51
|
An Introduction to Pain Pathways and Pain “Targets”. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:1-30. [DOI: 10.1016/bs.pmbts.2015.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
52
|
Hollenberg MD. Proteinases, their receptors and inflammatory signalling: the Oxford South Parks Road connection. Br J Pharmacol 2014; 172:3196-211. [PMID: 25521749 DOI: 10.1111/bph.13041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/18/2014] [Accepted: 12/07/2014] [Indexed: 01/22/2023] Open
Abstract
In keeping with the aim of the Paton Memorial Lecture to 'facilitate the historical study of pharmacology', this overview, which is my distinct honour to write, represents a 'Janus-like' personal perspective looking both backwards and forwards at the birth and growth of 'receptor molecular pharmacology' with special relevance to inflammatory diseases. The overview begins in the Oxford Department of Pharmacology in the mid-1960s and then goes on to provide a current perspective of signalling by proteinases. Looking backwards, the synopsis describes the fruitful Oxford Pharmacology Department infrastructure that Bill Paton generated in keeping with the blueprint begun by his predecessor, J H Burn. Looking forwards, the overview illustrates the legacy of that environment in generating some of the first receptor ligand-binding data and providing the inspiration and vision for those like me who were training in the department at the same time. With apologies, I mention only in passing a number of individuals who benefitted from the 'South Parks Road connection' using myself as one of the 'outcome study' examples. It is also by looking forward that I can meet the complementary aim of summarizing the lecture presented at a 'BPS 2014 Focused Meeting on Cell Signalling' to provide an overview of the role of proteinases and their signalling mechanisms in the setting of inflammation.
Collapse
Affiliation(s)
- M D Hollenberg
- Inflammation Research Network-Snyder Institute for Chronic Disease, Department of Physiology and Pharmacology and Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| |
Collapse
|
53
|
Kularathna PK, Pagel CN, Mackie EJ. Tumour progression and cancer-induced pain: a role for protease-activated receptor-2? Int J Biochem Cell Biol 2014; 57:149-56. [PMID: 25448411 DOI: 10.1016/j.biocel.2014.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/23/2014] [Indexed: 02/08/2023]
Abstract
The role of proteases in modifying the microenvironment of tumour cells has long been recognised. With the discovery of the protease-activated receptor family of G protein-coupled receptors a mechanism for cells to sense and respond directly to proteases in their microenvironment was revealed. Many early studies described the roles of protease-activated receptors in the cellular events that occur during blood coagulation and inflammation. More recently, studies have begun to focus on the roles of protease-activated receptors in the establishment, progression and metastasis of a variety of tumours. This review will focus on the expression of protease-activated receptor-2 and its activators by normal and neoplastic tissues, and describe current evidence that activation of protease-activated receptor-2 is an important event at multiple stages of tumour progression and in pain associated with cancer.
Collapse
Affiliation(s)
- Pamuditha K Kularathna
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles N Pagel
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eleanor J Mackie
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
54
|
Abstract
Painful sensation is a hallmark of microbe-induced inflammation. This inflammatory pain is downregulated a few days after infection by opioids locally released by effector T lymphocytes generated in response to microbe-derived antigens. This review focuses on the endogenous regulation of inflammatory pain associated with adaptive T-cell response and puts in perspective the clinical consequences of the opioid-mediated analgesic activity of colitogenic T lymphocytes in inflammatory bowel disease.
Collapse
|
55
|
Tripathi T, Alizadeh H. Role of protease-activated receptors 2 (PAR2) in ocular infections and inflammation. ACTA ACUST UNITED AC 2014; 1. [PMID: 26078987 DOI: 10.14800/rci.291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protease-activated receptors (PARs) belong to a unique family of G protein-coupled receptors (GPCRs) that are cleaved at an activation site within the N-terminal exodomain by a variety of proteinases, essentially of the serine (Ser) proteinase family. After cleavage, the new N-terminal sequence functions as a tethered ligand, which binds intramolecularly to activate the receptor and initiate signaling. Cell signals induced through the activation of PARs appear to play a significant role in innate and adoptive immune responses of the cornea, which is constantly exposed to proteinases under physiological or pathophysiological conditions. Activation of PARs interferes with all aspects of the corneal physiology such as barrier function, transports, innate and adoptive immune responses, and functions of corneal nerves. It is not known whether the proteinase released from the microorganism can activate PARs and triggers the inflammatory responses. The role of PAR2 expressed by the corneal epithelial cells and activation by serine protease released from microorganism is discussed here. Recent evidences suggest that activation of PAR2, by the serine proteinases, play an important role in innate and inflammatory responses of the corneal infection.
Collapse
Affiliation(s)
- Trivendra Tripathi
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, and North Texas Eye Research Institute, Fort Worth, Texas, 76107, USA
| | - Hassan Alizadeh
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, and North Texas Eye Research Institute, Fort Worth, Texas, 76107, USA
| |
Collapse
|
56
|
Gomides LF, Lima OCO, Matos NA, Freitas KM, Francischi JN, Tavares JC, Klein A. Blockade of proteinase-activated receptor 4 inhibits neutrophil recruitment in experimental inflammation in mice. Inflamm Res 2014; 63:935-41. [PMID: 25118784 DOI: 10.1007/s00011-014-0767-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/14/2014] [Accepted: 08/05/2014] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE AND DESIGN The activation of proteinase-activated receptors (PARs) has been implicated in the development of important hallmarks of inflammation, including in vivo leukocyte recruitment; however, its role in the regulation of leukocyte migration in response to inflammatory stimuli has not been elucidated until now. Here, we examined the effects of the PAR4 antagonist YPGKF-NH 2 (tcY-NH2) on neutrophil recruitment in experimentally induced inflammation. METHODS BALB/c mice were intrapleurally injected with tcY-NH2 (40 ng/kg) prior to intrapleural injection of carrageenan (Cg) or neutrophil chemoattractant CXCL8; the number of infiltrating neutrophils was evaluated after 4 h, and KC production was assessed at different times after Cg injection. Neutrophil adhesion and rolling cells were studied using a brain circulation preparation 4 h after the Cg or CXCL8 challenge in tcY-NH2-treated mice. RESULTS PAR4 blockade inhibited CXCL8- and Cg-induced neutrophil migration into the pleural cavity of BALB/c mice and reduced neutrophil rolling and adherence. Surprisingly, PAR4 blockade increased the level of KC in response to carrageenan. CONCLUSION These results demonstrated that PAR4 blockade impairs neutrophil migration in vivo, suggesting that PAR4 plays an important role in the regulation of inflammation, at least in part because of its ability to inhibit the actions of the neutrophil chemoattractant CXCL8.
Collapse
Affiliation(s)
- Lindisley F Gomides
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627 Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
OBJECTIVE The objective of this study was to evaluate whether an uncontrolled activation of mast cells and macrophages through protease-activated receptor-2 (PAR-2) during acute pancreatitis could develop lung injury. METHODS Pancreatitis was induced in rats by intraductal infusion of sodium taurocholate. In a group of animals, PAR-2 antagonist or trypsin (TRP) inhibitor was intravenously administered before the pancreatitis induction. In additional groups, the animals were treated with PAR-2-activating peptide or pancreatic TRP. The myeloperoxidase (MPO) activity was measured to evaluate the progression of inflammation. RESULTS Plasma from the animals with pancreatitis and pancreatic TRP induced the secretion of mast cells and alveolar macrophages as well as increased the density of PAR-2 in the plasma membrane. The treatment of alveolar macrophages with TRP, tryptase, as well as PAR-1- and PAR-2-activating peptide led to an increase in calcium-triggered exocytosis. Similar results were obtained in acinar cells. The intravenous injection of PAR-2-activating peptide and TRP induced an increase in MPO activity in the lung. The intravenous injection of PAR-2 antagonist or TRP inhibitor before the pancreatitis induction could prevent the increase in MPO activity in the pancreas and the lung. CONCLUSIONS The TRP generated during acute pancreatitis could be involved in the progression of lung injury through the activation of PAR-2 in alveolar macrophages.
Collapse
|
58
|
Tripathi T, Abdi M, Alizadeh H. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells. Invest Ophthalmol Vis Sci 2014; 55:3912-21. [PMID: 24876278 DOI: 10.1167/iovs.14-14486] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. METHODS Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. RESULTS Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P < 0.05). Protease-activated receptor 2 antagonist significantly inhibited aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P < 0.05). Protease-activated receptor 1 agonists, but not aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells. Acanthamoeba plasminogen activator and PAR2 agonists stimulated IL-8 mRNA expression and protein production, which is significantly diminished by PAR2 antagonist (P < 0.05). Protease-activated receptor 1 antagonist did not alter aPA-stimulated IL-8 mRNA expression and protein production in HCE cells. Flow cytometry and immunocytochemistry showed that aPA and SLIGRL-NH2 (PAR2 agonist) upregulated PAR2 surface protein as compared to that in unstimulated HCE cells. Thrombin, but not aPA, stimulated PAR1 surface protein in HCE cells. CONCLUSIONS Acanthamoeba plasminogen activator specifically induces expression and production of IL-8 in HCE cells via PAR2 pathway, and PAR2 antagonists may be used as a therapeutic target in AK.
Collapse
Affiliation(s)
- Trivendra Tripathi
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, and North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Mahshid Abdi
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, and North Texas Eye Research Institute, Fort Worth, Texas, United States
| | - Hassan Alizadeh
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, and North Texas Eye Research Institute, Fort Worth, Texas, United States
| |
Collapse
|
59
|
Roman K, Done JD, Schaeffer AJ, Murphy SF, Thumbikat P. Tryptase-PAR2 axis in experimental autoimmune prostatitis, a model for chronic pelvic pain syndrome. Pain 2014; 155:1328-1338. [PMID: 24726923 DOI: 10.1016/j.pain.2014.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/14/2014] [Accepted: 04/04/2014] [Indexed: 12/15/2022]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) affects up to 15% of the male population and is characterized by pelvic pain. Mast cells are implicated in the murine experimental autoimmune prostatitis (EAP) model as key to chronic pelvic pain development. The mast cell mediator tryptase-β and its cognate receptor protease-activated receptor 2 (PAR2) are involved in mediating pain in other visceral disease models. Prostatic secretions and urines from CP/CPPS patients were examined for the presence of mast cell degranulation products. Tryptase-β and PAR2 expression were examined in murine EAP. Pelvic pain and inflammation were assessed in the presence or absence of PAR2 expression and upon PAR2 neutralization. Tryptase-β and carboxypeptidase A3 were elevated in CP/CPPS compared to healthy volunteers. Tryptase-β was capable of inducing pelvic pain and was increased in EAP along with its receptor PAR2. PAR2 was required for the development of chronic pelvic pain in EAP. PAR2 signaling in dorsal root ganglia led to extracellular signal-regulated kinase (ERK)1/2 phosphorylation and calcium influx. PAR2 neutralization using antibodies attenuated chronic pelvic pain in EAP. The tryptase-PAR2 axis is an important mediator of pelvic pain in EAP and may play a role in the pathogenesis of CP/CPPS.
Collapse
Affiliation(s)
- Kenny Roman
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
60
|
Sharkey KA, Savidge TC. Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2014; 182:70-82. [PMID: 24674836 DOI: 10.1016/j.autneu.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| | - Tor C Savidge
- Texas Children's Microbiome Center, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
61
|
Proteinase-activated receptor-1 (PAR1) and PAR2 mediate relaxation of guinea pig internal anal sphincter. ACTA ACUST UNITED AC 2014; 189:46-50. [PMID: 24631471 DOI: 10.1016/j.regpep.2014.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/22/2023]
Abstract
Activation of proteinase-activated receptor-1 (PAR1) and PAR2 stimulates contraction of the rat but relaxation of the guinea pig colon. The aim of the present study was to investigate PAR effects on internal anal sphincter (IAS) motility. We measured relaxation of isolated muscle strips from the guinea pig IAS caused by PAR agonists using isometric transducers. Reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the existence of PAR. In the IAS, thrombin and PAR1 peptide agonists TFLLR-NH2 and SFLLRN-NH2 evoked moderate to marked relaxation in a concentration-dependent manner. In addition, trypsin and PAR2 peptide agonists 2-furoyl-LIGRLO-NH2, SLIGRL-NH2 and SLIGKV-NH2 produced relaxation. In contrast, both PAR1 and PAR2 inactive control peptides did not elicit relaxation. Furthermore, the selective PAR1 antagonist vorapaxar and PAR2 antagonist GB 83 specifically inhibited thrombin and trypsin-induced relaxations, respectively. RT-PCR revealed the presence of PAR1 and PAR2 in the IAS. This indicates that PAR1 and PAR2 mediate the IAS relaxation. The relaxant responses of TFLLR-NH2 and trypsin were attenuated by N(omega)-Nitro-L-arginine (L-NNA), indicating involvement of NO. These responses were not affected by tetrodotoxin, implying that the PAR effects are not neurally mediated. On the other hand, PAR4 agonists GYPGKF-NH2, GYPGQV-NH2 and AYPGKF-NH2 did not cause relaxation or contraction, suggesting that PAR4 is not involved in the sphincter motility. Taken together, these results demonstrate that both PAR1 and PAR2 mediate relaxation of the guinea pig IAS through the NO pathway. PAR1 and PAR2 may regulate IAS tone and might be potential therapeutic targets for anal motility disorders.
Collapse
|
62
|
Vermeulen W, Man JGD, Pelckmans PA, Winter BYD. Neuroanatomy of lower gastrointestinal pain disorders. World J Gastroenterol 2014; 20:1005-1020. [PMID: 24574773 PMCID: PMC3921524 DOI: 10.3748/wjg.v20.i4.1005] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
Chronic abdominal pain accompanying intestinal inflammation emerges from the hyperresponsiveness of neuronal, immune and endocrine signaling pathways within the intestines, the peripheral and the central nervous system. In this article we review how the sensory nerve information from the healthy and the hypersensitive bowel is encoded and conveyed to the brain. The gut milieu is continuously monitored by intrinsic enteric afferents, and an extrinsic nervous network comprising vagal, pelvic and splanchnic afferents. The extrinsic afferents convey gut stimuli to second order neurons within the superficial spinal cord layers. These neurons cross the white commissure and ascend in the anterolateral quadrant and in the ipsilateral dorsal column of the dorsal horn to higher brain centers, mostly subserving regulatory functions. Within the supraspinal regions and the brainstem, pathways descend to modulate the sensory input. Because of this multiple level control, only a small proportion of gut signals actually reaches the level of consciousness to induce sensation or pain. In inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) patients, however, long-term neuroplastic changes have occurred in the brain-gut axis which results in chronic abdominal pain. This sensitization may be driven on the one hand by peripheral mechanisms within the intestinal wall which encompasses an interplay between immunocytes, enterochromaffin cells, resident macrophages, neurons and smooth muscles. On the other hand, neuronal synaptic changes along with increased neurotransmitter release in the spinal cord and brain leads to a state of central wind-up. Also life factors such as but not limited to inflammation and stress contribute to hypersensitivity. All together, the degree to which each of these mechanisms contribute to hypersensitivity in IBD and IBS might be disease- and even patient-dependent. Mapping of sensitization throughout animal and human studies may significantly improve our understanding of sensitization in IBD and IBS. On the long run, this knowledge can be put forward in potential therapeutic targets for abdominal pain in these conditions.
Collapse
|
63
|
Vergnolle N. TRPV4: new therapeutic target for inflammatory bowel diseases. Biochem Pharmacol 2014; 89:157-61. [PMID: 24440740 DOI: 10.1016/j.bcp.2014.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 01/06/2023]
Abstract
The transient receptor potential vanilloid-4 (TRPV4) belongs to a family of ion channels and can be activated by warm temperature, hypotonicity, cell swelling or lipid mediators of the arachidonic cascade. The metabolites or events responsible for TRPV4 activation are associated with inflammation, arguing in favor of a role for this receptor in inflammatory diseases. The first studies have focused their attention on the role of TRPV4 in neurons and endothelial cells but TRPV4 cellular distribution is widespread, particularly in the gastrointestinal tract. Herein, we review a number of studies demonstrating the expression of TRPV4 in the gut, the regulation of its expression and functions by inflammatory mediators in that organ and the consequences of TRPV4 activation or inhibition in the intestine. We further discuss the relevance of considering this receptor as a potential target for therapeutic development in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- Université de Toulouse, Université Paul Sabatier,Centre de Physiopathologie de Toulouse Purpan(CPTP), Toulouse, France; INSERM, U1043, Toulouse, France; CNRS, U5282, Toulouse, France.
| |
Collapse
|
64
|
Abstract
The protease-activated receptors (PARs) play a pivotal role in inflammatory and nociceptive processes. PARs have raised considerable interest because of their capacity to regulate numerous aspects of viscera physiology and pathophysiology. The present article summarizes research on PARs and proteases as signalling molecules in visceral pain. In particular, experiments in animal models suggest that PAR2 is important for visceral hypersensitivity. Moreover, endogenous PAR2 agonists seem to be released by colonic tissue of patients suffering from irritable bowel syndrome, suggesting a role for this receptor in visceral pain perception. Thus, PARs, together with proteases that activate them, represent exciting targets for therapeutic intervention on visceral pain.
Collapse
Affiliation(s)
- Nicolas Cenac
- Inserm, U1043, Toulouse, F-31300, France ; ; CNRS, U5282, Toulouse, F-31300, France; ; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| |
Collapse
|
65
|
Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2013; 181:94-106. [PMID: 24412639 DOI: 10.1016/j.autneu.2013.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/11/2013] [Indexed: 12/24/2022]
Abstract
Host defense is a vital role played by the gastrointestinal tract. As host to an enormous and diverse microbiome, the gut has evolved an elaborate array of chemical and physicals barriers that allow the digestion and absorption of nutrients without compromising the mammalian host. The control of such barrier functions requires the integration of neural, humoral, paracrine and immune signaling, involving redundant and overlapping mechanisms to ensure, under most circumstances, the integrity of the gastrointestinal epithelial barrier. Here we focus on selected recent developments in the autonomic neural control of host defense functions used in the protection of the gut from luminal agents, and discuss how the microbiota may potentially play a role in enteric neurotransmission. Key recent findings include: the important role played by subepithelial enteric glia in modulating intestinal barrier function, identification of stress-induced mechanisms evoking barrier breakdown, neural regulation of epithelial cell proliferation, the role of afferent and efferent vagal pathways in regulating barrier function, direct evidence for bacterial communication to the enteric nervous system, and microbial sources of enteric neurotransmitters. We discuss these new and interesting developments in our understanding of the role of the autonomic nervous system in gastrointestinal host defense.
Collapse
|
66
|
Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat Med 2013; 19:1609-16. [PMID: 24216752 PMCID: PMC3855898 DOI: 10.1038/nm.3385] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/20/2013] [Indexed: 12/17/2022]
Abstract
Racial differences in the pathophysiology of atherothrombosis are poorly understood. We explored the function and transcriptome of platelets in healthy black (n = 70) and white (n = 84) subjects. PAR4 thrombin receptor induced platelet aggregation and calcium mobilization were significantly greater in black subjects. Numerous differentially expressed (DE) RNAs were associated with both race and PAR4 reactivity, including phosphatidylcholine transfer protein (PCTP), and platelets from blacks expressed higher levels of PC-TP protein. PC-TP inhibition or depletion blocked activation of platelets or megakaryocytic cell lines through PAR4 but not PAR1. MiR-376c levels were DE by race and PAR4 reactivity, and were inversely correlated with PCTP mRNA levels, PC-TP protein levels and PAR4 reactivity. MiR-376c regulated expression of PC-TP in human megakaryocytes. A disproportionately high number of miRNAs DE by race and PAR4 reactivity, including miR-376c, are encoded in the DLK1-DIO3 locus, and were lower in platelets from blacks. These results support PC-TP as a regulator of the racial difference in PAR4-mediated platelet activation, indicate a genomic contribution to platelet function that differs by race, and emphasize a need to consider race effects when developing anti-thrombotic drugs.
Collapse
|
67
|
Aerts L, Hamelin MÈ, Rhéaume C, Lavigne S, Couture C, Kim W, Susan-Resiga D, Prat A, Seidah NG, Vergnolle N, Riteau B, Boivin G. Modulation of protease activated receptor 1 influences human metapneumovirus disease severity in a mouse model. PLoS One 2013; 8:e72529. [PMID: 24015257 PMCID: PMC3755973 DOI: 10.1371/journal.pone.0072529] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Human metapneumovirus (hMPV) infection causes acute respiratory tract infections (RTI) which can result in hospitalization of both children and adults. To date, no antiviral or vaccine is available for this common viral infection. Immunomodulators could represent an interesting strategy for the treatment of severe viral infection. Recently, the role of protease-activated receptors (PAR) in inflammation, coagulation and infection processes has been of growing interest. Herein, the effects of a PAR1 agonist and a PAR1 antagonist on hMPV infection were investigated in BALB/c mice. Intranasal administration of the PAR1 agonist resulted in increased weight loss and mortality of infected mice. Conversely, the PAR1 antagonist was beneficial to hMPV infection by decreasing weight loss and clinical signs and by significantly reducing pulmonary inflammation, pro-inflammatory cytokine levels (including IL-6, KC and MCP-1) and recruitment of immune cells to the lungs. In addition, a significant reduction in pulmonary viral titers was also observed in the lungs of PAR1 antagonist-treated mice. Despite no apparent direct effect on virus replication during in vitro experiments, an important role for PAR1 in the regulation of furin expression in the lungs was shown for the first time. Further experiments indicated that the hMPV fusion protein can be cleaved by furin thus suggesting that PAR1 could have an effect on viral infectivity in addition to its immunomodulatory properties. Thus, inhibition of PAR1 by selected antagonists could represent an interesting strategy for decreasing the severity of paramyxovirus infections.
Collapse
Affiliation(s)
- Laetitia Aerts
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Marie-Ève Hamelin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Chantal Rhéaume
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Sophie Lavigne
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Christian Couture
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - WooJin Kim
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Nathalie Vergnolle
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Beatrice Riteau
- Virologie et Pathologie Humaine, Université Lyon, Faculté de Médecine RTH Laennec, Lyon, France
- Centre de Tours-Nouzilly Institut National de la Recherche Agronomique, Nouzilly, France
| | - Guy Boivin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| |
Collapse
|
68
|
Abstract
Proteases are enzymes that have the capacity to hydrolyze peptide bonds and degrade other proteins. Proteases can promote inflammation by regulating expression and activity of different pro-inflammatory cytokines, chemokines and other immune components in the lung compartment. They are categorized in three major subcategories: serine proteases, metalloproteases and cysteine proteases especially in case of lung diseases. Neutrophil-derived serine proteases (NSPs), metalloproteases and some mast cell-derived proteases are mainly focused here. Their modes of actions are different in different diseases for e.g. NE induces the release of IL-8 from lung epithelial cells through a MyD88/IRAK/TRAF-6-dependent pathway and also through EGFR MAPK pathway. NSPs contribute to immune regulation during inflammation through the cleavage and activation of specific cellular receptors. MMPs can also influence the progression of various inflammatory processes and there are many non-matrix substrates for MMPs, such as chemokines, growth factors and receptors. During lung inflammation interplay between NE and MMP is an important significant phenomenon. They have been evaluated as therapeutic targets in several inflammatory lung diseases. Here we review the role of proteases in various lung inflammatory diseases with emphasis on their mode of action and contribution to immune regulation during inflammation.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal India
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, University of Manitoba, St. Boniface Hospital Research Centre, Winnipeg, Manitoba Canada
| |
Collapse
|
69
|
Huang SC. Effects of trypsin, thrombin and proteinase-activated receptors on guinea pig common bile duct motility. REGULATORY PEPTIDES 2012; 179:1-5. [PMID: 22960409 DOI: 10.1016/j.regpep.2012.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/18/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Trypsin and thrombin activate proteinase-activated receptors (PARs), which modulate gastrointestinal motility. The common bile duct is exposed to many proteinases that can activate PARs, especially during infection and stone obstruction. We investigated PAR effects on common bile duct motility in vitro. Contraction and relaxation of isolated guinea pig common bile duct strips caused by PAR(1), PAR(2) and PAR(4) agonists were measured using isometric transducers. Reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the expression of PAR(1) and PAR(2). Thrombin and two PAR(1) peptide agonists, TFLLR-NH(2) and SFLLRN-NH(2), evoked moderate relaxation of the carbachol-contracted common bile duct in a concentration-dependent manner. Trypsin and three PAR(2) peptide agonists, 2-furoyl-LIGRLO-NH(2), SLIGKV-NH(2) and SLIGRL-NH(2), generated moderate to marked relaxation as well. The existence of PAR(1) and PAR(2) mRNA in the common bile duct was identified by RT-PCR. Moreover, two PAR(4)-selective agonists, AYPGKF-NH(2) and GYPGQV-NH(2), produced relaxation of the common bile duct. In contrast, all PAR(1), PAR(2) and PAR(4) inactive control peptides did not elicit relaxation. This indicates that PAR(1), PAR(2) and PAR(4) mediate common bile duct relaxation. The thrombin, TFLLR-NH(2), trypsin, and AYPGKF-NH(2)-induced responses were not affected by tetrodotoxin, implying that the PAR effects are not neurally mediated. Our findings provide the first evidence that PAR(1) and PAR(2) mediate whereas agonists of PAR(4) elicit relaxation of the guinea pig common bile duct. Trypsin and thrombin relax the common bile duct. PARs may play an important role in the control of common bile duct motility.
Collapse
Affiliation(s)
- Shih-Che Huang
- Department of Internal Medicine, E-Da Hospital, and School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824, Taiwan.
| |
Collapse
|
70
|
Motta JP, Bermudez-Humaran LG, Deraison C, Martin L, Rolland C, Rousset P, Boue J, Dietrich G, Chapman K, Kharrat P, Vinel JP, Alric L, Mas E, Sallenave JM, Langella P, Vergnolle N. Food-Grade Bacteria Expressing Elafin Protect Against Inflammation and Restore Colon Homeostasis. Sci Transl Med 2012; 4:158ra144. [DOI: 10.1126/scitranslmed.3004212] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
71
|
Glucocorticoids regulate arrestin gene expression and redirect the signaling profile of G protein-coupled receptors. Proc Natl Acad Sci U S A 2012; 109:17591-6. [PMID: 23045642 DOI: 10.1073/pnas.1209411109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) compose the largest family of cell surface receptors and are the most common target of therapeutic drugs. The nonvisual arrestins, β-arrestin-1 and β-arrestin-2, are multifunctional scaffolding proteins that play critical roles in GPCR signaling. On binding of activated GPCRs at the plasma membrane, β-arrestins terminate G protein-dependent responses (desensitization) and stimulate β-arrestin-dependent signaling pathways. Alterations in the cellular complement of β-arrestin-1 and β-arrestin-2 occur in many human diseases, and their genetic ablation in mice has severe consequences. Surprisingly, however, the factors that control β-arrestin gene expression are poorly understood. We demonstrate that glucocorticoids differentially regulate β-arrestin-1 and β-arrestin-2 gene expression in multiple cell types. Glucocorticoids act via the glucocorticoid receptor (GR) to induce the synthesis of β-arrestin-1 and repress the expression of β-arrestin-2. Glucocorticoid-dependent regulation involves the recruitment of ligand-activated glucocorticoid receptors to conserved and functional glucocorticoid response elements in intron-1 of the β-arrestin-1 gene and intron-11 of the β-arrestin-2 gene. In human lung adenocarcinoma cells, the increased expression of β-arrestin-1 after glucocorticoid treatment impairs G protein-dependent activation of inositol phosphate signaling while enhancing β-arrestin-1-dependent stimulation of the MAPK pathway by protease activated receptor 1. These studies demonstrate that glucocorticoids redirect the signaling profile of GPCRs via alterations in β-arrestin gene expression, revealing a paradigm for cross-talk between nuclear and cell surface receptors and a mechanism by which glucocorticoids alter the clinical efficacy of GPCR-based drugs.
Collapse
|
72
|
Chatter R, Cenac N, Roussis V, Kharrat R, Vergnolle N. Inhibition of sensory afferents activation and visceral pain by a brominated algal diterpene. Neurogastroenterol Motil 2012; 24:e336-43. [PMID: 22709240 DOI: 10.1111/j.1365-2982.2012.01940.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND In the search of new therapeutic options for the treatment of pain, isolation, and testing of secondary metabolites from plant extracts has raised significant attention. We have investigated the effects of the brominated diterpene O(11) 15- cyclo-14-bromo-14,15-dihydrorogiol-3,11-diol (that we have named VLC5), extracted from the Mediterranean red algae Laurencia glandulifera. METHODS The pure extract was tested on primary afferent calcium signals induced by high concentration of KCl, transcient receptor potential vanilloid (TRPV)1 (capsaicin) or TRPV4 agonists, histamine, or protease-activated receptor-2 (PAR(2) ) agonist. It was also tested in mice in a model of mustard oil-induced colonic hypersensitivity. KEY RESULTS VLC5 was inhibited PAR(2) agonist or histamine-induced calcium mobilization in mouse primary afferents, but did not modify calcium signals induced by high concentrations of KCl, TRPV1 or TRPV4 agonists. The effect of VLC5 on histamine-induced calcium signal in primary afferent was inhibited by pertussis toxin pretreatment and was dependent on the activation of mu- or kappa-opioid receptor agonists, as it was inhibited by selective antagonists of those two receptors, but not by selective antagonist of the delta-opioid receptor. Intraperitoneal treatment of mice with VLC5 (10 mg kg(-1)) significantly reduced visceral pain behaviors induced by the intracolonic administration of mustard oil, in an opioid receptor-dependent manner. CONCLUSIONS & INFERENCES We have demonstrated significant analgesic properties for the algal metabolite VLC5, which is able to signal directly to primary afferents, through a mechanism dependent on the activation of opioid receptors. This identifies a new natural compound capable of activating peripheral opioidergic systems, exerting analgesic properties.
Collapse
Affiliation(s)
- R Chatter
- Unit of Biotoxins, Institut Pasteur de Tunis, Tunis, Tunisia
| | | | | | | | | |
Collapse
|
73
|
Hirota CL, Moreau F, Iablokov V, Dicay M, Renaux B, Hollenberg MD, MacNaughton WK. Epidermal growth factor receptor transactivation is required for proteinase-activated receptor-2-induced COX-2 expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2012; 303:G111-9. [PMID: 22517768 DOI: 10.1152/ajpgi.00358.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteinase-activated receptor (PAR)(2), a G protein-coupled receptor activated by serine proteinases, has been implicated in both intestinal inflammation and epithelial proliferation. Cyclooxygenase (COX)-2 is overexpressed in the gut during inflammation as well as in colon cancer. We hypothesized that PAR(2) drives COX-2 expression in intestinal epithelial cells. Treatment of Caco-2 colon cancer cells with the PAR(2)-activating peptide 2-furoyl-LIGRLO-NH(2) (2fLI), but not by its reverse-sequence PAR(2)-inactive peptide, for 3 h led to an increase in intracellular COX-2 protein expression accompanied by a COX-2-dependent increase in prostaglandin E(2) production. 2fLI treatment for 30 min significantly increased metalloproteinase activity in the culture supernatant. Increased epidermal growth factor receptor (EGFR) phosphorylation was observed in cell lysates following 40 min of treatment with 2fLI. The broad-spectrum metalloproteinase inhibitor marimastat inhibited both COX-2 expression and EGFR phosphorylation. The EGFR tyrosine kinase inhibitor PD153035 also abolished 2fLI-induced COX-2 expression. Although PAR(2) activation increased ERK MAPK phosphorylation, neither ERK pathway inhibitors nor a p38 MAPK inhibitor affected 2fLI-induced COX-2 expression. However, inhibition of either Src tyrosine kinase signaling by PP2, Rho kinase signaling by Y27632, or phosphatidylinositol 3 (PI3) kinase signaling by LY294002 prevented 2fLI-induced COX-2 expression. Trypsin increased COX-2 expression through PAR(2) in Caco-2 cells and in an EGFR-dependent manner in the noncancerous intestinal epithelial cell-6 cell line. In conclusion, PAR(2) activation drives COX-2 expression in Caco-2 cells via metalloproteinase-dependent EGFR transactivation and activation of Src, Rho, and PI3 kinase signaling. Our findings provide a mechanism whereby PAR(2) can participate in the progression from chronic inflammation to cancer in the intestine.
Collapse
Affiliation(s)
- Christina L Hirota
- Dept. of Physiology and Pharmacology, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
74
|
Okuda K, Takeshima N, Hagiwara S, Takatani J, Uchino T, Noguchi T. New Anthranilic Acid Derivative, EAntS-GS, Attenuates Freund’s Complete Adjuvant-Induced Acute Pain in Rats. J Surg Res 2012; 175:265-70. [DOI: 10.1016/j.jss.2011.03.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/20/2011] [Accepted: 03/31/2011] [Indexed: 01/07/2023]
|
75
|
Gomides LF, Duarte ID, Ferreira RG, Perez AC, Francischi JN, Klein A. Proteinase-activated receptor-4 plays a major role in the recruitment of neutrophils induced by trypsin or carrageenan during pleurisy in mice. Pharmacology 2012; 89:275-82. [PMID: 22517275 DOI: 10.1159/000337378] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/24/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND/AIMS The activation of proteinase-activated receptors (PARs) has been implicated in the development of important hallmarks of inflammation, including in vivo leukocyte recruitment. Here, we examined the effects of aprotinin, a potent inhibitor of trypsin proteinase and the kallikrein-kinin system, and the PAR-4 antagonist YPGKF-NH(2) (tcY-NH(2)) on neutrophil recruitment in response to carrageenan and trypsin in the pleural cavity of mice. METHODS BALB/c mice were intrapleurally injected with trypsin or PAR-4-activating peptide AY-NH(2), pretreated with aprotinin or tcY-NH(2) (1 μg/cavity) prior to an intrapleural injection of trypsin or carrageenan, or pretreated with leukotriene B(4) antagonist U-75302 (3 μg/cavity) prior to a trypsin injection. The number of infiltrating neutrophils was evaluated after 4 h. RESULTS PAR-4-activating peptide AY-NH(2) and trypsin-induced neutrophil recruitment was inhibited by aprotinin, tcY-NH(2) or U-75302. Aprotinin and tcY-NH(2) also inhibited neutrophil recruitment induced by carrageenan. CONCLUSION These data suggest a key role for PAR-4 in mediating neutrophil recruitment in a mouse model of pleurisy induced by the activity of trypsin or trypsin-like enzymes.
Collapse
Affiliation(s)
- L F Gomides
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
76
|
Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov 2012; 11:69-86. [PMID: 22212680 DOI: 10.1038/nrd3615] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteinase-activated receptors (PARs), a family of four seven-transmembrane G protein-coupled receptors, act as targets for signalling by various proteolytic enzymes. PARs are characterized by a unique activation mechanism involving the proteolytic unmasking of a tethered ligand that stimulates the receptor. Given the emerging roles of these receptors in cancer as well as in disorders of the cardiovascular, musculoskeletal, gastrointestinal, respiratory and central nervous system, PARs have become attractive targets for the development of novel therapeutics. In this Review we summarize the mechanisms by which PARs modulate cell function and the roles they can have in physiology and diseases. Furthermore, we provide an overview of possible strategies for developing PAR antagonists.
Collapse
|
77
|
Shinohara A, Kutsukake M, Takahashi M, Kyo S, Tachikawa E, Tamura K. Protease-Activated Receptor–Stimulated Interleukin-6 Expression in Endometriosis-Like Lesions in an Experimental Mouse Model of Endometriosis. J Pharmacol Sci 2012; 119:40-51. [DOI: 10.1254/jphs.11216fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
78
|
Boué J, Blanpied C, Djata-Cabral M, Pelletier L, Vergnolle N, Dietrich G. Immune conditions associated with CD4+ T effector-induced opioid release and analgesia. Pain 2011; 153:485-493. [PMID: 22188867 DOI: 10.1016/j.pain.2011.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/20/2011] [Accepted: 11/14/2011] [Indexed: 12/24/2022]
Abstract
Effector CD4(+) T lymphocytes generated in response to antigens produce endogenous opioids. Thus, in addition to their critical role in host defenses against pathogens, effector CD4(+) T lymphocytes contribute to relieving inflammatory pain. In this study, we investigated mechanisms of opioid release by antigen-experienced effector CD4(+) T cells that leave draining lymph nodes and come back into the inflammatory site. Effector antigen-primed CD4(+) T lymphocytes generated in vitro were intravenously injected into nude mice previously immunized with either cognate or irrelevant antigens in complete Freund adjuvant (CFA). CFA-induced mechanical hyperalgesia was only reduced in mice immunized with cognate antigen. Thus, antinociceptive activity of effector CD4(+) T cells requires the presence of the antigen for which they are specific within the inflammatory site. Accordingly, analgesia was inhibited by neutralizing cognate T cell receptor-mediated interaction between effector CD4(+) T lymphocytes and antigen-presenting cells at the site of inflammation. Analgesia was observed by transferring effector CD4(+) T lymphocytes with Th1 or Th2 phenotype, suggesting that antinociceptive activity is a fundamental property of effector CD4(+) T lymphocytes irrespective of their effector functions. Based on the use of agonists and antagonists selective for each of the opioid receptor subclasses, we showed that analgesia induced by T cell-derived opioids is elicited via activation of δ-type opioid receptors in the periphery. Thus, the antinociceptive activity is a fundamental property associated with the effector phase of adaptive immunity, which is driven by recognition of the cognate antigen by effector CD4(+) T lymphocytes at the inflammatory site.
Collapse
Affiliation(s)
- Jérôme Boué
- INSERM, U1043, Toulouse, France CNRS, U5282, Toulouse, France Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | | | | | | | | | | |
Collapse
|
79
|
Gobbetti T, Cenac N, Motta JP, Rolland C, Martin L, Andrade-Gordon P, Steinhoff M, Barocelli E, Vergnolle N. Serine protease inhibition reduces post-ischemic granulocyte recruitment in mouse intestine. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:141-52. [PMID: 22067907 DOI: 10.1016/j.ajpath.2011.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/26/2011] [Accepted: 09/20/2011] [Indexed: 01/17/2023]
Abstract
Proteases and proteinase-activated receptor (PAR) activation are involved in several intestinal inflammatory conditions. We hypothesized that serine proteases and PAR activation could also modulate the intestinal injury induced by ischemia-reperfusion (I-R). C57Bl/6 mice were subjected to 90 minutes of intestinal ischemia followed or not by reperfusion. Sham-operated animals served as controls. After ischemia, plasma and tissue serine protease activity levels were increased compared to the activity measured in plasma and tissues from sham-operated mice. This increase was maintained or further enhanced after 2 and 5 hours of reperfusion, respectively. Trypsin (25 kDa) was detected in tissues both after ischemia and 2 hours of reperfusion. Treatment with FUT-175 (10 mg/kg), a potent serine protease inhibitor, increased survival after I-R, inhibited tissue protease activity, and significantly decreased intestinal myeloperoxidase (MPO) activity and chemokine and adhesion molecule expression. We investigated whether serine proteases modulate granulocyte recruitment by a PAR-dependent mechanism. MPO levels and adhesion molecule expression were significantly reduced in I-R groups pre-treated with the PAR(1) antagonist SCH-79797 (5 mg/kg) and in Par(2)(-/-)mice, compared, respectively, to vehicle-treated group and wild-type littermates. Thus, increased proteolytic activity and PAR activation play a pathogenic role in intestinal I-R injury. Inhibition of PAR-activating serine proteases could be beneficial to reduce post-ischemic intestinal inflammation.
Collapse
Affiliation(s)
- Thomas Gobbetti
- INSERM, U1043, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Fagundes JAG, Monoo LD, Euzébio Alves VT, Pannuti CM, Cortelli SC, Cortelli JR, Holzhausen M. Porphyromonas Gingivalisis Associated With Protease-Activated Receptor-2 Upregulation in Chronic Periodontitis. J Periodontol 2011; 82:1596-601. [DOI: 10.1902/jop.2011.110073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
81
|
Kumar R, Balhuizen A, Soni A, Amisten S, Salehi A. WITHDRAWN: Potential link between alpha 1 anti-trypsin and PAR-2 in the prevention of beta cell dysfunction(☆). Mol Cell Endocrinol 2011:S0303-7207(11)00533-8. [PMID: 21924322 DOI: 10.1016/j.mce.2011.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 01/09/2023]
Abstract
This article has been withdrawn at the request of the authors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Clinical Science, Islet Cell Physiology, University of Lund, Sweden
| | | | | | | | | |
Collapse
|
82
|
Castro HC, Abreu PA, Geraldo RB, Martins RCA, dos Santos R, Loureiro NIV, Cabral LM, Rodrigues CR. Looking at the proteases from a simple perspective. J Mol Recognit 2011; 24:165-81. [PMID: 21360607 DOI: 10.1002/jmr.1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteases have received enormous interest from the research and medical communities because of their significant roles in several human diseases. Some examples include the involvement of thrombin in thrombosis, HIV-1 protease in Acquired Immune Deficiency Syndrome, cruzain in Trypanosoma cruzi infection, and membrane-type 1 matrix metalloproteinase in tumor invasion and metastasis. Many efforts has been undertaken to design effective inhibitors featuring potent inhibitory activity, specificity, and metabolic stability to those proteases involved in such pathologies. Protease inhibitors usually target the active site, but some of them act by other inhibitory mechanisms. The understanding of the structure-function relationships of proteases and inhibitors has an impact on new inhibitor drugs designing. In this paper, the structures of four proteases (thrombin, HIV-protease, cruzain, and a matrix metalloproteinase) are briefly reviewed, and used as examples of the importance of proteases for the development of new treatment strategies, leading to a longer and healthier life.
Collapse
Affiliation(s)
- Helena C Castro
- LABioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, 24001-970, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Sharon H, Amar D, Levdansky E, Mircus G, Shadkchan Y, Shamir R, Osherov N. PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death. PLoS One 2011; 6:e17509. [PMID: 21412410 PMCID: PMC3055868 DOI: 10.1371/journal.pone.0017509] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/04/2011] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus is the most commonly encountered mold pathogen of humans, predominantly infecting the respiratory system. Colonization and penetration of the lung alveolar epithelium is a key but poorly understood step in the infection process. This study focused on identifying the transcriptional and cell-signaling responses activated in A549 alveolar carcinoma cells incubated in the presence of A. fumigatus wild-type and ΔPrtT protease-deficient germinating conidia and culture filtrates (CF). Microarray analysis of exposed A549 cells identified distinct classes of genes whose expression is altered in the presence of germinating conidia and CF and suggested the involvement of both NFkB and MAPK signaling pathways in mediating the cellular response. Phosphoprotein analysis of A549 cells confirmed that JNK and ERK1/2 are phosphorylated in response to CF from wild-type A. fumigatus and not phosphorylated in response to CF from the ΔPrtT protease-deficient strain. Inhibition of JNK or ERK1/2 kinase activity substantially decreased CF-induced cell damage, including cell peeling, actin-cytoskeleton damage, and reduction in metabolic activity and necrotic death. These results suggest that inhibition of MAPK-mediated host responses to treatment with A. fumigatus CF decreases cellular damage, a finding with possible clinical implications.
Collapse
Affiliation(s)
- Haim Sharon
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|
84
|
Proteinase-activated receptor 2 mediates thermal hyperalgesia and is upregulated in a rat model of chronic pancreatitis. Pancreas 2011; 40:300-7. [PMID: 21311307 DOI: 10.1097/mpa.0b013e318201cbc1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The mechanism of pain in chronic pancreatitis (CP) has yet to be explored. Proteinase-activated receptor 2 (PAR2) plays a pronociceptive role in visceral pain. The study aimed to assess the expression of PAR2 in dorsal root ganglia (DRGs) and validate its role of thermal hyperalgesia in CP. METHODS Chronic pancreatitis model was induced by trinitrobenzene sulfonic acid infusion into rat pancreatic ducts. Abdominal hyperalgesia was measured by thermal withdrawal latencies. The expression of PAR2 and transient receptor potential vanilloid 1 (TRPV1) were analyzed by immunofluorescence and Western blot. The messenger RNA encoding PAR2 was quantitated by real-time polymerase chain reaction. The effects of short-term and long-term ulinastatin treatment on abdominal thermal hyperalgesia of rats with CP were measured. RESULTS Rats with CP showed a decreased thermal withdrawal latency. Proteinase-activated receptor 2 and TRPV1 were significantly upregulated in DRGs. The increased PAR2 protein expression was tightly correlated with thermal withdrawal latencies and TRPV1 expression. Short-term ulinastatin treatment inhibited the development of thermal hyperalgesia of rats with CP in a dose-dependent manner. CONCLUSIONS The thermal hyperalgesia in CP is associated with an up-regulation of the PAR2 in DRGs. Proteinase-activated receptor 2 was involved in the pain generation in rats with CP.
Collapse
|
85
|
Boitano S, Flynn AN, Schulz SM, Hoffman J, Price TJ, Vagner J. Potent agonists of the protease activated receptor 2 (PAR2). J Med Chem 2011; 54:1308-13. [PMID: 21294569 DOI: 10.1021/jm1013049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel peptidomimetic pharmacophores to PAR(2) were designed based on the known activating peptide SLIGRL-NH(2). A set of 15 analogues was evaluated with a model cell line (16HBE14o-) that highly expresses PAR(2). Cells exposed to the PAR(2) activating peptide with N-terminal 2-furoyl modification (2-furoyl-LIGRLO-NH(2)) initiated increases in intracellular calcium concentration ([Ca(2+)](i) EC(50) = 0.84 μM) and in vitro physiological responses as measured by the xCELLigence real time cell analyzer (RTCA EC(50) = 138 nM). We discovered two selective PAR(2) agonists with comparable potency: compound 1 (2-aminothiazol-4-yl; Ca(2+) EC(50) = 1.77 μM, RTCA EC(50) = 142 nM) and compound 2 (6-aminonicotinyl; Ca(2+) EC(50) = 2.60 μM, RTCA EC(50) = 311 nM). Unlike the previously described agonist, these novel agonists are devoid of the metabolically unstable 2-furoyl modification and thus provide potential advantages for PAR(2) peptide design for in vitro and in vivo studies. The novel compounds described herein also serve as a starting point for structure-activity relationship (SAR) design and are, for the first time, evaluated via a unique high throughput in vitro physiological assay. Together these will lead to discovery of more potent agonists and antagonists of PAR(2).
Collapse
Affiliation(s)
- Scott Boitano
- Arizona Respiratory Center and Department of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, Arizona 85724, United States
| | | | | | | | | | | |
Collapse
|
86
|
Vera PL, Wolfe TE, Braley AE, Meyer-Siegler KL. Thrombin induces macrophage migration inhibitory factor release and upregulation in urothelium: a possible contribution to bladder inflammation. PLoS One 2010; 5:e15904. [PMID: 21209875 PMCID: PMC3013117 DOI: 10.1371/journal.pone.0015904] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022] Open
Abstract
Purpose Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine expressed by urothelial cells that mediates bladder inflammation. We investigated the effect of stimulation with thrombin, a Protease Activated Receptor-1 (PAR1) agonist, on MIF release and MIF mRNA upregulation in urothelial cells. Materials and Methods MIF and PAR1 expression was examined in normal human immortalized urothelial cells (UROtsa) using real-time RT-PCR, Western blotting and dual immunostaining. MIF and PAR1 immunostaining was also examined in rat urothelium. The effect of thrombin stimulation (100 nM) on urothelial MIF release was examined in UROtsa cells (in vitro) and in rats (in vivo). UROtsa cells were stimulated with thrombin, culture media were collected at different time points and MIF amounts were determined by ELISA. Pentobarbital anesthetized rats received intravesical saline (control), thrombin, or thrombin +2% lidocaine (to block nerve activity) for 1 hr, intraluminal fluid was collected and MIF amounts determined by ELISA. Bladder or UROtsa MIF mRNA was measured using real time RT-PCR. Results UROtsa cells constitutively express MIF and PAR1 and immunostaining for both was observed in these cells and in the basal and intermediate layers of rat urothelium. Thrombin stimulation of urothelial cells resulted in a concentration- and time-dependent increase in MIF release both in vitro (UROtsa; 2.8-fold increase at 1 hr) and in vivo (rat; 4.5-fold) while heat-inactivated thrombin had no effect. In rats, thrombin-induced MIF release was reduced but not abolished by intravesical lidocaine treatment. Thrombin also upregulated MIF mRNA in UROtsa cells (3.3-fold increase) and in the rat bladder (2-fold increase) where the effect was reduced (1.4-fold) by lidocaine treatment. Conclusions Urothelial cells express both MIF and PAR1. Activation of urothelial PAR1 receptors, either by locally generated thrombin or proteases present in the urine, may mediate bladder inflammation by inducing urothelial MIF release and upregulating urothelial MIF expression.
Collapse
Affiliation(s)
- Pedro L Vera
- Research and Development, The Bay Pines VA Healthcare System, Bay Pines, Florida, United States of America.
| | | | | | | |
Collapse
|
87
|
Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 2010; 62:726-59. [PMID: 21079042 PMCID: PMC2993259 DOI: 10.1124/pr.110.002733] [Citation(s) in RCA: 628] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites and form the earliest line of defense against invading microorganisms. Neutrophil elastase, proteinase 3, and cathepsin G are three hematopoietic serine proteases stored in large quantities in neutrophil cytoplasmic azurophilic granules. They act in combination with reactive oxygen species to help degrade engulfed microorganisms inside phagolysosomes. These proteases are also externalized in an active form during neutrophil activation at inflammatory sites, thus contributing to the regulation of inflammatory and immune responses. As multifunctional proteases, they also play a regulatory role in noninfectious inflammatory diseases. Mutations in the ELA2/ELANE gene, encoding neutrophil elastase, are the cause of human congenital neutropenia. Neutrophil membrane-bound proteinase 3 serves as an autoantigen in Wegener granulomatosis, a systemic autoimmune vasculitis. All three proteases are affected by mutations of the gene (CTSC) encoding dipeptidyl peptidase I, a protease required for activation of their proform before storage in cytoplasmic granules. Mutations of CTSC cause Papillon-Lefèvre syndrome. Because of their roles in host defense and disease, elastase, proteinase 3, and cathepsin G are of interest as potential therapeutic targets. In this review, we describe the physicochemical functions of these proteases, toward a goal of better delineating their role in human diseases and identifying new therapeutic strategies based on the modulation of their bioavailability and activity. We also describe how nonhuman primate experimental models could assist with testing the efficacy of proposed therapeutic strategies.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-618 Protéases et Vectorisation Pulmonaires, Université François Rabelais, Faculté de médecine, 10 Boulevard Tonnellé, Tours, France.
| | | | | | | |
Collapse
|
88
|
Shea-Donohue T, Notari L, Stiltz J, Sun R, Madden KB, Urban JF, Zhao A. Role of enteric nerves in immune-mediated changes in protease-activated receptor 2 effects on gut function. Neurogastroenterol Motil 2010; 22:1138-e291. [PMID: 20626790 PMCID: PMC3693741 DOI: 10.1111/j.1365-2982.2010.01557.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Protease-activated receptors (PARs) are expressed on structural and immune cells. Control of initiation, duration, and magnitude of PAR effects is linked to the level of receptor expression, availability of proteases, and the intracellular signal transduction machinery. We investigated nematode infection-induced changes in PAR(2) expression and the impact on smooth muscle and epithelial responses to PAR(2) agonists. METHODS Smooth muscle and epithelial cell function were assessed in wild-type, and IL-4, IL-13 or STAT6 gene-deficient mice following treatment with vehicle, Nippostrongylus brasiliensis or Heligmosomoides polygyrus, or IL-13. The role of enteric nerves was determined using tetrodotoxin to block nerve conduction. Expression of PAR(2) was assessed by real-time PCR, western blot and immunohistochemistry. KEY RESULTS Nematode infection induced a STAT6- and IL-13-dependent up-regulation of PAR(2) mRNA expression. The infection-induced hypercontractility to PAR(2) agonists required STAT6/IL-13 and was neurally mediated. In contrast, the infection-induced decrease in epithelial secretion to PAR(2) agonists was partly dependent on STAT6 and independent of enteric nerves. The hyposecretion was correlated with decreased PAR(2) immunofluorescent staining on the apical surface of epithelial cells, but enhanced lamina propria immunostaining for PAR(2). CONCLUSIONS & INFERENCES This is the first study to demonstrate an immune regulation of PAR(2) expression that impacts both smooth muscle and epithelial cell responses to PAR(2) agonists. Differences in responses between smooth muscle and epithelial cells are related to the contribution of enteric nerves. These data provide a mechanism by which activation of PAR(2) in immune-based pathologies can induce both transient and long-lasting changes in gut function.
Collapse
Affiliation(s)
- Terez Shea-Donohue
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Luigi Notari
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jennifer Stiltz
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Rex Sun
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kathleen B Madden
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Joseph F. Urban
- Diet, Genomics, & Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Aiping Zhao
- Department of Medicine and Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
89
|
Vascular smooth muscle contractility assays for inflammatory and immunological mediators. Int Immunopharmacol 2010; 10:1344-53. [PMID: 20831918 DOI: 10.1016/j.intimp.2010.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 01/04/2023]
Abstract
The blood vessels are one of the important target tissues for the mediators of inflammation and allergy; further cytokines affect them in a number of ways. We review the use of the isolated blood vessel mounted in organ baths as an important source of pharmacological information. While its use in the bioassay of vasoactive substances tends to be replaced with modern analytical techniques, contractility assays are effective to evaluate novel synthetic drugs, generating robust potency and selectivity data about agonists, partial agonists and competitive or insurmountable antagonists. For instance, the human umbilical vein has been used extensively to characterize ligands of the bradykinin B(2) receptors. Isolated vascular segments are live tissues that are intensely reactive, notably with the regulated expression of gene products relevant for inflammation (e.g., the kinin B(1) receptor and inducible nitric oxide synthase). Further, isolated vessels can be adapted as assays of unconventional proteins (cytokines such as interleukin-1, proteases of physiopathological importance, complement-derived anaphylatoxins and recombinant hemoglobin) and to the gene knockout technology. The well known cross-talks between different cell types, e.g., endothelium-muscle and nerve terminal-muscle, can be extended (smooth muscle cell interaction with resident or infiltrating leukocytes and tumor cells). Drug metabolism and distribution problems can be modeled in a useful manner using the organ bath technology, which, for all these reasons, opens a window on an intermediate level of complexity relative to cellular and molecular pharmacology on one hand, and in vivo studies on the other.
Collapse
|
90
|
Denadai-Souza A, Cenac N, Casatti C, de Souza Câmara P, Yshii L, Costa S, Vergnolle N, Muscará M. PAR2 and Temporomandibular Joint Inflammation in the Rat. J Dent Res 2010; 89:1123-8. [DOI: 10.1177/0022034510375284] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The proteinase-activated receptor 2 (PAR2) is a putative therapeutic target for arthritis. We hypothesized that the early pro-inflammatory effects secondary to its activation in the temporomandibular joint (TMJ) are mediated by neurogenic mechanisms. Immunofluorescence analysis revealed a high degree of neurons expressing PAR2 in retrogradely labeled trigeminal ganglion neurons. Furthermore, PAR2 immunoreactivity was observed in the lining layer of the TMJ, co-localizing with the neuronal marker PGP9.5 and substance-P-containing peripheral sensory nerve fibers. The intra-articular injection of PAR2 agonists into the TMJ triggered a dose-dependent increase in plasma extravasation, neutrophil influx, and induction of mechanical allodynia. The pharmacological blockade of natural killer 1 (NK1) receptors abolished PAR2-induced plasma extravasation and inhibited neutrophil influx and mechanical allodynia. We conclude that PAR2 activation is pro-inflammatory in the TMJ, through a neurogenic mechanism involving NK1 receptors. This suggests that PAR2 is an important component of innate neuro-immune response in the rat TMJ.
Collapse
Affiliation(s)
- A. Denadai-Souza
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508–900, SP, Brazil
- INSERM U563, Centre de Physiopathologie de Toulouse Purpan
| | - N. Cenac
- INSERM U563, Centre de Physiopathologie de Toulouse Purpan
- Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - C.A. Casatti
- Dept. of Basic Sciences, School of Dentistry, São Paulo State University—UNESP, Araçatuba, SP, Brazil
| | - P.R. de Souza Câmara
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508–900, SP, Brazil
| | - L.M. Yshii
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508–900, SP, Brazil
| | - S.K.P. Costa
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508–900, SP, Brazil
| | - N. Vergnolle
- INSERM U563, Centre de Physiopathologie de Toulouse Purpan
- Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - M.N. Muscará
- Dept. of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, 05508–900, SP, Brazil
| |
Collapse
|
91
|
Holzhausen M, Cortelli J, da Silva VA, Franco GN, Cortelli SC, Vergnolle N. Protease-activated Receptor-2 (par2) in Human Periodontitis. J Dent Res 2010; 89:948-53. [DOI: 10.1177/0022034510373765] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
No evidence for the role of protease-activated receptor-2 (PAR2) in human periodontal disease has been demonstrated so far. Thus, we sought to investigate the expression of PAR2 mRNA in chronic periodontitis, and to examine whether its expression is related to the presence of PAR2 potential activators. Microbiological and gingival crevicular fluid samples were collected from individuals with chronic periodontitis and control individuals, and the presence of neutrophil serine proteinase 3 (P3) and Porphyromonas gingivalis was evaluated. PAR2 mRNA expression was higher (p < 0.001) in those with chronic periodontitis compared with control individuals, and it was statistically decreased (p = 0.0006) after periodontal treatment. Furthermore, those with chronic periodontitis presented higher (p < 0.05) levels of IL-1α, IL-6, IL-8, and TNF-α, total proteolytic activity, P. gingivalis prevalence, and P3mRNA expression compared with control individuals. We conclude that PAR2 mRNA expression and its potential activators are elevated in human chronic periodontitis, therefore suggesting that PAR2 may play a role in periodontal inflammation.
Collapse
Affiliation(s)
- M. Holzhausen
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Avenida Prof. Lineu Prestes, 2227, Cidade Universitária, São Paulo-SP, CEP: 05508-000, Brazil
| | - J.R. Cortelli
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Avenida Prof. Lineu Prestes, 2227, Cidade Universitária, São Paulo-SP, CEP: 05508-000, Brazil
| | - V. Araújo da Silva
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Avenida Prof. Lineu Prestes, 2227, Cidade Universitária, São Paulo-SP, CEP: 05508-000, Brazil
| | - G.C. Nobre Franco
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Avenida Prof. Lineu Prestes, 2227, Cidade Universitária, São Paulo-SP, CEP: 05508-000, Brazil
| | - S. Cavalca Cortelli
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, SP, Avenida Prof. Lineu Prestes, 2227, Cidade Universitária, São Paulo-SP, CEP: 05508-000, Brazil
| | - N. Vergnolle
- INSERM U563, Centre de Physiopathologie de Toulouse Purpan, Toulouse, F-31300, France
- Université de Toulouse III Paul Sabatier, Toulouse, F-31000, France
| |
Collapse
|
92
|
Abstract
Protease-activated receptors (PARs) are members of a subfamily of G-protein-coupled receptors that regulate diverse cell functions in response to proteolytic cleavage of an anchored peptide domain that acts as a 'tethered' receptor-activating ligand. PAR-1 and PAR-2 in particular are present throughout the gastrointestinal (GI) tract and play prominent roles in the regulation of GI epithelial function, motility, inflammation and nociception. In a recent article in Neurogastroenterology and Motility, Wang et al. demonstrate, for the first time, that PAR-1 and PAR-2 are present on preganglionic parasympathetic neurons within the rat brainstem. As in other cellular systems, proteases such as thrombin and trypsin activate PAR-1 and PAR-2 on neurons of the dorsal motor nucleus of the vagus (DMV), leading to an increase in intracellular calcium levels via signal transduction mechanisms involving activation of phospholipase C and inositol triphosphate (IP3). The authors also report that the level of PAR-1 and PAR-2 transcripts in DMV tissue is increased following experimental colitis, suggesting that inflammatory conditions may modulate neuronal behavior or induce plasticity within central vagal neurocircuits. It seems reasonable to hypothesize, therefore, that the activity and behavior of vagal efferent motoneurons may be modulated directly by local and/or systemic proteases released during inflammation. This, in turn, may contribute to the increased incidence of functional GI disorders, including gastric dysmotility, delayed emptying and gastritis observed in patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- K N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033-0850, USA.
| |
Collapse
|
93
|
Kwong K, Nassenstein C, de Garavilla L, Meeker S, Undem BJ. Thrombin and trypsin directly activate vagal C-fibres in mouse lung via protease-activated receptor-1. J Physiol 2010; 588:1171-7. [PMID: 20142268 DOI: 10.1113/jphysiol.2009.181669] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nature of protease-activated receptors (PARs) capable of activating respiratory vagal C-fibres in the mouse was investigated. Infusing thrombin or trypsin via the trachea strongly activated vagal lung C-fibres with action potential discharge, recorded with the extracellular electrode positioned in the vagal sensory ganglion. The intensity of activation was similar to that observed with the TRPV1 agonist, capsaicin. This was mimicked by the PAR1-activating peptide TFLLR-NH(2), whereas the PAR2-activating peptide SLIGRL-NH(2) was without effect. Patch clamp recording on cell bodies of capsaicin-sensitive neurons retrogradely labelled from the lungs revealed that TFLLR-NH(2) consistently evokes a large inward current. RT-PCR revealed all four PARs were expressed in the vagal ganglia. However, when RT-PCR was carried out on individual neurons retrogradely labelled from the lungs it was noted that TRPV1-positive neurons (presumed C-fibre neurons) expressed PAR1 and PAR3, whereas PAR2 and PAR4 were rarely expressed. The C-fibres in mouse lungs isolated from PAR1(-/-) animals responded normally to capsaicin, but failed to respond to trypsin, thrombin, or TFLLR-NH(2). These data show that the PAR most relevant for evoking action potential discharge in vagal C-fibres in mouse lungs is PAR1, and that this is a direct neuronal effect.
Collapse
Affiliation(s)
- Kevin Kwong
- Johns Hopkins University, Department of Medicine, Division of Clinical Immunology, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
94
|
Hyun E, Ramachandran R, Cenac N, Houle S, Rousset P, Saxena A, Liblau RS, Hollenberg MD, Vergnolle N. Insulin Modulates Protease-Activated Receptor 2 Signaling: Implications for the Innate Immune Response. THE JOURNAL OF IMMUNOLOGY 2010; 184:2702-9. [DOI: 10.4049/jimmunol.0902171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
95
|
Costa R, Manjavachi MN, Motta EM, Marotta DM, Juliano L, Torres HA, Pesquero JB, Calixto JB. The role of kinin B1 and B2 receptors in the scratching behaviour induced by proteinase-activated receptor-2 agonists in mice. Br J Pharmacol 2010; 159:888-97. [PMID: 20067469 DOI: 10.1111/j.1476-5381.2009.00571.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of the proteinase-activated receptor-2 (PAR-2) induces scratching behaviour in mice. Here, we have investigated the role of kinin B(1) and B(2) receptors in the pruritogenic response elicited by activators of PAR-2. EXPERIMENTAL APPROACH Scratching was induced by an intradermal (i.d.) injection of trypsin or the selective PAR-2 activating peptide SLIGRL-NH(2) at the back of the mouse neck. The animals were observed for 40 min and their scratching response was quantified. KEY RESULTS I.d. injection of trypsin or SLIGRL-NH(2) evoked a scratching behaviour, dependent on PAR-2 activation. Mice genetically deficient in kinin B(1) or B(2) receptors exhibited reduced scratching behaviour after i.d. injection of trypsin or SLIGRL-NH(2). Treatment (i.p.) with the non-peptide B(1) or B(2)receptor antagonists SSR240612 and FR173657, respectively, prevented the scratching behaviour caused by trypsin or SLIGRL-NH(2). Nonetheless, only treatment i.p. with the peptide B(2)receptor antagonist, Hoe 140, but not the B(1)receptor antagonist (DALBK), inhibited the pruritogenic response to trypsin. Hoe 140 was also effective against SLIGRL-NH(2)-induced scratching behaviour when injected by i.d. or intrathecal (i.t.) routes. Also, the response to SLIGRL-NH(2) was inhibited by i.t. (but not by i.d.) treatment with DALBK. Conversely, neither Hoe 140 nor DALBK were able to inhibit SLIGRL-NH(2)-induced scratching behaviour when given intracerebroventricularly (i.c.v.). CONCLUSIONS AND IMPLICATIONS The present results demonstrated that kinins acting on both B(1) and B(2) receptors played a crucial role in controlling the pruriceptive signalling triggered by PAR-2 activation in mice.
Collapse
Affiliation(s)
- Robson Costa
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
BACKGROUND Inflammation is commonly associated with hyperalgesia. Ideally, this change should abate once inflammation is resolved, but this is not necessarily the case because phenotypic changes in the tissue can persist, as appears to be the case in post-infectious irritable bowel syndrome. Basically, all primary afferent neurons supplying the gut can be sensitized in response to pro-inflammatory mediators, and the mechanisms whereby hypersensitivity is initiated and maintained are, thus, of prime therapeutic interest. EXPERIMENTAL AND CLINICAL FINDINGS There is a multitude of molecular nocisensors that can be responsible for the hypersensitivity of afferent neurons. These entities include: (i) receptors and sensors at the peripheral terminals of afferent neurons that are relevant to stimulus transduction, (ii) ion channels that govern the excitability and conduction properties of afferent neurons, and (iii) transmitters and transmitter receptors that mediate communication between primary afferents and second-order neurons in the spinal cord and brainstem. Persistent increases in the sensory gain may result from changes in the expression of transmitters, receptors or ion channels; changes in the subunit composition and biophysical properties of receptors and ion channels; or changes in the structure, connectivity and survival of afferent neurons. Particular therapeutic potential is attributed to targets that are selectively expressed by afferent neurons and whose number and function are altered in abdominal hypersensitivity. CONCLUSION Emerging targets of therapeutic relevance include distinct members of the transient receptor potential (TRP) channel family (TRPV1, TRPV4, TRPA1), acid-sensing ion channels, protease-activated receptors, corticotropin-releasing factor receptors and sensory neuron-specific sodium channels.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute for Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| | | |
Collapse
|