51
|
Reis A, de Freitas V, Sanchez-Quesada JL, Barros AS, Diaz SO, Leite-Moreira A. Lipidomics in Cardiovascular Diseases. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
52
|
Liu Y, Wang Y, Wang J, Chen K, Jin L, Wang W, Gao Z, Tang X, Yan L, Wan Q, Luo Z, Qin G, Chen L, Mu Y. Lipid Accumulation Product is Associated with Urinary Albumin-creatinine Ratio in Chinese Prediabitic Population: A Report from the REACTION Study. Diabetes Metab Syndr Obes 2021; 14:2415-2425. [PMID: 34093028 PMCID: PMC8168967 DOI: 10.2147/dmso.s310751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/30/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Lipid accumulation product (LAP) as a powerful marker of visceral obesity is an independent risk factor of chronic kidney disease. The present study attempted to explore the association between LAP and albuminuria in prediabetic individuals. METHODS We conducted a cross-sectional study and enrolled 26,529 participants with prediabetes over 40 years old with prediabetes from seven provinces in China. LAP was calculated from waist circumference and fasting triglycerides. Elevated albuminuria was defined by urinary albumin-creatinine ratio (uACR) ≥30 mg/g. Propensity score matching was applied to reduce bias, comparison between LAP and other traditional visceral obesity indices was performed and multiple logistic regression models were conducted to assess the association between LAP and albuminuria in the prediabetic population. RESULTS Individuals with uACR ≥30 mg/g were older and had higher BP, BMI, WC, TG, fasting insulin, glycohemoglobin and LAP, as well as lower eGFR and HDL level. Multiple logistic regression analysis showed elevated LAP was associated with increased odds of albuminuria (OR [95%CI]Q2 vs Q1 1.09 [0.94, 1.27], OR [95%CI]Q3 vs Q1 1.13 [0.97, 1.31], OR [95%CI]Q4 vs Q1 1.42 [1.21, 1.67], P for trend=0.018), and superior over waist-to-hip ratio or waist-to-height ratio. Stratification indicated that the prediabetic population with higher LAP level and characterized by female gender, middle age, being overweight, and rise in blood pressure were more likely to have increased uACR. CONCLUSION Elevated level of LAP was associated with increased albuminuria in the prediabetic population in China.
Collapse
Affiliation(s)
- Yang Liu
- Graduate School, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yun Wang
- Graduate School, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jie Wang
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Kang Chen
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Lingzi Jin
- Department of International Medical Services, Peking Union Medical College Hospital (Xidan Campus), Beijing, People’s Republic of China
| | - Weiqing Wang
- Shanghai National Research Centre for Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhengnan Gao
- Department of Endocrinology, Dalian Central Hospital, Dalian, Liaoning, People’s Republic of China
| | - Xulei Tang
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Li Yan
- Department of Endocrinology, Zhongshan University Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, People’s Republic of China
| | - Qin Wan
- Department of Endocrinology, Southwest Medical University Affiliated Hospital, Luzhou, Sichuan, People’s Republic of China
| | - Zuojie Luo
- Department of Endocrinology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Guijun Qin
- Department of Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhenzhou, Henan, People’s Republic of China
| | - Lulu Chen
- Department of Endocrinology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
- Correspondence: Yiming Mu Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, People’s Republic of ChinaTel +86-10-5549 9001 Email
| |
Collapse
|
53
|
Alves MA, Lamichhane S, Dickens A, McGlinchey A, Ribeiro HC, Sen P, Wei F, Hyötyläinen T, Orešič M. Systems biology approaches to study lipidomes in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158857. [PMID: 33278596 DOI: 10.1016/j.bbalip.2020.158857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022]
Abstract
Lipids have many important biological roles, such as energy storage sources, structural components of plasma membranes and as intermediates in metabolic and signaling pathways. Lipid metabolism is under tight homeostatic control, exhibiting spatial and dynamic complexity at multiple levels. Consequently, lipid-related disturbances play important roles in the pathogenesis of most of the common diseases. Lipidomics, defined as the study of lipidomes in biological systems, has emerged as a rapidly-growing field. Due to the chemical and functional diversity of lipids, the application of a systems biology approach is essential if one is to address lipid functionality at different physiological levels. In parallel with analytical advances to measure lipids in biological matrices, the field of computational lipidomics has been rapidly advancing, enabling modeling of lipidomes in their pathway, spatial and dynamic contexts. This review focuses on recent progress in systems biology approaches to study lipids in health and disease, with specific emphasis on methodological advances and biomedical applications.
Collapse
Affiliation(s)
- Marina Amaral Alves
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Alex Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | | | - Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | - Fang Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, PR China
| | | | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden.
| |
Collapse
|
54
|
High-coverage lipidomics for functional lipid and pathway analyses. Anal Chim Acta 2020; 1147:199-210. [PMID: 33485579 DOI: 10.1016/j.aca.2020.11.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Rapid advances in front-end separation approaches and analytical technologies have accelerated the development of lipidomics, particularly in terms of increasing analytical coverage to encompass an expanding repertoire of lipids within a single analytical approach. Developments in lipid pathway analysis, however, have somewhat lingered behind, primarily due to (1) the lack of coherent alignment between lipid identifiers in common databases versus that generated from experiments, owing to the differing structural resolution of lipids at molecular level that is specific to the analytical approaches adopted by various laboratories; (2) the immense complexity of lipid metabolic relationships that may entail head group changes, fatty acyls modifications of various forms (e.g. elongation, desaturation, oxidation), as well as active remodeling that demands a multidimensional, panoramic view to take into account all possibilities in lipid pathway analyses. Herein, we discuss current efforts undertaken to address these challenges, as well as alternative form of "pathway analyses" that may be particularly useful for uncovering functional lipid interactions under different biological contexts. Consolidating lipid pathway analyses will be indispensable in facilitating the transition of lipidomics from its prior role of phenotype validation to a hypothesis-generating tool that uncovers novel molecular targets to drive downstream mechanistic pursuits under biomedical settings.
Collapse
|
55
|
Sikorskaya TV, Imbs AB. Coral Lipidomes and Their Changes during Coral Bleaching. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020050234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
56
|
Bahmad HF, Daouk R, Azar J, Sapudom J, Teo JCM, Abou-Kheir W, Al-Sayegh M. Modeling Adipogenesis: Current and Future Perspective. Cells 2020; 9:2326. [PMID: 33092038 PMCID: PMC7590203 DOI: 10.3390/cells9102326] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is contemplated as a dynamic organ that plays key roles in the human body. Adipogenesis is the process by which adipocytes develop from adipose-derived stem cells to form the adipose tissue. Adipose-derived stem cells' differentiation serves well beyond the simple goal of producing new adipocytes. Indeed, with the current immense biotechnological advances, the most critical role of adipose-derived stem cells remains their tremendous potential in the field of regenerative medicine. This review focuses on examining the physiological importance of adipogenesis, the current approaches that are employed to model this tightly controlled phenomenon, and the crucial role of adipogenesis in elucidating the pathophysiology and potential treatment modalities of human diseases. The future of adipogenesis is centered around its crucial role in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Reem Daouk
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Joseph Azar
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, 2460 Abu Dhabi, UAE;
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, 2460 Abu Dhabi, UAE;
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, 2460 Abu Dhabi, UAE
| |
Collapse
|
57
|
Du H, Li Q, Yi H, Xu T, Xu XM, Kuang TT, Zhang J, Huang AQ, Fan G. Anti-Diabetic Effects of Berberis kansuensis Extract on Type 2 Diabetic Rats Revealed by 1 H-NMR-Based Metabolomics and Biochemistry Analysis. Chem Biodivers 2020; 17:e2000413. [PMID: 32871055 DOI: 10.1002/cbdv.202000413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023]
Abstract
The dried stem bark of Berberis kansuensis C.K.Schneid. (Berberidaceae) was widely used to treat diabetes in traditional Tibetan medicine system. However, its anti-diabetic mechanisms have not been elucidated. In this study, 1 H-NMR-based metabolomics combined with biochemistry assay was applied to investigate the anti-diabetic activities as well as underlying mechanisms of B. kansuensis extract on type 2 diabetic rats. The results showed that after 30 days treatment with B. kansuensis extract, the levels of FBG, GSP, INS, TNF-α, IL-1β and IL-6 were significantly decreased in B. kansuensis group compared with the model group. Besides, a total of 28 metabolites were identified in rat serum by 1 H-NMR-based metabolomics method, 16 of which were significantly different in the normal group compared with the model group, and eight of them were significantly reversed after B. kansuensis intervention. Further analysis of metabolic pathways indicated that therapeutic effect of B. kansuensis might be predominantly related to their ability to improve glycolysis and gluconeogenesis, citric acid cycle, lipid metabolism, amino acid metabolism and choline metabolism. The results of both metabolomics and biochemical analysis indicated that B. kansuensis extract has a potential anti-diabetic effect on type 2 diabetic rats. Its therapeutic effect may be based on the ability of anti-inflammation, alleviating insulin resistance and restoring several disturbed metabolic pathways.
Collapse
Affiliation(s)
- Huan Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Qi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Huan Yi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Tong Xu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Xin-Mei Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Ting-Ting Kuang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jing Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - An-Qing Huang
- Department of Anorectal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| |
Collapse
|
58
|
Liu N, Sun Q, Xu H, Yu X, Chen W, Wei H, Jiang J, Xu Y, Lu W. Hyperuricemia induces lipid disturbances mediated by LPCAT3 upregulation in the liver. FASEB J 2020; 34:13474-13493. [PMID: 32780898 DOI: 10.1096/fj.202000950r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Potential underlying molecular mechanisms for uric acid-induced lipid metabolic disturbances had not been elucidated clearly. This study investigated the effects and underlying mechanisms of uric acid on the development of lipid metabolic disorders. We collected blood samples from 100 healthy people and 100 patients with hyperuricemia for whom serum lipid analysis was performed. Meanwhile, a mouse model of hyperuricemia was generated, and lipidomics was performed on liver tissues, comparing control and hyperuricemia groups, to analyze lipid profiles and key metabolic enzymes. Uric acid directly induced serum lipid metabolic disorders in both humans and mice based on triglycerides, total cholesterol, and low-density lipoprotein cholesterol. Through lipidomic analysis, 46 lipids were differentially expressed in hyperuricemic mouse livers, and the phosphatidylcholine composition was altered, which was mediated by LPCAT3 upregulation. High-uric acid levels-induced p-STAT3 inhibition and SREBP-1c activation in vivo and in vitro. Moreover, LPCAT3-knockdown significantly attenuated uric acid-induced p-STAT3 inhibition, SREBP-1c activation, and lipid metabolic disorders in L02 cells. In conclusion, uric acid induces lipid metabolic disturbances through LPCAT3-mediated p-STAT3 inhibition and SREBP-1c activation. LPCAT3 could be a key regulatory factor linking hyperuricemia and lipid metabolic disorders. These results might provide novel insights into the clinical treatment of hyperuricemia.
Collapse
Affiliation(s)
- Ning Liu
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Qianqian Sun
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Hu Xu
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Xiaojuan Yu
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Wentong Chen
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Hongquan Wei
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Jie Jiang
- Basic Medical College, Anhui Medical University, Hefei, China.,College of Pharmacy, Anhui Medical University, Hefei, China
| | - Youzhi Xu
- Basic Medical College, Anhui Medical University, Hefei, China
| | - Wenjie Lu
- Basic Medical College, Anhui Medical University, Hefei, China
| |
Collapse
|
59
|
Lai M, Al Rijjal D, Röst HL, Dai FF, Gunderson EP, Wheeler MB. Underlying dyslipidemia postpartum in women with a recent GDM pregnancy who develop type 2 diabetes. eLife 2020; 9:59153. [PMID: 32748787 PMCID: PMC7417169 DOI: 10.7554/elife.59153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/18/2020] [Indexed: 12/15/2022] Open
Abstract
Approximately, 35% of women with Gestational Diabetes (GDM) progress to Type 2 Diabetes (T2D) within 10 years. However, links between GDM and T2D are not well understood. We used a well-characterised GDM prospective cohort of 1035 women following up to 8 years postpartum. Lipidomics profiling covering >1000 lipids was performed on fasting plasma samples from participants 6–9 week postpartum (171 incident T2D vs. 179 controls). We discovered 311 lipids positively and 70 lipids negatively associated with T2D risk. The upregulation of glycerolipid metabolism involving triacylglycerol and diacylglycerol biosynthesis suggested activated lipid storage before diabetes onset. In contrast, decreased sphingomyelines, hexosylceramide and lactosylceramide indicated impaired sphingolipid metabolism. Additionally, a lipid signature was identified to effectively predict future diabetes risk. These findings demonstrate an underlying dyslipidemia during the early postpartum in those GDM women who progress to T2D and suggest endogenous lipogenesis may be a driving force for future diabetes onset.
Collapse
Affiliation(s)
- Mi Lai
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Dana Al Rijjal
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Hannes L Röst
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Ontario, Canada
| | - Feihan F Dai
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Erica P Gunderson
- Kaiser Permanente Northern California, Division of Research, Oakland, United States
| | - Michael B Wheeler
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada.,Advanced Diagnostics, Metabolism, Toronto General Research Institute, Ontario, Canada
| |
Collapse
|
60
|
Wong MWK, Thalamuthu A, Braidy N, Mather KA, Liu Y, Ciobanu L, Baune BT, Armstrong NJ, Kwok J, Schofield P, Wright MJ, Ames D, Pickford R, Lee T, Poljak A, Sachdev PS. Genetic and environmental determinants of variation in the plasma lipidome of older Australian twins. eLife 2020; 9:e58954. [PMID: 32697195 PMCID: PMC7394543 DOI: 10.7554/elife.58954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The critical role of blood lipids in a broad range of health and disease states is well recognised but less explored is the interplay of genetics and environment within the broader blood lipidome. We examined heritability of the plasma lipidome among healthy older-aged twins (75 monozygotic/55 dizygotic pairs) enrolled in the Older Australian Twins Study (OATS) and explored corresponding gene expression and DNA methylation associations. 27/209 lipids (13.3%) detected by liquid chromatography-coupled mass spectrometry (LC-MS) were significantly heritable under the classical ACE twin model (h2 = 0.28-0.59), which included ceramides (Cer) and triglycerides (TG). Relative to non-significantly heritable TGs, heritable TGs had a greater number of associations with gene transcripts, not directly associated with lipid metabolism, but with immune function, signalling and transcriptional regulation. Genome-wide average DNA methylation (GWAM) levels accounted for variability in some non-heritable lipids. We reveal a complex interplay of genetic and environmental influences on the ageing plasma lipidome.
Collapse
Affiliation(s)
- Matthew WK Wong
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
- Neuroscience Research AustraliaSydneyAustralia
| | - Yue Liu
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
| | - Liliana Ciobanu
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
- The University of Adelaide, Adelaide Medical School, Discipline of PsychiatryAdelaideAustralia
| | - Bernhardt T Baune
- The University of Adelaide, Adelaide Medical School, Discipline of PsychiatryAdelaideAustralia
- Department of Psychiatry, University of MünsterMünsterGermany
- Department of Psychiatry, Melbourne Medical School, The University of MelbourneMelbourneAustralia
- The Florey Institute of Neuroscience and Mental Health, The University of MelbourneMelbourneAustralia
| | | | - John Kwok
- Brain and Mind Centre, The University of SydneySydneyAustralia
| | - Peter Schofield
- Neuroscience Research AustraliaSydneyAustralia
- School of Medical Sciences, University of New South WalesSydneyAustralia
| | - Margaret J Wright
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
- Centre for Advanced Imaging, University of QueenslandBrisbaneAustralia
| | - David Ames
- University of Melbourne Academic Unit for Psychiatry of Old AgeKewAustralia
- National Ageing Research InstituteParkvilleAustralia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South WalesSydneyAustralia
| | - Teresa Lee
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales HospitalSydneyAustralia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
- School of Medical Sciences, University of New South WalesSydneyAustralia
- Bioanalytical Mass Spectrometry Facility, University of New South WalesSydneyAustralia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South WalesSydneyAustralia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales HospitalSydneyAustralia
| |
Collapse
|
61
|
Wu Z, Bagarolo GI, Thoröe-Boveleth S, Jankowski J. "Lipidomics": Mass spectrometric and chemometric analyses of lipids. Adv Drug Deliv Rev 2020; 159:294-307. [PMID: 32553782 DOI: 10.1016/j.addr.2020.06.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023]
Abstract
Lipids are ubiquitous in the human organism and play essential roles as components of cell membranes and hormones, for energy storage or as mediators of cell signaling pathways. As crucial mediators of the human metabolism, lipids are also involved in metabolic diseases, cardiovascular and renal diseases, cancer and/or hepatological and neurological disorders. With rapidly growing evidence supporting the impact of lipids on both the genesis and progression of these diseases as well as patient wellbeing, the characterization of the human lipidome has gained high interest and importance in life sciences and clinical diagnostics within the last 15 years. This is mostly due to technically advanced molecular identification and quantification methods, mainly based on mass spectrometry. Mass spectrometry has become one of the most powerful tools for the identification of lipids. New lipidic mediators or biomarkers of diseases can be analysed by state-of-the art mass spectrometry techniques supported by sophisticated bioinformatics and biostatistics. The lipidomic approach has developed dramatically in the realm of life sciences and clinical diagnostics due to the available mass spectrometric methods and in particular due to the adaptation of biostatistical methods in recent years. Therefore, the current knowledge of lipid extraction methods, mass-spectrometric approaches, biostatistical data analysis, including workflows for the interpretation of lipidomic high-throughput data, are reviewed in this manuscript.
Collapse
Affiliation(s)
- Zhuojun Wu
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Giulia Ilaria Bagarolo
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sven Thoröe-Boveleth
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Maastricht, The Netherlands.
| |
Collapse
|
62
|
Meckelmann SW, Hawksworth JI, White D, Andrews R, Rodrigues P, O'Connor A, Alvarez-Jarreta J, Tyrrell VJ, Hinz C, Zhou Y, Williams J, Aldrovandi M, Watkins WJ, Engler AJ, Lo Sardo V, Slatter DA, Allen SM, Acharya J, Mitchell J, Cooper J, Aoki J, Kano K, Humphries SE, O'Donnell VB. Metabolic Dysregulation of the Lysophospholipid/Autotaxin Axis in the Chromosome 9p21 Gene SNP rs10757274. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002806. [PMID: 32396387 PMCID: PMC7299226 DOI: 10.1161/circgen.119.002806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Common chromosome 9p21 single nucleotide polymorphisms (SNPs) increase coronary heart disease risk, independent of traditional lipid risk factors. However, lipids comprise large numbers of structurally related molecules not measured in traditional risk measurements, and many have inflammatory bioactivities. Here, we applied lipidomic and genomic approaches to 3 model systems to characterize lipid metabolic changes in common Chr9p21 SNPs, which confer ≈30% elevated coronary heart disease risk associated with altered expression of ANRIL, a long ncRNA. METHODS Untargeted and targeted lipidomics was applied to plasma from NPHSII (Northwick Park Heart Study II) homozygotes for AA or GG in rs10757274, followed by correlation and network analysis. To identify candidate genes, transcriptomic data from shRNA downregulation of ANRIL in HEK-293 cells was mined. Transcriptional data from vascular smooth muscle cells differentiated from induced pluripotent stem cells of individuals with/without Chr9p21 risk, nonrisk alleles, and corresponding knockout isogenic lines were next examined. Last, an in-silico analysis of miRNAs was conducted to identify how ANRIL might control lysoPL (lysophosphospholipid)/lysoPA (lysophosphatidic acid) genes. RESULTS Elevated risk GG correlated with reduced lysoPLs, lysoPA, and ATX (autotaxin). Five other risk SNPs did not show this phenotype. LysoPL-lysoPA interconversion was uncoupled from ATX in GG plasma, suggesting metabolic dysregulation. Significantly altered expression of several lysoPL/lysoPA metabolizing enzymes was found in HEK cells lacking ANRIL. In the vascular smooth muscle cells data set, the presence of risk alleles associated with altered expression of several lysoPL/lysoPA enzymes. Deletion of the risk locus reversed the expression of several lysoPL/lysoPA genes to nonrisk haplotype levels. Genes that were altered across both cell data sets were DGKA, MBOAT2, PLPP1, and LPL. The in-silico analysis identified 4 ANRIL-regulated miRNAs that control lysoPL genes as miR-186-3p, miR-34a-3p, miR-122-5p, and miR-34a-5p. CONCLUSIONS A Chr9p21 risk SNP associates with complex alterations in immune-bioactive phospholipids and their metabolism. Lipid metabolites and genomic pathways associated with coronary heart disease pathogenesis in Chr9p21 and ANRIL-associated disease are demonstrated.
Collapse
Affiliation(s)
- Sven W Meckelmann
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom.,Applied Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany (S.W.M.)
| | - Jade I Hawksworth
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Daniel White
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Robert Andrews
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Patricia Rodrigues
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Anne O'Connor
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Jorge Alvarez-Jarreta
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Victoria J Tyrrell
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Christine Hinz
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - You Zhou
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Julie Williams
- Division of Neuropsychiatric Genetics and Genomics and Dementia Research Institute at Cardiff, School of Medicine (J.W.), Cardiff University, United Kingdom
| | - Maceler Aldrovandi
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - William J Watkins
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Adam J Engler
- Department of Bioengineering, University of San Diego, La Jolla, CA (A.J.E.)
| | - Valentina Lo Sardo
- Department of Cellular and Molecular Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (V.L.S.)
| | - David A Slatter
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| | - Stuart M Allen
- School of Computer Science and Informatics (S.M.A.), Cardiff University, United Kingdom
| | - Jay Acharya
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (J. Acharya, J.M., J.C., S.E.H.)
| | - Jacquie Mitchell
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (J. Acharya, J.M., J.C., S.E.H.)
| | - Jackie Cooper
- Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (J. Acharya, J.M., J.C., S.E.H.)
| | - Junken Aoki
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (J. Aoki, K.K.)
| | - Kuniyuki Kano
- School of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan (J. Aoki, K.K.)
| | | | - Valerie B O'Donnell
- Division of Infection and Immunity, Systems Immunity Research Institute (S.W.M., J.I.H., D.W., R.A., P.R., A.O., J.A.-J., V.J.T., C.H., Y.Z., M.A., W.J.W., D.A.S., V.B.O.), Cardiff University, United Kingdom
| |
Collapse
|
63
|
Chen H, Nie Q, Hu J, Huang X, Huang W, Nie S. Metabolism amelioration of Dendrobium officinale polysaccharide on type II diabetic rats. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105582] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
64
|
Xu M, Legradi J, Leonards P. Evaluation of LC-MS and LC×LC-MS in analysis of zebrafish embryo samples for comprehensive lipid profiling. Anal Bioanal Chem 2020; 412:4313-4325. [PMID: 32347362 PMCID: PMC7320064 DOI: 10.1007/s00216-020-02661-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
In this study, both conventional one-dimensional liquid chromatography (1DLC) and comprehensive two-dimensional liquid chromatography (2DLC) coupled to a high-resolution time-of-flight mass spectrometer (HR-TOF MS) were used for full-scale lipid characterization of lipid extracts from zebrafish embryos. We investigated the influence on annotated lipids and different separation mechanisms (HILIC, C18, and PFP), and their different orders arranged in the first and the second dimensions. As a result, the number of lipid species annotated by conventional one-dimensional LC-MS was between 212 and 448. In contrast, the number of individual lipids species annotated by C18×HILIC, HILIC×C18, and HILIC×PFP were 1784, 1059, and 1123, respectively. Therefore, it was evident that the performance of comprehensive 2DLC, especially the C18×HILIC method, considerably exceeded 1DLC. Interestingly, a comparison of the HILIC×C18 and C18×HILIC approaches showed, under the optimized conditions, similar orthogonality, but the effective separation power of the C18×HILIC was much higher. A comparison of the HILIC×C18 and the HILIC×PFP methods demonstrated that the HILIC×PFP separation had superior orthogonality with a small increase on its effective peak capacity, indicating that the HILIC×PFP combination maybe a promising platform for untargeted lipidomics in complex samples. Finally, from the comprehensive lipid profiling respective, the C18×HILIC was selected for further studies.
Collapse
Affiliation(s)
- Mengmeng Xu
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Jessica Legradi
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Pim Leonards
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
65
|
Wen SY, Chen YY, Lu JX, Liang QQ, Shi H, Wu Q, Yao ZH, Zhu Y, Jiang MM. Modulation of hepatic lipidome by rhodioloside in high-fat diet fed apolipoprotein E knockout mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:152690. [PMID: 30389273 DOI: 10.1016/j.phymed.2018.09.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Rhodioloside is a glucoside of tyrosol isolated from Rhodiola rosea. However, its regulating effect on hepatic dyslipidemia of atherogenic mice has rarely been studied. PURPOSE The specific aims of current study included to clarify lipidomic perturbation in liver tissues of apolipoprotein E deficient (apoE-/-) mice fed with high-fat diet, and to examine the effects of rhodioloside against atherosclerosis and dyslipidemia. STUDY DESIGN The comparisons of hepatic lipidome were executed between wide type (WT) mice fed with normal diet (NDC) and apoE-/- mice fed with high-fat diet (Model), WT mice fed with high-fat diet (HFDC) versus the model mice, as well as the model mice versus rhodioloside-treated atherosclerotic mice. METHODS Ultra high performance liquid chromatography coupled with a Q exactive hybrid quadrupole-orbitrap mass spectrometry (UPLC-MS/MS) was employed to provide an unbiased and simultaneous measurement of individual lipid species in liver tissues. RESULTS Multivariate statistical analysis derived from LC-MS spectra revealed that high-fat diet and apoE deficiency caused a series of disturbances on glyerolipid metabolism, glycerophospholipid metabolism and sphingolipid metabolism. Rhodioloside administration showed atheroprotective effects on the apoE-/- mice with regulating the levels of 1 phosphatidylcholine, 2 phosphatidylserines, 5 alkyldiacylglycerols and 3 alkenyldiacylglycerols back to normal. In particular, PC (4:0/15:0) was positively associated with high-density lipoprotein cholesterol in blood, both of which could be ameliorated by rhodioloside. CONCLUSION Our results identified the abnormal hepatic lipids in atherosclerosis progression that could efficiently improved by rhodioloside. These lipids contributed to biological understanding of atherogenic dyslipidemia in liver and could also served as sensitive indicators for drug target screening.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yan-Yan Chen
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Jia-Xi Lu
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qian-Qian Liang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Hong Shi
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qian Wu
- Shanghai Center for Bioinformation Technology, Shanghai 201203, China.
| | - Zhi-Hong Yao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yan Zhu
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Miao-Miao Jiang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
66
|
Wu GS, Li HK, Zhang WD. Metabolomics and its application in the treatment of coronary heart disease with traditional Chinese medicine. Chin J Nat Med 2020; 17:321-330. [PMID: 31171266 DOI: 10.1016/s1875-5364(19)30037-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Traditional Chinese Medicine (TCM) is the treasure of Chinese Nation and gained the gradual acceptance of the international community. However, the methods and theories of TCM understanding of diseases are lack of appropriate modern scientific characterization systems. Moreover, traditional risk factors cannot promote to detection and prevent those patients with coronary artery disease (CAD) who have not developed acute myocardial infarction (MI) in time. To sum up, there is still no objective systematic evaluation system for the therapeutic mechanism of TCM in the prevention and cure of cardiovascular disease. Thus, new ideas and technologies are needed. The development of omics technology, especially metabolomics, can be used to predict the level of metabolites in vivo and diagnose the physiological state of the body in time to guide the corresponding intervention. In particular, metabolomics is also a very powerful tool to promote the modernization of TCM and the development of TCM in personalized medicine. This article summarized the application of metabolomics in the early diagnosis, the discovery of biomarkers and the treatment of TCM in CAD.
Collapse
Affiliation(s)
- Gao-Song Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hou-Kai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
67
|
Perturbations of Lipids and Oxidized Phospholipids in Lipoproteins of Patients with Postmenopausal Osteoporosis Evaluated by Asymmetrical Flow Field-Flow Fractionation and Nanoflow UHPLC-ESI-MS/MS. Antioxidants (Basel) 2020; 9:antiox9010046. [PMID: 31948114 PMCID: PMC7022717 DOI: 10.3390/antiox9010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
Osteoporosis, a degenerative bone disease characterized by reduced bone mass and high risk of fragility, is associated with the alteration of circulating lipids, especially oxidized phospholipids (Ox-PLs). This study evaluated the lipidomic changes in lipoproteins of patients with postmenopausal osteoporosis (PMOp) vs. postmenopausal healthy controls. High-density lipoproteins (HDL) and low-density lipoproteins (LDL) from plasma samples were size-sorted by asymmetrical flow field-flow fractionation (AF4). Lipids from each lipoprotein were analyzed by nanoflow ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (nUHPLC-ESI-MS/MS). A significant difference was observed in a subset of lipids, most of which were increased in patients with PMOp, when compared to control. Phosphatidylethanolamine plasmalogen, which plays an antioxidative role, was increased in both lipoproteins (P-16:0/20:4, P-18:0/20:4, and P-18:1/20:4) lysophosphatidic acid 16:0, and six phosphatidylcholines were largely increased in HDL, but triacylglycerols (50:4 and 54:6) and overall ceramide levels were significantly increased only in LDL of patients with PMOp. Further investigation of 33 Ox-PLs showed significant lipid oxidation in PLs with highly unsaturated acyl chains, which were decreased in LDL of patients with PMOp. The present study demonstrated that AF4 with nUHPLC-ESI-MS/MS can be utilized to systematically profile Ox-PLs in the LDL of patients with PMOp.
Collapse
|
68
|
Eum JY, Lee JC, Yi SS, Kim IY, Seong JK, Moon MH. Aging-related lipidomic changes in mouse serum, kidney, and heart by nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1618:460849. [PMID: 31928769 DOI: 10.1016/j.chroma.2020.460849] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/06/2019] [Accepted: 01/02/2020] [Indexed: 01/05/2023]
Abstract
Aging refers to the intracellular accumulation of reactive oxygen species that damages proteins, DNA, and lipids. As alterations in lipid metabolism may trigger metabolic disorders and the onset of metabolic diseases, changes in lipid profiles can be closely related to aging. In this study, a comprehensive lipidomic comparison between 4- and 25-month-old mice was performed to investigate age-induced changes in the lipid profiles of mouse serum, kidney, and heart using nanoflow ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Quantitative analysis of 279 of the 542 identified lipids revealed significant changes upon aging, mainly showing decreased levels in the three types of samples. Exceptionally, most triacylglycerols showed significant increases in heart tissue. The kidney was influenced more by aging than the serum and heart. The highly abundant lipids in each lipid class with significant decreases (> 2-fold, p < 0.01) were lysophosphatidic acid 18:1, lysophosphatidylinositol 20:4, and ceramide d:18:1/24:0 in serum; lysophosphatidylglycerol 16:0 in heart tissue; and eight phosphatidylethanolamines (20:4, 22:6, 36:2, 36:3, 38:4, 38:5, 38:6, 40:6, and 40:7), two cardiolipins (72:7 and 72:8), and lysophosphatidylcholine 18:0 in kidney tissue. The findings indicate the potential of lipidomic analysis to study characteristic age-related lipid changes.
Collapse
Affiliation(s)
- Jung Yong Eum
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong Cheol Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Biomedical Sciences, Soonchunhyang University, Asan, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea
| | - Il Yong Kim
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Developmental Biology and Genetics, College of Veterinary Medicine, BK21 Program for Veterinary Science, BIO-MAX institute, Seoul National University, Seoul, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Developmental Biology and Genetics, College of Veterinary Medicine, BK21 Program for Veterinary Science, BIO-MAX institute, Seoul National University, Seoul, Republic of Korea.
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
69
|
Gundogdu G, Senol O, Demirkaya Miloglu F, Koza Y, Gundogdu F, Hacımüftüoğlu A, Abd El-Aty AM. Serum metabolite profiling of ST-segment elevation myocardial infarction using liquid chromatography quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2019; 34:e4738. [PMID: 31677392 DOI: 10.1002/bmc.4738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 02/01/2023]
Abstract
ST segment elevation myocardial infarction (STEMI) is one of the most common global causes of cardiovascular disease-related death. Several metabolites may change during STEMI. Hence, analysis of metabolites in body fluid may be considered as a rapid and accurate test for initial diagnosis. This study has therefore attempted to determine the variation in metabolites identified in the serum of STEMI patients (n = 20) and 15 controls. Samples collected from the Cardiology Department, Medical Faculty, Ataturk University, were extracted by liquid-liquid extraction and analysed using liquid chromatography quadrupole time-of-flight mass spectrometry. The METLIN database was used for the identification and characterization of metabolites. According to Q-TOF/MS measurements, 231 m/z values, which were significantly different between groups (P < 0.01 and fold analysis >1.5) were detected. Metabolite identification was achieved via the Human Metabolome database. According to the multivariate data analysis, leucine, isoleucine, l-proline, l-alanine, glycine, fumaric acid, citrate, succinate and carnitine levels were decreased, whereas levels of propionic acid, maleic acid, butyric acid, urea, oleic acid, palmitic acid, lysoPC [18:2(9Z)], glycerol, phoshpatidylethanolamine, caffeine and l-lactic acid were increased in STEMI patients compared with controls. In conclusion, malonic acid, maleic acid, fumaric acid and palmitic acid can be used as biomarkers for early risk stratification of patients with STEMI.
Collapse
Affiliation(s)
- Gulsah Gundogdu
- Physiology Department, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Onur Senol
- Analytical Chemistry Department, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | | | - Yavuzer Koza
- Cardiology Department, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Fuat Gundogdu
- Cardiology Department, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - A M Abd El-Aty
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
70
|
Shabrina A, Tung TH, Nguyen NTK, Lee HC, Wu HT, Wang W, Huang SY. n-3 PUFA and caloric restriction diet alters lipidomic profiles in obese men with metabolic syndrome: a preliminary open study. Eur J Nutr 2019; 59:3103-3112. [PMID: 31865423 DOI: 10.1007/s00394-019-02149-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE For people with metabolic syndrome (MetS), altering the macronutrient composition of their diets might ameliorate metabolic abnormalities. The common method of clinical assessment only measures total lipid concentrations but ignores the individual species that contribute to these total concentrations. Thus, to predict the amelioration of MetS following caloric restriction (CR) and the intake of fish oil, we used lipidomics to investigate changes in plasma lipids and identify potential lipid metabolites. METHODS Lipidomics was performed using ultra-high-performance liquid chromatography-tandem mass spectrometry on plasma samples from a clinical trial conducted over 12 weeks. Subjects were randomized into two groups: CR (n = 12) and CR with fish oil (CRF, n = 9). Anthropometric and clinical parameters were measured and correlated with plasma lipidomics data. RESULTS Compared with baseline, significant differences were observed in body weight, waist circumference, blood pressure and interleukin-6 in both groups, but triglyceride (TG) levels significantly decreased in only the CRF group (all p < 0.05). A total of 138 lipid species were identified. Levels of species containing long-chain polyunsaturated fatty acids were significantly elevated-greater than twofold-following fish oil intake, these included TG (60:9) and phosphatidylcholine (p40:6) (all q < 0.05). TG (60:9) tended to correlate negatively with body weight, body mass index, blood pressure, and HbA1c following fish oil intake. CONCLUSION CR and fish oil can ameliorate MetS features, including anthropometric parameters, blood pressure, and blood lipid concentrations. The levels of particular lipid species such as TG-containing docosapentaenoic acid were elevated post-intervention and negatively associated with MetS features. TG (60:9) may be proposed as a lipid metabolite to predict amelioration in MetS following the intake of CR and fish oil.
Collapse
Affiliation(s)
- A Shabrina
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan
| | - T-H Tung
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan
| | - N T K Nguyen
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan
| | - H-C Lee
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan
| | - H-T Wu
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
| | - W Wang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan.,Division of Digestive Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - S-Y Huang
- School of Nutrition and Health Sciences, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan. .,Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan. .,Center for Reproductive Medicine and Sciences, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
71
|
Wang R, Li B, Lam SM, Shui G. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J Genet Genomics 2019; 47:69-83. [PMID: 32178981 DOI: 10.1016/j.jgg.2019.11.009] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Mass spectrometry (MS)-based omics technologies are now widely used to profile small molecules in multiple matrices to confer comprehensive snapshots of cellular metabolic phenotypes. The metabolomes of cells, tissues, and organisms comprise a variety of molecules including lipids, amino acids, sugars, organic acids, and so on. Metabolomics mainly focus on the hydrophilic classes, while lipidomics has emerged as an independent omics owing to the complexities of the organismal lipidomes. The potential roles of lipids and small metabolites in disease pathogenesis have been widely investigated in various human diseases, but system-level understanding is largely lacking, which could be partly attributed to the insufficiency in terms of metabolite coverage and quantitation accuracy in current analytical technologies. While scientists are continuously striving to develop high-coverage omics approaches, integration of metabolomics and lipidomics is becoming an emerging approach to mechanistic investigation. Integration of metabolome and lipidome offers a complete atlas of the metabolic landscape, enabling comprehensive network analysis to identify critical metabolic drivers in disease pathology, facilitating the study of interconnection between lipids and other metabolites in disease progression. In this review, we summarize omics-based findings on the roles of lipids and metabolites in the pathogenesis of selected major diseases threatening public health. We also discuss the advantages of integrating lipidomics and metabolomics for in-depth understanding of molecular mechanism in disease pathogenesis.
Collapse
Affiliation(s)
- Raoxu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Bowen Li
- Lipidall Technologies Company Limited, Changzhou, 213000, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; Lipidall Technologies Company Limited, Changzhou, 213000, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
72
|
Xu J, Li X, Zhang F, Tang L, Wei J, Lei X, Wang H, Zhang Y, Li D, Tang X, Li G, Tang S, Wu H, Yang H. Integrated UPLC-Q/TOF-MS Technique and MALDI-MS to Study of the Efficacy of YiXinshu Capsules Against Heart Failure in a Rat Model. Front Pharmacol 2019; 10:1474. [PMID: 31866870 PMCID: PMC6910235 DOI: 10.3389/fphar.2019.01474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Yixinshu Capsules (YXSC) are widely used in Chinese medicine for the treatment of cardiovascular diseases. However, the therapeutic mechanisms of action are not well understood. Method: In this study, a metabonomic approach based on integrated UPLC-Q/TOF-MS technique and MALDI-MS was utilized to explore potential metabolic biomarkers that may help increase the understanding of heart failure (HF) and in order to assess the potential mechanisms of YXSC against HF. Plasma metabolic profiles were analyzed by UPLC-Q/TOF-MS with complementary hydrophilic interaction chromatography and reversed-phase liquid chromatography. Moreover, time-course analysis at the 2nd, 4th, and 10th week after permanent occlusion was conducted. In an effort to identify a more reliable potential metabolic marker, common metabolic markers of the 2nd, 4th, and 10th week were selected through multivariate data analysis. Furthermore, MALDI-MS was applied to identify metabolic biomarkers in the blood at apoptotic positions of heart tissues. Results: The results showed that HF appeared at the fourth week after permanent occlusion based on echocardiographic assessment. Clear separations were observed between the sham and model group by loading plots of orthogonal projection to latent structure discrimination analysis (OPLS-DA) at different time points after permanent occlusion. Potential markers of interest were extracted from the combining S-plots, variable importance for the projections values (VIP > 1), and t-test (p < 0.05). Twenty-one common metabolic markers over the course of the development and progression of HF after permanent occlusion were identified. These were determined to be mainly related to disturbances in fatty acids, phosphatidylcholine, bile acids, amino acid metabolism, and pyruvate metabolism. Of the metabolic markers, 16 metabolites such as palmitoleic acid, arachidonic acid, and lactic acid showed obvious changes (p < 0.05) and a tendency for returning to baseline values in YXSC-treated HF rats at the 10th week. Moreover, four biomarkers, including palmitoleic acid, palmitic acid, arachidonic, acid and lactic acid, were further validated at the apoptotic position of heart tissue using MALDI-MS, consistent to the variation trends in the plasma. Conclusions: Taken in concert, our proposed strategy may contribute to the understanding of the complex pathogenesis of ischemia-induced HF and the potential mechanism of YXSC.
Collapse
Affiliation(s)
- Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xianyu Li
- Experimental Research Centre, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoqing Lei
- Cardiovascular Center, China-Japan Friendship Hospital, Beijing, China
| | - Huanhuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Defeng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Geng Li
- Cardiovascular Center, China-Japan Friendship Hospital, Beijing, China
| | - Shihuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
73
|
Zhang Y, Takagi N, Yuan B, Zhou Y, Si N, Wang H, Yang J, Wei X, Zhao H, Bian B. The protection of indolealkylamines from LPS-induced inflammation in zebrafish. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112122. [PMID: 31356965 DOI: 10.1016/j.jep.2019.112122] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toad skin came from Bufo bufo gargarizans Cantor and Bufo melanostictus Schneider. As the traditional Chinese medicine, it had the effect of clearing away heat and detoxification. In traditional applications, toad skin was often used for the treatment of cancer and inflammation. Total indolealkylamines (IAAs) from this medicine were proved the main compounds exert anti-inflammatory activity in our previous research. AIM OF THE STUDY In the present study, we aimed to investigate the potential mechanism of anti-inflammatory activity of IAAs on LPS induced zebrafish. MATERIALS AND METHODS LPS induced zebrafish was applicated as an in vivo inflammation model to clarify the structure-activity relationship of 4 major IAAs (N-methyl serotonin, bufotenine, dehydrobufotenine and bufothionine) from toad skin. Quantitative RT-PCR was applied to detect key cytokines and members of the MyD88-dependent signaling pathway. In addition, the targeted lipidomics was conducted to find out the potential biomarkers in the inflammatory zebrafish. Network pharmacology was used to unveil the main enzymes closely related to the target lipids. RESULTS Our results showed that the anti-inflammatory activity of free IAAs (N-methyl serotonin, bufotenine and dehydrobufotenine) was more potent than that of combined IAAs (bufothionine). RT-PCR demonstrated that 4 IAAs exerted antiendotoxin inflammatory effect via suppressing the TLR4/MyD88/NF-κB and TLR4/MyD88/MAPKs signaling pathway. A total of 33 possible inflammatory biomarkers, including 14 SM, 6 Cer, 11 PC and 2 GlcCer, triggered by LPS were screened out. The levels of most of candidates could be regulated toward a normal level by IAAs, especially in N-methyl serotonin and dehydrobufotenine groups. Enzymes especially LBP, PLA2, CERK, SMPD and SGMS were found closely associated with the regulation of most lipid markers. CONCLUSIONS Overall, the mechanism underlying the anti-inflammatory activity of IAAs probably attributed to their capability to suppress NF-κB and MAPKs inflammatory pathway. Meanwhile, IAAs could also interfere the metabolism of SM, Cer and PC probably by regulating LBP, PLA2, CERK, SMPD and SGMS.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, Tokyo University of Pharmacy & Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yanyan Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Nan Si
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hongjie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaolu Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haiyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Baolin Bian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
74
|
Hu C, Zhou Y, Feng J, Zhou S, Li C, Zhao S, Shen Y, Hong L, Xuan Q, Liu X, Li Q, Wang X, Zhang Y, Xu G. Untargeted Lipidomics Reveals Specific Lipid Abnormalities in Nonfunctioning Human Pituitary Adenomas. J Proteome Res 2019; 19:455-463. [DOI: 10.1021/acs.jproteome.9b00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Shiyu Zhou
- Department of Psychology, Dalian Medical University, Dalian 116044, China
| | | | | | | | | | - Qiuhui Xuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
| | - Yazhuo Zhang
- China National Clinical Research Centre for Neurological Diseases, Beijing 100050, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics,Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
75
|
Rodriguez‐Romero V, Bergstrom RF, Decker BS, Lahu G, Vakilynejad M, Bies RR. Prediction of Nephropathy in Type 2 Diabetes: An Analysis of the ACCORD Trial Applying Machine Learning Techniques. Clin Transl Sci 2019; 12:519-528. [PMID: 31112000 PMCID: PMC6742939 DOI: 10.1111/cts.12647] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/21/2019] [Indexed: 12/17/2022] Open
Abstract
Applying data mining and machine learning (ML) techniques to clinical data might identify predictive biomarkers for diabetic nephropathy (DN), a common complication of type 2 diabetes mellitus (T2DM). A retrospective analysis of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial was intended to identify such factors using ML. The longitudinal data were stratified by time after patient enrollment to differentiate early and late predictors. Our results showed that Random Forest and Simple Logistic Regression methods exhibited the best performance among the evaluated algorithms. Baseline values for glomerular filtration rate (GFR), urinary creatinine, urinary albumin, potassium, cholesterol, low-density lipoprotein, and urinary albumin to creatinine ratio were identified as DN predictors. Early predictors were the baseline values of GFR, systolic blood pressure, as well as fasting plasma glucose (FPG) and potassium at month 4. Changes per year in GFR, FPG, and triglycerides were recognized as predictors of late development. In conclusion, ML-based methods successfully identified predictive factors for DN among patients with T2DM.
Collapse
Affiliation(s)
- Violeta Rodriguez‐Romero
- Division of Clinical PharmacologyDepartment of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Clinical and Translational Sciences Institute (CTSI)IndianapolisIndianaUSA
| | - Richard F. Bergstrom
- Division of Clinical PharmacologyDepartment of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Clinical and Translational Sciences Institute (CTSI)IndianapolisIndianaUSA
| | - Brian S. Decker
- Division of Clinical PharmacologyDepartment of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gezim Lahu
- Translational Research and Early ClinicalTakeda Pharmaceutical International Co.CambridgeMassachusettsUSA
| | - Majid Vakilynejad
- Translational Research and Early ClinicalTakeda Pharmaceutical International Co.CambridgeMassachusettsUSA
| | - Robert R. Bies
- Indiana Clinical and Translational Sciences Institute (CTSI)IndianapolisIndianaUSA
- Department of Pharmaceutical SciencesSchool of Pharmacy and Pharmaceutical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
76
|
Osae EA, Steven P, Redfern R, Hanlon S, Smith CW, Rumbaut RE, Burns AR. Dyslipidemia and Meibomian Gland Dysfunction: Utility of Lipidomics and Experimental Prospects with a Diet-Induced Obesity Mouse Model. Int J Mol Sci 2019; 20:ijms20143505. [PMID: 31319467 PMCID: PMC6678820 DOI: 10.3390/ijms20143505] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022] Open
Abstract
Meibomian gland dysfunction (MGD) is the leading cause of dry eye disease and loss of ocular surface homeostasis. Increasingly, several observational clinical studies suggest that dyslipidemia (elevated blood cholesterol, triglyceride or lipoprotein levels) can initiate the development of MGD. However, conclusive evidence is lacking, and an experimental approach using a suitable model is necessary to interrogate the relationship between dyslipidemia and MGD. This systematic review discusses current knowledge on the associations between dyslipidemia and MGD. We briefly introduce a diet-induced obesity model where mice develop dyslipidemia, which can serve as a potential tool for investigating the effects of dyslipidemia on the meibomian gland. Finally, the utility of lipidomics to examine the link between dyslipidemia and MGD is considered.
Collapse
Affiliation(s)
- Eugene A Osae
- University of Houston, College of Optometry, Houston, TX 77204, USA.
| | - Philipp Steven
- Department of Ophthalmology, Division for Dry-Eye and Ocular GvHD, Medical Faculty, University of Cologne, 50937 Cologne, Germany
| | - Rachel Redfern
- University of Houston, College of Optometry, Houston, TX 77204, USA
| | - Samuel Hanlon
- University of Houston, College of Optometry, Houston, TX 77204, USA
| | - C Wayne Smith
- Baylor College of Medicine, Children's Nutrition Center, Houston, TX 77030, USA
| | - Rolando E Rumbaut
- Baylor College of Medicine, Children's Nutrition Center, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, USA
| | - Alan R Burns
- University of Houston, College of Optometry, Houston, TX 77204, USA
| |
Collapse
|
77
|
Neufeld EB, Sato M, Gordon SM, Durbhakula V, Francone N, Aponte A, Yilmaz G, Sviridov D, Sampson M, Tang J, Pryor M, Remaley AT. ApoA-I-Mediated Lipoprotein Remodeling Monitored with a Fluorescent Phospholipid. BIOLOGY 2019; 8:E53. [PMID: 31336888 PMCID: PMC6784057 DOI: 10.3390/biology8030053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
We describe simple, sensitive and robust methods to monitor lipoprotein remodeling and cholesterol and apolipoprotein exchange, using fluorescent Lissamine Rhodamine B head-group tagged phosphatidylethanolamine (*PE) as a lipoprotein reference marker. Fluorescent Bodipy cholesterol (*Chol) and *PE directly incorporated into whole plasma lipoproteins in proportion to lipoprotein cholesterol and phospholipid mass, respectively. *Chol, but not *PE, passively exchanged between isolated plasma lipoproteins. Fluorescent apoA-I (*apoA-I) specifically bound to high-density lipoprotein (HDL) and remodeled *PE- and *Chol-labeled synthetic lipoprotein-X multilamellar vesicles (MLV) into a pre-β HDL-like particle containing *PE, *Chol, and *apoA-I. Fluorescent MLV-derived *PE specifically incorporated into plasma HDL, whereas MLV-derived *Chol incorporation into plasma lipoproteins was similar to direct *Chol incorporation, consistent with apoA-I-mediated remodeling of fluorescent MLV to HDL with concomitant exchange of *Chol between lipoproteins. Based on these findings, we developed a model system to study lipid transfer by depositing fluorescent *PE and *Chol-labeled on calcium silicate hydrate crystals, forming dense lipid-coated donor particles that are readily separated from acceptor lipoprotein particles by low-speed centrifugation. Transfer of *PE from donor particles to mouse plasma lipoproteins was shown to be HDL-specific and apoA-I-dependent. Transfer of donor particle *PE and *Chol to HDL in whole human plasma was highly correlated. Taken together, these studies suggest that cell-free *PE efflux monitors apoA-I functionality.
Collapse
Affiliation(s)
- Edward B Neufeld
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Masaki Sato
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott M Gordon
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinay Durbhakula
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Francone
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angel Aponte
- Proteomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gizem Yilmaz
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Denis Sviridov
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maureen Sampson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Milton Pryor
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
78
|
Xiang AS, Kingwell BA. Rethinking good cholesterol: a clinicians' guide to understanding HDL. Lancet Diabetes Endocrinol 2019; 7:575-582. [PMID: 30910502 DOI: 10.1016/s2213-8587(19)30003-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022]
Abstract
Low HDL cholesterol dyslipidaemia affects about half of people with type 2 diabetes and represents a major independent risk factor for atherosclerotic cardiovascular disease. The "good cholesterol" label was coined decades ago on the basis of a presumed causal role of HDL cholesterol in atherosclerotic cardiovascular disease. However, this view has been challenged by the negative results of several studies of HDL cholesterol-raising drugs, creating a paradox for clinicians regarding the value of HDL cholesterol as a risk biomarker and therapeutic target, and seemingly contradicting decades of evidence substantiating an inverse relation between HDL cholesterol and cardiovascular disease risk. We seek to resolve this issue by revisiting the history of the HDL hypothesis, chronicling how this paradox is ultimately rooted in the progressive erroneous blurring of the distinction between HDL and HDL cholesterol. We describe the compositional complexity of HDL particles beyond their cholesterol cargo and focus on their role in lipid transport. We discuss the evidence regarding novel HDL functions, including effects on glucose metabolism, and speculate on the implications for type 2 diabetes. HDL cholesterol is an imperfect biomarker of a highly complex and multifunctional lipid transport system, and we should now consider how new HDL markers more causally linked to cardiovascular complications could be adapted for clinical use. In the absence of a superior alternative, HDL cholesterol generally has value as a component of primary cardiovascular disease risk prediction models, including in people with type 2 diabetes. However, to avoid prognostic overgeneralisations, it is high time that the good cholesterol label is dropped.
Collapse
Affiliation(s)
- Angie S Xiang
- Metabolic and Vascular Physiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bronwyn A Kingwell
- Metabolic and Vascular Physiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
79
|
Harshfield EL, Koulman A, Ziemek D, Marney L, Fauman EB, Paul DS, Stacey D, Rasheed A, Lee JJ, Shah N, Jabeen S, Imran A, Abbas S, Hina Z, Qamar N, Mallick NH, Yaqoob Z, Saghir T, Rizvi SNH, Memon A, Rasheed SZ, Memon FUR, Qureshi IH, Ishaq M, Frossard P, Danesh J, Saleheen D, Butterworth AS, Wood AM, Griffin JL. An Unbiased Lipid Phenotyping Approach To Study the Genetic Determinants of Lipids and Their Association with Coronary Heart Disease Risk Factors. J Proteome Res 2019; 18:2397-2410. [PMID: 30887811 PMCID: PMC6558644 DOI: 10.1021/acs.jproteome.8b00786] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Direct infusion high-resolution mass spectrometry (DIHRMS) is a novel, high-throughput approach to rapidly and accurately profile hundreds of lipids in human serum without prior chromatography, facilitating in-depth lipid phenotyping for large epidemiological studies to reveal the detailed associations of individual lipids with coronary heart disease (CHD) risk factors. Intact lipid profiling by DIHRMS was performed on 5662 serum samples from healthy participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS). We developed a novel semi-targeted peak-picking algorithm to detect mass-to-charge ratios in positive and negative ionization modes. We analyzed lipid partial correlations, assessed the association of lipid principal components with established CHD risk factors and genetic variants, and examined differences between lipids for a common genetic polymorphism. The DIHRMS method provided information on 360 lipids (including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids), with a median coefficient of variation of 11.6% (range: 5.4-51.9). The lipids were highly correlated and exhibited a range of associations with clinical chemistry biomarkers and lifestyle factors. This platform can provide many novel insights into the effects of physiology and lifestyle on lipid metabolism, genetic determinants of lipids, and the relationship between individual lipids and CHD risk factors.
Collapse
Affiliation(s)
- Eric L. Harshfield
- MRC/BHF
Cardiovascular Epidemiology Unit, Department of Public Health and
Primary Care, University of Cambridge, Cambridge CB1 8RN, U.K.,Stroke
Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, U.K.
| | - Albert Koulman
- Core
Metabolomics and Lipidomics Laboratory, National Institute for Health Research Cambridge Biomedical Research
Centre, Cambridge CB2 0QQ, U.K.
| | - Daniel Ziemek
- Inflammation
and Immunology, Pfizer Worldwide Research & Development, 10785 Berlin, Germany
| | - Luke Marney
- College
of Science and Engineering, Seattle University, Seattle, Washington 98122, United States
| | - Eric B. Fauman
- Genomic
Sciences and Technologies, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Dirk S. Paul
- MRC/BHF
Cardiovascular Epidemiology Unit, Department of Public Health and
Primary Care, University of Cambridge, Cambridge CB1 8RN, U.K.
| | - David Stacey
- MRC/BHF
Cardiovascular Epidemiology Unit, Department of Public Health and
Primary Care, University of Cambridge, Cambridge CB1 8RN, U.K.
| | - Asif Rasheed
- Center
for Non-Communicable Diseases, Karachi 75300, Pakistan
| | - Jung-Jin Lee
- Department
of Medicine, Mayo Hospital, Lahore 54000, Pakistan
| | - Nabi Shah
- Center
for Non-Communicable Diseases, Karachi 75300, Pakistan,Department
of Pharmacy, COMSATS Institute of Information
Technology, Abbottabad 22060, Pakistan
| | - Sehrish Jabeen
- Center
for Non-Communicable Diseases, Karachi 75300, Pakistan
| | - Atif Imran
- Center
for Non-Communicable Diseases, Karachi 75300, Pakistan
| | - Shahid Abbas
- Department
of Cardiology, Faisalabad Institute of Cardiology, Faisalabad 38000, Pakistan
| | - Zoubia Hina
- Department
of Cardiology, Faisalabad Institute of Cardiology, Faisalabad 38000, Pakistan
| | - Nadeem Qamar
- National Institute of Cardiovascular Disorders, Karachi 75510, Pakistan
| | | | - Zia Yaqoob
- Karachi Institute of Heart Diseases, Karachi 75950, Pakistan
| | - Tahir Saghir
- National Institute of Cardiovascular Disorders, Karachi 75510, Pakistan
| | | | - Anis Memon
- National Institute of Cardiovascular Disorders, Karachi 75510, Pakistan
| | | | | | | | - Muhammad Ishaq
- Karachi Institute of Heart Diseases, Karachi 75950, Pakistan
| | | | - John Danesh
- MRC/BHF
Cardiovascular Epidemiology Unit, Department of Public Health and
Primary Care, University of Cambridge, Cambridge CB1 8RN, U.K.
| | - Danish Saleheen
- Center
for Non-Communicable Diseases, Karachi 75300, Pakistan,Department
of Biostatistics and Epidemiology, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Adam S. Butterworth
- MRC/BHF
Cardiovascular Epidemiology Unit, Department of Public Health and
Primary Care, University of Cambridge, Cambridge CB1 8RN, U.K.
| | - Angela M. Wood
- MRC/BHF
Cardiovascular Epidemiology Unit, Department of Public Health and
Primary Care, University of Cambridge, Cambridge CB1 8RN, U.K.
| | - Julian L. Griffin
- Department
of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, U.K.,E-mail: . Tel: +44 1223 764 922. Fax: +44 1223 333 345
| |
Collapse
|
80
|
Meikle PJ, Formosa MF, Mellett NA, Jayawardana KS, Giles C, Bertovic DA, Jennings GL, Childs W, Reddy M, Carey AL, Baradi A, Nanayakkara S, Wilson AM, Duffy SJ, Kingwell BA. HDL Phospholipids, but Not Cholesterol Distinguish Acute Coronary Syndrome From Stable Coronary Artery Disease. J Am Heart Assoc 2019; 8:e011792. [PMID: 31131674 PMCID: PMC6585356 DOI: 10.1161/jaha.118.011792] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/24/2019] [Indexed: 11/16/2022]
Abstract
Background Although acute coronary syndromes (ACS) are a major cause of morbidity and mortality, relationships with biologically active lipid species potentially associated with plaque disruption/erosion in the context of their lipoprotein carriers are indeterminate. The aim was to characterize lipid species within lipoprotein particles which differentiate ACS from stable coronary artery disease. Methods and Results Venous blood was obtained from 130 individuals with de novo presentation of an ACS (n=47) or stable coronary artery disease (n=83) before coronary catheterization. Lipidomic measurements (533 lipid species; liquid chromatography electrospray ionization/tandem mass spectrometry) were performed on whole plasma as well as 2 lipoprotein subfractions: apolipoprotein A1 (apolipoprotein A, high-density lipoprotein) and apolipoprotein B. Compared with stable coronary artery disease, ACS plasma was lower in phospholipids including lyso species and plasmalogens, with the majority of lipid species differing in abundance located within high-density lipoprotein (high-density lipoprotein, 113 lipids; plasma, 73 lipids). Models including plasma lipid species alone improved discrimination between the stable and ACS groups by 0.16 (C-statistic) compared with conventional risk factors. Models utilizing lipid species either in plasma or within lipoprotein fractions had a similar ability to discriminate groups, though the C-statistic was highest for plasma lipid species (0.80; 95% CI, 0.75-0.86). Conclusions Multiple lysophospholipids, but not cholesterol, featured among the lipids which were present at low concentration within high-density lipoprotein of those presenting with ACS. Lipidomics, when applied to either whole plasma or lipoprotein fractions, was superior to conventional risk factors in discriminating ACS from stable coronary artery disease. These associative mechanistic insights elucidate potential new preventive, prognostic, and therapeutic avenues for ACS which require investigation in prospective analyses.
Collapse
Affiliation(s)
| | | | | | | | - Corey Giles
- Baker Heart and Diabetes InstituteMelbourneAustralia
| | - David A. Bertovic
- Baker Heart and Diabetes InstituteMelbourneAustralia
- Department of CardiologyThe Alfred HospitalMelbourneAustralia
| | - Garry L. Jennings
- Baker Heart and Diabetes InstituteMelbourneAustralia
- Department of CardiologyThe Alfred HospitalMelbourneAustralia
| | - Wayne Childs
- Baker Heart and Diabetes InstituteMelbourneAustralia
- Department of CardiologyThe Alfred HospitalMelbourneAustralia
- Box Hill HospitalMelbourneAustralia
| | - Medini Reddy
- Baker Heart and Diabetes InstituteMelbourneAustralia
| | | | | | - Shane Nanayakkara
- Baker Heart and Diabetes InstituteMelbourneAustralia
- Department of CardiologyThe Alfred HospitalMelbourneAustralia
| | | | - Stephen J. Duffy
- Baker Heart and Diabetes InstituteMelbourneAustralia
- Department of CardiologyThe Alfred HospitalMelbourneAustralia
| | | |
Collapse
|
81
|
Djekic D, Pinto R, Repsilber D, Hyotylainen T, Henein M. Serum untargeted lipidomic profiling reveals dysfunction of phospholipid metabolism in subclinical coronary artery disease. Vasc Health Risk Manag 2019; 15:123-135. [PMID: 31190850 PMCID: PMC6526169 DOI: 10.2147/vhrm.s202344] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: Disturbed metabolism of cholesterol and triacylglycerols (TGs) carries increased risk for coronary artery calcification (CAC). However, the exact relationship between individual lipid species and CAC remains unclear. The aim of this study was to identify disturbances in lipid profiles involved in the calcification process, in an attempt to propose potential biomarker candidates. Patients and methods: We studied 70 patients at intermediate risk for coronary artery disease who had undergone coronary calcification assessment using computed tomography and Agatston coronary artery calcium score (CACS). Patients were divided into three groups: with no coronary calcification (NCC; CACS: 0; n=26), mild coronary calcification (MCC; CACS: 1–250; n=27), or severe coronary calcification (SCC; CACS: >250; n=17). Patients’ serum samples were analyzed using liquid chromatography-mass spectrometry in an untargeted lipidomics approach. Results: We identified 103 lipids within the glycerolipid, glycerophospholipid, sphingolipid, and sterol lipid classes. After false discovery rate correction, phosphatidylcholine (PC)(16:0/20:4) in higher levels and PC(18:2/18:2), PC(36:3), and phosphatidylethanolamine(20:0/18:2) in lower levels were identified as correlates with SCC compared to NCC. There were no significant differences in the levels of individual TGs between the three groups; however, clustering the lipid profiles showed a trend for higher levels of saturated and monounsaturated TGs in SCC compared to NCC. There was also a trend for lower TG(49:2), TG(51:1), TG(54:5), and TG(56:8) levels in SCC compared to MCC. Conclusion: In this study we investigated the lipidome of patients with coronary calcification. Our results suggest that the calcification process may be associated with dysfunction in autophagy. The lipidomic biomarkers revealed in this study may aid in better assessment of patients with subclinical coronary artery disease.
Collapse
Affiliation(s)
- Demir Djekic
- Department of Cardiology, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Rui Pinto
- Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Dirk Repsilber
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Tuulia Hyotylainen
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Michael Henein
- Department of Public Health and Clinical Medicine, Umeå University and Heart Centre, Umeå, Sweden.,Molecular and Clinic Research Institute, St George University, London, UK.,Institute of Environment, Health and Physical Sciences, Brunel University, London, UK
| |
Collapse
|
82
|
Chen H, Nie Q, Hu J, Huang X, Zhang K, Pan S, Nie S. Hypoglycemic and Hypolipidemic Effects of Glucomannan Extracted from Konjac on Type 2 Diabetic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5278-5288. [PMID: 30964673 DOI: 10.1021/acs.jafc.9b01192] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diabetes and its complications are one of the most concerned metabolic diseases worldwide and threaten human health severely. Hypoglycemic and hypolipidemic effects of glucomannan extracted from konjac on high-fat diet and streptozocin-induced type 2 diabetic rats were evaluated in this study. Administration of konjac glucomannan significantly decreased the levels of fasting blood glucose, serum insulin, glucagon-like peptide 1, and glycated serum protein. The concentrations of serum lipids, including total cholesterol, triacylglycerols, low-density lipoprotein cholesterol, and non-esterified fatty acid, were notably reduced by konjac glucomannan treatment. In addition, antioxidant capacity, pancreatic injury, and adipose cell hypertrophy were ameliorated by konjac glucomannan administration in type 2 diabetic rats. Besides, ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based lipidomics analysis was used to explore the improvement of lipid metabolic by konjac glucomannan treatment. The disturbance of glycerolipid (diacylglycerol, monoacylglycerol, and triacylglycerol), fatty acyl (acylcarnitine and hydroxyl fatty acid), sphingolipid (ceramide and sphingomyelin), and glycerophospholipid (phosphatidylcholine) metabolism were attenuated by the glucomannan treatment. This study provided new insights for investigating the anti-diabetic effects of konjac glucomannan and suggests that konjac glucomannan may be a promising nutraceutical for treating type 2 diabetes.
Collapse
Affiliation(s)
- Haihong Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Ke Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Shijie Pan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang) , Nanchang University , 235 Nanjing East Road , Nanchang , Jiangxi 330047 , People's Republic of China
| |
Collapse
|
83
|
McFadyen JD, Meikle PJ, Peter K. Platelet lipidomics: a window of opportunity to assess cardiovascular risk? Eur Heart J 2019; 38:2006-2008. [PMID: 28520938 DOI: 10.1093/eurheartj/ehx258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- James D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
84
|
Plasma lipidome variation during the second half of the human lifespan is associated with age and sex but minimally with BMI. PLoS One 2019; 14:e0214141. [PMID: 30893377 PMCID: PMC6426235 DOI: 10.1371/journal.pone.0214141] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Recent advances in mass spectrometry-based techniques have inspired research into lipidomics, a subfield of ‘–omics’, which aims to identify and quantify large numbers of lipids in biological extracts. Although lipidomics is becoming increasingly popular as a screening tool for understanding disease mechanisms, it is largely unknown how the lipidome naturally varies by age and sex in healthy individuals. We aimed to identify cross-sectional associations of the human lipidome with ‘physiological’ ageing, using plasma from 100 subjects with an apolipoprotein E (APOE) E3/E3 genotype, and aged between 56 to 100 years. Untargeted analysis was performed by liquid chromatography coupled-mass spectrometry (LC-MS/MS) and data processing using LipidSearch software. Regression analyses confirmed a strong negative association of age with the levels of various lipid, which was stronger in males than females. Sex-related differences include higher LDL-C, HDL-C, total cholesterol, particular sphingomyelins (SM), and docosahexaenoic acid (DHA)-containing phospholipid levels in females. Surprisingly, we found a minimal relationship between lipid levels and body mass index (BMI). In conclusion, our results suggest substantial age and sex-related variation in the plasma lipidome of healthy individuals during the second half of the human lifespan. In particular, globally low levels of blood lipids in the ‘oldest old’ subjects over 95 years could signify a unique lipidome associated with extreme longevity.
Collapse
|
85
|
Wang S, Zhang R, Wang T, Jiang F, Hu C, Jia W. Association of the genetic variant rs2000999 with haptoglobin and diabetic macrovascular diseases in Chinese patients with type 2 diabetes. J Diabetes Complications 2019; 33:178-181. [PMID: 30366827 DOI: 10.1016/j.jdiacomp.2018.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/17/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Abstract
AIMS The common copy number variant (CNV) in the haptoglobin (Hp) gene may influence the susceptibility to diabetic macrovascular diseases. We aimed to investigate the relationship of the genetic variant rs2000999, located in the haptoglobin-related protein (HPR) gene, with serum Hp levels and diabetic macrovascular diseases in Chinese type 2 diabetes patients. METHODS The Hp CNV and rs2000999 were genotyped in a group of 5457 Chinese patients with type 2 diabetes. Associations of rs2000999 with the common Hp CNV, susceptibility to diabetic macrovascular diseases and related metabolic traits were analysed. Furthermore, 886 patients were selected to detect serum Hp levels and to evaluate the correlation between rs2000999 and serum Hp levels. RESULTS The genetic variant rs2000999 was not associated with diabetic macrovascular diseases (P = 0.6109), while subjects carrying the A allele had higher levels of low-density lipoprotein cholesterol (P = 0.0578) and a smaller inter-adventitial diameter of the common carotid artery (P = 0.0266). Additionally, rs2000999 exhibited strong association with serum Hp levels (P = 2.03 × 10-21). CONCLUSIONS The genetic variant rs2000999 was not associated with diabetic macrovascular diseases but showed an association with metabolic traits and serum Hp levels in Chinese patients with type 2 diabetes.
Collapse
Affiliation(s)
- Shiyun Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China.
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Tao Wang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Feng Jiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China; Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, 6600 Nanfeng Road, Shanghai 201499, People's Republic of China.
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China.
| |
Collapse
|
86
|
Abstract
Lipid profiling, which includes fatty acids, phospholipids, glycerides, and cholesterols is extremely important because of the essential role lipids play in the regulation of metabolism in animals. 1H-NMR-based protocols for high-throughput lipid analysis in complex mixtures have been developed and applied to biological systems. Many classes of lipids can be quantitatively analyzed in many sample matrices including serum, cells, and tissues using a simple 1H NMR experiment. In this chapter, we provide protocols for NMR-based lipid profiling including sample preparation, NMR experiments, and quantification using the LipSpin software tool.
Collapse
Affiliation(s)
- Miriam Gil
- Biosfer Teslab SL, Plaça Prim, Reus, Spain
| | | | - Rubén Barrilero
- Metabolomics Platform, IISPV, DEEEA, Universitat Rovira i Virgili, Tarragona, Spain
| | - Xavier Correig
- Metabolomics Platform, IISPV, DEEEA, Universitat Rovira i Virgili, Tarragona, Spain.
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, CIBERDEM, Madrid, Spain.
| |
Collapse
|
87
|
Mousa A, Naderpoor N, Mellett N, Wilson K, Plebanski M, Meikle PJ, de Courten B. Lipidomic profiling reveals early-stage metabolic dysfunction in overweight or obese humans. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:335-343. [PMID: 30586632 DOI: 10.1016/j.bbalip.2018.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Advances in mass spectrometry and lipidomics techniques are providing new insights into the role of lipid metabolism in obesity-related diseases. However, human lipidomic studies have been inconsistent, owing to the use of indirect proxy measures of metabolic outcomes and relatively limited coverage of the lipidome. Here, we employed comprehensive lipid profiling and gold-standard metabolic measures to test the hypothesis that distinct lipid signatures in obesity may signify early stages of pathogenesis toward type 2 diabetes. METHODS Using high-performance liquid chromatography-electrospray tandem mass spectrometry, we profiled >450 lipid species across 26 classes in 65 overweight or obese non-diabetic individuals. Intensive metabolic testing was conducted using direct gold-standard measures of adiposity (% body fat by dual X-ray absorptiometry), insulin sensitivity (hyperinsulinaemic-euglycaemic clamps), and insulin secretion (intravenous glucose tolerance tests), as well as measurement of serum inflammatory cytokines and adipokines (multiplex assays; flow cytometry). Univariable and multivariable linear regression models were computed using Matlab R2011a, and all analyses were corrected for multiple testing using the Benjamini-Hochberg method. RESULTS We present new evidence showing a strong and independent positive correlation between the lysophosphatidylinositol (LPI) lipid class and insulin secretion in vivo in humans (β [95% CI] = 781.9 [353.3, 1210.4], p = 0.01), supporting the insulinotropic effects of LPI demonstrated in mouse islets. Dihydroceramide, a sphingolipid precursor, was independently and negatively correlated with insulin sensitivity (β [95% CI] = -1.9 [-2.9, -0.9], p = 0.01), indicating a possible upregulation in sphingolipid synthesis in obese individuals. These associations remained significant in multivariable models adjusted for age, sex, and % body fat. The dihexosylceramide class correlated positively with interleukin-10 before and after adjustment for age, sex, and % body fat (p = 0.02), while the phosphatidylethanolamine class and its vinyl ether-linked (plasmalogen) derivatives correlated negatively with % body fat in both univariable and age- and sex-adjusted models (all p < 0.04). CONCLUSIONS Our data suggest that these lipid classes may signify early pathogenesis toward type 2 diabetes and could serve as novel therapeutic targets or biomarkers for diabetes prevention.
Collapse
Affiliation(s)
- Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| | - Negar Naderpoor
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| | - Natalie Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.
| | - Kirsty Wilson
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC 3004, Australia.
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, 89 Commercial Road, Melbourne, VIC 3004, Australia; School of Health and Biomedical Sciences, RMIT University, Corner Janefield Dr and Plenty Road, Bundoora, VIC 3083, Australia.
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| |
Collapse
|
88
|
Xiang AS, Meikle PJ, Carey AL, Kingwell BA. Brown adipose tissue and lipid metabolism: New strategies for identification of activators and biomarkers with clinical potential. Pharmacol Ther 2018; 192:141-149. [DOI: 10.1016/j.pharmthera.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
89
|
Cha MH, Lee SM, Jung J. Lysophosphatidylcholine induces expression of genes involved in cholesterol biosynthesis in THP-1 derived macrophages. Steroids 2018; 139:28-34. [PMID: 30217786 DOI: 10.1016/j.steroids.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 01/21/2023]
Abstract
Lysophosphatidylcholine (LPC), a major component of oxidized low-density lipoprotein, is associated with atherosclerosis, obesity, stroke, and cancer. However, the direction and mechanism of this relationship remains unclear. In this study, we conducted RNA profiling in THP-1 derived macrophages treated with LPC and uncovered a relationship between LPC and the cholesterol biosynthesis pathway. Principal component analysis (PCA) of RNA profiling showed that untreated THP-1 cells and those treated with 10, 20, or 40 µM LPC were distinctly distributed. Functional annotation revealed that LPC affected the expression of genes involved in cytokine-cytokine receptor interaction, TNF signaling, and MAPK signaling. Interestingly, LPC also altered the expression of 11 genes involved in cholesterol synthesis such as those in terpenoid backbone biosynthesis and steroid biosynthesis pathways. This increased gene expression occurred in a dose-dependent manner in response to LPC treatment. Especially, LPC with saturated acyl groups enhanced the expression of these genes compared to LPC with unsaturated acyl groups, and similar results were shown in response to saturated and unsaturated free fatty acids. Our findings demonstrate that LPCs with saturated acyl groups induce the expression of genes involved in cholesterol biosynthesis and may have implications for cholesterol related diseases.
Collapse
Affiliation(s)
- Min Ho Cha
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea.
| | - So Min Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Jeeyoun Jung
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
90
|
Wentworth JM, Bediaga NG, Penno MAS, Bandala-Sanchez E, Kanojia KN, Kouremenos KA, Couper JJ, Harrison LC. Minimal variation of the plasma lipidome after delayed processing of neonatal cord blood. Metabolomics 2018; 14:130. [PMID: 30830461 DOI: 10.1007/s11306-018-1434-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Cord blood lipids are potential disease biomarkers. We aimed to determine if their concentrations were affected by delayed blood processing. METHOD Refrigerated cord blood from six healthy newborns was centrifuged every 12 h for 4 days. Plasma lipids were analysed by liquid chromatography/mass spectroscopy. RESULTS Of 262 lipids identified, only eight varied significantly over time. These comprised three dihexosylceramides, two phosphatidylserines and two phosphatidylethanolamines whose relative concentrations increased and one sphingomyelin that decreased. CONCLUSION Delay in separation of plasma from refrigerated cord blood has minimal effect overall on the plasma lipidome.
Collapse
Affiliation(s)
- John M Wentworth
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Naiara G Bediaga
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Megan A S Penno
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Esther Bandala-Sanchez
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Komal N Kanojia
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | | | - Jennifer J Couper
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | | |
Collapse
|
91
|
Analysis of lipoprotein-specific lipids in patients with acute coronary syndrome by asymmetrical flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1099:56-63. [PMID: 30243114 DOI: 10.1016/j.jchromb.2018.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023]
Abstract
A comprehensive lipid analysis was performed at the plasma lipoprotein level in patients with acute coronary syndrome (ACS) and stable coronary artery disease (CAD). Because the lipids in lipoproteins are related to the pathology of the cardiovascular system, lipoprotein-specific lipid analysis can be useful for understanding the mechanism of lipid-associated cardiovascular diseases. Lipoproteins were size-sorted into high density lipoproteins (HDL) and low density lipoproteins (LDL) using asymmetrical flow field-flow fractionation, then lipids of each lipoprotein were analysed using nanoflow ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry. A total of 365 lipids were structurally identified and quantified by selected reaction monitoring method. Two high abundance lysophosphatidylcholines (16:0 and 18:0) were significantly increased only in the HDL of the ACS group (vs. the stable CAD group). Phosphatidylethanolamines (38:5 and 40:5) significantly increased in ACS by >2-fold in both lipoproteins. (18:0, 22:6)-diacylglycerol increased in ACS by 3.5-fold only in LDL; however, most high abundance triacylglycerols decreased 2-fold in both lipoproteins. The present study revealed the usefulness of lipoprotein-specific analysis of lipids in distinguishing ACS from stable CAD, and the selected lipids analysed in this study may be useful in the development of lipid markers for the early detection of ACS.
Collapse
|
92
|
Colombo S, Melo T, Martínez-López M, Carrasco MJ, Domingues MR, Pérez-Sala D, Domingues P. Phospholipidome of endothelial cells shows a different adaptation response upon oxidative, glycative and lipoxidative stress. Sci Rep 2018; 8:12365. [PMID: 30120318 PMCID: PMC6097988 DOI: 10.1038/s41598-018-30695-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023] Open
Abstract
Endothelial dysfunction has been widely associated with oxidative stress, glucotoxicity and lipotoxicity and underlies the development of cardiovascular diseases (CVDs), atherosclerosis and diabetes. In such pathological conditions, lipids are emerging as mediators of signalling pathways evoking key cellular responses as expression of proinflammatory genes, proliferation and apoptosis. Hence, the assessment of lipid profiles in endothelial cells (EC) can provide valuable information on the molecular alterations underlying CVDs, atherosclerosis and diabetes. We performed a lipidomic approach based on hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) for the analysis of the phospholipidome of bovine aortic EC (BAEC) exposed to oxidative (H2O2), glycative (glucose), or lipoxidative (4-hydroxynonenal, HNE) stress. The phospholipid (PL) profile was evaluated for the classes PC, PE, PS, PG, PI, SM, LPC and CL. H2O2 induced a more acute adaptation of the PL profile than glucose or HNE. Unsaturated PL molecular species were up-regulated after 24 h incubation with H2O2, while an opposite trend was observed in glucose- and HNE-treated cells. This study compared, for the first time, the adaptation of the phospholipidome of BAEC upon different induced biochemical stresses. Although further biological studies will be necessary, our results unveil specific lipid signatures in response to characteristic types of stress.
Collapse
Affiliation(s)
- Simone Colombo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Martínez-López
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro, de Maeztu, 9, 28040, Madrid, Spain
| | - M Jesús Carrasco
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro, de Maeztu, 9, 28040, Madrid, Spain
| | - M Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro, de Maeztu, 9, 28040, Madrid, Spain
| | - Pedro Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
93
|
Dong S, Zhang S, Chen Z, Zhang R, Tian L, Cheng L, Shang F, Sun J. Berberine Could Ameliorate Cardiac Dysfunction via Interfering Myocardial Lipidomic Profiles in the Rat Model of Diabetic Cardiomyopathy. Front Physiol 2018; 9:1042. [PMID: 30131709 PMCID: PMC6090155 DOI: 10.3389/fphys.2018.01042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is considered to be a distinct clinical entity independent of concomitant macro- and microvascular disorders, which is initiated partly by disturbances in energy substrates. This study was to observe the dynamic modulations of berberine in DCM rats and explore the changes of lipidomic profiles of myocardial tissue. Methods: Sprague-Dawley (SD) rats were fed high-sucrose and high-fat diet (HSHFD) for totally 22 weeks and intraperitoneally (i.p.) injected with 30 mg/kg of streptozotocin (STZ) at the fifth week to induce DCM. Seventy-two hours after STZ injection, the rats were orally given with berberine at 10, 30 mg/kg and metformin at 200 mg/kg, respectively. Dynamic changes of cardiac function, heart mass ratios and blood lipids were observed at f 4, 10, 16, and 22, respectively. Furthermore, lipid metabolites in myocardial tissue at week 16 were profiled by the ultra-high-performance liquid chromatography coupled to a quadruple time of flight mass spectrometer (UPLC/Q-TOF/MS) approach. Results: Berberine could protect against cardiac diastolic and systolic dysfunctions, as well as cardiac hypertrophy, and the most effective duration is with 16-week of administration. Meanwhile, 17 potential biomarkers of phosphatidylcholines (PCs), phosphatidylethanolamines (PEs) and sphingolipids (SMs) of DCM induced by HSFD/STZ were identified. The perturbations of lipidomic profiles could be partly reversed with berberine intervention, i.e., PC (16:0/20:4), PC (18:2/0:0), PC (18:0/18:2), PC (18:0/22:5), PC (20:4/0:0), PC (20:4/18:0), PC (20:4/18:1), PC (20:4/20:2), PE (18:2/0:0), and SM (d18:0/16:0). Conclusions: These results indicated a close relationship between PCs, PEs and SMs and cardiac damage mechanisms during development of DCM. The therapeutic effects of berberine on DCM are partly caused by interferences with PCs, PEs, and SMs metabolisms.
Collapse
Affiliation(s)
- Shifen Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuofeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhirong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Shang
- Department of Pharmacology, Analysis and Testing Center, Beijing University of Chemical Technology, Beijing, China
| | - Jianning Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
94
|
Giles C, Takechi R, Lam V, Dhaliwal SS, Mamo JCL. Contemporary lipidomic analytics: opportunities and pitfalls. Prog Lipid Res 2018; 71:86-100. [PMID: 29959947 DOI: 10.1016/j.plipres.2018.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/18/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023]
Abstract
Recent advances in analytical techniques have greatly enhanced the depth of coverage, however lipidomic studies are still restricted to analysing only a subset of known lipids. Numerous complementary techniques are used for investigation of cellular lipidomes, including mass spectrometry (MS), nuclear magnetic resonance and vibrational spectroscopy. The development in electrospray ionization (ESI) MS has accelerated lipidomics research in the past two decades and represents one of the most widely used technique. The versatility of ESI-MS systems allows development of methods to detect and quantify a large diversity of lipid species and classes. However, highly targeted and specific approaches can preclude global analysis of many lipid classes. Indeed, experimental procedures are generally optimised for the lipid species, or lipid class of interest. Therefore, careful consideration of experimental procedures is required for characterisation of biological lipidomes. The current review will describe the lipidomic approaches for considering tissue lipid physiology. Discussion of the main sequences in a lipidomics workflow will be presented, including preparation of samples, accurate quantitation of lipid species and statistical modelling.
Collapse
Affiliation(s)
- Corey Giles
- Curtin Health Innovation Research Institute, Curtin University, WA, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, WA, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, WA, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - Satvinder S Dhaliwal
- Curtin Health Innovation Research Institute, Curtin University, WA, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Curtin University, WA, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, WA, Australia.
| |
Collapse
|
95
|
Li H, Xu W, Jiang L, Gu H, Li M, Zhang J, Guo W, Deng P, Long H, Bu Q, Tian J, Zhao Y, Cen X. Lipidomic signature of serum from the rats exposed to alcohol for one year. Toxicol Lett 2018; 294:166-176. [PMID: 29758358 DOI: 10.1016/j.toxlet.2018.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/02/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023]
Abstract
Alcohol abuse and its related diseases are the major risk factors for human health. Although the mechanism of alcohol-related disorders has been widely investigated, serum metabolites associated with long-term alcohol intake have not been well explored. In this study, we aimed to investigate the profiles of serum metabolites and lipid species of rats chronically exposed to alcohol, which may be involved in the pathogenesis of alcohol-associated disease. An 1H NMR-based metabolomics and Q-TOF/MS-based lipidomics approach were applied to investigate the profile of serum metabolites and lipid species of rats administrated daily with alcohol (12% vol/vol, 10 ml/kg per day, i.g.) for one year continuously. The rats administered with sterile water (10 ml/kg per day, i.g.) were used as control. We found that alcohol affected mostly the lipid species rather than small molecule metabolites in the serum of both female and male rats. Among the modified lipids, glycerophospholipid, sphingolipid and glycerolipids metabolism pathways were profoundly altered. The prominent changes in lipid profiles included diacylglycerol (DG), lysophosphatidylcholine (LysoPC), phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE) and triacylglycerol (TG). Moreover, fatty-acyl profile of lipids and total degree of unsaturation of fatty acid were also significantly altered by alcohol. The modified lipidomic profile may help to understand the pathogenesis of alcohol-associated diseases and also be of value for clinical evaluation of alcohol abuse, alcohol-associated disease diagnosis.
Collapse
Affiliation(s)
- Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wei Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hui Gu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Menglu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiamei Zhang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wei Guo
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; College of Pharmacy, Yantai University, State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai 264000, China
| | - Pengchi Deng
- Analytical & Testing Center, Sichuan University, Chengdu 610041, China
| | - Hailei Long
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Department of Food Science and Technology, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China
| | - Jingwei Tian
- College of Pharmacy, Yantai University, State Key Laboratory of Long-Acting and Targeting Drug Delivery Technologies, Yantai 264000, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
96
|
Lee JC, Park SM, Kim IY, Sung H, Seong JK, Moon MH. High-fat diet-induced lipidome perturbations in the cortex, hippocampus, hypothalamus, and olfactory bulb of mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:980-990. [PMID: 29787912 DOI: 10.1016/j.bbalip.2018.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/12/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022]
Abstract
Given their important role in neuronal function, there has been an increasing focus on altered lipid levels in brain disorders. The effect of a high-fat (HF) diet on the lipid profiles of the cortex, hippocampus, hypothalamus, and olfactory bulb of the mouse brain was investigated using nanoflow ultrahigh pressure liquid chromatography-electrospray ionization-tandem mass spectrometry in the current study. For 8 weeks, two groups of 5-week-old mice were fed either an HF or normal diet (6 mice from each group analyzed as the F and N groups, respectively). The remaining mice in both groups then received a 4-week normal diet. Each group was then subdivided into two groups for another 4-week HF or normal diet. Quantitative analysis of 270 of the 359 lipids identified from brain tissue revealed that an HF diet significantly affected the brain lipidome in all brain regions that were analyzed. The HF diet significantly increased diacylglycerols, which play a role in insulin resistance in all regions that were analyzed. Although the HF diet increased most lipid species, the majority of phosphatidylserine species were decreased, while lysophosphatidylserine species, with the same acyl chain, were substantially increased. This result can be attributed to increased oxidative stress due to the HF diet. Further, weight-cycling (yo-yo effect) was found more critical for the perturbation of brain lipid profiles than weight gain without a preliminary experience of an HF diet. The present study reveals systematic alterations in brain lipid levels upon HF diet analyzed either by lipid class and molecular levels.
Collapse
Affiliation(s)
- Jong Cheol Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Se Mi Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Il Yong Kim
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul, Republic of Korea
| | - Hyerim Sung
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Korea Mouse Phenotyping Center (KMPC), Seoul, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, Republic of Korea.
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
97
|
Rapid profiling and quantification of phospholipid molecular species in human plasma based on chemical derivatization coupled with electrospray ionization tandem mass spectrometry. Anal Chim Acta 2018; 1024:101-111. [PMID: 29776536 DOI: 10.1016/j.aca.2018.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/23/2022]
Abstract
In this study, we developed a novel strategy using solid-phase extraction (SPE) coupled with shotgun mass spectrometry (MS) based on trimethylsilyldiazomethane (TMSCHN2) stable-isotope derivatization for rapid profiling and accurate quantification of phospholipids (PLs) in human plasma. HybridSPE-Phospholipid (HybridSPE-PL, zirconia coated silica stationary phase) was used for sample pretreatment via the Lewis acid-base interaction between zirconia and phosphate moiety of PLs. This step allows rapid enrichment and recovery of PLs from human plasma. Afterward, PLs were derivatized with TMSCHN2, which leads to methylation of hydroxyl and amino groups in PLs and allows highly sensitive PL analysis by shotgun MS in positive ionization mode (limit of detection decreased up to 116.67 fold compared to underived PLs). We developed an accuracy quantification method for determination of PL molecular species in biological samples. Two or more PL standards were selected for each PL class and derivatized with TMSCHN2 without stable-isotope coding. They were then used as the internal standards. PLs in biological samples were isotopic derivatized via acid-catalyzed H/D exchange and methanolysis of TMSCHN2. For accurate quantification, a calibration curve for each class of PLs was typically constructed by using the internal standards to normalize the non-uniformity response caused by the differential fragmentation kinetics resulting from the distinct chemical constitution of individual PL species in the biological samples. This newly developed method was used to comprehensively analyze PL molecular species in human plasma samples. It is a promising methodology for rapid profiling and accurate quantification of complex lipid molecules in biological samples.
Collapse
|
98
|
Huynh K, Martins RN, Meikle PJ. Lipidomic Profiles in Diabetes and Dementia. J Alzheimers Dis 2018; 59:433-444. [PMID: 28582856 DOI: 10.3233/jad-161215] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipids are a diverse class of hydrophobic and amphiphilic molecules which make up the bulk of most biological systems and are essential for human life. The role of lipids in health and disease has been recognized for many decades, as evidenced by the early identification of cholesterol as an important risk factor of heart disease and the development and introduction of statins as a one of the most successful therapeutic interventions to date. While several studies have demonstrated an increased risk of dementia, including Alzheimer's disease (AD), in those with diabetes mellitus, the nature of this risk is not well understood. Recent developments in the field of lipidomics, driven primarily by technological advances in high pressure liquid chromatography and particularly mass spectrometry, have enabled the detailed characterization of the many hundreds of individual lipid species in mammalian systems and their association with disease states. Diabetes mellitus and AD have received particular attention due to their prominence in Western societies as a result of the ongoing obesity epidemic and the aging populations. In this review, we examine how these lipidomic studies are informing on the relationship between lipid metabolism with diabetes and AD and how this may inform on the common pathological pathways that link diabetes risk with dementia.
Collapse
Affiliation(s)
- Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Ralph N Martins
- School of Biomedical and Health Sciences, Edith Cowan University, Perth Western Australia, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
99
|
Winter WE, Harris NS, Flax S. What Are the Goals of Lipid Testing? J Appl Lab Med 2018; 2:816-818. [DOI: 10.1373/jalm.2016.022939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 11/06/2022]
|
100
|
Barrilero R, Gil M, Amigó N, Dias CB, Wood LG, Garg ML, Ribalta J, Heras M, Vinaixa M, Correig X. LipSpin: A New Bioinformatics Tool for Quantitative 1H NMR Lipid Profiling. Anal Chem 2018; 90:2031-2040. [PMID: 29293319 DOI: 10.1021/acs.analchem.7b04148] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The structural similarity among lipid species and the low sensitivity and spectral resolution of nuclear magnetic resonance (NMR) have traditionally hampered the routine use of 1H NMR lipid profiling of complex biological samples in metabolomics, which remains mostly manual and lacks freely available bioinformatics tools. However, 1H NMR lipid profiling provides fast quantitative screening of major lipid classes (fatty acids, glycerolipids, phospholipids, and sterols) and some individual species and has been used in several clinical and nutritional studies, leading to improved risk prediction models. In this Article, we present LipSpin, a free and open-source bioinformatics tool for quantitative 1H NMR lipid profiling. LipSpin implements a constrained line shape fitting algorithm based on voigt profiles and spectral templates from spectra of lipid standards, which automates the analysis of severely overlapped spectral regions and lipid signals with complex coupling patterns. LipSpin provides the most detailed quantification of fatty acid families and choline phospholipids in serum lipid samples by 1H NMR to date. Moreover, analytical and clinical results using LipSpin quantifications conform with other techniques commonly used for lipid analysis.
Collapse
Affiliation(s)
- Rubén Barrilero
- Department of Electronic Engineering, Universitat Rovira i Virgili , Metabolomics Platform, URV, Tarragona, 43007, Spain.,Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain
| | - Miriam Gil
- Biosfer Teslab S.L. , Reus, 43201, Spain
| | - Núria Amigó
- Department of Electronic Engineering, Universitat Rovira i Virgili , Metabolomics Platform, URV, Tarragona, 43007, Spain.,Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain.,Biosfer Teslab S.L. , Reus, 43201, Spain
| | - Cintia B Dias
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle , Callaghan, New South Wales 2308, Australia
| | - Lisa G Wood
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle , Callaghan, New South Wales 2308, Australia
| | - Manohar L Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle , Callaghan, New South Wales 2308, Australia
| | - Josep Ribalta
- Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain.,Unitat de Recerca en Lípids i Arteriosclerosi, Facultat de Medicina, Universitat Rovira i Virgili , Reus, 43201, Spain
| | - Mercedes Heras
- Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain.,Unitat de Recerca en Lípids i Arteriosclerosi, Facultat de Medicina, Universitat Rovira i Virgili , Reus, 43201, Spain
| | - Maria Vinaixa
- Department of Electronic Engineering, Universitat Rovira i Virgili , Metabolomics Platform, URV, Tarragona, 43007, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili , Metabolomics Platform, URV, Tarragona, 43007, Spain.,Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain
| |
Collapse
|