51
|
Rinaldi A, Dumas F, Duskey JT, Imbriano C, Belluti S, Roy C, Ottonelli I, Vandelli MA, Ruozi B, Garcion E, Tosi G, Boury F. Polymer-lipid hybrid nanomedicines to deliver siRNA in and against glioblastoma cells. Int J Pharm 2024; 654:123994. [PMID: 38484859 DOI: 10.1016/j.ijpharm.2024.123994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Small interfering RNA (siRNA) holds great potential to treat many difficult-to-treat diseases, but its delivery remains the central challenge. This study aimed at investigating the suitability of polymer-lipid hybrid nanomedicines (HNMeds) as novel siRNA delivery platforms for locoregional therapy of glioblastoma. Two HNMed formulations were developed from poly(lactic-co-glycolic acid) polymer and a cationic lipid: 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol). After characterization of the HNMeds, a model siRNA was complexed onto their surface to form HNMed/siRNA complexes. The physicochemical properties and siRNA binding ability of complexes were assessed over a range of nitrogen-to-phosphate (N/P) ratios to optimize the formulations. At the optimal N/P ratio of 10, complexes effectively bound siRNA and improved its protection from enzymatic degradation. Using the NIH3T3 mouse fibroblast cell line, DOTAP-based HNMeds were shown to possess higher cytocompatibility in vitro over the DC-Chol-based ones. As proof-of-concept, uptake and bioefficacy of formulations were also assessed in vitro on U87MG human glioblastoma cell line expressing luciferase gene. Complexes were able to deliver anti-luciferase siRNA and induce a remarkable suppression of gene expression. Noteworthy, the effect of DOTAP-based formulation was not only about three-times higher than DC-Chol-based one, but also comparable to lipofectamine model transfection reagent. These findings set the basis to exploit this nanosystem for silencing relevant GB-related genes in further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Arianna Rinaldi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy; Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Florence Dumas
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | - Charlotte Roy
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France.
| |
Collapse
|
52
|
Esteves L, Caramelo F, Roda D, Carreira IM, Melo JB, Ribeiro IP. Identification of Novel Molecular and Clinical Biomarkers of Survival in Glioblastoma Multiforme Patients: A Study Based on The Cancer Genome Atlas Data. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5582424. [PMID: 38606198 PMCID: PMC11008977 DOI: 10.1155/2024/5582424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent type of brain tumour; although advancements in treatment have been made, the median survival time for GBM patients has persisted at 15 months. This study is aimed at investigating the genetic alterations and clinical features of GBM patients to find predictors of survival. GBM patients' methylation and gene expression data along with clinical information from TCGA were retrieved. The most overrepresented pathways were identified independently for each omics dataset. From the genes found in at least 30% of these pathways, one gene that was identified in both sets was further examined using the Kaplan-Meier method for survival analysis. Additionally, three groups of patients who started radio and chemotherapy at different times were identified, and the influence of these variations in treatment modality on patient survival was evaluated. Four pathways that seemed to negatively impact survival and two with the opposite effect were identified. The methylation status of PRKCB was highlighted as a potential novel biomarker for patient survival. The study also found that treatment with chemotherapy prior to radiotherapy can have a significant impact on patient survival, which could lead to improvements in clinical management and therapeutic approaches for GBM patients.
Collapse
Affiliation(s)
- Luísa Esteves
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco Caramelo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Laboratory of Biostatistics and Medical Informatics, iCBR-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Domingos Roda
- Algarve Radiation Oncology Unit-Joaquim Chaves Saúde (JCS), Faro, Portugal
| | - Isabel Marques Carreira
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Joana Barbosa Melo
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ilda Patrícia Ribeiro
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB) and Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
53
|
Hu K, Guo J, Zeng J, Shao Y, Wu B, Mo J, Mo G. Current state of research on copper complexes in the treatment of breast cancer. Open Life Sci 2024; 19:20220840. [PMID: 38585632 PMCID: PMC10997149 DOI: 10.1515/biol-2022-0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024] Open
Abstract
Breast cancer, a malignancy originating from the epithelium or ductal epithelium of the breast, is not only highly prevalent in women but is also the leading cause of cancer-related deaths in women worldwide. Research has indicated that breast cancer incidence is increasing in younger women, prompting significant interest from scientists actively researching breast cancer treatment. Copper is highly accumulated in breast cancer cells, leading to the development of copper complexes that cause immunogenic cell death, apoptosis, oxidative stress, redox-mediated cell death, and autophagy by regulating the expression of key cell death proteins or assisting in the onset of cell death. However, they have not yet been applied to clinical therapy due to their solubility in physiological buffers and their different and unpredictable mechanisms of action. Herein, we review existing relevant studies, summarize the detailed mechanisms by which they exert anti-breast cancer effects, and propose a potential mechanism by which copper complexes may exert antitumor effects by causing copper death in breast cancer cells. Since copper death in breast cancer is closely related to prognosis and immune infiltration, further copper complex research may provide an opportunity to mitigate the high incidence and mortality rates associated with breast cancer.
Collapse
Affiliation(s)
- Kui Hu
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jingna Guo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jiemin Zeng
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Yunhao Shao
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Binhua Wu
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, 524023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China
| | - Jian Mo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Guixi Mo
- Department of Anesthesiology of Affiliated Hospital, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
54
|
Cai X, Refaat A, Gan PY, Fan B, Yu H, Thang SH, Drummond CJ, Voelcker NH, Tran N, Zhai J. Angiopep-2-Functionalized Lipid Cubosomes for Blood-Brain Barrier Crossing and Glioblastoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12161-12174. [PMID: 38416873 DOI: 10.1021/acsami.3c14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer with high malignancy and resistance to conventional treatments, resulting in a bleak prognosis. Nanoparticles offer a way to cross the blood-brain barrier (BBB) and deliver precise therapies to tumor sites with reduced side effects. In this study, we developed angiopep-2 (Ang2)-functionalized lipid cubosomes loaded with cisplatin (CDDP) and temozolomide (TMZ) for crossing the BBB and providing targeted glioblastoma therapy. Developed lipid cubosomes showed a particle size of around 300 nm and possessed an internal ordered inverse primitive cubic phase, a high conjugation efficiency of Ang2 to the particle surface, and an encapsulation efficiency of more than 70% of CDDP and TMZ. In vitro models, including BBB hCMEC/D3 cell tight monolayer, 3D BBB cell spheroid, and microfluidic BBB/GBM-on-a-chip models with cocultured BBB and glioblastoma cells, were employed to study the efficiency of the developed cubosomes to cross the BBB and showed that Ang2-functionalized cubosomes can penetrate the BBB more effectively. Furthermore, Ang2-functionalized cubosomes showed significantly higher uptake by U87 glioblastoma cells, with a 3-fold increase observed in the BBB/GBM-on-a-chip model as compared to that of the bare cubosomes. Additionally, the in vivo biodistribution showed that Ang2 modification could significantly enhance the brain accumulation of cubosomes in comparison to that of non-functionalized particles. Moreover, CDDP-loaded Ang2-functionalized cubosomes presented an enhanced toxic effect on U87 spheroids. These findings suggest that the developed Ang2-cubosomes are prospective for improved BBB crossing and enhanced delivery of therapeutics to glioblastoma and are worth pursuing further as a potential application of nanomedicine for GBM treatment.
Collapse
Affiliation(s)
- Xudong Cai
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - Ahmed Refaat
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, VIC, Australia
| | - Poh-Yi Gan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, 246 Clayton Rd, Clayton 3168, VIC, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne 3052, VIC, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton 3168, Victoria, Australia
- Department of Materials Science & Engineering, Monash University, Clayton 3168, Victoria, Australia
| | - Nhiem Tran
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne 3000, VIC, Australia
| |
Collapse
|
55
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
56
|
Shaw R, Basu M, Karmakar S, Ghosh MK. MGMT in TMZ-based glioma therapy: Multifaceted insights and clinical trial perspectives. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119673. [PMID: 38242327 DOI: 10.1016/j.bbamcr.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Temozolomide (TMZ) is the most preferred and approved chemotherapeutic drug for either first- or second-line chemotherapy for glioma patients across the globe. In glioma patients, resistance to treatment with alkylating drugs like TMZ is known to be conferred by exalted levels of MGMT gene expression. On the contrary, epigenetic silencing through MGMT gene promoter methylation leading to subsequent reduction in MGMT transcription and protein expression, is predicted to have a response favoring TMZ treatment. Thus, MGMT protein level in cancer cells is a crucial determining factor in indicating and predicting the choice of alkylating agents in chemotherapy or choosing glioma patients directly for a second line of treatment. Thus, in-depth research is necessary to achieve insights into MGMT gene regulation that has recently enticed a fascinating interest in epigenetic, transcriptional, post-transcriptional, and post-translational levels. Furthermore, MGMT promoter methylation, stability of MGMT protein, and related subsequent adaptive responses are also important contributors to strategic developments in glioma therapy. With applications to its identification as a prognostic biomarker, thus predicting response to advanced glioma therapy, this review aims to concentrate on the mechanistic role and regulation of MGMT gene expression at epigenetic, transcriptional, post-transcriptional, and post-translational levels functioning under the control of multiple signaling dynamics.
Collapse
Affiliation(s)
- Rajni Shaw
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas 743372, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
57
|
Karimaghaei C, Pakravan M, Charoenkijkajorn C, Lee VA, Lee AG. Visual Loss as the Presenting Manifestation of Leptomeningeal Spread of Glioblastoma Multiforme to the Optic Chiasm. J Neuroophthalmol 2024; 44:e49-e51. [PMID: 36166776 DOI: 10.1097/wno.0000000000001632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Cina Karimaghaei
- School of Medicine (CK), University of Texas Medical Branch, Galveston, Texas; Department of Ophthalmology (MP, CC, AGL), Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas; Department of Ophthalmology, Houston Methodist Hospital, Summer Internship Program (VAL), Houston, Texas; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine (AGL), New York, New York; Department of Ophthalmology (AGL), University of Texas Medical Branch, Galveston, Texas; Department of Ophthalmology, University of Texas MD Anderson Cancer Center (AGL), Houston, Texas; Department of Ophthalmology, Texas A and M College of Medicine (AGL), Bryan, Texas; and Department of Ophthalmology (AGL), The University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | | | | | | | | |
Collapse
|
58
|
Zhang W, Dang R, Liu H, Dai L, Liu H, Adegboro AA, Zhang Y, Li W, Peng K, Hong J, Li X. Machine learning-based investigation of regulated cell death for predicting prognosis and immunotherapy response in glioma patients. Sci Rep 2024; 14:4173. [PMID: 38378721 PMCID: PMC10879095 DOI: 10.1038/s41598-024-54643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastoma is a highly aggressive and malignant type of brain cancer that originates from glial cells in the brain, with a median survival time of 15 months and a 5-year survival rate of less than 5%. Regulated cell death (RCD) is the autonomous and orderly cell death under genetic control, controlled by precise signaling pathways and molecularly defined effector mechanisms, modulated by pharmacological or genetic interventions, and plays a key role in maintaining homeostasis of the internal environment. The comprehensive and systemic landscape of the RCD in glioma is not fully investigated and explored. After collecting 18 RCD-related signatures from the opening literature, we comprehensively explored the RCD landscape, integrating the multi-omics data, including large-scale bulk data, single-cell level data, glioma cell lines, and proteome level data. We also provided a machine learning framework for screening the potentially therapeutic candidates. Here, based on bulk and single-cell sequencing samples, we explored RCD-related phenotypes, investigated the profile of the RCD, and developed an RCD gene pair scoring system, named RCD.GP signature, showing a reliable and robust performance in predicting the prognosis of glioblastoma. Using the machine learning framework consisting of Lasso, RSF, XgBoost, Enet, CoxBoost and Boruta, we identified seven RCD genes as potential therapeutic targets in glioma and verified that the SLC43A3 highly expressed in glioma grades and glioma cell lines through qRT-PCR. Our study provided comprehensive insights into the RCD roles in glioma, developed a robust RCD gene pair signature for predicting the prognosis of glioma patients, constructed a machine learning framework for screening the core candidates and identified the SLC43A3 as an oncogenic role and a prediction biomarker in glioblastoma.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ruiyue Dang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Luohuan Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Abraham Ayodeji Adegboro
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yihao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Wang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Kang Peng
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
59
|
Repici A, Ardizzone A, De Luca F, Colarossi L, Prestifilippo A, Pizzino G, Paterniti I, Esposito E, Capra AP. Signaling Pathways of AXL Receptor Tyrosine Kinase Contribute to the Pathogenetic Mechanisms of Glioblastoma. Cells 2024; 13:361. [PMID: 38391974 PMCID: PMC10886920 DOI: 10.3390/cells13040361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Brain tumors are a diverse collection of neoplasms affecting the brain with a high prevalence rate in people of all ages around the globe. In this pathological context, glioblastoma, a form of glioma that belongs to the IV-grade astrocytoma group, is the most common and most aggressive form of the primary brain tumors. Indeed, despite the best treatments available including surgery, radiotherapy or a pharmacological approach with Temozolomide, glioblastoma patients' mortality is still high, within a few months of diagnosis. Therefore, to increase the chances of these patients surviving, it is critical to keep finding novel treatment opportunities. In the past, efforts to treat glioblastoma have mostly concentrated on customized treatment plans that target specific mutations such as epidermal growth factor receptor (EGFR) mutations, Neurotrophic Tyrosine Receptor Kinase (NTRK) fusions, or multiple receptors using multi-kinase inhibitors like Sunitinib and Regorafenib, with varying degrees of success. Here, we focused on the receptor tyrosine kinase AXL that has been identified as a mediator for tumor progression and therapy resistance in various cancer types, including squamous cell tumors, small cell lung cancer, and breast cancer. Activated AXL leads to a significant increase in tumor proliferation, tumor cell migration, and angiogenesis in different in vitro and in vivo models of cancer since this receptor regulates interplay with apoptotic, angiogenic and inflammatory pathways. Based on these premises, in this review we mainly focused on the role of AXL in the course of glioblastoma, considering its primary biological mechanisms and as a possible target for the application of the most recent treatments.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Angela Prestifilippo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Gabriele Pizzino
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (L.C.); (A.P.); (G.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (A.R.); (A.A.); (F.D.L.); (I.P.); (A.P.C.)
| |
Collapse
|
60
|
Wei W, Huang C, Zhang J, Chen Q, Liu Z, Ren X, Gan S, Wu P, Wang D, Tang BZ, Sun H. HDAC6-Activatable Multifunctional Near-Infrared Probe for Glioma Cell Detection and Elimination. Anal Chem 2024; 96:2406-2414. [PMID: 38308568 DOI: 10.1021/acs.analchem.3c04319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor associated with limited treatment options and high drug resistance, presenting significant challenges in the pursuit of effective treatment strategies. Epigenetic modifications have emerged as promising diagnostic biomarkers and therapeutic targets for GBM. For instance, histone deacetylase 6 (HDAC6) has been identified as a potential pharmacological target for GBM. Furthermore, the overexpression of monoamine oxidase A (MAO A) in glioma has been linked to tumor progression, making it an attractive target for therapy. In this study, we successfully engineered HDAC-MB, an activatable multifunctional small-molecule probe with the goal of efficiently detecting and killing glioma cells. HDAC-MB can be selectively activated by HDAC6, leading to the "turn on" of near-infrared fluorescence and effective inhibition of MAO A, along with potent photodynamic therapy (PDT) effects. Consequently, HDAC-MB not only enables the imaging of HDAC6 in live glioma cells but also exhibits the synergistic effect of MAO A inhibition and PDT, effectively inhibiting glioma invasion and inducing cellular apoptosis. The distinctive combination of features displayed by HDAC-MB positions it as a versatile and highly effective tool for the accurate diagnosis and treatment of glioma cells. This opens up opportunities to enhance therapy outcomes and explore future applications in glioma theranostics.
Collapse
Affiliation(s)
- Wenyu Wei
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Chen Huang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong 999077, China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Zhiyang Liu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Xiaojie Ren
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Shenglong Gan
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Pingzhou Wu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Dongqing Wang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
61
|
Mardanshahi A, Vaseghi S, Hosseinimehr SJ, Abedi SM, Molavipordanjani S. 99mTc(CO) 3-labeled 1-(2-Pyridyl)piperazine derivatives as radioligands for 5-HT 7 receptors. Ann Nucl Med 2024; 38:139-153. [PMID: 38032496 DOI: 10.1007/s12149-023-01885-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The 5-hydroxytryptamine receptor (5-HTR) family includes seven classes of receptors. The 5-HT7R is the newest member of this family and contributes to different physiological and pathological processes. As a pathology, glioblastoma multiform (GBM) overexpresses 5-HT7R; hence, this study aims to develop radiolabeled aryl piperazine derivatives as 5-HT7R imaging agents. METHODS: Compounds 6 and 7 as 1-(3-nitropyridin-2-yl)piperazine derivatives were radiolabeled with fac-[99mTc(CO)3(H2O)3]+ and 99mTc(CO)3-[6] and 99mTc(CO)3-[7] were obtained with high radiochemical purity (RCP > 94%). The stability of the radiotracers was evaluated in both saline and mouse serum. Specific binding on different cell lines including U-87 MG, MCF-7, SKBR3, and HT-29 was performed. The biodistribution of these radiotracers was evaluated in normal and U-87 MG Xenografted models. Finally, 99mTc(CO)3-[6] and 99mTc(CO)3-[7] were applied for in vivo imaging in U-87 MG Xenografted models. RESULTS Specific binding study indicates that 99mTc(CO)3-[6] and 99mTc(CO)3-[7] can recognize 5-HT7R of U87-MG cell line. The biodistribution study in normal mice indicates that the brain uptake of 99mTc(CO)3-[6] and 99mTc(CO)3-[7] is the highest at 30 min post-injection (0.8 ± 0.25 and 0.64 ± 0.18%ID/g, respectively). The data of the biodistribution study in the U87-MG xenograft model revealed that these radiotracers could accumulate in the tumor site, and the highest tumor uptake was observed at 60 min post-injection (3.38 ± 0.65 and 3.27 ± 0.5%ID/g, respectively). The injection of pimozide can block the tumor's radiotracer uptake, indicating the binding of these radiotracers to the 5-HT7R. The imaging study in the xenograft model also confirms the biodistribution data. The acquired images clearly show the tumor site, and the tumor-to-muscle ratio for 99mTc(CO)3-[6] and 99mTc(CO)3-[7] at 60 min was 3.33 and 3.88, respectively. CONCLUSIONS: 99mTc(CO)3-[6] and 99mTc(CO)3-[7] can visualize tumor in the U87-MG xenograft model due to their affinity toward 5-HT7R.
Collapse
Affiliation(s)
- Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samaneh Vaseghi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajjad Molavipordanjani
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
62
|
Wilk A, Setkowicz Z, Banas D, Fernández-Ruiz R, Marguí E, Matusiak K, Wrobel P, Wudarczyk-Mocko J, Janik-Olchawa N, Chwiej J. Glioblastoma multiforme influence on the elemental homeostasis of the distant organs: the results of inter-comparison study carried out with TXRF method. Sci Rep 2024; 14:1254. [PMID: 38218977 PMCID: PMC10787745 DOI: 10.1038/s41598-024-51731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Glioblastoma (GBM) is a fast-growing and aggressive brain tumor which invades the nearby brain tissue but generally does not spread to the distant organs. Nonetheless, if untreated, GBM can result in patient death in time even less than few months from the diagnosis. The influence of the tumor progress on organs other than brain is obvious but still not well described. Therefore, we examined the elemental abnormalities appearing in selected body organs (kidney, heart, spleen, lung) in two rat models of GBM. The animals used for the study were subjected to the implantation of human GBM cell lines (U87MG and T98G) characterized by different levels of invasiveness. The elemental analysis of digested organ samples was carried out using the total reflection X-ray fluorescence (TXRF) method, independently, in three European laboratories utilizing various commercially available TXRF spectrometers. The comparison of the data obtained for animals subjected to T98G and U87MG cells implantation showed a number of elemental anomalies in the examined organs. What is more, the abnormalities were found for rats even if neoplastic tumor did not develop in their brains. The most of alterations for both experimental groups were noted in the spleen and lungs, with the direction of the found element changes in these organs being the opposite. The observed disorders of element homeostasis may result from many processes occurring in the animal body as a result of implantation of cancer cells or the development of GBM, including inflammation, anemia of chronic disease or changes in iron metabolism. Tumor induced changes in organ elemental composition detected in cooperating laboratories were usually in a good agreement. In case of elements with higher atomic numbers (Fe, Cu, Zn and Se), 88% of the results were classified as fully compliant. Some discrepancies between the laboratories were found for lighter elements (P, S, K and Ca). However, also in this case, the obtained results fulfilled the requirements of full (the results from three laboratories were in agreement) or partial agreement (the results from two laboratories were in agreement).
Collapse
Affiliation(s)
- Aleksandra Wilk
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Dariusz Banas
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
- Holy Cross Cancer Center, Kielce, Poland
| | - Ramón Fernández-Ruiz
- Interdepartmental Research Service (SIdI), Autonomous University of Madrid, Madrid, Spain
| | - Eva Marguí
- Department of Chemistry, University of Girona, Girona, Spain
| | - Katarzyna Matusiak
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Pawel Wrobel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | | | - Natalia Janik-Olchawa
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland.
| |
Collapse
|
63
|
Kim M, Yoon HJ, Lee C, Lee M, Park RW, Lee B, Park EJ, Kim S. Immune Checkpoint-Blocking Nanocages Cross the Blood-Brain Barrier and Impede Brain Tumor Growth. ACS Biomater Sci Eng 2024; 10:575-587. [PMID: 38150627 PMCID: PMC10777349 DOI: 10.1021/acsbiomaterials.3c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Glioblastoma (GBM) is the deadliest tumor of the central nervous system, with a median survival of less than 15 months. Despite many trials, immune checkpoint-blocking (ICB) therapies using monoclonal antibodies against the PD-1/PD-L1 axis have demonstrated only limited benefits for GBM patients. Currently, the main hurdles in brain tumor therapy include limited drug delivery across the blood-brain barrier (BBB) and the profoundly immune-suppressive microenvironment of GBM. Thus, there is an urgent need for new therapeutics that can cross the BBB and target brain tumors to modulate the immune microenvironment. To this end, we developed an ICB strategy based on the BBB-permeable, 24-subunit human ferritin heavy chain, modifying the ferritin surface with 24 copies of PD-L1-blocking peptides to create ferritin-based ICB nanocages. The PD-L1pep ferritin nanocages first demonstrated their tumor-targeting and antitumor activities in an allograft colon cancer model. Next, we found that these PD-L1pep ferritin nanocages efficiently penetrated the BBB and targeted brain tumors through specific interactions with PD-L1, significantly inhibiting tumor growth in an orthotopic intracranial tumor model. The addition of PD-L1pep ferritin nanocages to triple in vitro cocultures of T cells, GBM cells, and glial cells significantly inhibited PD-1/PD-L1 interactions and restored T-cell activity. Collectively, these findings indicate that ferritin nanocages displaying PD-L1-blocking peptides can overcome the primary hurdle of brain tumor therapy and are, therefore, promising candidates for treating GBM.
Collapse
Affiliation(s)
- Minseong Kim
- Department
of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21
Plus KNU Biomedical Convergence Program, Department of Biomedical
Science, School of Medicine, Kyungpook National
University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic
of Korea
- CMRI,
School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Hee Jung Yoon
- Immuno-Oncology
Branch, Division of Cancer Biomedical Science, Graduate School of
Cancer Science and Policy, National Cancer
Center, Goyang 10408, Republic
of Korea
| | - Chanju Lee
- Immuno-Oncology
Branch, Division of Cancer Biomedical Science, Graduate School of
Cancer Science and Policy, National Cancer
Center, Goyang 10408, Republic
of Korea
| | - Minah Lee
- Department
of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21
Plus KNU Biomedical Convergence Program, Department of Biomedical
Science, School of Medicine, Kyungpook National
University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic
of Korea
- CMRI,
School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Rang-Woon Park
- Department
of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21
Plus KNU Biomedical Convergence Program, Department of Biomedical
Science, School of Medicine, Kyungpook National
University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic
of Korea
- CMRI,
School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Byungheon Lee
- Department
of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21
Plus KNU Biomedical Convergence Program, Department of Biomedical
Science, School of Medicine, Kyungpook National
University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic
of Korea
- CMRI,
School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Eun Jung Park
- Immuno-Oncology
Branch, Division of Cancer Biomedical Science, Graduate School of
Cancer Science and Policy, National Cancer
Center, Goyang 10408, Republic
of Korea
| | - Soyoun Kim
- Department
of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- BK21
Plus KNU Biomedical Convergence Program, Department of Biomedical
Science, School of Medicine, Kyungpook National
University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic
of Korea
- CMRI,
School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
64
|
Rezaie M, Nasehi M, Shimia M, Ebrahimnezhad M, Yousefi B, Majidinia M. Polyphenols Modulate the miRNAs Expression that Involved in Glioblastoma. Mini Rev Med Chem 2024; 24:1953-1969. [PMID: 38639278 DOI: 10.2174/0113895575304605240408105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Glioblastoma multiforme (GBM), a solid tumor that develops from astrocytes, is one of the most aggressive types of brain cancer. While there have been improvements in the efficacy of treating GBM, many problems remain, especially with traditional therapy methods. Therefore, recent studies have extensively focused on developing novel therapeutic agents for combating glioblastoma. Natural polyphenols have been studied for their potential as chemopreventive and chemotherapeutic agents due to their wide range of positive qualities, including antioxidant, antiinflammatory, cytotoxic, antineoplastic, and immunomodulatory activities. These natural compounds have been suggested to act via modulated various macromolecules within cells, including microRNAs (miRNAs), which play a crucial role in the molecular milieu. In this article, we focus on how polyphenols may inhibit tumor growth by influencing the expression of key miRNAs that regulate oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Maede Rezaie
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center, Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Shimia
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Ebrahimnezhad
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
65
|
Oliveira AGS, Rocha MA, de Azevedo LS, Coelho ATDM, Chagas RCR, Santos HB, Thomé RG, Samuel P, Wolfram E, Kim B, Reis RM, Ribeiro RIMA. Tapirira guianensis is Selectively Cytotoxic, Induces Apoptosis to the Glioblastoma and Decreases Tumor Growth and Angiogenesis in vivo. PLANTA MEDICA 2024; 90:13-24. [PMID: 37832581 DOI: 10.1055/a-2181-2569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Glioblastoma is the most frequent primary malignant brain tumor without effective treatment, which makes this work extremely relevant. The study of the bioactive compounds from medicinal plants plays an important role in the discovery of new drugs.This research investigated the constituents of Tapirira guianensis and its antitumor potential (in vitro and in vivo) in glioblastoma. The T. guianensis extracts were characterized by mass spectrometry. The ethyl acetate partition (01ID) and its fractions 01ID-F2 and 01ID-F4 from T. guianensis showed potential antitumor treatment evidenced by selective cytotoxicity for GAMG with IC50 14.1 µg/mL, 83.07 µg/mL, 59.27 µg/mL and U251 with IC50 25.92 µg/mL, 37.3 µg/mL and 18.84 µg/mL. Fractions 01ID-F2 and 01ID-F4 were 10 times more selective when compared to TMZ and 01ID for the two evaluated cell lines. T. guianensis also reduced matrix metalloproteinases 2 - 01ID-F2 (21.84%), 01ID-F4 (29.6%) and 9 - 01ID-F4 (73.42%), ID-F4 (53.84%) activities, and induced apoptosis mainly through the extrinsic pathway. Furthermore, all treatments significantly reduced tumor size (01ID p < 0,01, 01ID-F2 p < 0,01 and 01ID-F4 p < 0,0001) and caused blood vessels to shrink in vivo. The present findings highlight that T. guianensis exhibits considerable antitumor potential in preclinical studies of glioblastoma. This ability may be related to the phenolic compounds and sesquiterpene derivatives identified in the extracts. This study deserves further in vivo research, followed by clinical investigation.
Collapse
Affiliation(s)
- Ana Gabriela Silva Oliveira
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Marina Andrade Rocha
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Lucas Santos de Azevedo
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | | | - Rafael César Russo Chagas
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Hélio Batista Santos
- Tissue Processing Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Ralph Gruppi Thomé
- Tissue Processing Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Peter Samuel
- Zurich University of Applied Sciences, Department of Life Sciences and Facility Management, Wädenswil, Switzerland
| | - Evelyn Wolfram
- Zurich University of Applied Sciences, Department of Life Sciences and Facility Management, Wädenswil, Switzerland
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal
| | | |
Collapse
|
66
|
Khan RB, Tiwari S, Jarkharya A, Tiwari A, Chowdhary R, Shrivastava A. Glioblastoma Multiforme miRNA based Comprehensive Study to Validate Phytochemicals for Effective Treatment against Deadly Tumour through In Silico Evaluation. Microrna 2024; 13:240-250. [PMID: 38982916 DOI: 10.2174/0122115366302365240618122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Glioblastoma Multiforme (GBM) is a prevalent and deadly type of primary astrocytoma, constituting over 60% of adult brain tumors, and has a poor prognosis, with a high relapse rate within 7 months of diagnosis. Despite surgical, radiotherapy, and chemotherapy treatments, GBM remains challenging due to resistance. MicroRNA (miRNAs) control gene expression at transcriptional and post-transcriptional levels by targeting their messenger RNA (mRNA), and also contribute to the development of various neoplasms, including GBM. METHODS The present study focuses on exploring the miRNAs-based pathogenesis of GBM and evaluating most potential plant-based therapeutic agents with in silico analysis. Gene chips were retrieved from the Gene Expression Omnibus (GEO) database, followed by the Robust- Rank- Aggereg algorithm to determine the Differentially Expressed miRNAs (DEMs). The predicted targets were intersected with the GBM-associated genes, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the overlapping genes was performed. At the same time, five phytochemicals were selected for the Connectivity map (CMap), and the most efficient ones were those that had undergone molecular docking analysis to obtain the potential therapeutic agents. RESULTS The hsa-miR-10b, hsa-miR-21, and hsa-miR-15b were obtained, and eight genes were found to be associated with glioma pathways; VSIG4, PROCR, PLAT, and ITGB2 were upregulated while, CAMK2B, PDE1A, GABRA1, and KCNJ6 were downregulated. The drugs Resveratrol and Quercetin were identified as the most prominent drugs. CONCLUSION These miRNAs-based drugs can be used as a curative agent for the treatment of GBM. However, in vivo, experimental data, and clinical trials are necessary to provide an alternative to conventional GBM cancer chemotherapy.
Collapse
Affiliation(s)
- Roji Begam Khan
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal 462020, India
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya Bhopal, 462036, India
| | - Shikha Tiwari
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal 462020, India
| | - Aryan Jarkharya
- School of Biological Sciences and Biotechnology, Goa University, Taliegaon Plataeu, Bambolim, Goa, 403206, India
| | - Archana Tiwari
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya Bhopal, 462036, India
| | - Rashmi Chowdhary
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal 462020, India
| | - Adesh Shrivastava
- Department of Neurosurgery, All India Institute of Medical Sciences Bhopal, Bhopal, India
| |
Collapse
|
67
|
Dong J, Qian Y, Zhang W, Wang Q, Jia M, Yue J, Fan Z, Jiang Y, Wang L, Wang Y, Huang Z, Yu L, Wang Y. Dual targeting agent Thiotert inhibits the progression of glioblastoma by inducing ER stress-dependent autophagy. Biomed Pharmacother 2024; 170:115867. [PMID: 38101281 DOI: 10.1016/j.biopha.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal type of tumor in the central nervous system, characterized by a high incidence and poor prognosis. Thiotert, as a novel dual targeting agent, has potential inhibitory effects on various tumors. Here, we found that Thiotert effectively inhibited the proliferation of GBM cells by inducing G2/M cell cycle arrest and suppressed the migratory ability in vitro. Furthermore, Thiotert disrupted the thioredoxin (Trx) system while causing cellular DNA damage, which in turn caused endoplasmic reticulum (ER) stress-dependent autophagy. Knockdown of ER stress-related protein ATF4 in U251 cells inhibited ER stress-dependent autophagy caused by Thiotert to some extent. Orthotopic transplantation experiments further showed that Thiotert had the same anti-GBM activity and mechanism as in vitro. Conclusively, these results suggest that Thiotert induces ER stress-dependent autophagy in GBM cells by disrupting redox homeostasis and causing DNA damage, which provides new insight for the treatment of GBM.
Collapse
Affiliation(s)
- Jianhong Dong
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310053, Zhejiang, China; School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yiming Qian
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Wei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Mengxian Jia
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Juanqing Yue
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310053, Zhejiang, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Lipei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou 310024, Zhejiang, China.
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
68
|
Xiao N, Yang W, Wang J, Li J, Zhao R, Li M, Li C, Liu K, Li Y, Yin C, Chen Z, Li X, Jiang Y. Protein structuromics: A new method for protein structure-function crosstalk in glioma. Proteins 2024; 92:24-36. [PMID: 37497743 DOI: 10.1002/prot.26555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/16/2023] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
Glioma is a type of tumor that starts in the glial cells of the brain or spine. Since the 1800s, when the disease was first named, its survival rates have always been unsatisfactory. Despite great advances in molecular biology and traditional treatment methods, many questions regarding cancer occurrence and the underlying mechanism remain to be answered. In this study, we assessed the protein structural features of 20 oncogenes and 20 anti-oncogenes via protein structure and dynamic analysis methods and 3D structural and systematic analyses of the structure-function relationships of proteins. All of these results directly indicate that unfavorable group proteins show more complex structures than favorable group proteins. As the tumor cell microenvironment changes, the balance of oncogene-related and anti-oncogene-related proteins is disrupted, and most of the structures of the two groups of proteins will be disrupted. However, more unfavorable group proteins will maintain and refold to achieve their correct shape faster and perform their functions more quickly than favorable group proteins, and the former thus support cancer development. We hope that these analyses will help promote mechanistic research and the development of new treatments for glioma.
Collapse
Affiliation(s)
- Nan Xiao
- Department of Medical Science, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wenming Yang
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jin Wang
- Department of Rehabilitation, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jiarong Li
- Department of Rehabilitation, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ruoxuan Zhao
- Department of Medical Science, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Muzheng Li
- Department of Rehabilitation, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chi Li
- Department of Anesthesiology, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Kang Liu
- Department of Medical Science, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yingxin Li
- Department of Medical Science, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chaoqun Yin
- Department of Medical Science, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhibo Chen
- Department of Medical Science, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xingqi Li
- Department of Medicine, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yun Jiang
- Department of Medical Science, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
69
|
Ercelik M, Tekin C, Parin FN, Mutlu B, Dogan HY, Tezcan G, Aksoy SA, Gurbuz M, Yildirim K, Bekar A, Kocaeli H, Taskapilioglu MO, Eser P, Tunca B. Co-loading of Temozolomide with Oleuropein or rutin into polylactic acid core-shell nanofiber webs inhibit glioblastoma cell by controlled release. Int J Biol Macromol 2023; 253:126722. [PMID: 37673167 DOI: 10.1016/j.ijbiomac.2023.126722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Glioblastoma (GB) has susceptibility to post-surgical recurrence. Therefore, local treatment methods are required against recurrent GB cells in the post-surgical area. In this study, we developed a nanofiber-based local therapy against GB cells using Oleuropein (OL), and rutin and their combinations with Temozolomide (TMZ). The polylactic acid (PLA) core-shell nanofiber webs were encapsulated with OL (PLAOL), rutin (PLArutin), and TMZ (PLATMZ) by an electrospinning process. A SEM visualized the morphology and the total immersion method determined the release characteristics of PLA webs. Real-time cell tracking analysis for cell growth, dual Acridine Orange/Propidium Iodide staining for cell viability, a scratch wound healing assay for migration capacity, and a sphere formation assay for tumor spheroid aggressiveness were used. All polymeric nanofiber webs had core-shell structures with an average diameter between 133 ± 30.7-139 ± 20.5 nm. All PLA webs promoted apoptotic cell death, suppressed cell migration, and spheres growth (p < 0.0001). PLAOL and PLATMZ suppressed GB cell viability with a controlled release that increased over 120 h, while PLArutin caused rapid cell inhibition (p < 0.0001). Collectively, our findings suggest that core-shell nano-webs could be a novel and effective therapeutic tool for the controlled release of OL and TMZ against recurrent GB cells.
Collapse
Affiliation(s)
- Melis Ercelik
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Fatma Nur Parin
- Faculty of Engineering and Natural Sciences, Department of Polymer Materials Engineering, Bursa Technical University, Bursa, Turkey
| | - Busra Mutlu
- Department of Metallurgical and Materials Engineering, Bursa Technical University, Bursa, Turkey; Central Research Laboratory, Bursa Technical University, Bursa, Turkey
| | - Hazal Yilmaz Dogan
- Department of Metallurgical and Materials Engineering, Bursa Technical University, Bursa, Turkey
| | - Gulcin Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, Bursa, Turkey; Faculty of Medicine Experimental Animal Breeding and Research Unit, Bursa Uludag University, Bursa, Turkey
| | - Melisa Gurbuz
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Kenan Yildirim
- Faculty of Engineering and Natural Sciences, Department of Polymer Materials Engineering, Bursa Technical University, Bursa, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hasan Kocaeli
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | | | - Pinar Eser
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| |
Collapse
|
70
|
Xu W, Han L, Zhu P, Cheng Y, Chen X. Development of a prognostic model for glioblastoma multiforme based on the expression levels of efferocytosis-related genes. Aging (Albany NY) 2023; 15:15578-15598. [PMID: 38159261 PMCID: PMC10781462 DOI: 10.18632/aging.205422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and aggressive brain tumors. The microenvironment of GBM is characterized by its highly immunosuppressive nature with infiltration of immunosuppressive cells and the expression levels of cytokines. Efferocytosis is a biological process in which phagocytes remove apoptotic cells and vesicles from tissues. Efferocytosis plays a noticeable function in the formation of immunosuppressive environment. This study aimed to develop an efferocytosis-related prognostic model for GBM. The bioinformatic methods were utilized to analyze the transcriptomic data of GBM and normal samples. Clinical and RNA-seq data were sourced from TCGA database comprising 167 tumor samples and 5 normal samples, and 167 tumor samples for which survival information was available. Transcriptomic data of 1034 normal samples were collected from the Genotype-Tissue Expression (GTEx) database as a control sample supplement to the TCGA database. In the end, 167 tumor samples and 1039 normal samples were obtained for transcriptome analysis. Efferocytosis-related differentially expressed genes (ERDEGs) were obtained by intersecting 7487 differentially expressed genes (DEGs) between GBM and normal samples along with 1189 hub genes. Functional enrichment analyses revealed that ERDEGs were mainly involved in cytokine-mediated immune responses. Moreover, 9 prognosis-related genes (PRGs) were identified by the least absolute shrinkage and selection operator (LASSO) regression analysis, and a prognostic model was therefore developed. The nomogram combining age and risk score could effectively predict GBM patients' prognosis. GBM patients in the high-risk group had higher immune infiltration, invasion, epithelial-mesenchymal transition, angiogenesis scores and poorer tumor purity. In addition, the high-risk group exhibited higher half maximal inhibitory concentration (IC50) values for temozolomide, carmustine, and vincristine. Expression analysis indicated that PRGs were overexpressed in GBM cells. PDIA4 knockdown reduced efferocytosis in vitro. In summary, the proposed prognostic model for GBM based on efferocytosis-related genes exhibited a robust performance.
Collapse
Affiliation(s)
- Wenzhe Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, Jinan 250012, China
| | - Lihui Han
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| | - Pengfei Zhu
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| | - Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Shandong, Jinan 250012, China
| |
Collapse
|
71
|
Shah S. Novel Therapies in Glioblastoma Treatment: Review of Glioblastoma; Current Treatment Options; and Novel Oncolytic Viral Therapies. Med Sci (Basel) 2023; 12:1. [PMID: 38249077 PMCID: PMC10801585 DOI: 10.3390/medsci12010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
One of the most prevalent primary malignant brain tumors is glioblastoma (GB). About 6 incidents per 100,000 people are reported annually. Most frequently, these tumors are linked to a poor prognosis and poor quality of life. There has been little advancement in the treatment of GB. In recent years, some innovative medicines have been tested for the treatment of newly diagnosed cases of GB and recurrent cases of GB. Surgery, radiotherapy, and alkylating chemotherapy are all common treatments for GB. A few of the potential alternatives include immunotherapy, tumor-treating fields (TTFs), and medications that target specific cellular receptors. To provide new multimodal therapies that focus on the molecular pathways implicated in tumor initiation and progression in GB, novel medications, delivery technologies, and immunotherapy approaches are being researched. Of these, oncolytic viruses (OVs) are among the most recent. Coupling OVs with certain modern treatment approaches may have significant benefits for GB patients. Here, we discuss several OVs and how they work in conjunction with other therapies, as well as virotherapy for GB. The study was based on the PRISMA guidelines. Systematic retrieval of information was performed on PubMed. A total of 307 articles were found in a search on oncolytic viral therapies for glioblastoma. Out of these 83 articles were meta-analyses, randomized controlled trials, reviews, and systematic reviews. A total of 42 articles were from the years 2018 to 2023. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. One of the most prevalent malignant brain tumors is still GB. Significant promise and opportunity exist for oncolytic viruses in the treatment of GB and in boosting immune response. Making the most of OVs in the treatment of GB requires careful consideration and evaluation of a number of its application factors.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
72
|
Harrison DJ, Wu E, Singh R, Ghaith S, Suarez-Meade P, Brown NJ, Sherman WJ, Robinson MT, Lin MP, Lawton MT, Quinones-Hinojosa A. Primary and Specialist Palliative Care in Neurosurgery: A Narrative Review and Bibliometric Analysis of Glioblastoma and Stroke. World Neurosurg 2023; 180:e250-e257. [PMID: 37739173 DOI: 10.1016/j.wneu.2023.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE Due to the increased demand for palliative care (PC) in recent years, a model has been proposed to divide PC into primary PC and specialist PC. This article aimed to delineate the indications for primary and specialist PC within 2 common neurosurgical conditions-glioblastoma (GBM) and stroke. METHODS A systematic review and bibliometric analysis was conducted to better appreciate the practice trends in PC utilization for GBM and stroke patients using several databases. RESULTS There were 70 studies on PC for GBM, the majority of which related to patient preference (22 [31%]). During 1999-2022, there was significant growth in publications per year on this topic at a rate of approximately 0.3 publications per year (P < 0.01). There were 44 studies on PC for stroke, the majority of which related to communication strategies (14 [32%]). During 1999-2022, there was no significant growth in stroke publications per year (P = 0.22). CONCLUSIONS Due to the progressively disabling neurological course of GBM, we suggest that a specialty PC team be used in conjunction with the neurosurgical team early in the disease trajectory while patients are still able to communicate their preferences, goals, and values. In contrast, short-term and long-term stages of management of stroke have differing implications for PC needs, with the short-term stage necessitating adept, time-sensitive communication between the patient, family, and care teams. Thus, we propose that primary PC should be included as a core competency in neurosurgery training, among other stroke specialists.
Collapse
Affiliation(s)
| | - Emily Wu
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, USA
| | - Rohin Singh
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, USA
| | - Summer Ghaith
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, USA
| | | | - Nolan J Brown
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, USA
| | - Wendy J Sherman
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Maisha T Robinson
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA; Division of Palliative Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Michelle P Lin
- Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | |
Collapse
|
73
|
Kumar N, Khurana B, Arora D. Nose-to-brain drug delivery for the treatment of glioblastoma multiforme: nanotechnological interventions. Pharm Dev Technol 2023; 28:1032-1047. [PMID: 37975846 DOI: 10.1080/10837450.2023.2285506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor with a short survival rate. Extensive research is underway for the last two decades to find an effective treatment for GBM but the tortuous pathophysiology, development of chemoresistance, and presence of BBB are the major challenges, prompting scientists to look for alternative targets and delivery strategies. Therefore, the nose to brain delivery emerged as an unorthodox and non-invasive route, which delivers the drug directly to the brain via the olfactory and trigeminal pathways and also bypasses the BBB and hepatic metabolism of the drug. However, mucociliary clearance, low administration volume, and less permeability of nasal mucosa are the obstacles retrenching the brain drug concentration. Thus, nanocarrier delivery through this route may conquer these limitations because of their unique surface characteristics and smaller size. In this review, we have emphasized the advantages and limitations of nanocarrier technologies such as polymeric, lipidic, inorganic, and miscellaneous nanoparticles used for nose-to-brain drug delivery against GBM in the past 10 years. Furthermore, recent advances, patents, and clinical trials are highlighted. However, most of these studies are in the early stages, so translating their outcomes into a marketed formulation would be a milestone in the better progression and survival of glioma patients.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Bharat Khurana
- Department of Pharmaceutics, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
| | - Daisy Arora
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
| |
Collapse
|
74
|
Qiu Q, Chen S, He H, Chen J, Ding X, Wang D, Yang J, Guo P, Li Y, Kim J, Sheng J, Gao C, Yin B, Zheng S, Wang J. An injectable signal-amplifying device elicits a specific immune response against malignant glioblastoma. Acta Pharm Sin B 2023; 13:5091-5106. [PMID: 38045037 PMCID: PMC10692361 DOI: 10.1016/j.apsb.2023.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 12/05/2023] Open
Abstract
Despite exciting achievements with some malignancies, immunotherapy for hypoimmunogenic cancers, especially glioblastoma (GBM), remains a formidable clinical challenge. Poor immunogenicity and deficient immune infiltrates are two major limitations to an effective cancer-specific immune response. Herein, we propose that an injectable signal-amplifying nanocomposite/hydrogel system consisting of granulocyte-macrophage colony-stimulating factor and imiquimod-loaded antigen-capturing nanoparticles can simultaneously amplify the chemotactic signal of antigen-presenting cells and the "danger" signal of GBM. We demonstrated the feasibility of this strategy in two scenarios of GBM. In the first scenario, we showed that this simultaneous amplification system, in conjunction with local chemotherapy, enhanced both the immunogenicity and immune infiltrates in a recurrent GBM model; thus, ultimately making a cold GBM hot and suppressing postoperative relapse. Encouraged by excellent efficacy, we further exploited this signal-amplifying system to improve the efficiency of vaccine lysate in the treatment of refractory multiple GBM, a disease with limited clinical treatment options. In general, this biomaterial-based immune signal amplification system represents a unique approach to restore GBM-specific immunity and may provide a beneficial preliminary treatment for other clinically refractory malignancies.
Collapse
Affiliation(s)
- Qiujun Qiu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Sunhui Chen
- Department of Pharmacy, Fujian Provincial Hospital & Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jixiang Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Xinyi Ding
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Dongdong Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jiangang Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Pengcheng Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yang Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jisu Kim
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jianyong Sheng
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Chao Gao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shihao Zheng
- Department of Neurosurgery, Fujian Provincial Hospital & Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Materia Medica, Academy of Chinese and Western Integrative Medicine, Fudan University, Shanghai 201203, China
| |
Collapse
|
75
|
Zhang Z, Ren P, Cao Y, Wang T, Huang G, Li Y, Zhou S, Yang W, Yang L, Liu G, Xiang Y, Pei Y, Chen Q, Chen J, Lv S. HOXD-AS2-STAT3 feedback loop attenuates sensitivity to temozolomide in glioblastoma. CNS Neurosci Ther 2023; 29:3430-3445. [PMID: 37308741 PMCID: PMC10580348 DOI: 10.1111/cns.14277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/14/2023] Open
Abstract
AIMS Glioblastoma multiforme (GBM) is the deadliest glioma and its resistance to temozolomide (TMZ) remains intractable. Long non-coding RNAs (lncRNAs) play crucial roles in that and this study aimed to investigate underlying mechanism of HOXD-AS2-affected temozolomide sensitivity in glioblastoma. METHODS We analyzed and validated the aberrant HOXD-AS2 expression in glioma specimens. Then we explored the function of HOXD-AS2 in vivo and in vitro and a clinical case was also reviewed to examine our findings. We further performed mechanistic experiments to investigate the mechanism of HOXD-AS2 in regulating TMZ sensitivity. RESULTS Elevated HOXD-AS2 expression promoted progression and negatively correlated with prognosis of glioma; HOXD-AS2 attenuated temozolomide sensitivity in vitro and in vivo; The clinical case also showed that lower HOXD-AS2 sensitized glioblastoma to temozolomide; STAT3-induced HOXD-AS2 could interact with IGF2BP2 protein to form a complex and sequentially upregulate STAT3 signaling, thus forming a positive feedback loop regulating TMZ sensitivity in glioblastoma. CONCLUSION Our study elucidated the crucial role of the HOXD-AS2-STAT3 positive feedback loop in regulating TMZ sensitivity, suggesting that this could be provided as a potential therapeutic candidate of glioblastoma.
Collapse
Affiliation(s)
- Zuo‐Xin Zhang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Peng Ren
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yong‐Yong Cao
- School of MedicineChongqing UniversityChongqingChina
| | - Ting‐Ting Wang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Guo‐Hao Huang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yao Li
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Shuo Zhou
- School of MedicineChongqing UniversityChongqingChina
| | - Wei Yang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Lin Yang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Guo‐Long Liu
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yan Xiang
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yu‐Chun Pei
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Qiu‐Zi Chen
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Ju‐Xiang Chen
- Department of NeurosurgeryChanghai Hospital, Second Military Medical UniversityShanghaiChina
| | - Sheng‐Qing Lv
- Department of Neurosurgery, Xinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
76
|
Li XM, Liu SP, Liu DM, Li Y, Cai XM, Su Y, Xie ZF. Identification of disulfidptosis-related genes and immune infiltration in lower-grade glioma. Open Med (Wars) 2023; 18:20230825. [PMID: 37900961 PMCID: PMC10612529 DOI: 10.1515/med-2023-0825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Lower-grade glioma (LGG), a prevalent malignant tumor in the central nervous system, requires accurate prediction and treatment to prevent aggressive progression. We aimed to explore the role of disulfidptosis-related genes (DRGs) in LGG, a recently discovered form of programmed cell death characterized by abnormal disulfide accumulation. Leveraging public databases, we analyzed 532 LGG tumor tissues (The Cancer Genome Atlas), 1,157 normal samples (Genotype-Tissue Expression), and 21 LGG tumor samples with 8 paired normal samples (GSE16011). Our research uncovered intricate relationships between DRGs and crucial aspects of LGG, including gene expression, immune response, mutation, drug sensitivity, and functional enrichment. Notably, we identified significant heterogeneity among disulfidptosis sub-clusters and elucidated specific differential gene expression in LGG, with myeloid cell leukemia-1 (MCL1) as a key candidate. Machine learning techniques validated the relevance of MCL1, considering its expression patterns, prognostic value, diagnostic potential, and impact on immune infiltration. Our study offers opportunities and challenges to unravel potential mechanisms underlying LGG prognosis, paving the way for personalized cancer care and innovative immunotherapeutic strategies. By shedding light on DRGs, particularly MCL1, we enhance understanding and management of LGG.
Collapse
Affiliation(s)
- Xiao-min Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shan-peng Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Dan-man Liu
- Breast Surgery Clinics, Guangdong Province Women and Children Hospital, Guangzhou, China
| | - Yu Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-ming Cai
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yun Su
- Department of Microbiology & Immunology, Shantou University Medical College, 22 Xinling Road, Shantou515041, Guangdong, China
| | - Ze-feng Xie
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
77
|
Zhang C, Fang H, Du W, Zhang D, Qu Y, Tang F, Ding A, Huang K, Peng B, Li L, Huang W. Ultrafast Detection of Monoamine Oxidase A in Live Cells and Clinical Glioma Tissues Using an Affinity Binding-Based Two-Photon Fluorogenic Probe. Angew Chem Int Ed Engl 2023; 62:e202310134. [PMID: 37585321 DOI: 10.1002/anie.202310134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Abnormal expression of monoamine oxidase A (MAO-A) has been implicated in the development of human glioma, making MAO-A a promising target for therapy. Therefore, a rapid determination of MAO-A is critical for diagnosis. Through in silico screening of two-photon fluorophores, we discovered that a derivative of N,N-dimethyl-naphthalenamine (pre-mito) can effectively fit into the entrance of the MAO-A cavity. Substitutions on the N-pyridine not only further explore the MAO-A cavity, but also enable mitochondrial targeting ability. The aminopropyl substituted molecule, CD1, showed the fastest MAO-A detection (within 20 s), high MAO-A affinity and selectivity. It was also used for in situ imaging of MAO-A in living cells, enabling a comparison of the MAO-A content in human glioma and paracancerous tissues. Our results demonstrate that optimizing the affinity binding-based fluorogenic probes significantly improves their detection rate, providing a general approach for rapid detection probe design and optimization.
Collapse
Affiliation(s)
- Congcong Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Haixiao Fang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Wei Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Duoteng Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yunwei Qu
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
78
|
He C, Ding H, Li L, Chen J, Mo X, Ding Y, Chen W, Tang Q, Wang Y. Gold Nanoparticles Enhance the Ability of Radiotherapy to Induce Immunogenic Cell Death in Glioblastoma. Int J Nanomedicine 2023; 18:5701-5712. [PMID: 37841022 PMCID: PMC10573392 DOI: 10.2147/ijn.s419712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
Background Radiation therapy (RT) is commonly used to treat glioblastoma, but its immunomodulatory effect on tumors, through mechanisms such as immunogenic cell death (ICD), is relatively weak. Gold nanoparticles (AuNPs) have been suggested as potential radio-sensitizers, but it is unclear if they can enhance radiation-induced ICD. This study aimed to investigate the potential of AuNPs to improve the effectiveness of radiation-induced ICD. Methods G422 cells were treated with a combination of AuNPs and RT to induce cell death. Various assays were conducted to assess cell death, surface expression of CRT, and release of HMGB1 and ATP. In vitro co-culture experiments with bone marrow-derived dendritic cells (BMDCs) were performed to analyze the immunogenicity of dying cancer cells. Flow cytometry was used to measure the maturation rate of BMDCs. An in vivo mouse tumor prophylactic vaccination model was employed to assess immunogenicity. Results The study findings presented here confirm that the combination of radiotherapy (RT) with AuNPs can induce a stronger ICD effect on glioblastoma cells compared to using RT alone. Specifically, treatment with AuNPs combined with RT resulted in the emission of crucial damage-associated molecular patterns (DAMPs) such as CRT, HMGB1 (479.41±165.34pg/mL vs 216.04±178.16 pg/mL, *P<0.05) and ATP (The release of ATP in the AuNPs + RT group was 1.2 times higher than in the RT group, *P<0.05). The proportion of BMDC maturation rate was higher in the group treated with AuNPs and RT compared to the group treated with RT alone. (32.53±0.52% vs 25.03±0.28%,***P < 0.001). In the tumor vaccine experiment, dying tumor cells treated with AuNPs and RT effectively inhibited tumor growth in mice when exposed to living tumor cells. Conclusion These results indicate that AuNPs have the ability to enhance RT-induced ICD.
Collapse
Affiliation(s)
- Chen He
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, Jiangsu Province, People’s Republic of China
- Changzhou Clinical Medical Center, Changzhou, Jiangsu, People’s Republic of China
| | - Huiyan Ding
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Lubo Li
- The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
| | - Jing Chen
- Taikang Xianlin Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Xiaofei Mo
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, Jiangsu Province, People’s Republic of China
- Changzhou Clinical Medical Center, Changzhou, Jiangsu, People’s Republic of China
| | - Yinan Ding
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Wenjing Chen
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, People’s Republic of China
| | - Yuetao Wang
- Department of Nuclear Medicine, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People’s Republic of China
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou, Jiangsu Province, People’s Republic of China
- Changzhou Clinical Medical Center, Changzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
79
|
Surendran A, Jenner AL, Karimi E, Fiset B, Quail DF, Walsh LA, Craig M. Agent-Based Modelling Reveals the Role of the Tumor Microenvironment on the Short-Term Success of Combination Temozolomide/Immune Checkpoint Blockade to Treat Glioblastoma. J Pharmacol Exp Ther 2023; 387:66-77. [PMID: 37442619 DOI: 10.1124/jpet.122.001571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma is the most common and deadly primary brain tumor in adults. All glioblastoma patients receiving standard-of-care surgery-radiotherapy-chemotherapy (i.e., temozolomide (TMZ)) recur, with an average survival time of only 15 months. New approaches to the treatment of glioblastoma, including immune checkpoint blockade and oncolytic viruses, offer the possibility of improving glioblastoma outcomes and have as such been under intense study. Unfortunately, these treatment modalities have thus far failed to achieve approval. Recently, in an attempt to bolster efficacy and improve patient outcomes, regimens combining chemotherapy and immune checkpoint inhibitors have been tested in trials. Unfortunately, these efforts have not resulted in significant increases to patient survival. To better understand the various factors impacting treatment outcomes of combined TMZ and immune checkpoint blockade, we developed a systems-level, computational model that describes the interplay between glioblastoma, immune, and stromal cells with this combination treatment. Initializing our model to spatial resection patient samples labeled using imaging mass cytometry, our model's predictions show how the localization of glioblastoma cells, influence therapeutic success. We further validated these predictions in samples of brain metastases from patients given they generally respond better to checkpoint blockade compared with primary glioblastoma. Ultimately, our model provides novel insights into the mechanisms of therapeutic success of immune checkpoint inhibitors in brain tumors and delineates strategies to translate combination immunotherapy regimens more effectively into the clinic. SIGNIFICANCE STATEMENT: Extending survival times for glioblastoma patients remains a critical challenge. Although immunotherapies in combination with chemotherapy hold promise, clinical trials have not shown much success. Here, systems models calibrated to and validated against patient samples can improve preclinical and clinical studies by shedding light on the factors distinguishing responses/failures. By initializing our model with imaging mass cytometry visualization of patient samples, we elucidate how factors such as localization of glioblastoma cells and CD8+ T cell infiltration impact treatment outcomes.
Collapse
Affiliation(s)
- Anudeep Surendran
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada (A.S., M.C.); Centre de recherches mathématiques, Montréal, Canada (A.S.); School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia (A.L.J.); Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Canada (E.K., B.F., D.F.Q., L.A.W.); Department of Physiology, Faculty of Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Human Genetics, McGill University, Montréal, Canada (L.A.W.); and Sainte-Justine University Hospital Research Centre, Montréal, Canada (M.C.)
| | - Adrianne L Jenner
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada (A.S., M.C.); Centre de recherches mathématiques, Montréal, Canada (A.S.); School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia (A.L.J.); Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Canada (E.K., B.F., D.F.Q., L.A.W.); Department of Physiology, Faculty of Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Human Genetics, McGill University, Montréal, Canada (L.A.W.); and Sainte-Justine University Hospital Research Centre, Montréal, Canada (M.C.)
| | - Elham Karimi
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada (A.S., M.C.); Centre de recherches mathématiques, Montréal, Canada (A.S.); School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia (A.L.J.); Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Canada (E.K., B.F., D.F.Q., L.A.W.); Department of Physiology, Faculty of Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Human Genetics, McGill University, Montréal, Canada (L.A.W.); and Sainte-Justine University Hospital Research Centre, Montréal, Canada (M.C.)
| | - Benoit Fiset
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada (A.S., M.C.); Centre de recherches mathématiques, Montréal, Canada (A.S.); School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia (A.L.J.); Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Canada (E.K., B.F., D.F.Q., L.A.W.); Department of Physiology, Faculty of Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Human Genetics, McGill University, Montréal, Canada (L.A.W.); and Sainte-Justine University Hospital Research Centre, Montréal, Canada (M.C.)
| | - Daniela F Quail
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada (A.S., M.C.); Centre de recherches mathématiques, Montréal, Canada (A.S.); School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia (A.L.J.); Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Canada (E.K., B.F., D.F.Q., L.A.W.); Department of Physiology, Faculty of Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Human Genetics, McGill University, Montréal, Canada (L.A.W.); and Sainte-Justine University Hospital Research Centre, Montréal, Canada (M.C.)
| | - Logan A Walsh
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada (A.S., M.C.); Centre de recherches mathématiques, Montréal, Canada (A.S.); School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia (A.L.J.); Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Canada (E.K., B.F., D.F.Q., L.A.W.); Department of Physiology, Faculty of Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Human Genetics, McGill University, Montréal, Canada (L.A.W.); and Sainte-Justine University Hospital Research Centre, Montréal, Canada (M.C.)
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada (A.S., M.C.); Centre de recherches mathématiques, Montréal, Canada (A.S.); School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia (A.L.J.); Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Canada (E.K., B.F., D.F.Q., L.A.W.); Department of Physiology, Faculty of Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Canada (D.F.Q.); Department of Human Genetics, McGill University, Montréal, Canada (L.A.W.); and Sainte-Justine University Hospital Research Centre, Montréal, Canada (M.C.)
| |
Collapse
|
80
|
Zeng J, Zeng XX. Systems Medicine for Precise Targeting of Glioblastoma. Mol Biotechnol 2023; 65:1565-1584. [PMID: 36859639 PMCID: PMC9977103 DOI: 10.1007/s12033-023-00699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Glioblastoma (GBM) is a malignant cancer that is fatal even after standard therapy and the effects of current available therapeutics are not promising due its complex and evolving epigenetic and genetic profile. The mysteries that lead to GBM intratumoral heterogeneity and subtype transitions are not entirely clear. Systems medicine is an approach to view the patient in a whole picture integrating systems biology and synthetic biology along with computational techniques. Since the GBM oncogenesis involves genetic mutations, various therapies including gene therapeutics based on CRISPR-Cas technique, MicroRNAs, and implanted synthetic cells endowed with synthetic circuits against GBM with neural stem cells and mesenchymal stem cells acting as potential vehicles carrying therapeutics via the intranasal route, avoiding the risks of invasive methods in order to reach the GBM cells in the brain are discussed and proposed in this review. Systems medicine approach is a rather novel strategy, and since the GBM of a patient is complex and unique, thus to devise an individualized treatment strategy to tailor personalized multimodal treatments for the individual patient taking into account the phenotype of the GBM, the unique body health profile of the patient and individual responses according to the systems medicine concept might show potential to achieve optimum effects.
Collapse
Affiliation(s)
- Jie Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou, 213022 Jiangsu People’s Republic of China
| | - Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, No. 28, Desheng Road Section, Liguan Road, Lishui Town, Nanhai District, Foshan, 528000 Guangdong People’s Republic of China
| |
Collapse
|
81
|
Chen H, Ji J, Zhang L, Chen T, Zhang Y, Zhang F, Wang J, Ke Y. Inflammatory responsive neutrophil-like membrane-based drug delivery system for post-surgical glioblastoma therapy. J Control Release 2023; 362:479-488. [PMID: 37579976 DOI: 10.1016/j.jconrel.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Surgical resection of glioblastoma (GBM) causes brain inflammation that activates and recruits neutrophils (NEs) to residual GBM tissues. NE-based drug delivery using inflammatory chemotaxis is promising for the post-surgical treatment of residual GBM, but its clinical application is limited by the short life span of NEs and lack of in vitro propagation methods. HL60 cells are a type of infinitely multiplying tumor cells that can be induced to differentiate into NE-like cells. We developed a novel NE-like membrane system (NM-PD) by coating NE-like membranes on the surface of poly (lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG)-based doxorubicin (DOX)-loaded core (PLGA-PEG-DOX, PD) for post-surgical residual GBM treatment. Cell adhesion proteins were detected on NE-like membranes and endowed NM-PDs with inflammatory chemotaxis similar to mature NEs. The resulting NM-PD shows excellent inflamed in vitro blood-brain barrier (BBB) permeability and anti-proliferative effects on GBM cells. In our intracranial GBM resection model, NM-PD exhibited superior inflammatory chemotaxis and targeted residual GBM cells, thus remarkably improving antitumor capability and prolonging the survival time of the mice. These data suggest that NM-PD, which has sufficient sources and is easy to prepare, can efficiently suppress post-surgical residual GBM and holds potential for clinical transformation in GBM post-surgical adjuvant therapy.
Collapse
Affiliation(s)
- Huajian Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jingsen Ji
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Li Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Taoliang Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuxuan Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Fabing Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jihui Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
82
|
Dong W, Liu Y, Wang P, Ruan X, Liu L, Xue Y, Ma T, E T, Wang D, Yang C, Lin H, Song J, Liu X. U3 snoRNA-mediated degradation of ZBTB7A regulates aerobic glycolysis in isocitrate dehydrogenase 1 wild-type glioblastoma cells. CNS Neurosci Ther 2023; 29:2811-2825. [PMID: 37066523 PMCID: PMC10493654 DOI: 10.1111/cns.14218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 04/01/2023] [Indexed: 04/18/2023] Open
Abstract
AIMS The isocitrate dehydrogenase (IDH) phenotype is associated with reprogrammed energy metabolism in glioblastoma (GBM) cells. Small nucleolar RNAs (snoRNAs) are known to exert an important regulatory role in the energy metabolism of tumor cells. The purpose of this study was to investigate the role of C/D box snoRNA U3 and transcription factor zinc finger and BTB domain-containing 7A (ZBTB7A) in the regulation of aerobic glycolysis and the proliferative capacity of IDH1 wild-type (IDH1WT ) GBM cells. METHODS Quantitative reverse transcription PCR and western blot assays were utilized to detect snoRNA U3 and ZBTB7A expression. U3 promoter methylation status was analyzed via bisulfite sequencing and methylation-specific PCR. Seahorse XF glycolysis stress assays, lactate production and glucose consumption measurement assays, and cell viability assays were utilized to detect glycolysis and proliferation of IDH1WT GBM cells. RESULTS We found that hypomethylation of the CpG island in the promoter region of U3 led to the upregulation of U3 expression in IDH1WT GBM cells, and the knockdown of U3 suppressed aerobic glycolysis and the proliferation ability of IDH1WT GBM cells. We found that small nucleolar-derived RNA (sdRNA) U3-miR, a small fragment produced by U3, was able to bind to the ZBTB4 3'UTR region and reduce ZBTB7A mRNA stability, thereby downregulating ZBTB7A protein expression. Furthermore, ZBTB7A transcriptionally inhibited the expression of hexokinase 2 (HK2) and lactate dehydrogenase A (LDHA), which are key enzymes of aerobic glycolysis, by directly binding to the HK2 and LDHA promoter regions, thereby forming the U3/ZBTB7A/HK2 LDHA pathway that regulates aerobic glycolysis and proliferation of IDH1WT GBM cells. CONCLUSION U3 enhances aerobic glycolysis and proliferation in IDH1WT GBM cells via the U3/ZBTB7A/HK2 LDHA axis.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Yunhui Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Ping Wang
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Xuelei Ruan
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Libo Liu
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Yixue Xue
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Teng Ma
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Tiange E
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Di Wang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Chunqing Yang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Hongda Lin
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Jian Song
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Xiaobai Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| |
Collapse
|
83
|
Zhou Z, Yuan J, Chen H, Zhan LP, Sun EY, Chen B. Prognostic nomogram for glioblastoma (GBM) patients presenting with distant extension: a seer-based study. J Cancer Res Clin Oncol 2023; 149:11595-11605. [PMID: 37401940 DOI: 10.1007/s00432-023-05049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Glioblastoma (GBM) with distant extension is rarely reported. We retrieved the data of GBM patients from the SEER database to identify the prognostic factors of GBM with distant extension and constructed a nomogram to predict the overall survival (OS) of these patients. METHODS The data of GBM patients between 2003 and 2018 were retrieved from the SEER Database. 181 GBM patients with distant extension were randomly divided into the training cohort (n = 129) and the validation cohort (n = 52) at a ratio of 7:3. The prognostic factors associated with the OS of the GBM patients were identified through univariate and multivariate cox analyses. A nomogram was constructed based on the training cohort to predict OS, and its clinical value was verified using the validation cohort data. RESULTS Kaplan-Meier curves showed that the prognosis was significantly worse for GBM patients with distant extension than GBM patients without distant extension. Stage (GBM patients with distant extension) was independent prognostic factor of survival. Multivariate Cox analyses demonstrated that age, surgery, radiotherapy and chemotherapy were independent risk factors for OS of GBM patients presenting with distant extension. The C-indexes of the nomogram for predicting OS were 0.755 (95% CI 0.713-0.797) and 0.757 (95% CI 0.703-0.811) for the training and validation cohorts, respectively. The calibration curves of both cohorts showed good consistency. The area under the curve (AUC) for predicting 0.25-year, 0.5-year and 1-year OS in the training cohort were 0.793, 0.864 and 0.867, respectively, and that in the validation cohort were 0.845, 0.828 and 0.803, respectively. The decision curve analysis (DCA) curves showed that the model to predict the 0.25-year, 0.5-year and 1-year OS probabilities was good. CONCLUSION Stage (GBM patients with distant extension) is independent prognostic factor for GBM patients. Age, surgery, radiotherapy and chemotherapy are independent prognostic factors for GBM patients presenting with distant extension, and the nomogram based on these factors can accurately predict the 0.25-year, 0.5-year and 1-year OS of these patients.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Jing Yuan
- Department of Rheumatology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Hongtao Chen
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Li Ping Zhan
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Er Yi Sun
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.
| | - Bo Chen
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.
| |
Collapse
|
84
|
Visioli A, Trivieri N, Mencarelli G, Giani F, Copetti M, Palumbo O, Pracella R, Cariglia MG, Barile C, Mischitelli L, Soriano AA, Palumbo P, Legnani F, DiMeco F, Gorgoglione L, Pesole G, Vescovi AL, Binda E. Different states of stemness of glioblastoma stem cells sustain glioblastoma subtypes indicating novel clinical biomarkers and high-efficacy customized therapies. J Exp Clin Cancer Res 2023; 42:244. [PMID: 37735434 PMCID: PMC10512479 DOI: 10.1186/s13046-023-02811-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM. METHODS Here, we isolated and established functionally stable and steadily expanding GSCs lines from a large cohort of GBM patients. The molecular, functional and antigenic landscape of GBM tissues and their derivative GSCs was highlited in a side-by-side comprehensive genomic and transcriptomic characterization by ANOVA and Fisher's exact tests. GSCs' physio-pathological hallmarks were delineated by comparing over time in vitro and in vivo their expansion, self-renewal and tumorigenic ability with hierarchical linear models for repeated measurements and Kaplan-Meier method. Candidate biomarkers performance in discriminating GBM patients' classification emerged by classification tree and patients' survival analysis. RESULTS Here, distinct biomarker signatures together with aberrant functional programs were shown to stratify GBM patients as well as their sibling GSCs population into TCGA clusters. Of importance, GSCs cells were demonstrated to fully resemble over time the molecular features of their patient of origin. Furthermore, we pointed out the existence of distinct GSCs subsets within GBM classification, inherently endowed with different self-renewal and tumorigenic potential. Particularly, classical GSCs were identified by more undifferentiated biological hallmarks, enhanced expansion and clonal capacity as compared to the more mature, relatively slow-propagating mesenchymal and proneural cells, likely endowed with a higher potential for infiltration either ex vivo or in vivo. Importantly, the combination of DCX and EGFR markers, selectively enriched among GSCs pools, almost exactly predicted GBM patients' clusters together with their survival and drug response. CONCLUSIONS In this study we report that an inherent enrichment of distinct GSCs pools underpin the functional inter-cluster variances displayed by GBM patients. We uncover two selectively represented novel functional biomarkers capable of discriminating GBM patients' stratification, survival and drug response, setting the stage for the determination of patient-tailored diagnostic and prognostic strategies and, mostly, for the design of appropriate, patient-selective treatment protocols.
Collapse
Affiliation(s)
| | - Nadia Trivieri
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Gandino Mencarelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | | | - Massimiliano Copetti
- Biostatistical Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Maria Grazia Cariglia
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Chiara Barile
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Luigi Mischitelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Amata Amy Soriano
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Pietro Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Federico Legnani
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
- Department of Neurosurgery, John Hopkins University, Baltimore, Mariland, USA
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Angelo L Vescovi
- Scientific Directorate, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
- Hyperstem SA, Lugano, Switzerland.
| | - Elena Binda
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
85
|
Rabah N, Ait Mohand FE, Kravchenko-Balasha N. Understanding Glioblastoma Signaling, Heterogeneity, Invasiveness, and Drug Delivery Barriers. Int J Mol Sci 2023; 24:14256. [PMID: 37762559 PMCID: PMC10532387 DOI: 10.3390/ijms241814256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The most prevalent and aggressive type of brain cancer, namely, glioblastoma (GBM), is characterized by intra- and inter-tumor heterogeneity and strong spreading capacity, which makes treatment ineffective. A true therapeutic answer is still in its infancy despite various studies that have made significant progress toward understanding the mechanisms behind GBM recurrence and its resistance. The primary causes of GBM recurrence are attributed to the heterogeneity and diffusive nature; therefore, monitoring the tumor's heterogeneity and spreading may offer a set of therapeutic targets that could improve the clinical management of GBM and prevent tumor relapse. Additionally, the blood-brain barrier (BBB)-related poor drug delivery that prevents effective drug concentrations within the tumor is discussed. With a primary emphasis on signaling heterogeneity, tumor infiltration, and computational modeling of GBM, this review covers typical therapeutic difficulties and factors contributing to drug resistance development and discusses potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (N.R.); (F.-E.A.M.)
| |
Collapse
|
86
|
Jain P, Vashist S, Panjiyar BK. Navigating the Immune Challenge in Glioblastoma: Exploring Immunotherapeutic Avenues for Overcoming Immune Suppression. Cureus 2023; 15:e46089. [PMID: 37900496 PMCID: PMC10611557 DOI: 10.7759/cureus.46089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary brain tumor known for its short survival time, typically 14-18 months from diagnosis to fatality. Managing GBM poses significant challenges due to factors like the formidable blood-brain barrier, the immunosuppressive conditions within GBM, and the intricacies of surgical procedures. Currently, the typical treatment for GBM combines surgical procedures, radiation therapy, and chemotherapy using temozolomide. Unfortunately, this conventional approach has not proven effective in substantially extending the lives of GBM patients. Consequently, researchers are exploring alternative methods for GBM management. One promising avenue receiving attention in recent years is immunotherapy. This approach has successfully treated cancer types like non-small cell lung cancer and blood-related malignancies. Various immunotherapeutic strategies are currently under investigation for GBM treatment, including checkpoint inhibitors, vaccines, chimeric antigen receptor (CAR) T-cell therapy, and oncolytic viruses. A comprehensive review of 26 high-quality studies conducted over the past decade, involving thorough searches of databases such as PubMed and Google Scholar, has been conducted. The findings from this review suggest that while immunotherapeutic strategies show promise, they face significant limitations and challenges in practical application for GBM treatment. The study emphasizes the importance of combining diverse approaches, customizing treatments for individual patients, and ongoing research efforts to improve GBM patients' outlook.
Collapse
Affiliation(s)
- Prateek Jain
- Internal Medicine, Maulana Azad Medical College, Delhi, IND
| | | | - Binay K Panjiyar
- Medicine, Harvard Medical School, Boston, USA
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
87
|
Liu X, Zhao Z, Dai W, Liao K, Sun Q, Chen D, Pan X, Feng L, Ding Y, Wei S. The Development of Immunotherapy for the Treatment of Recurrent Glioblastoma. Cancers (Basel) 2023; 15:4308. [PMID: 37686584 PMCID: PMC10486426 DOI: 10.3390/cancers15174308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023] Open
Abstract
Recurrent glioblastoma (rGBM) is a highly aggressive form of brain cancer that poses a significant challenge for treatment in neuro-oncology, and the survival status of patients after relapse usually means rapid deterioration, thus becoming the leading cause of death among patients. In recent years, immunotherapy has emerged as a promising strategy for the treatment of recurrent glioblastoma by stimulating the body's immune system to recognize and attack cancer cells, which could be used in combination with other treatments such as surgery, radiation, and chemotherapy to improve outcomes for patients with recurrent glioblastoma. This therapy combines several key methods such as the use of monoclonal antibodies, chimeric antigen receptor T cell (CAR-T) therapy, checkpoint inhibitors, oncolytic viral therapy cancer vaccines, and combination strategies. In this review, we mainly document the latest immunotherapies for the treatment of glioblastoma and especially focus on rGBM.
Collapse
Affiliation(s)
- Xudong Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (X.L.); (Y.D.)
| | - Zihui Zhao
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China;
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China;
| | - Kuo Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Qi Sun
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (Q.S.); (L.F.)
| | - Dongjiang Chen
- Division of Neuro-Oncology, USC Keck Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - Xingxin Pan
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Lishuang Feng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (Q.S.); (L.F.)
| | - Ying Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (X.L.); (Y.D.)
| | - Shiyou Wei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
88
|
Kawak P, Sawaftah NMA, Pitt WG, Husseini GA. Transferrin-Targeted Liposomes in Glioblastoma Therapy: A Review. Int J Mol Sci 2023; 24:13262. [PMID: 37686065 PMCID: PMC10488197 DOI: 10.3390/ijms241713262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor, and its treatment is further complicated by the high selectivity of the blood-brain barrier (BBB). The scientific community is urgently seeking innovative and effective therapeutic solutions. Liposomes are a promising new tool that has shown potential in addressing the limitations of chemotherapy, such as poor bioavailability and toxicity to healthy cells. However, passive targeting strategies based solely on the physicochemical properties of liposomes have proven ineffective due to a lack of tissue specificity. Accordingly, the upregulation of transferrin receptors (TfRs) in brain tissue has led to the development of TfR-targeted anticancer therapeutics. Currently, one of the most widely adopted methods for improving drug delivery in the treatment of GBM and other neurological disorders is the utilization of active targeting strategies that specifically target this receptor. In this review, we discuss the role of Tf-conjugated liposomes in GBM therapy and present some recent studies investigating the drug delivery efficiency of Tf-liposomes; in addition, we address some challenges currently facing this approach to treatment and present some potential improvement possibilities.
Collapse
Affiliation(s)
- Paul Kawak
- Chemical and Biological Engineering Department, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - Nour M. Al Sawaftah
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| | - William G. Pitt
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, USA
| | - Ghaleb A. Husseini
- Chemical and Biological Engineering Department, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates;
| |
Collapse
|
89
|
Quddusi DM, Bajcinca N. Identification of genomic biomarkers and their pathway crosstalks for deciphering mechanistic links in glioblastoma. IET Syst Biol 2023; 17:143-161. [PMID: 37277696 PMCID: PMC10439498 DOI: 10.1049/syb2.12066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Glioblastoma is a grade IV pernicious neoplasm occurring in the supratentorial region of brain. As its causes are largely unknown, it is essential to understand its dynamics at the molecular level. This necessitates the identification of better diagnostic and prognostic molecular candidates. Blood-based liquid biopsies are emerging as a novel tool for cancer biomarker discovery, guiding the treatment and improving its early detection based on their tumour origin. There exist previous studies focusing on the identification of tumour-based biomarkers for glioblastoma. However, these biomarkers inadequately represent the underlying pathological state and incompletely illustrate the tumour because of non-recursive nature of this approach to monitor the disease. Also, contrary to the tumour biopsies, liquid biopsies are non-invasive and can be performed at any interval during the disease span to surveil the disease. Therefore, in this study, a unique dataset of blood-based liquid biopsies obtained primarily from tumour-educated blood platelets (TEP) is utilised. This RNA-seq data from ArrayExpress is acquired comprising human cohort with 39 glioblastoma subjects and 43 healthy subjects. Canonical and machine learning approaches are applied for identification of the genomic biomarkers for glioblastoma and their crosstalks. In our study, 97 genes appeared enriched in 7 oncogenic pathways (RAF-MAPK, P53, PRC2-EZH2, YAP conserved, MEK-MAPK, ErbB2 and STK33 signalling pathways) using GSEA, out of which 17 have been identified participating actively in crosstalks. Using PCA, 42 genes are found enriched in 7 pathways (cytoplasmic ribosomal proteins, translation factors, electron transport chain, ribosome, Huntington's disease, primary immunodeficiency pathways, and interferon type I signalling pathway) harbouring tumour when altered, out of which 25 actively participate in crosstalks. All the 14 pathways foster well-known cancer hallmarks and the identified DEGs can serve as genomic biomarkers, not only for the diagnosis and prognosis of Glioblastoma but also in providing a molecular foothold for oncogenic decision making in order to fathom the disease dynamics. Moreover, SNP analysis for the identified DEGs is performed to investigate their roles in disease dynamics in an elaborated manner. These results suggest that TEPs are capable of providing disease insights just like tumour cells with an advantage of being extracted anytime during the course of disease in order to monitor it.
Collapse
Affiliation(s)
- Darrak Moin Quddusi
- Chair of Mechatronics in the Faculty of Mechanical and Process EngineeringRheinland‐Pfälzische Technische Universität Kaiserslautern‐LandauKaiserslauternGermany
| | - Naim Bajcinca
- Chair of Mechatronics in the Faculty of Mechanical and Process EngineeringRheinland‐Pfälzische Technische Universität Kaiserslautern‐LandauKaiserslauternGermany
| |
Collapse
|
90
|
Zhang Y, Gu W, Shao Y. The therapeutic targets of N6-methyladenosine (m6A) modifications on tumor radioresistance. Discov Oncol 2023; 14:141. [PMID: 37522921 PMCID: PMC10390431 DOI: 10.1007/s12672-023-00759-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Radiation therapy is an important tool for malignant tumors, and its tolerance needs to be addressed. In recent years, several studies have shown that regulators of aberrant m6A methylation play an important role in the formation, development and invasion and metastasis of tumors. A large number of studies have confirmed aberrant m6A methylation as a new target for tumour therapy, but research on whether it can play a role in tumor sensitivity to radiotherapy has not been extensive and thorough enough. Recent studies have shown that all three major enzymes of m6A methylation have significant roles in radioresistance, and that the enzymes that play a role differ in different tumor types and by different mechanisms, including regulating tumor cell stemness, affecting DNA damage and repair, and controlling the cell cycle. Therefore, elucidating the mechanisms of m6A methylation in the radiotherapy of malignant tumors is essential to counteract radioresistance, improve the efficacy of radiotherapy, and even propose targeted treatment plans for specific tumors. The latest research progress on m6A methylation and radioresistance is reviewed in this article.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
91
|
Dreyer CA, VanderVorst K, Natwick D, Bell G, Sood P, Hernandez M, Angelastro JM, Collins SR, Carraway KL. A complex of Wnt/planar cell polarity signaling components Vangl1 and Fzd7 drives glioblastoma multiforme malignant properties. Cancer Lett 2023; 567:216280. [PMID: 37336284 PMCID: PMC10582999 DOI: 10.1016/j.canlet.2023.216280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Targeting common oncogenic drivers of glioblastoma multiforme (GBM) in patients has remained largely ineffective, raising the possibility that alternative pathways may contribute to tumor aggressiveness. Here we demonstrate that Vangl1 and Fzd7, components of the non-canonical Wnt planar cell polarity (Wnt/PCP) signaling pathway, promote GBM malignancy by driving cellular proliferation, migration, and invasiveness, and engage Rho GTPases to promote cytoskeletal rearrangements and actin dynamics in migrating GBM cells. Mechanistically, we uncover the existence of a novel Vangl1/Fzd7 complex at the leading edge of migrating GBM cells and propose that this complex is critical for the recruitment of downstream effectors to promote tumor progression. Moreover, we observe that depletion of FZD7 results in a striking suppression of tumor growth and latency and extends overall survival in an intracranial mouse xenograft model. Our observations support a novel mechanism by which Wnt/PCP components Vangl1 and Fzd7 form a complex at the leading edge of migratory GBM cells to engage downstream effectors that promote actin cytoskeletal rearrangements dynamics. Our findings suggest that interference with Wnt/PCP pathway function may offer a novel therapeutic strategy for patients diagnosed with GBM.
Collapse
Affiliation(s)
- Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Kacey VanderVorst
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Dean Natwick
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - George Bell
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Prachi Sood
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Maria Hernandez
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Sean R Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine and University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
92
|
Czarnywojtek A, Borowska M, Dyrka K, Van Gool S, Sawicka-Gutaj N, Moskal J, Kościński J, Graczyk P, Hałas T, Lewandowska AM, Czepczyński R, Ruchała M. Glioblastoma Multiforme: The Latest Diagnostics and Treatment Techniques. Pharmacology 2023; 108:423-431. [PMID: 37459849 DOI: 10.1159/000531319] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/05/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a WHO grade 4 glioma and the most common malignant primary brain tumour. Recently, there has been outstanding progress in the treatment of GBM. In addition to the newest form of GBM removal using fluorescence, three-dimensional (3D) imaging, tomoradiotherapy, moderate electro-hyperthermia, and adjuvant temozolomide (post-operative chemotherapy), new developments have been made in the fields of immunology, molecular biology, and virotherapy. An unusual and modern treatment has been created, especially for stage 4 GBM, using the latest therapeutic techniques, including immunotherapy and virotherapy. Modern oncological medicine is producing extraordinary and progressive therapeutic methods. Oncological therapy includes individual analysis of the properties of a tumour and targeted therapy using small-molecule inhibitors. Individualised medicine covers the entire patient (tumour and host) in the context of immunotherapy. An example is individualised multimodal immunotherapy (IMI), which relies on individual immunological tumour-host interactions. In addition, IMI is based on the concept of oncolytic virus-induced immunogenic tumour cell death. SUMMARY In this review, we outline current knowledge of the various available treatment options used in the therapy of GBM including both traditional therapeutic strategy and modern therapies, such as tomotherapy, electro-hyperthermia, and oncolytic virotherapy, which are promising treatment strategies with the potential to improve prognosis in patients with GBM. KEY MESSAGES This newest therapy, immunotherapy combined with virotherapy (oncolytic viruses and cancer vaccines), is displaying encouraging signs for combating GBM. Additionally, the latest 3D imaging is compared to conventional two-dimensional imaging.
Collapse
Affiliation(s)
- Agata Czarnywojtek
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Borowska
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kamil Dyrka
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Jakub Moskal
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Jeremi Kościński
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Patryk Graczyk
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Hałas
- Chair and Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Rafał Czepczyński
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
93
|
Wang K, Sun C, Dumčius P, Zhang H, Liao H, Wu Z, Tian L, Peng W, Fu Y, Wei J, Cai M, Zhong Y, Li X, Yang X, Cui M. Open source board based acoustofluidic transwells for reversible disruption of the blood-brain barrier for therapeutic delivery. Biomater Res 2023; 27:69. [PMID: 37452381 PMCID: PMC10349484 DOI: 10.1186/s40824-023-00406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/17/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) is a crucial but dynamic structure that functions as a gatekeeper for the central nervous system (CNS). Managing sufficient substances across the BBB is a major challenge, especially in the development of therapeutics for CNS disorders. METHODS To achieve an efficient, fast and safe strategy for BBB opening, an acoustofluidic transwell (AFT) was developed for reversible disruption of the BBB. The proposed AFT was consisted of a transwell insert where the BBB model was established, and a surface acoustic wave (SAW) transducer realized using open-source electronics based on printed circuit board techniques. RESULTS In the AFT device, the SAW produced acousto-mechanical stimulations to the BBB model resulting in decreased transendothelial electrical resistance in a dose dependent manner, indicating the disruption of the BBB. Moreover, SAW stimulation enhanced transendothelial permeability to sodium fluorescein and FITC-dextran with various molecular weight in the AFT device. Further study indicated BBB opening was mainly attributed to the apparent stretching of intercellular spaces. An in vivo study using a zebrafish model demonstrated SAW exposure promoted penetration of sodium fluorescein to the CNS. CONCLUSIONS In summary, AFT effectively disrupts the BBB under the SAW stimulation, which is promising as a new drug delivery methodology for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, People's Republic of China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, People's Republic of China
| | - Chao Sun
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Povilas Dumčius
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
| | - Hongxin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, People's Republic of China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, People's Republic of China
| | - Hanlin Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, People's Republic of China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, People's Republic of China
| | - Zhenlin Wu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116023, People's Republic of China
| | - Liangfei Tian
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wang Peng
- College of Engineering Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Jun Wei
- iRegene Therapeutics Co., Ltd, Wuhan, 430070, People's Republic of China
| | - Meng Cai
- iRegene Therapeutics Co., Ltd, Wuhan, 430070, People's Republic of China
| | - Yi Zhong
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, People's Republic of China
| | - Xiaoyu Li
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, People's Republic of China
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK.
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China.
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, People's Republic of China.
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
94
|
Li Y, Gao Z, Wang Y, Pang B, Zhang B, Hu R, Wang Y, Liu C, Zhang X, Yang J, Mei M, Wang Y, Zhou X, Li M, Ren Y. Lysine methylation promotes NFAT5 activation and determines temozolomide efficacy in glioblastoma. Nat Commun 2023; 14:4062. [PMID: 37429858 DOI: 10.1038/s41467-023-39845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
Temozolomide (TMZ) therapy offers minimal clinical benefits in patients with glioblastoma multiforme (GBM) with high EGFR activity, underscoring the need for effective combination therapy. Here, we show that tonicity-responsive enhancer binding protein (NFAT5) lysine methylation, is a determinant of TMZ response. Mechanistically, EGFR activation induces phosphorylated EZH2 (Ser21) binding and triggers NFAT5 methylation at K668. Methylation prevents NFAT5 cytoplasm interaction with E3 ligase TRAF6, thus blocks NFAT5 lysosomal degradation and cytosol localization restriction, which was mediated by TRAF6 induced K63-linked ubiquitination, resulting in NFAT5 protein stabilization, nuclear accumulation and activation. Methylated NFAT5 leads to the upregulation of MGMT, a transcriptional target of NFAT5, which is responsible for unfavorable TMZ response. Inhibition of NFAT5 K668 methylation improved TMZ efficacy in orthotopic xenografts and patient-derived xenografts (PDX) models. Notably, NFAT5 K668 methylation levels are elevated in TMZ-refractory specimens and confer poor prognosis. Our findings suggest targeting NFAT5 methylation is a promising therapeutic strategy to improve TMZ response in tumors with EGFR activation.
Collapse
Affiliation(s)
- Yatian Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhenyue Gao
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuhong Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bo Pang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Binbin Zhang
- Department of Neuro-oncology, Tianjin Huanhu Hospital, Tianjin, China
| | - Ruxin Hu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuqing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yongzhi Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China.
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
95
|
Di Filippo LD, de Carvalho SG, Duarte JL, Luiz MT, Paes Dutra JA, de Paula GA, Chorilli M, Conde J. A receptor-mediated landscape of druggable and targeted nanomaterials for gliomas. Mater Today Bio 2023; 20:100671. [PMID: 37273792 PMCID: PMC10238751 DOI: 10.1016/j.mtbio.2023.100671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Gliomas are the most common type of brain cancer, and among them, glioblastoma multiforme (GBM) is the most prevalent (about 60% of cases) and the most aggressive type of primary brain tumor. The treatment of GBM is a major challenge due to the pathophysiological characteristics of the disease, such as the presence of the blood-brain barrier (BBB), which prevents and regulates the passage of substances from the bloodstream to the brain parenchyma, making many of the chemotherapeutics currently available not able to reach the brain in therapeutic concentrations, accumulating in non-target organs, and causing considerable adverse effects for the patient. In this scenario, nanocarriers emerge as tools capable of improving the brain bioavailability of chemotherapeutics, in addition to improving their biodistribution and enhancing their uptake in GBM cells. This is possible due to its nanometric size and surface modification strategies, which can actively target nanocarriers to elements overexpressed by GBM cells (such as transmembrane receptors) related to aggressive development, drug resistance, and poor prognosis. In this review, an overview of the most frequently overexpressed receptors in GBM cells and possible approaches to chemotherapeutic delivery and active targeting using nanocarriers will be presented.
Collapse
Affiliation(s)
| | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Geanne Aparecida de Paula
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
96
|
Dai Z, Zhang N, Zhou R, Zhang H, Zhang L, Wang Z, Zeng W, Luo P, Zhang J, Liu Z, Cheng Q. Identification of a single cell-based signature for predicting prognosis risk and immunotherapy response in patients with glioblastoma. Clin Immunol 2023; 251:109345. [PMID: 37100336 DOI: 10.1016/j.clim.2023.109345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/20/2022] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
This study constructed a novel gene pair signature based on bulk and single-cell sequencing samples in relative expression order within the samples. The subsequent analysis included glioma samples from Xiangya Hospital. Gene pair signatures possessed a solid ability to predict the prognosis of glioblastoma and pan-cancer. Samples having different malignant biological hallmarks were distinguished by the algorithm, with the high gene pair score group featuring classic copy number variations, oncogenic mutations, and extensive hypomethylation, mediating poor prognosis. The increased gene pair score group with a poorer prognosis demonstrated significant enrichment in tumor and immune-related signaling pathways while presenting immunological diversity. The remarkable infiltration of M2 macrophages in the high gene pair score group was validated by multiplex immunofluorescence, suggesting that combination therapies targeting adaptive and innate immunity may serve as a therapeutic option. Overall, a gene pair signature applicable to predict prognosis hopefully provides a reference to guide clinical practice.
Collapse
Affiliation(s)
- Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150088, China
| | - Ran Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Clinical Diagnosis and Therapeutic Center of Glioma, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Wenjing Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China; Clinical Diagnosis and Therapeutic Center of Glioma, Xiangya Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
97
|
Szu JI, Tsigelny IF, Wojcinski A, Kesari S. Biological functions of the Olig gene family in brain cancer and therapeutic targeting. Front Neurosci 2023; 17:1129434. [PMID: 37274223 PMCID: PMC10232966 DOI: 10.3389/fnins.2023.1129434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
The Olig genes encode members of the basic helix-loop-helix (bHLH) family of transcription factors. Olig1, Olig2, and Olig3 are expressed in both the developing and mature central nervous system (CNS) and regulate cellular specification and differentiation. Over the past decade extensive studies have established functional roles of Olig1 and Olig2 in development as well as in cancer. Olig2 overexpression drives glioma proliferation and resistance to radiation and chemotherapy. In this review, we summarize the biological functions of the Olig family in brain cancer and how targeting Olig family genes may have therapeutic benefit.
Collapse
Affiliation(s)
- Jenny I. Szu
- Department of Translational Neurosciences, Providence Saint John’s Health Center, Saint John’s Cancer Institute, Santa Monica, CA, United States
| | - Igor F. Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, San Diego, CA, United States
- CureScience, San Diego, CA, United States
| | - Alexander Wojcinski
- Department of Translational Neurosciences, Providence Saint John’s Health Center, Saint John’s Cancer Institute, Santa Monica, CA, United States
- Pacific Neuroscience Institute, Santa Monica, CA, United States
| | - Santosh Kesari
- Department of Translational Neurosciences, Providence Saint John’s Health Center, Saint John’s Cancer Institute, Santa Monica, CA, United States
- Pacific Neuroscience Institute, Santa Monica, CA, United States
| |
Collapse
|
98
|
López-Goerne T, Padilla-Godínez FJ. Catalytic Nanomedicine as a Therapeutic Approach to Brain Tumors: Main Hypotheses for Mechanisms of Action. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091541. [PMID: 37177086 PMCID: PMC10180296 DOI: 10.3390/nano13091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary malignant tumor of the brain. Although there are currently a wide variety of therapeutic approaches focused on tumor elimination, such as radiotherapy, chemotherapy, and tumor field therapy, among others, the main approach involves surgery to remove the GBM. However, since tumor growth occurs in normal brain tissue, complete removal is impossible, and patients end up requiring additional treatments after surgery. In this line, Catalytic Nanomedicine has achieved important advances in developing bionanocatalysts, brain-tissue-biocompatible catalytic nanostructures capable of destabilizing the genetic material of malignant cells, causing their apoptosis. Previous work has demonstrated the efficacy of bionanocatalysts and their selectivity for cancer cells without affecting surrounding healthy tissue cells. The present review provides a detailed description of these nanoparticles and their potential mechanisms of action as antineoplastic agents, covering the most recent research and hypotheses from their incorporation into the tumor bed, internalization via endocytosis, specific chemotaxis by mitochondrial and nuclear genetic material, and activation of programmed cell death. In addition, a case report of a patient with GBM treated with the bionanocatalysts following tumor removal surgery is described. Finally, the gaps in knowledge that must be bridged before the clinical translation of these compounds with such a promising future are detailed.
Collapse
Affiliation(s)
- Tessy López-Goerne
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| | - Francisco J Padilla-Godínez
- Nanotechnology and Nanomedicine Laboratory, Department of Health Care, Metropolitan Autonomous University-Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
99
|
Salazar A, Chavarria V, Flores I, Ruiz S, Pérez de la Cruz V, Sánchez-García FJ, Pineda B. Abscopal Effect, Extracellular Vesicles and Their Immunotherapeutic Potential in Cancer Treatment. Molecules 2023; 28:molecules28093816. [PMID: 37175226 PMCID: PMC10180522 DOI: 10.3390/molecules28093816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The communication between tumor cells and the microenvironment plays a fundamental role in the development, growth and further immune escape of the tumor. This communication is partially regulated by extracellular vesicles which can direct the behavior of surrounding cells. In recent years, it has been proposed that this feature could be applied as a potential treatment against cancer, since several studies have shown that tumors treated with radiotherapy can elicit a strong enough immune response to eliminate distant metastasis; this phenomenon is called the abscopal effect. The mechanism behind this effect may include the release of extracellular vesicles loaded with damage-associated molecular patterns and tumor-derived antigens which activates an antigen-specific immune response. This review will focus on the recent discoveries in cancer cell communications via extracellular vesicles and their implication in tumor development, as well as their potential use as an immunotherapeutic treatment against cancer.
Collapse
Affiliation(s)
- Aleli Salazar
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
- Immunoregulation Lab, Department of Immunology, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Itamar Flores
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Samanta Ruiz
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | | | - Benjamin Pineda
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| |
Collapse
|
100
|
Cheng Z, Li S, Yuan J, Li Y, Cheng S, Huang S, Dong J. HDAC1 mediates epithelial-mesenchymal transition and promotes cancer cell invasion in glioblastoma. Pathol Res Pract 2023; 246:154481. [PMID: 37121053 DOI: 10.1016/j.prp.2023.154481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most malignant tumors of the central nervous system, and its treatment has always been a difficult clinical problem. Here, we evaluated HDAC1 expression patterns and their effect on prognosis based on GBM cases from TCGA and CGGA databases. Expression was compared between GBM samples and normal controls. High HDAC1 expression was found to be an indicator of poor prognosis in glioblastoma. We also established a protein-protein interaction network to explore HDAC1-related interacting proteins, including the epithelial-mesenchymal transition (EMT)-related protein VIM, which is closely associated with HDAC1. Consistently, functional enrichment analysis showed that several GBM tissues with high HDAC1 were enriched in the expression of cancer markers, such as those involved in glycolysis, hypoxia, inflammation, and some signaling pathways. Next, this study analyzed the effect of HDAC1 on invasive ability and the EMT signaling pathway in GBM cells in vitro. The results showed that an HDAC1 inhibitor (RGFP109) could inhibit the EMT process in glioma cells in vitro, thereby affecting the invasion and migration of cells. Similar results were obtained based on in vivo studies. Our data suggest that HDAC1 has the potential to be a powerful prognostic biomarker, which might provide a basis for developing therapeutic targets for GBM.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Department of Neurosurgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Suwen Li
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jiaqi Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yongdong Li
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shilu Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|