-induced anxiety in male mice, but failed in providing protection from CGRP-induced photophobia in females. These results demonstrate the efficacy of CBD in preventing episodic and chronic migraine-like states with reduced risk of causing medication overuse headache. Cannabidiol also shows potential as an abortive agent for treating migraine attacks and headache-related conditions such as spontaneous pain and anxiety.
Collapse
Affiliation(s)
- Chiara Sturaro
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Bianca Fakhoury
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Katarzyna M Targowska-Duda
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Gilles Zribi
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Jennifer Schoch
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Lawrence Toll
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Andrea Cippitelli
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
68
|
Chou BC, Lerner A, Barisano G, Phung D, Xu W, Pinto SN, Sheikh-Bahaei N. Functional MRI and Diffusion Tensor Imaging in Migraine: A Review of Migraine Functional and White Matter Microstructural Changes. J Cent Nerv Syst Dis 2023; 15:11795735231205413. [PMID: 37900908 PMCID: PMC10612465 DOI: 10.1177/11795735231205413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
Migraine is a complex and heterogenous disorder whose disease mechanisms remain disputed. This narrative review summarizes functional MRI (fMRI) and diffusion tensor imaging (DTI) findings and interprets their association with migraine symptoms and subtype to support and expand our current understanding of migraine pathophysiology. Our PubMed search evaluated and included fMRI and DTI studies involving comparisons between migraineurs vs healthy controls, migraineurs with vs without aura, and episodic vs chronic migraineurs. Migraineurs demonstrate changes in functional connectivity (FC) and regional activation in numerous pain-related networks depending on migraine phase, presence of aura, and chronicity. Changes to diffusion indices are observed in major cortical white matter tracts extending to the brainstem and cerebellum, more prominent in chronic migraine and associated with FC changes. Reported changes in FC and regional activation likely relate to pain processing and sensory hypersensitivities. Diffuse white matter microstructural changes in dysfunctional cortical pain and sensory pathways complement these functional differences. Interpretations of reported fMRI and DTI measure trends have not achieved a clear consensus due to inconsistencies in the migraine neuroimaging literature. Future fMRI and DTI studies should establish and implement a uniform methodology that reproduces existing results and directly compares migraineurs with different subtypes. Combined fMRI and DTI imaging may provide better pathophysiological explanations for nonspecific FC and white matter microstructural differences.
Collapse
Affiliation(s)
- Brendon C. Chou
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander Lerner
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Daniel Phung
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wilson Xu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Soniya N. Pinto
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nasim Sheikh-Bahaei
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
69
|
Chen HH, Lin CY, Chen SJ, Huang WY, Kuo CW, Chang ST. Intravascular laser irradiation of blood as novel migraine treatment: an observational study. Eur J Med Res 2023; 28:457. [PMID: 37876003 PMCID: PMC10598972 DOI: 10.1186/s40001-023-01438-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Migraine is one of four major chronic diseases that cause disability. Decreases in regional cerebral blood flow (rCBF) occur during migraine attacks. Laser therapy is extensively employed in treating other vascular diseases; nevertheless, its effectiveness in migraine management remains largely unknown. Therefore, we evaluated the effect of low-level intravascular laser irradiation of blood (ILIB) therapy in patients with migraine. METHODS We performed an observational case-control study in 24 patients suffering from migraine. Patients were divided into an ILIB treatment group and a traditional rehabilitation group. This study performed clinical assessments and single-photon emission computed tomography (SPECT) prior to and after the treatment and 1 month later. Changes in rCBF-SPECT between groups and between timepoints were compared to clinical outcomes. RESULTS Nine patients undergoing rehabilitation and fifteen patients undergoing ILIB were studied from baseline to 1 month follow-up. The ILIB group, visual analog scale for pain (P = 0.001), Montreal Cognitive Assessment (P = 0.003), and Athens Insomnia Scale (P < 0.001) symptom scores significantly improved after treatment. SPECT imaging showed a 1.27 ± 0.27 fold increase in rCBF after ILIB treatment, and no significant differences in the rehabilitation group. CONCLUSIONS Low-level ILIB therapy is associated with better clinical and vascular outcomes, and may be a feasible treatment option for migraine. Although our sample size was small, our data provide a starting point for migraine laser therapy research.
Collapse
Affiliation(s)
- Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Chun-Yu Lin
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan
| | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, Tainan, 71150, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 300092, Taiwan
| | - Wan-Yun Huang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Zuoying Dist, # 386, Dazhong 1St Rd, Kaohsiung, 813414, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, 70119, Taiwan
| | - Chien-Wei Kuo
- Department of Nuclear Medicine, Pingtung Veterans General Hospital, Pingtung 900, Taiwan
| | - Shin-Tsu Chang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Zuoying Dist, # 386, Dazhong 1St Rd, Kaohsiung, 813414, Taiwan.
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Neihu District, # 161, Section 6, Minquan East Road, Taipei, 114201, Taiwan.
| |
Collapse
|
70
|
Blumenfeld AM, Lipton RB, Silberstein S, Tepper SJ, Charleston L, Landy S, Kuruvilla DE, Manack Adams A. Multimodal Migraine Management and the Pursuit of Migraine Freedom: A Narrative Review. Neurol Ther 2023; 12:1533-1551. [PMID: 37542624 PMCID: PMC10444724 DOI: 10.1007/s40120-023-00529-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023] Open
Abstract
Migraine is a neurologic disease with a complex pathophysiology that can be controlled with current treatment options but not cured. Therefore, treatment expectations are highly variable. The concept of migraine freedom was recently introduced and can mean different things, with some, for example, expecting complete freedom from headache and associated symptoms and others accepting the occasional migraine attack if it does not impact functioning. Therefore, migraine management should be optimized so that patients can have the best opportunity to achieve their optimal treatment goals. With migraine freedom as a goal and, given the complex pathophysiology of migraine and the high incidence of comorbidities among individuals with migraine, treatment with a single modality may be insufficient, as it may not achieve migraine freedom in those with more frequent or disabling attacks. In this clinical perspective article, we have identified four key, partially overlapping principles of multimodal migraine treatment: (1) manage common comorbidities; (2) control modifiable risk factors for progression by addressing medication and caffeine overuse; (3) diagnose and treat secondary causes of headache, if present; and (4) individualize acute and preventive treatments to minimize pain, functional disability, and allodynia. There are many barriers to pursuing migraine freedom, and strategies to overcome them should be optimized. Migraine freedom should be an aspirational goal both at the individual attack level and for the disease overall. We believe that a comprehensive and multimodal approach that addresses all barriers people with migraine face could move patients closer to migraine freedom.
Collapse
Affiliation(s)
| | | | | | - Stewart J Tepper
- New England Institute for Neurology and Headache, Stamford, CT, USA
| | - Larry Charleston
- Department of Neurology and Ophthalmology, Michigan State University College of Human Medicine, East Lansing, MI, USA
| | | | | | | |
Collapse
|
71
|
Noseda R, Villanueva L. Central generators of migraine and autonomic cephalalgias as targets for personalized pain management: Translational links. Eur J Pain 2023; 27:1126-1138. [PMID: 37421221 PMCID: PMC10979820 DOI: 10.1002/ejp.2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Migraine oscillates between different states in association with internal homeostatic functions and biological rhythms that become more easily dysregulated in genetically susceptible individuals. Clinical and pre-clinical data on migraine pathophysiology support a primary role of the central nervous system (CNS) through 'dysexcitability' of certain brain networks, and a critical contribution of the peripheral sensory and autonomic signalling from the intracranial meningeal innervation. This review focuses on the most relevant back and forward translational studies devoted to the assessment of CNS dysfunctions involved in primary headaches and discusses the role they play in rendering the brain susceptible to headache states. METHODS AND RESULTS We collected a body of scientific literature from human and animal investigations that provide a compelling perspective on the anatomical and functional underpinnings of the CNS in migraine and trigeminal autonomic cephalalgias. We focus on medullary, hypothalamic and corticofugal modulation mechanisms that represent strategic neural substrates for elucidating the links between trigeminovascular maladaptive states, migraine triggering and the temporal phenotype of the disease. CONCLUSION It is argued that a better understanding of homeostatic dysfunctional states appears fundamental and may benefit the development of personalized therapeutic approaches for improving clinical outcomes in primary headache disorders. SIGNIFICANCE This review focuses on the most relevant back and forward translational studies showing the crucial role of top-down brain modulation in triggering and maintaining primary headache states and how these central dysfunctions may interact with personalized pain management strategies.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Luis Villanueva
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris-Cité, Team Imaging Biomarkers of Brain Disorders (IMA-Brain), INSERM U1266, Paris, France
| |
Collapse
|
72
|
Knapik JJ, Farina EK, Steelman RA, Trone DW, Lieberman HR. The Medical Burden of Obesity and Overweight in the US Military: Association of BMI with Clinically Diagnosed Medical Conditions in United States Military Service Members. J Nutr 2023; 153:2951-2967. [PMID: 37619919 DOI: 10.1016/j.tjnut.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND A high BMI is associated with various medical conditions, notably type 2 diabetes, cardiovascular disease, and mental health disorders. In the US military, BMI increased linearly between 1975 and 2015. OBJECTIVE This cross-sectional study investigated the associations between BMI and a comprehensive range of clinically diagnosed medical conditions (CDMCs) in US military service members (SMs). METHODS A stratified random sample of SMs (n=26,177) completed an online questionnaire reporting their height, weight, and demographic/lifestyle characteristics. Medical conditions for 6 mo before questionnaire completion were obtained from a comprehensive military electronic medical surveillance system and grouped into 39 CDMCs covering both broad (largely systemic) and specific medical conditions. BMI was calculated as weight/height2 (kg/m2). The prevalence of CDMCs was compared among normal weight (<25.0 kg/m2), overweight (25.0-29.9 kg/m2), and obese (≥30 kg/m2) SMs. RESULTS After multivariable adjustment for demographic/lifestyle characteristics, higher BMI was associated with higher odds of a diagnosed medical condition in 30 of 39 CDMCs, with all 30 displaying dose-response relationships. The 5 major CDMCs with the largest odds ratios comparing obese to normal weight were endocrine/nutritional/metabolic diseases (OR=2.67, 95%CI=2.24-3.15), nervous system diseases (odds ratio [OR]=2.59, 95%CI=2.32-2.90), circulatory system diseases (OR=2.56, 95%CI=2.15-3.06), musculoskeletal system diseases (OR=1.92, 95%CI=1.76-2.09), and mental/behavioral disorders (OR=1.69, 95%CI=1.51-1.90). Compared with normal weight SMs, overweight or obese SMs had a higher number of CDMCs (1.8±1.9 vs. 2.0±2.0 and 2.5±2.3, mean ± standard deviation, respectively, P<0.01). CONCLUSIONS In a young, physically active population, higher BMI was associated with a host of medical conditions, even after adjustment for demographic/lifestyle characteristics. The US Department of Defense should improve nutrition education and modify other factors that contribute to overweight and obesity. This study demonstrates that the medical burden of obesity is substantial in overweight and obese SMs.
Collapse
Affiliation(s)
- Joseph J Knapik
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, MA, United States.
| | - Emily K Farina
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, MA, United States
| | - Ryan A Steelman
- Clinical Public Health and Epidemiology, Defense Centers for Public Health-Aberdeen, MD, United States
| | - Daniel W Trone
- Deployment Health, Naval Health Research Center, CA, United States
| | - Harris R Lieberman
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, MA, United States
| |
Collapse
|
73
|
Sun W, Cheng H, Xia B, Liu X, Li Y, Wang X, Liu C. Comparative Efficacy and Safety of Five Anti-calcitonin Gene-related Peptide Agents for Migraine Prevention: A Network Meta-analysis. Clin J Pain 2023; 39:560-569. [PMID: 37278480 DOI: 10.1097/ajp.0000000000001136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVES Anti-calcitonin gene-related peptide (CGRP) agents are some of the newest preventive medications for migraine. There is limited literature comparing the efficacy of the most recent CGRP antagonist, atogepant, to CGRP monoclonal antibodies for migraine prevention. In this network meta-analysis, the efficacy and safety of migraine treatments including different doses of atogepant and CGRP monoclonal antibodies were evaluated to provide a reference for future clinical trials. MATERIALS AND METHODS A search using PubMed, Embase, and Cochrane Library identified all randomized controlled trials published through May 2022 and including patients diagnosed with episodic or chronic migraine and treated with erenumab, fremanezumab, eptinezumab, galcanezumab, atogepant, or placebo. The primary outcomes were the reduction of monthly migraine days, 50% response rate, and the number of adverse events (AEs). The Cochrane Collaboration tool was used to assess the risk of bias. RESULTS In this study, 24 articles were considered for analysis. Regarding efficacy, all interventions were superior to placebo with a statistically significant difference. The most effective intervention was monthly fremanezumab 225 mg in change from baseline of migraine days (standard mean difference = -0.49, 95% CI: -0.62, -0.37) and 50% response rate (risk ratio = 2.98, 95% CI: 2.16,4.10), while the optimal choice for reducing acute medication days was monthly erenumab 140 mg (standard mean difference = -0.68, 95% CI: -0.79, -0.58). In terms of AEs, all therapies and placebo did not achieve statistical significance except for monthly galcanezumab 240 mg and quarterly fremanezumab 675 mg. There was no significant difference in discontinuation due to AEs between interventions and placebo. DISCUSSION All anti-CGRP agents were more effective than placebo in migraine prevention. Overall, monthly fremanezumab 225 mg, monthly erenumab 140 mg, and daily atogepant 60 mg were effective interventions with fewer side effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuemei Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing
| | - Chengjiang Liu
- Department of General, Practice, Anhui Medical University, Hefei, China
| |
Collapse
|
74
|
Bonemazzi I, Nosadini M, Pelizza MF, Paolin C, Cavaliere E, Sartori S, Toldo I. Treatment of Frequent or Chronic Primary Headaches in Children and Adolescents: Focus on Acupuncture. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1626. [PMID: 37892289 PMCID: PMC10605007 DOI: 10.3390/children10101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Acupuncture is a spreading and promising intervention, which has proven to be very useful in the treatment and prevention of chronic pain, in particular chronic headaches, in adults; the literature about the treatment of pediatric chronic headaches is scarce. In addition, few guidelines advise its use in children. The aim of this review is to collect all relevant studies with available data about the use, effect, and tolerability of acupuncture as a treatment for pediatric primary headaches. METHODS This is a narrative review based on eight studies selected from 135 papers including pediatric cases treated with acupuncture for headache. RESULTS Despite the differences in tools, procedures, and application sites, acupuncture demonstrated a positive effect on both the frequency and intensity of headaches and was well tolerated. There are no studies considering the long-term efficacy of acupuncture. CONCLUSION Further additional studies are needed on acupuncture in children and adolescents, with larger series and standardized procedures, in order to better assess efficacy, tolerability, and long-term prognosis and to define guidelines for the use of this promising and safe treatment. It is particularly relevant to identify safe and well-tolerated treatment options in pediatric patients affected by recurrent and debilitating headaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Toldo
- Juvenile Headache Center, Department of Woman’s and Child’s Health, University Hospital of Padua, 35128 Padua, Italy; (I.B.); (M.N.); (M.F.P.); (C.P.); (E.C.); (S.S.)
| |
Collapse
|
75
|
Alhayek N, Harahsheh E, Dumitrascu O, Green AL. A Case Report of Migraine With Aura Worsened After Starting Apixaban and Literature Review. Neurologist 2023; 28:335-337. [PMID: 37582651 DOI: 10.1097/nrl.0000000000000513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
INTRODUCTION Multiple medications have been related to triggering headache attacks or worsening headache frequency or severity in patients with migraine disease. However, the impact of direct oral anticoagulants on headache frequency and severity in patients with migraine disease is unclear. Current literature is scarce and controversial. CASE REPORT A 45-year-old male with a history of migraine with aura for the last 20 years underwent percutaneous transcatheter closure of an atrial septal defect due to right ventricular enlargement and systolic dysfunction. The intervention was complicated by postprocedural atrial fibrillation, for which he was started on apixaban. Shortly after starting the apixaban, the patient experienced an increase in the frequency and severity of his migraine with aura episodes that were persistent until he discontinued this medication 7 months later. Following the discontinuation of apixaban, the patient's frequency and severity of migraine episodes returned to baseline almost immediately. CONCLUSION Novel oral anticoagulants, including apixaban, may be associated with an increase in the frequency and severity of migraine attacks in patients with migraine disease. Larger observational studies are required to investigate further the impact of direct oral anticoagulants on migraine disease.
Collapse
Affiliation(s)
- Nour Alhayek
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ
| | | | | | | |
Collapse
|
76
|
Merino D, Gérard AO, Van Obberghen EK, Destere A, Lanteri-Minet M, Drici MD. The Neuropsychiatric Safety Profile of Lasmiditan: A Comparative Disproportionality Analysis with Triptans. Neurotherapeutics 2023; 20:1305-1315. [PMID: 37436579 PMCID: PMC10480366 DOI: 10.1007/s13311-023-01404-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 07/13/2023] Open
Abstract
Migraine constitutes the world's second-leading cause of disability. Triptans, as serotonin 5-HT1B/1D receptor agonists, remain the first-line treatment, despite discouraged use in individuals at high cardiovascular risk. Lasmiditan, a selective lipophilic 5-HT1F agonist without vasoconstrictive effects, is an emerging option. We aimed to investigate the safety profile of lasmiditan in the WHO pharmacovigilance database (VigiBase®) using a comparative disproportionality analysis with triptans. VigiBase® was queried for all reports involving lasmiditan and triptans. Disproportionality analyses relied on the calculation of the information component (IC), for which 95% confidence interval (CI) lower bound positivity was required for signal detection. We obtained 826 reports involving lasmiditan. Overall, 10 adverse drug reaction classes were disproportionately reported with triptans, while only neurological (IC 1.6; 95% CI 1.5-1.7) and psychiatric (IC 1.5; 95% CI 1.3-1.7) disorders were disproportionately reported with lasmiditan. Sedation, serotonin syndrome, euphoric mood, and autoscopy had the strongest signals. When compared with triptans, 19 out of 22 neuropsychiatric signals persisted. The results of our analysis provide a more precise semiology of the neuropsychiatric effects of lasmiditan, with symptoms such as autoscopy and panic attacks. The cardiovascular adverse drug reaction risk with triptans was confirmed. In contrast, caution is warranted with lasmiditan use in patients with neurological or psychiatric comorbidities or serotonin syndrome risk. Our study was hindered by pharmacovigilance flaws, and further studies should help in validating these results. Our findings suggest that lasmiditan is a safe alternative for migraine treatment, especially when the neuropsychiatric risk is outweighed by the cardiovascular burden.
Collapse
Affiliation(s)
- Diane Merino
- Department of Psychiatry, Université Côte d'Azur, University Hospital of Nice, Nice, France
- Department of Pharmacology and Pharmacovigilance Center of Nice, Université Côte d'Azur, University Hospital of Nice, Nice, France
| | - Alexandre O Gérard
- Department of Pharmacology and Pharmacovigilance Center of Nice, Université Côte d'Azur, University Hospital of Nice, Nice, France
- Laboratory of Molecular Physio Medicine (LP2M), UMR 7370, Université Côte d'Azur, CNRS, Nice, France
| | - Elise K Van Obberghen
- Department and FHU InovPain, Université Côte d'Azur, University Hospital of Nice, Nice, France
| | - Alexandre Destere
- Department of Pharmacology and Pharmacovigilance Center of Nice, Université Côte d'Azur, University Hospital of Nice, Nice, France
- Laboratoire J.A. Dieudonné, Université Côte d'Azur, Inria, CNRS, Maasai Team, Nice, France
| | - Michel Lanteri-Minet
- Department and FHU InovPain, Université Côte d'Azur, University Hospital of Nice, Nice, France
- UMR 1107, Migraine and Trigeminal Pain, INSERM, Auvergne University, Clermont-Ferrand, France
| | - Milou-Daniel Drici
- Department of Pharmacology and Pharmacovigilance Center of Nice, Université Côte d'Azur, University Hospital of Nice, Nice, France.
| |
Collapse
|
77
|
Qin Z, Qu H, Liang HB, Zhou Q, Wang W, Wang M, Liu JR, Du X. Altered resting-state effective connectivity of trigeminal vascular system in migraine without aura: A spectral dynamic causal modeling study. Headache 2023; 63:1119-1127. [PMID: 37548006 DOI: 10.1111/head.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND The trigeminal vascular system is an important part of the anatomical and physiological basis of migraine. The effective connectivity (EC) among the regions of interest (ROIs) in the trigeminal vascular system involved in migraine without aura (MWoA) remains unclear. METHODS In this cross-sectional study, 48 patients (mean [SD] age 38.06 [10.35] years; male, 14/48 [29%]) with MWoA during the interictal phase and 48 healthy controls of similar age and sex (mean [SD] age 38.96 [10.96] years; male, 14/48 [29%]) underwent resting-state functional magnetic resonance imaging (fMRI). Dynamic causal modeling analysis was conducted to investigate directional EC among ROIs in the trigeminal vascular system including the bilateral brainstem, the primary somatosensory cortex (S1), the thalamus, and the insula. RESULTS Compared with the healthy control group, MWoA represented significantly reduced EC from the left brainstem (Brainstem.L) to the left insula (MWoA: mean [SD] -0.16 [0.36]; healthy controls: mean [SD] 0.11 [0.41]; Pcorrected = 0.021), reduced EC from the Brainstem.L to the right insula (MWoA: mean [SD] -0.15 [0.39]; healthy controls: mean [SD] 0.03 [0.35]; Pcorrected = 0.021), and decreased EC from the left thalamus (Thalamus.L) to the Brainstem.L (MWoA: mean [SD] -0.13 [0.56]; healthy controls: mean [SD] 0.10 [0.45]; Pcorrected = 0.021). Altered EC parameters were not significantly correlated with MWoA clinical data. CONCLUSION These results further provide increasing evidence that disturbed homeostasis of the trigeminovascular nociceptive pathway is involved in the pathophysiological mechanisms of migraine. Patients with MWoA exhibited a regional interaction distinct from healthy controls in the neural pathway of the Bilateral Insula-Brainstem.L-Thalamus.L, which may shed light on the future understanding of brain mechanisms for MWoA. Future brain-based interventions are suggested to consider the dysregulation in the Bilateral Insula-Brainstem.L-Thalamus.L circuits.
Collapse
Affiliation(s)
- Zhaoxia Qin
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hang Qu
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Huai-Bin Liang
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qichen Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Wei Wang
- Department of Radiology, Medical Imaging Center, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Min Wang
- School of Humanities and Social Science, University of Science and Technology of China, Hefei, China
| | - Jian-Ren Liu
- Department of Neurology, Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxia Du
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
78
|
Alpuente A, Torre-Sune A, Caronna E, Gine-Cipres E, Torres-Ferrús M, Pozo-Rosich P. Impact of anti-CGRP monoclonal antibodies on migraine attack accompanying symptoms: A real-world evidence study. Cephalalgia 2023; 43:3331024231177636. [PMID: 37555331 DOI: 10.1177/03331024231177636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
BACKGROUND Clinical trials on anti-calcitonin gene-related peptide monoclonal antibodies poorly investigated their impact on migraine accompanying symptoms. OBJECTIVE To evaluate the impact of basal accompanying symptoms on anti-CGRP monoclonal antibodies treatment response and their evolution after six months of treatment in migraine patients. METHODS Patients with migraine diagnosis seen in the Headache Clinic and treated with erenumab, galcanezumab or fremanezumab were prospectively recruited. They completed a daily eDiary which provided data on headache frequency and the following accompanying symptoms of each day: photophobia, phonophobia, nausea, dizziness, and aura. Patients were classified as responders or non-responders based on 50% or greater reduction in headache days per month at month 6 (≥50% response rate). Accompanying symptoms ratios based on headache days per month were assessed per patient at baseline and after three and six months. Comparisons for basal characteristics, basal accompanying symptoms ratios and their evolution after six months between responders and non-responders were performed. RESULTS One hundred and fifty-eight patients were included, 44% (69/158) showed ≥50% response rate after six months. A significant reduction in headache days per month in both groups was found at month 6 (-9.4 days/month in ≥50% response rate group; p < 0.001, -2.2 days/month in <50% response rate group; p = 0.004). Additionally, significant decreases in photophobia (-19.5%, p < 0.001), phonophobia (-12.1%, p = 0.010) and aura ratios (-25.1%, p = 0.008) were found in ≥50% response rate group. No statistically significant reductions were found in nausea and dizziness in any group since their reduction was correlated with the decrease in headache days per month. Higher photophobia ratios at baseline were predictive of an increased response between months 3 and 6 (Incidence Risk Ratio = 0.928, p = 0.040). CONCLUSIONS The days per month with photophobia, phonophobia and aura decreased at a higher rate than headache days per month after six months in the ≥50% response group. Higher photophobia ratios were associated with higher response rates between three and six months. It could indicate an involvement of peripheral CGRP in photophobia as well as a central modulation of migraine through these treatments which mainly act on the periphery.
Collapse
Affiliation(s)
- Alicia Alpuente
- Headache Clinic, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Torre-Sune
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Edoardo Caronna
- Headache Clinic, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eulalia Gine-Cipres
- Headache Clinic, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Marta Torres-Ferrús
- Headache Clinic, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache Clinic, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
79
|
Bavarsad NH, Bagheri S, Kourosh-Arami M, Komaki A. Aromatherapy for the brain: Lavender's healing effect on epilepsy, depression, anxiety, migraine, and Alzheimer's disease: A review article. Heliyon 2023; 9:e18492. [PMID: 37554839 PMCID: PMC10404968 DOI: 10.1016/j.heliyon.2023.e18492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Neurological diseases affect the nervous system, including the brain, spinal cord, cranial nerves, nerve roots, autonomic nervous system, neuromuscular junctions, and muscles. Herbal medicine has long been used to cure these diseases. One of these plants is lavender, which is composed of various compounds, including terpenes, such as linalool, limonene, triterpenes, linalyl acetate, alcohols, ketones, polyphenols, coumarins, cineole, and flavonoids. In this review, the literature was searched using scientific search engines and databases (Google Scholar, Science Direct, Scopus, and PubMed) for papers published between 1982 and 2020 via keywords, including review, lavender, and neurological disorders. This plant exerts its healing effect on many diseases, such as anxiety and depression through an inhibitory effect on GABA. The anti-inflammatory effects of this plant have also been documented. It improves depression by regulating glutamate receptors and inhibiting calcium channels and serotonergic factors, such as SERT. Its antiepileptic mechanism is due to an increase in the inhibitory effect of GABA and potassium current and a decrease in sodium current. Therefore, many vegetable oils are also used in herbal medicine. In this review, the healing effect of lavender on several neurological disorders, including epilepsy, depression, anxiety, migraine, and Alzheimer's disease was investigated. All findings strongly support the traditional uses of lavender. More clinical studies are needed to investigate the effect of the plants' pharmacological active constituents on the treatment of life-threatening diseases in humans. The limitations of this study are the low quality and the limited number of clinical studies. Different administration methods of lavender are one of the limitations of this review.
Collapse
Affiliation(s)
- Nazanin Hatami Bavarsad
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
80
|
Bevilaqua-Grossi D, Pinheiro-Araujo CF, Carvalho GF, Florencio LL. Neck pain repercussions in migraine - The role of physiotherapy. Musculoskelet Sci Pract 2023; 66:102786. [PMID: 37291009 DOI: 10.1016/j.msksp.2023.102786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Migraine is a neurological and disabling disease whose peripheral manifestations can be addressed with physiotherapy. These manifestations can include pain and hypersensitivity to muscular and articular palpation in the neck and face region, a higher prevalence of myofascial trigger points, limitation in global cervical motion, especially in the upper segment (C1-C2), and forward head posture with worse muscular performance. Furthermore, patients with migraine can present cervical muscle weakness and greater co-activation of antagonists in maximum and submaximal tasks. In addition to musculoskeletal repercussions, these patients can also present balance impairment and a greater risk of falls, especially when chronicity of migraine frequency is present. The physiotherapist is a relevant player in the interdisciplinary team and can help these patients to control and manage their migraine attacks. PURPOSE This position paper discusses the most relevant musculoskeletal repercussions of migraine in the craniocervical area under the perspective of sensitization and disease chronification, besides addressing physiotherapy as an important strategy for evaluating and treating these patients. IMPLICATIONS Physiotherapy as a non-pharmacological treatment option in migraine treatment may potentially reduce musculoskeletal impairments related to neck pain in this population. Disseminating knowledge about the different types of headaches and the diagnostic criteria can support physiotherapists who compose a specialized interdisciplinary team. Furthermore, it is important to acquire competencies in neck pain assessment and treatment approaches according to the current evidence.
Collapse
Affiliation(s)
- Debora Bevilaqua-Grossi
- Health Sciences Department, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, Brazil.
| | - Carina F Pinheiro-Araujo
- Health Sciences Department, Ribeirão Preto Medical School, University of São Paulo, Bandeirantes Avenue, Monte Alegre, Ribeirão Preto, SP, Brazil.
| | - Gabriela F Carvalho
- Institute of Health Sciences, Academic Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany.
| | - Lidiane L Florencio
- Department of Physiotherapy, Occupational Therapy, Physical Medicine and Rehabilitation, King Juan Carlos University, Madrid, 28922, Alcorcón, Spain.
| |
Collapse
|
81
|
Silvestro M, Iannone LF, Orologio I, Tessitore A, Tedeschi G, Geppetti P, Russo A. Migraine Treatment: Towards New Pharmacological Targets. Int J Mol Sci 2023; 24:12268. [PMID: 37569648 PMCID: PMC10418850 DOI: 10.3390/ijms241512268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a debilitating neurological condition affecting millions of people worldwide. Until a few years ago, preventive migraine treatments were based on molecules with pleiotropic targets, developed for other indications, and discovered by serendipity to be effective in migraine prevention, although often burdened by tolerability issues leading to low adherence. However, the progresses in unravelling the migraine pathophysiology allowed identifying novel putative targets as calcitonin gene-related peptide (CGRP). Nevertheless, despite the revolution brought by CGRP monoclonal antibodies and gepants, a significant percentage of patients still remains burdened by an unsatisfactory response, suggesting that other pathways may play a critical role, with an extent of involvement varying among different migraine patients. Specifically, neuropeptides of the CGRP family, such as adrenomedullin and amylin; molecules of the secretin family, such as pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP); receptors, such as transient receptor potential (TRP) channels; intracellular downstream determinants, such as potassium channels, but also the opioid system and the purinergic pathway, have been suggested to be involved in migraine pathophysiology. The present review provides an overview of these pathways, highlighting, based on preclinical and clinical evidence, as well as provocative studies, their potential role as future targets for migraine preventive treatment.
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Luigi Francesco Iannone
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.O.); (A.T.); (G.T.)
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Pierangelo Geppetti
- Headache Centre and Clinical Pharmacology Unit, Careggi University Hospital Florence, 50134 Florence, Italy; (L.F.I.); (P.G.)
| | - Antonio Russo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
82
|
de Vries T, Boucherie DM, van den Bogaerdt A, Danser AHJ, MaassenVanDenBrink A. Blocking the CGRP Receptor: Differences across Human Vascular Beds. Pharmaceuticals (Basel) 2023; 16:1075. [PMID: 37630989 PMCID: PMC10459004 DOI: 10.3390/ph16081075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple drugs targeting the calcitonin gene-related peptide (CGRP) receptor have been developed for the treatment of migraine. Here, the effect of the small-molecule CGRP receptor antagonist zavegepant (0.1 nM-1 µM) on CGRP-induced relaxation in isolated human coronary arteries (HCAs) was investigated. A Schild plot was constructed and a pA2 value was calculated to determine the potency of zavegepant. The potency and Schild plot slopes of atogepant, olcegepant, rimegepant, telcagepant, ubrogepant and zavegepant in HCAs and human middle meningeal arteries (HMMAs), obtained from our earlier studies, were compared. Zavegepant shifted the concentration-response curve to CGRP in HCAs. The corresponding Schild plot slope was not different from unity, resulting in a pA2 value of 9.92 ± 0.24. No potency difference between HCAs and HMMAs was observed. Interestingly, olcegepant, atogepant and rimegepant, with a Schild plot slope < 1 in HCAs, were all >1 log unit more potent in HMMAs than in HCAs, while telcagepant, ubrogepant and zavegepant, with a Schild plot slope not different from unity, showed similar (<1 log difference) potency across both tissues. As a Schild plot slope < 1 may point to the involvement of multiple receptors, it is important to further identify the receptors involved in the relaxation to CGRP in HCAs, which may be used to improve the cardiovascular safety of future antimigraine drugs.
Collapse
Affiliation(s)
- Tessa de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (T.d.V.)
| | - Deirdre M. Boucherie
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (T.d.V.)
| | | | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (T.d.V.)
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (T.d.V.)
| |
Collapse
|
83
|
Dehghani A, Schenke M, van Heiningen SH, Karatas H, Tolner EA, van den Maagdenberg AMJM. Optogenetic cortical spreading depolarization induces headache-related behaviour and neuroinflammatory responses some prolonged in familial hemiplegic migraine type 1 mice. J Headache Pain 2023; 24:96. [PMID: 37495957 PMCID: PMC10373261 DOI: 10.1186/s10194-023-01628-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Cortical spreading depolarization (CSD), the neurophysiological correlate of the migraine aura, can activate trigeminal pain pathways, but the neurobiological mechanisms and behavioural consequences remain unclear. Here we investigated effects of optogenetically-induced CSDs on headache-related behaviour and neuroinflammatory responses in transgenic mice carrying a familial hemiplegic migraine type 1 (FHM1) mutation. METHODS CSD events (3 in total) were evoked in a minimally invasive manner by optogenetic stimulation through the intact skull in freely behaving wildtype (WT) and FHM1 mutant mice. Related behaviours were analysed using mouse grimace scale (MGS) scoring, head grooming, and nest building behaviour. Neuroinflammatory changes were investigated by assessing HMGB1 release with immunohistochemistry and by pre-treating mice with a selective Pannexin-1 channel inhibitor. RESULTS In both WT and FHM1 mutant mice, CSDs induced headache-related behaviour, as evidenced by increased MGS scores and the occurrence of oculotemporal strokes, at 30 min. Mice of both genotypes also showed decreased nest building behaviour after CSD. Whereas in WT mice MGS scores had normalized at 24 h after CSD, in FHM1 mutant mice scores were normalized only at 48 h. Of note, oculotemporal stroke behaviour already normalized 5 h after CSD, whereas nest building behaviour remained impaired at 72 h; no genotype differences were observed for either readout. Nuclear HMGB1 release in the cortex of FHM1 mutant mice, at 30 min after CSD, was increased bilaterally in both WT and FHM1 mutant mice, albeit that contralateral release was more pronounced in the mutant mice. Only in FHM1 mutant mice, contralateral release remained higher at 24 h after CSD, but at 48 h had returned to abnormal, elevated, baseline values, when compared to WT mice. Blocking Panx1 channels by TAT-Panx308 inhibited CSD-induced headache related behaviour and HMGB1 release. CONCLUSIONS CSDs, induced in a minimally invasive manner by optogenetics, investigated in freely behaving mice, cause various migraine relevant behavioural and neuroinflammatory phenotypes that are more pronounced and longer-lasting in FHM1 mutant compared to WT mice. Prevention of CSD-related neuroinflammatory changes may have therapeutic potential in the treatment of migraine.
Collapse
Affiliation(s)
- Anisa Dehghani
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands.
- Department of Anesthesia and Critical Care and Pain Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Maarten Schenke
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands
| | - Sandra H van Heiningen
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, RC, 2300, The Netherlands.
| |
Collapse
|
84
|
Umemoto KK, Tawk K, Mazhari N, Abouzari M, Djalilian HR. Management of Migraine-Associated Vestibulocochlear Disorders. Audiol Res 2023; 13:528-545. [PMID: 37489383 PMCID: PMC10366928 DOI: 10.3390/audiolres13040047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/03/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Migraine is a chronic neurological disorder that frequently coexists with different vestibular and cochlear symptoms (sudden hearing loss, tinnitus, otalgia, aural fullness, hyperacusis, dizziness, imbalance, and vertigo) and disorders (recurrent benign positional vertigo, persistent postural perceptual dizziness, mal de debarquement, and Menière's disease). Despite evidence of an epidemiological association and similar pathophysiology between migraine and these vestibulocochlear disorders, patients suffering from migraine-related symptoms are usually underdiagnosed and undertreated. Current migraine treatment options have shown success in treating vestibulocochlear symptoms. Lifestyle and dietary modifications (reducing stress, restful sleep, avoiding migraine dietary triggers, and avoiding starvation and dehydration) and supplements (vitamin B2 and magnesium) offer effective first-line treatments. Treatment with migraine prophylactic medications such as tricyclic antidepressants (e.g., nortriptyline), anticonvulsants (e.g., topiramate), and calcium channel blockers (e.g., verapamil) is implemented when lifestyle and dietary modifications are not sufficient in improving a patient's symptoms. We have included an algorithm that outlines a suggested approach for addressing these symptoms, taking into account our clinical observations. Greater recognition and understanding of migraine and its related vestibular and cochlear symptoms are needed to ensure the appropriate diagnosis and treatment of affected patients.
Collapse
Affiliation(s)
- Kayla K. Umemoto
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Karen Tawk
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Najva Mazhari
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Mehdi Abouzari
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Hamid R. Djalilian
- Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA
| |
Collapse
|
85
|
Yoon SY, Kim HM, Yi YY. The impact of the COVID-19 pandemic era on children with primary headache: a questionnaire survey study and literature review. Front Pediatr 2023; 11:1179979. [PMID: 37492607 PMCID: PMC10364439 DOI: 10.3389/fped.2023.1179979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Background The coronavirus disease (COVID-19) pandemic has resulted in individual isolation and secondary problems, especially in children. Research on the effect of the social isolation on children with primary headache is limited. This study aimed at exploring the effects of environmental changes caused by COVID-19 on headache in children. Methods This cross-sectional survey study enrolled school-aged children (age, 8-16 years) with headache who were able to complete the questionnaire from a Pediatric Headache Clinic between January 2021 and December 2022. Headache diaries for all patients were in their medical records and two questionnaire responses were requested at a 3-month interval. The questionnaires included headache type, frequency, previous medical conditions, family history, Pediatric Migraine Disability Assessment scores (PedMIDAS) scores, changes in daily life after COVID-19, and factors that aggravated headaches associated with social distancing. Results We identified 35 patients who were diagnosed with primary headache and continued to visit our outpatient clinic for at least 3 months. Among them, 33 (15 males and 18 females) patients responded to the first survey. The average age (±SD) of patients was 12.5 ± 1.9 years. PedMIDAS scores were not affected by the COVID-19 infection history. Prolonged use of masks and increased use of digital devices were reported as the most common factors that aggravated headache during the pandemic era. Conclusion COVID-19 did not affect in worsening primary headache in children. However, the pandemic can introduce various changes in daily life, which in turn can affect the management of headache. By gathering feedback regarding the thoughts of the patients on the impact of the current pandemic environment, patient counseling on the precautions and management can be conducted in advance in the case of repeated lockdown in the future.
Collapse
Affiliation(s)
- So Yeon Yoon
- Department of Pediatrics, Hallym University and Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Hye Min Kim
- Department of Pediatrics, Hallym University and Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Yoon Young Yi
- Department of Pediatrics, Hallym University and Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
- Department of Pediatrics, College of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| |
Collapse
|
86
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 variants reveal potential roles in anxiety and migraine disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547546. [PMID: 37461723 PMCID: PMC10349990 DOI: 10.1101/2023.07.05.547546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare GPR37L1 genetic variants found among 51,289 whole exome sequences from the DiscovEHR cohort. Briefly, rare GPR37L1 coding variants were binned according to predicted pathogenicity, and analyzed by Sequence Kernel Association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were then functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate MAPK signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared to the wild-type receptor. In addition to signaling changes, knockout of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a knockout (KO) mouse line lacking Gpr37L1 was generated, revealing loss of this receptor produced sex-specific changes implicated in migraine-related disorders. Collectively, these observations define the existence of rare GPR37L1 variants in the human population that are associated with neuropsychiatric conditions and identify the underlying signaling changes that are implicated in the in vivo actions of this receptor in pathological processes leading to anxiety and migraine. SIGNIFICANCE STATEMENT G-protein coupled receptors (GPCRs) represent a diverse group of membrane receptors that contribute to a wide range of diseases and serve as effective drug targets. However, a number of these receptors have no identified ligands or functions, i.e., orphan receptors. Over the past decade, advances have been made, but there is a need for identifying new strategies to reveal their roles in health and disease. Our results highlight the utility of rare variant analyses of orphan receptors for identifying human disease associations, coupled with functional analyses in relevant cellular and animal systems, to ultimately reveal their roles as novel drug targets for treatment of neurological disorders that lack wide-spread efficacy.
Collapse
|
87
|
Bouchier B, Demarquay G, Dailler F, Lukaszewicz AC, Ritzenthaler T. Course of Headaches and Predictive Factors Associated With Analgesia Failure Following Spontaneous Subarachnoid Hemorrhage: A Prospective Cohort Study. J Neurosurg Anesthesiol 2023; 35:333-337. [PMID: 35499145 DOI: 10.1097/ana.0000000000000843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Headache is the most common presenting symptom of spontaneous subarachnoid hemorrhage and managing this acute pain can be challenging. The aim of this study was to describe the course of headaches and factors associated with analgesic failure in patients with spontaneous subarachnoid hemorrhage. METHODS We conducted a prospective observational study in patients admitted to a neurocritical care unit (between April 2016 and March 2017) within 48 hours of spontaneous subarachnoid hemorrhage. Headache intensity was assessed using a Numerical Pain Rating Scale (NPRS) ranging from 0 to 10. Analgesic failure was defined as any day average NPRS score >3 after 72 hours of hospitalization despite analgesic treatment. RESULTS Sixty-three patients were included in the analysis. Thirty-six (56.25%) patients experienced at least 1 episode of severe headache (NPRS ≥7), and 40 (63.5%) patients still reported moderate to severe headache on the final day of the study (day 12). Forty-six (73.0%) patients required treatment with opioids and 37 (58.7%) experienced analgesic failure. Multivariable analysis showed that analgesic failure was associated with smoking history (odds ratio [OR]=4.31, 95% confidence interval [CI]: 1.23-17.07; P =0.027), subarachnoid blood load (OR=1.11, 95% CI: 1.01-1.24; P =0.032) and secondary complications, including rebleeding, hydrocephalus, delayed cerebral ischemia, hyponatremia, or death (OR=4.06, 95% CI: 1.17-15.77; P =0.032). CONCLUSIONS Headaches following spontaneous subarachnoid hemorrhage are severe and persist during hospitalization despite standard pain-reducing strategies. We identified risk factors for analgesic failure in this population.
Collapse
Affiliation(s)
| | - Geneviève Demarquay
- Fontional Neurology and Epileptology Unit, Pierre Wertheimer Hospital, Hospices Civils de Lyon
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard-Lyon 1, Bron
| | | | - Anne-Claire Lukaszewicz
- Neurocrirtical Care Unit
- Université Claude Bernard-Lyon 1
- Université Claude Bernard Lyon 1/Hospices Civils de Lyon/bioMérieux, Lyon, France
| | | |
Collapse
|
88
|
Reyes N, Huang JJ, Choudhury A, Pondelis N, Locatelli EV, Felix ER, Pattany PM, Galor A, Moulton EA. Botulinum toxin A decreases neural activity in pain-related brain regions in individuals with chronic ocular pain and photophobia. Front Neurosci 2023; 17:1202341. [PMID: 37404468 PMCID: PMC10315909 DOI: 10.3389/fnins.2023.1202341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction To examine the effect of botulinum toxin A (BoNT-A) on neural mechanisms underlying pain and photophobia using functional magnetic resonance imaging (fMRI) in individuals with chronic ocular pain. Methods Twelve subjects with chronic ocular pain and light sensitivity were recruited from the Miami Veterans Affairs eye clinic. Inclusion criteria were: (1) chronic ocular pain; (2) presence of ocular pain over 1 week recall; and (3) presence of photophobia. All individuals underwent an ocular surface examination to capture tear parameters before and 4-6 weeks after BoNT-A injections. Using an event-related fMRI design, subjects were presented with light stimuli during two fMRI scans, once before and 4-6 weeks after BoNT-A injection. Light evoked unpleasantness ratings were reported by subjects after each scan. Whole brain blood oxygen level dependent (BOLD) responses to light stimuli were analyzed. Results At baseline, all subjects reported unpleasantness with light stimulation (average: 70.8 ± 32.0). Four to six weeks after BoNT-A injection, unpleasantness scores decreased (48.1 ± 33.6), but the change was not significant. On an individual level, 50% of subjects had decreased unpleasantness ratings in response to light stimulation compared to baseline ("responders," n = 6), while 50% had equivalent (n = 3) or increased (n = 3) unpleasantness ("non-responders"). At baseline, several differences were noted between responders and non-responders; responders had higher baseline unpleasantness ratings to light, higher symptoms of depression, and more frequent use of antidepressants and anxiolytics, compared to non-responders. Group analysis at baseline displayed light-evoked BOLD responses in bilateral primary somatosensory (S1), bilateral secondary somatosensory (S2), bilateral anterior insula, paracingulate gyrus, midcingulate cortex (MCC), bilateral frontal pole, bilateral cerebellar hemispheric lobule VI, vermis, bilateral cerebellar crus I and II, and visual cortices. BoNT-A injections significantly decreased light evoked BOLD responses in bilateral S1, S2 cortices, cerebellar hemispheric lobule VI, cerebellar crus I, and left cerebellar crus II. BoNT-A responders displayed activation of the spinal trigeminal nucleus at baseline where non-responders did not. Discussion BoNT-A injections modulate light-evoked activation of pain-related brain systems and photophobia symptoms in some individuals with chronic ocular pain. These effects are associated with decreased activation in areas responsible for processing the sensory-discriminative, affective, dimensions, and motor responses to pain.
Collapse
Affiliation(s)
- Nicholas Reyes
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Jaxon J. Huang
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Anjalee Choudhury
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Nicholas Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Elyana V. Locatelli
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Elizabeth R. Felix
- Research Service, Miami Veterans Administration Medical Center, Miami, FL, United States
- Physical Medicine and Rehabilitation, University of Miami, Miami, FL, United States
| | - Pradip M. Pattany
- Department of Radiology, University of Miami, Miami, FL, United States
| | - Anat Galor
- Surgical Services, Miami Veterans Administration Medical Center, Miami, FL, United States
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
| | - Eric A. Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
89
|
Liu RH, Zhang M, Xue M, Wang T, Lu JS, Li XH, Chen YX, Fan K, Shi W, Zhou SB, Chen QY, Kang L, Song Q, Yu S, Zhuo M. Inhibiting neuronal AC1 for treating anxiety and headache in the animal model of migraine. iScience 2023; 26:106790. [PMID: 37235050 PMCID: PMC10206497 DOI: 10.1016/j.isci.2023.106790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Migraines are a common medical condition. From a basic science point of view, the central mechanism for migraine and headache is largely unknown. In the present study, we demonstrate that cortical excitatory transmission is significantly enhanced in the anterior cingulate cortex (ACC)-a brain region which is critical for pain perception. Biochemical studies found that the phosphorylation levels of both the NMDA receptor GluN2B and AMPA receptor GluA1 were enhanced in ACC of migraine rats. Both the presynaptic release of glutamate and postsynaptic responses of AMPA receptors and NMDA receptors were enhanced. Synaptic long-term potentiation (LTP) was occluded. Furthermore, behavioral anxiety and nociceptive responses were increased, which were reversed by application of AC1 inhibitor NB001 within ACC. Our results provide strong evidence that cortical LTPs contribute to migraine-related pain and anxiety. Drugs that inhibit cortical excitation such as NB001 may serve as potential medicines for treating migraine in the future.
Collapse
Affiliation(s)
- Ren-Hao Liu
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjie Zhang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Man Xue
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tao Wang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing-Shan Lu
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xu-Hui Li
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yu-Xin Chen
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Kexin Fan
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wantong Shi
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Si-Bo Zhou
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qi-Yu Chen
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Li Kang
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Qian Song
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Min Zhuo
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266000, China
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
90
|
Russo A, Silvestro M, Tessitore A, Orologio I, De Rosa AP, De Micco R, Tedeschi G, Esposito F, Cirillo M. Arterial spin labeling MRI applied to migraine: current insights and future perspectives. J Headache Pain 2023; 24:71. [PMID: 37322466 DOI: 10.1186/s10194-023-01597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Advanced neuroimaging techniques have extensively contributed to elucidate the complex mechanisms underpinning the pathophysiology of migraine, a neurovascular disorder characterized by episodes of headache associated with a constellation of non-pain symptoms. The present manuscript, summarizing the most recent progresses of the arterial spin labelling (ASL) MRI techniques and the most significant findings from ASL studies conducted in migraine, is aimed to clarify how ASL investigations are contributing to the evolving insight on migraine pathophysiology and their putative role in migraine clinical setting. ASL techniques, allowing to quantitatively demonstrate changes in cerebral blood flow (CBF) both during the attacks and in the course of interictal period, could represent the melting point between advanced neuroimaging investigations, conducted with pure scientific purposes, and conventional neuroimaging approaches, employed in the diagnostic decision-making processes. MAIN BODY Converging ASL evidences have demonstrated that abnormal CBF, exceeding the boundaries of a single vascular territory, with biphasic trend dominated by an initial hypoperfusion (during the aura phenomenon but also in the first part of the headache phase) followed by hyperperfusion, characterizes migraine with aura attack and can represent a valuable clinical tool in the differential diagnosis from acute ischemic strokes and epileptic seizures. Studies conducted during migraine without aura attacks are converging to highlight the involvement of dorsolateral pons and hypothalamus in migraine pathophysiology, albeit not able to disentangle their role as "migraine generators" from mere attack epiphenomenon. Furthermore, ASL findings tend to support the presence of perfusion abnormalities in brain regions known to be involved in aura ignition and propagation as well as in areas involved in multisensory processing, in both patients with migraine with aura and migraine without aura. CONCLUSION Although ASL studies have dramatically clarified quality and timing of perfusion abnormalities during migraine with aura attacks, the same cannot be said for perfusion changes during migraine attacks without aura and interictal periods. Future studies with more rigorous methodological approaches in terms of study protocol, ASL technique and sample selection and size are mandatory to exploit the possibility of better understanding migraine pathophysiology and identifying neuroimaging biomarkers of each migraine phase in different migraine phenotypes.
Collapse
Affiliation(s)
- Antonio Russo
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Pasquale De Rosa
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa De Micco
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabrizio Esposito
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
91
|
Rhyne C, Cohen JM, Seminerio MJ, Carr K, Krasenbaum LJ. Burden of migraine with acute medication overuse or psychiatric comorbidities and treatment with CGRP pathway-targeted monoclonal antibodies: A review. Medicine (Baltimore) 2023; 102:e33874. [PMID: 37335663 DOI: 10.1097/md.0000000000033874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Migraine is a complex and often debilitating neurological disease that affects more than 1 billion people worldwide. It is characterized by moderate-to-intense, throbbing headache attacks that are worsened by activity and is associated with nausea, vomiting, and sensitivity to light and sound. Migraine, ranked the second leading cause of years lived with disability by the World Health Organization, can diminish patients' quality of life and bring significant personal and economic burden. Furthermore, migraine patients with a history of acute medication overuse (AMO) or psychiatric comorbidities, such as depression or anxiety, may experience even greater impairment and burden, and their migraine may be more difficult-to-treat. Appropriate treatment of migraine is essential to reduce this burden and improve patient outcomes, especially for those with AMO or psychiatric comorbidities. There are several available preventive treatment options for migraine, though many of these are not migraine-specific and may have limited efficacy and/or poor tolerability. The calcitonin gene-related peptide pathway plays a key role in the pathophysiology of migraine, and monoclonal antibodies that target the calcitonin gene-related peptide pathway have been developed as specific preventive treatments for migraine. Four of these monoclonal antibodies have been approved for the preventive treatment of migraine after demonstrating favorable safety and efficacy profiles. These treatments offer substantial benefits for migraine patients, including those with AMO or common psychiatric comorbidities, by reducing monthly headache days and migraine days, days of acute medication use, and disability measures, as well as improving quality of life.
Collapse
Affiliation(s)
| | - Joshua M Cohen
- Teva Branded Pharmaceutical Products R&D, Inc., West Chester, PA
| | | | - Karen Carr
- Teva Branded Pharmaceutical Products R&D, Inc., West Chester, PA
| | | |
Collapse
|
92
|
Nash C, Powell K, Lynch DG, Hartings JA, Li C. Nonpharmacological modulation of cortical spreading depolarization. Life Sci 2023:121833. [PMID: 37302793 DOI: 10.1016/j.lfs.2023.121833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
AIMS Cortical spreading depolarization (CSD) is a wave of pathologic neuronal dysfunction that spreads through cerebral gray matter, causing neurologic disturbance in migraine and promoting lesion development in acute brain injury. Pharmacologic interventions have been found to be effective in migraine with aura, but their efficacy in acutely injured brains may be limited. This necessitates the assessment of possible adjunctive treatments, such as nonpharmacologic methods. This review aims to summarize currently available nonpharmacological techniques for modulating CSDs, present their mechanisms of action, and provide insight and future directions for CSD treatment. MAIN METHODS A systematic literature review was performed, generating 22 articles across 3 decades. Relevant data is broken down according to method of treatment. KEY FINDINGS Both pharmacologic and nonpharmacologic interventions can mitigate the pathological impact of CSDs via shared molecular mechanisms, including modulating K+/Ca2+/Na+/Cl- ion channels and NMDA, GABAA, serotonin, and CGRP ligand-based receptors and decreasing microglial activation. Preclinical evidence suggests that nonpharmacologic interventions, including neuromodulation, physical exercise, therapeutic hypothermia, and lifestyle changes can also target unique mechanisms, such as increasing adrenergic tone and myelination and modulating membrane fluidity, which may lend broader modulatory effects. Collectively, these mechanisms increase the electrical initiation threshold, increase CSD latency, slow CSD velocity, and decrease CSD amplitude and duration. SIGNIFICANCE Given the harmful consequences of CSDs, limitations of current pharmacological interventions to inhibit CSDs in acutely injured brains, and translational potentials of nonpharmacologic interventions to modulate CSDs, further assessment of nonpharmacologic modalities and their mechanisms to mitigate CSD-related neurologic dysfunction is warranted.
Collapse
Affiliation(s)
- Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Barnard College, New York, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Daniel G Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
93
|
Yasuda Y, Yasuda K. Unusually Severe Bout in a Patient With a History of Cluster Headache Associated With COVID-19: A Case Report and Review of the Literature. Cureus 2023; 15:e40781. [PMID: 37363118 PMCID: PMC10286814 DOI: 10.7759/cureus.40781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 06/28/2023] Open
Abstract
Although coronavirus disease 2019 (COVID-19) mainly exhibits respiratory symptoms, neurological symptoms are also reported, with headache being the most common neurological symptom. Headache associated with COVID-19 is widely reported. However, there are few precise case reports concerning headaches in patients with a history of migraine, tension headaches, or cluster headaches associated with COVID-19. Herein, we report a case of a woman with a history of cluster headaches who showed an unusually severe bout 10 days before typical COVID-19 symptoms. Such a case has not been reported until now.
Collapse
Affiliation(s)
| | - Ken Yasuda
- Neurology, Kyoto University Graduate School of Medicine, Kyoto, JPN
| |
Collapse
|
94
|
Yang C, Gong Z, Zhang X, Miao S, Li B, Xie W, Wang T, Han X, Wang L, Dong Z, Yu S. Neuropeptide Y in the medial habenula alleviates migraine-like behaviors through the Y1 receptor. J Headache Pain 2023; 24:61. [PMID: 37231359 DOI: 10.1186/s10194-023-01596-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Migraine is a highly disabling health burden with multiple symptoms; however, it remains undertreated because of an inadequate understanding of its neural mechanisms. Neuropeptide Y (NPY) has been demonstrated to be involved in the modulation of pain and emotion, and may play a role in migraine pathophysiology. Changes in NPY levels have been found in patients with migraine, but whether and how these changes contribute to migraine is unknown. Therefore, the purpose of this study was to investigate the role of NPY in migraine-like phenotypes. METHODS Here, we used intraperitoneal injection of glyceryl trinitrate (GTN, 10 mg/kg) as a migraine mouse model, which was verified by light-aversive test, von Frey test, and elevated plus maze test. We then performed whole-brain imaging with NPY-GFP mice to explore the critical regions where NPY was changed by GTN treatment. Next, we microinjected NPY into the medial habenula (MHb), and further infused Y1 or Y2 receptor agonists into the MHb, respectively, to detect the effects of NPY in GTN-induced migraine-like behaviors. RESULTS GTN effectively triggered allodynia, photophobia, and anxiety-like behaviors in mice. After that, we found a decreased level of GFP+ cells in the MHb of GTN-treated mice. Microinjection of NPY attenuated GTN-induced allodynia and anxiety without affecting photophobia. Furthermore, we found that activation of Y1-but not Y2-receptors attenuated GTN-induced allodynia and anxiety. CONCLUSIONS Taken together, our data support that the NPY signaling in the MHb produces analgesic and anxiolytic effects through the Y1 receptor. These findings may provide new insights into novel therapeutic targets for the treatment of migraine.
Collapse
Affiliation(s)
- Chunxiao Yang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Zihua Gong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Medical Oncology, 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Xiaochen Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shuai Miao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bozhi Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Wei Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Tao Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Xun Han
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Liang Wang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Zhao Dong
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shengyuan Yu
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
95
|
Rigoard P, Billot M, Moens M, Goudman L, El-Hajj H, Ingrand P, Ounajim A, Roulaud M, Page P, Babin E, Et Talby M, Dany J, Johnson S, Bataille B, David R, Slavin KV. Evaluation of External Trigeminal Nerve Stimulation to Prevent Cerebral Vasospasm after Subarachnoid Hemorrhage Due to Aneurysmal Rupture: A Randomized, Double-Blind Proof-of-Concept Pilot Trial (TRIVASOSTIM Study). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20105836. [PMID: 37239562 DOI: 10.3390/ijerph20105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Cerebral vasospasm remains the most frequent and devastating complication after subarachnoid aneurysmal hemorrhage because of secondary cerebral ischemia and its sequelae. The underlying pathophysiology involves vasodilator peptide release (such as CGRP) and nitric oxide depletion at the level of the precapillary sphincters of the cerebral (internal carotid artery network) and dural (external carotid artery network) arteries, which are both innervated by craniofacial autonomic afferents and tightly connected to the trigeminal nerve and trigemino-cervical nucleus complex. We hypothesized that trigeminal nerve modulation could influence the cerebral flow of this vascular network through a sympatholytic effect and decrease the occurrence of vasospasm and its consequences. We conducted a prospective double-blind, randomized controlled pilot trial to compare the effect of 10 days of transcutaneous electrical trigeminal nerve stimulation vs. sham stimulation on cerebral infarction occurrence at 3 months. Sixty patients treated for aneurysmal SAH (World Federation of Neurosurgical Societies scale between 1 and 4) were included. We compared the radiological incidence of delayed cerebral ischemia (DCI) on magnetic resonance imaging (MRI) at 3 months in moderate and severe vasospasm patients receiving trigeminal nerve stimulation (TNS group) vs. sham stimulation (sham group). Our primary endpoint (the infarction rate at the 3-month follow-up) did not significantly differ between the two groups (p = 0.99). Vasospasm-related infarctions were present in seven patients (23%) in the TNS group and eight patients (27%) in the sham group. Ultimately, we were not able to show that TNS can decrease the rate of cerebral infarction secondary to vasospasm occurrence. As a result, it would be premature to promote trigeminal system neurostimulation in this context. This concept should be the subject of further research.
Collapse
Affiliation(s)
- Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
- Department of Neuro-Spine & Neuromodulation, Poitiers University Hospital, 86000 Poitiers, France
- Pprime Institute UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, 86360 Chasseneuil-du-Poitou, France
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
- STIMULUS Consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
- STIMULUS Consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Research Foundation-Flanders (FWO), 1090 Brussels, Belgium
| | - Hassan El-Hajj
- Department of Neuro-Spine & Neuromodulation, Poitiers University Hospital, 86000 Poitiers, France
| | - Pierre Ingrand
- CIC 1402, Clinical Investigation Center, Bio-Statistic and Epidemiology, University of Poitiers, 86021 Poitiers, France
| | - Amine Ounajim
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Philippe Page
- Department of Neuro-Spine & Neuromodulation, Poitiers University Hospital, 86000 Poitiers, France
| | - Etienne Babin
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Mohamed Et Talby
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
- Department of Neuro-Spine & Neuromodulation, Poitiers University Hospital, 86000 Poitiers, France
| | - Jonathan Dany
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
- Department of Neuro-Spine & Neuromodulation, Poitiers University Hospital, 86000 Poitiers, France
| | - Simona Johnson
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Benoit Bataille
- Department of Neuro-Spine & Neuromodulation, Poitiers University Hospital, 86000 Poitiers, France
| | - Romain David
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
- Physical and Rehabilitation Medicine Unit, Poitiers University Hospital, University of Poitiers, 86021 Poitiers, France
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
- Neurology Service, Jesse Brown Veterans Administration Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
96
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
97
|
Abstract
Migraine is a global neurologic disease that is highly prevalent, especially in women. Studies have observed a predisposition for the development of migraine in women, although the mechanisms involved have yet to be fully elucidated. This review aimed to summarize the recent evidence regarding the epidemiology, pathophysiology, and treatment of migraine and highlight key sex differences. We also identify gaps in care for both women and men living with migraine and discuss the presence of migraine-related stigma and how this may impact the efficacy of clinical care.
Collapse
|
98
|
Cohen CF, Roh J, Lee SH, Park CK, Berta T. Targeting Nociceptive Neurons and Transient Receptor Potential Channels for the Treatment of Migraine. Int J Mol Sci 2023; 24:ijms24097897. [PMID: 37175602 PMCID: PMC10177956 DOI: 10.3390/ijms24097897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Migraine is a neurovascular disorder that affects approximately 12% of the global population. While its exact causes are still being studied, researchers believe that nociceptive neurons in the trigeminal ganglia play a key role in the pain signals of migraine. These nociceptive neurons innervate the intracranial meninges and convey pain signals from the meninges to the thalamus. Targeting nociceptive neurons is considered promising due to their accessibility and distinct molecular profile, which includes the expression of several transient receptor potential (TRP) channels. These channels have been linked to various pain conditions, including migraine. This review discusses the role and mechanisms of nociceptive neurons in migraine, the challenges of current anti-migraine drugs, and the evidence for well-studied and emerging TRP channels, particularly TRPC4, as novel targets for migraine prevention and treatment.
Collapse
Affiliation(s)
- Cinder Faith Cohen
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jueun Roh
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang Hoon Lee
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chul-Kyu Park
- Department of Physiology, Gachon Pain Center, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA
| |
Collapse
|
99
|
Silvestro M, Orologio I, Siciliano M, Trojsi F, Tessitore A, Tedeschi G, Russo A. Emerging drugs for the preventive treatment of migraine: a review of CGRP monoclonal antibodies and gepants trials. Expert Opin Emerg Drugs 2023. [PMID: 37185047 DOI: 10.1080/14728214.2023.2207819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Migraine is a leading cause of years lived with disability and preventive strategies represent a mainstay to reduce health-related disability and improve quality of life of migraine patients. Until a few years ago, migraine prevention was based on drugs developed for other clinical indications and relocated in the migraine therapeutic armamentarium, characterized by unfavourable tolerability profiles. The advent of monoclonal antibodies against Calcitonin Gene-Related Peptide (CGRP) and gepants, CGRP receptor antagonists, has been a turning point in migraine prevention owing to advantageous efficacy, safety and tolerability profiles.Nevertheless, while in an ideal scenario a drug characterized by significant greater efficacy and tolerability compared to existing therapeutic strategies should be adopted as a first-line treatment, cost-effectiveness analyses available for monoclonal antibodies against CGRP pathway tend to limit their administration to more severe migraine phenotypes. AREAS COVERED The present narrative review aim to provide a critical appraisal of phase II and III CGRP-mAbs and gepants trials to analyse their use in clinical practice. EXPERT OPINION Despite monoclonal antibodies against CGRP pathway and gepants can be undoubtedly considered top-of-the-range treatments, there are still issues deserving to be addressed in the coming years as the risk of off-target effects as well as their economic sustainability based on the considerable migraine burden.
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Italy
| | - Ilaria Orologio
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Italy
| | - Mattia Siciliano
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Italy
| | - Francesca Trojsi
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Italy
| | - Alessandro Tessitore
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Italy
| | - Gioacchino Tedeschi
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Italy
| | - Antonio Russo
- Headache Center, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, University of Campania "Luigi Vanvitelli", Italy
| |
Collapse
|
100
|
Sudershan A, Sudershan S, Younis M, Bhagat M, Pushap AC, Kumar H, Kumar P. Enlightening the association between TNF-α -308 G > A and migraine: a meta-analysis with meta-regression and trial sequential analysis. BMC Neurol 2023; 23:159. [PMID: 37085790 PMCID: PMC10120225 DOI: 10.1186/s12883-023-03174-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Migraine is a complex neurological disorder that is characterized by a "lower threshold of neuronal hyperexcitability" with distinctive periodicity and complex vascular dysfunction. Genetic factors have impacted incredibly on the susceptibility of migraine and one such example is the TNF-α 308G > A. AIM Therefore, we aim to provide a glimpse of the association of the TNF-α 308G > A risk on the susceptibility of migraine. METHOD The pooled odds ratio with the associated 95% of confidence interval were calculated using different genetic models. Heterogeneity was accessed by using Cochran's Q Test and I2 statistics and Begg's and Egger's tests were used for finding the publication bias, tests were two-sided, and a p-value of < 0.05 was considered statistically significant. The Trial Sequential Analysis with Meta-regression Analysis were also utilized to find out the sample size requirement for meta-analysis to avoid type I error and source of heterogeneity respectively. RESULT A total of 13 studies with cases: 7193 and controls: 23,091 were included and after using different genetic models, no overall association with migraine and its clinical subtype migraine with aura was observed (Allele model "OR: 1.28, 95% C.I. [0.96-1.69] and OR: 0.99,95% C.I. [0.69-1.42]) respectively. Interestingly, after sub-grouping using the "ethnicity criteria" in the migraine group, it was observed that the allelic genetic model and the dominant model were found to be significantly associated with the Asian ethnic group (OR: 1.79, 95% C.I. [1.13-2.84], and OR: 1.85, 95% C.I. [1.0927; 3.1580]. CONCLUSION In conclusion, the present meta-analysis has provided evidence that 308G > A increases the risk of migraine only in the Asian population.
Collapse
Affiliation(s)
- Amrit Sudershan
- Institute of Human Genetics, University of Jammu, Jammu & Kashmir, Jammu, India, 180006
- Department of Human Genetics, Sri Pratap College, Cluster University of Srinagar, Jammu & Kashmir, Kashmir, India
| | - Srishty Sudershan
- Department of Zoology, University of Jammu, Jammu and Kashmir, Jammu, India, 180006
| | - Mohd Younis
- Institute of Human Genetics, University of Jammu, Jammu & Kashmir, Jammu, India, 180006
| | - Meenakshi Bhagat
- Department of Zoology, University of Jammu, Jammu and Kashmir, Jammu, India, 180006
| | - Agar Chander Pushap
- Department of Education, Dakshina Bharat Hindi Prachar Sabha, Madras, India, 600017
| | - Hardeep Kumar
- Department of Neurology, Super Specialty Hospital, Jammu and Kashmir, Jammu, India, 180006
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu & Kashmir, Jammu, India, 180006.
- Department of Zoology, University of Jammu, Jammu and Kashmir, Jammu, India, 180006.
| |
Collapse
|