51
|
Oberhauser L, Maechler P. Lipid-Induced Adaptations of the Pancreatic Beta-Cell to Glucotoxic Conditions Sustain Insulin Secretion. Int J Mol Sci 2021; 23:324. [PMID: 35008750 PMCID: PMC8745448 DOI: 10.3390/ijms23010324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last decades, lipotoxicity and glucotoxicity emerged as established mechanisms participating in the pathophysiology of obesity-related type 2 diabetes in general, and in the loss of β-cell function in particular. However, these terms hold various potential biological processes, and it is not clear what precisely they refer to and to what extent they might be clinically relevant. In this review, we discuss the basis and the last advances of research regarding the role of free fatty acids, their metabolic intracellular pathways, and receptor-mediated signaling related to glucose-stimulated insulin secretion, as well as lipid-induced β-cell dysfunction. We also describe the role of chronically elevated glucose, namely, glucotoxicity, which promotes failure and dedifferentiation of the β cell. Glucolipotoxicity combines deleterious effects of exposures to both high glucose and free fatty acids, supposedly provoking synergistic defects on the β cell. Nevertheless, recent studies have highlighted the glycerolipid/free fatty acid cycle as a protective pathway mediating active storage and recruitment of lipids. Finally, we discuss the putative correspondence of the loss of functional β cells in type 2 diabetes with a natural, although accelerated, aging process.
Collapse
Affiliation(s)
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland;
| |
Collapse
|
52
|
Proteomic and Bioinformatic Analysis of Decellularized Pancreatic Extracellular Matrices. Molecules 2021; 26:molecules26216740. [PMID: 34771149 PMCID: PMC8588251 DOI: 10.3390/molecules26216740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue microenvironments are rich in signaling molecules. However, factors in the tissue matrix that can serve as tissue-specific cues for engineering pancreatic tissues have not been thoroughly identified. In this study, we performed a comprehensive proteomic analysis of porcine decellularized pancreatic extracellular matrix (dpECM). By profiling dpECM collected from subjects of different ages and genders, we showed that the detergent-free decellularization method developed in this study permits the preservation of approximately 62.4% more proteins than a detergent-based method. In addition, we demonstrated that dpECM prepared from young pigs contained approximately 68.5% more extracellular matrix proteins than those prepared from adult pigs. Furthermore, we categorized dpECM proteins by biological process, molecular function, and cellular component through gene ontology analysis. Our study results also suggested that the protein composition of dpECM is significantly different between male and female animals while a KEGG enrichment pathway analysis revealed that dpECM protein profiling varies significantly depending on age. This study provides the proteome of pancreatic decellularized ECM in different animal ages and genders, which will help identify the bioactive molecules that are pivotal in creating tissue-specific cues for engineering tissues in vitro.
Collapse
|
53
|
Kalwat MA, Scheuner D, Rodrigues-dos-Santos K, Eizirik DL, Cobb MH. The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology 2021; 162:bqab173. [PMID: 34407177 PMCID: PMC8459449 DOI: 10.1210/endocr/bqab173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades. To adapt to the constant and fast-changing demands for insulin production, β cells use the unfolded protein response of the endoplasmic reticulum. Failure of these compensatory mechanisms contributes to both type 1 and 2 diabetes. Additionally, studies in which β cells are "rested" by reducing endogenous insulin demand have shown promise as a therapeutic strategy that could be applied more broadly. Here, we review recent findings in β cells pertaining to the metabolic amplifying pathway, the unfolded protein response, and potential advances in therapeutics based on β-cell rest.
Collapse
Affiliation(s)
- Michael A Kalwat
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Donalyn Scheuner
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | | | - Decio L Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
54
|
Lin H, Smith N, Spigelman AF, Suzuki K, Ferdaoussi M, Alghamdi TA, Lewandowski SL, Jin Y, Bautista A, Wang YW, Manning Fox JE, Merrins MJ, Buteau J, MacDonald PE. β-Cell Knockout of SENP1 Reduces Responses to Incretins and Worsens Oral Glucose Tolerance in High-Fat Diet-Fed Mice. Diabetes 2021; 70:2626-2638. [PMID: 34462260 PMCID: PMC8564408 DOI: 10.2337/db20-1235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/19/2021] [Indexed: 01/17/2023]
Abstract
SUMOylation reduces oxidative stress and preserves islet mass at the expense of robust insulin secretion. To investigate a role for the deSUMOylating enzyme sentrin-specific protease 1 (SENP1) following metabolic stress, we put pancreas/gut-specific SENP1 knockout (pSENP1-KO) mice on a high-fat diet (HFD). Male pSENP1-KO mice were more glucose intolerant following HFD than littermate controls but only in response to oral glucose. A similar phenotype was observed in females. Plasma glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) responses were identical in pSENP1-KO and wild-type littermates, including the HFD-induced upregulation of GIP responses. Islet mass was not different, but insulin secretion and β-cell exocytotic responses to the GLP-1 receptor agonist exendin-4 (Ex4) and GIP were impaired in islets lacking SENP1. Glucagon secretion from pSENP1-KO islets was also reduced, so we generated β-cell-specific SENP1 KO mice. These phenocopied the pSENP1-KO mice with selective impairment in oral glucose tolerance following HFD, preserved islet mass expansion, and impaired β-cell exocytosis and insulin secretion to Ex4 and GIP without changes in cAMP or Ca2+ levels. Thus, β-cell SENP1 limits oral glucose intolerance following HFD by ensuring robust insulin secretion at a point downstream of incretin signaling.
Collapse
Affiliation(s)
- Haopeng Lin
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy Smith
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kunimasa Suzuki
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mourad Ferdaoussi
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Tamadher A Alghamdi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie L Lewandowski
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison
| | - Yaxing Jin
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ying Wayne Wang
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison
| | - Jean Buteau
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
55
|
Walker EM, Cha J, Tong X, Guo M, Liu JH, Yu S, Iacovazzo D, Mauvais-Jarvis F, Flanagan SE, Korbonits M, Stafford J, Jacobson DA, Stein R. Sex-biased islet β cell dysfunction is caused by the MODY MAFA S64F variant by inducing premature aging and senescence in males. Cell Rep 2021; 37:109813. [PMID: 34644565 PMCID: PMC8845126 DOI: 10.1016/j.celrep.2021.109813] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/21/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
A heterozygous missense mutation of the islet β cell-enriched MAFA transcription factor (p.Ser64Phe [S64F]) is found in patients with adult-onset β cell dysfunction (diabetes or insulinomatosis), with men more prone to diabetes than women. This mutation engenders increased stability to the unstable MAFA protein. Here, we develop a S64F MafA mouse model to determine how β cell function is affected and find sex-dependent phenotypes. Heterozygous mutant males (MafAS64F/+) display impaired glucose tolerance, while females are slightly hypoglycemic with improved blood glucose clearance. Only MafAS64F/+ males show transiently higher MafA protein levels preceding glucose intolerance and sex-dependent changes to genes involved in Ca2+ signaling, DNA damage, aging, and senescence. MAFAS64F production in male human β cells also accelerate cellular senescence and increase senescence-associated secretory proteins compared to cells expressing MAFAWT. These results implicate a conserved mechanism of accelerated islet aging and senescence in promoting diabetes in MAFAS64F carriers in a sex-biased manner.
Collapse
Affiliation(s)
- Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jeeyeon Cha
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jin-Hua Liu
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Sophia Yu
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Donato Iacovazzo
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Franck Mauvais-Jarvis
- Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA; Southeast Louisiana Veterans Healthcare System, New Orleans, LA, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - John Stafford
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Tennessee Valley Healthcare System, Veterans Affairs, Nashville, TN, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
56
|
Liu T, Cui L, Xue H, Yang X, Liu M, Zhi L, Yang H, Liu Z, Zhang M, Guo Q, He P, Liu Y, Zhang Y. Telmisartan Potentiates Insulin Secretion via Ion Channels, Independent of the AT1 Receptor and PPARγ. Front Pharmacol 2021; 12:739637. [PMID: 34594226 PMCID: PMC8477257 DOI: 10.3389/fphar.2021.739637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/30/2021] [Indexed: 01/15/2023] Open
Abstract
Angiotensin II type 1 (AT1) receptor blockers (ARBs), as antihypertensive drugs, have drawn attention for their benefits to individuals with diabetes and prediabetes. However, the direct effects of ARBs on insulin secretion remain unclear. In this study, we aimed to investigate the insulinotropic effect of ARBs and the underlying electrophysiological mechanism. We found that only telmisartan among the three ARBs (telmisartan, valsartan, and irbesartan) exhibited an insulin secretagogue role in rat islets. Independent of AT1 receptor and peroxisome proliferator-activated receptor γ (PPARγ), telmisartan exerted effects on ion channels including voltage-dependent potassium (Kv) channels and L-type voltage-gated calcium channels (VGCCs) to promote extracellular Ca2+ influx, thereby potentiating insulin secretion in a glucose-dependent manner. Furthermore, we identified that telmisartan directly inhibited Kv2.1 channel on a Chinese hamster ovary cell line with Kv2.1 channel overexpression. Acute exposure of db/db mice to a telmisartan dose equivalent to therapeutic doses in humans resulted in lower blood glucose and increased plasma insulin concentration in OGTT. We further observed the telmisartan-induced insulinotropic and electrophysiological effects on pathological pancreatic islets or β-cells isolated from db/db mice. Collectively, our results establish an important insulinotropic function of telmisartan distinct from other ARBs in the treatment of diabetes.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of General Surgery, Shanxi Bethune Hospital (Third Hospital of Shanxi Medical University), Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohua Yang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Mengmeng Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Linping Zhi
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Min Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Qing Guo
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
57
|
Yang Y, Cai Z, Pan Z, Liu F, Li D, Ji Y, Zhong J, Luo H, Hu S, Song L, Yu S, Li T, Li J, Ma X, Zhang W, Zhou Z, Liu F, Zhang J. Rheb1 promotes glucose-stimulated insulin secretion in human and mouse β-cells by upregulating GLUT expression. Metabolism 2021; 123:154863. [PMID: 34375645 DOI: 10.1016/j.metabol.2021.154863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022]
Abstract
Reduced β-cell mass and impaired β-cell function are primary causes of all types of diabetes. However, the intrinsic molecular mechanism that regulates β-cell growth and function remains elusive. Here, we demonstrate that the small GTPase Rheb1 is a critical regulator of glucose-stimulated insulin secretion (GSIS) in β-cells. Rheb1 was highly expressed in mouse and human islets. In addition, β-cell-specific knockout of Rheb1 reduced the β-cell size and mass by suppressing β-cell proliferation and increasing β-cell apoptosis. However, tamoxifen-induced deletion of Rheb1 in β-cells had no significant effect on β-cell mass and size but significantly impaired GSIS. Rheb1 facilitates GSIS in human or mouse islets by upregulating GLUT1 or GLUT2 expression, respectively, in a mTORC1 signaling pathway-dependent manner. Our findings reveal a critical role of Rheb1 in regulating GSIS in β-cells and identified a new target for the therapeutic treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Yan Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zixin Cai
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhenhong Pan
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fen Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dandan Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yujiao Ji
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jiaxin Zhong
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Hairong Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shanbiao Hu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lei Song
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shaojie Yu
- Department of Urological Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ting Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jiequn Li
- Department of Liver Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xianhua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Weiping Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jingjing Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
58
|
Wan H, Xu X, Yang X, Li A, Ma X, Xu A, Yuan X, Wang W, Guo T, Luo G, He X, Li W, Wang Z, Sun Q, Pei J, Guo Y, Zhu Y. Metabolomics Analysis Reveals Interaction of Base-Line Chemotherapy and Shiyiwei Shenqi Tablets in Breast Cancer Treatment. Front Pharmacol 2021; 12:720886. [PMID: 34566645 PMCID: PMC8461015 DOI: 10.3389/fphar.2021.720886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
Shiyiwei Shenqi Tablet (SSTs) has been widely used for treatment of different types of cancer including breast cancer. SST has drawn more and more interest due to the low rate of side effects. The aim of this study was to investigate the metabolites in serums of breast cancer patients who received base-line chemotherapy only or combination treatment with SST. An untargeted metabolomics method was developed to investigate the alteration of metabolism in patients' serums using ultra-high-performance liquid chromatography/Q-exactive Orbitrap mass spectrometry. The patients were separated based on the metabolomics data, and further analyses showed that SST treatment can affect the metabolism of glucose, fatty acid, bile acid and amino acid. In particular, SST treatment significantly reduced some short peptides which are potential tumor neoantigens. This study may provide novel insights into the mechanism underlying interaction between SST and base-line chemotherapy in terms of affecting metabolic pathways and thereby changing metabolic products, which might shed new light for clinical medication.
Collapse
Affiliation(s)
- Hong Wan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaojun Xu
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaowei Yang
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Angqing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaopeng Ma
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Aman Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao Yuan
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guangtao Luo
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaobo He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wang Li
- Department of Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Zhaorui Wang
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Jing Pei
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongzhen Guo
- Department of Pathology, The Third Affliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
59
|
Langlois A, Forterre A, Pinget M, Bouzakri K. Impact of moderate exercise on fatty acid oxidation in pancreatic β-cells and skeletal muscle. J Endocrinol Invest 2021; 44:1815-1825. [PMID: 33844166 PMCID: PMC8357749 DOI: 10.1007/s40618-021-01551-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Fatty acids (FA) play a crucial role in glycaemia regulation in healthy and metabolic disorders conditions through various mechanisms. FA oxidation is one of the processes involved in lipid metabolism and can be modulated by exercise. Nowadays, physical activity is known to be an effective strategy for the prevention and treatment of Type 2 Diabetes. Moreover, its intensity, its duration, the sex-gender, the prandial state, exerkines… are as many parameters that can influence glycaemic control. However, the widely debated question is to determine the best type of exercise for patients with metabolic disorders. In this review, we will discuss the impact of exercise intensity, especially moderate activity, on glycaemic control by focussing on FA oxidation in pancreatic β-cells and skeletal muscle. Finally, thanks to all the recent data, we will determine whether moderate physical activity is a good therapeutic strategy and if FA oxidation represents a target of interest to treat diabetic, obese and insulin-resistant patients.
Collapse
Affiliation(s)
- A Langlois
- Centre Européen D'étude du Diabète, Unité Mixte de Recherche de L'Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | - A Forterre
- Centre Européen D'étude du Diabète, Unité Mixte de Recherche de L'Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | - M Pinget
- Centre Européen D'étude du Diabète, Unité Mixte de Recherche de L'Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | - K Bouzakri
- Centre Européen D'étude du Diabète, Unité Mixte de Recherche de L'Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France.
| |
Collapse
|
60
|
Neonatal Diabetes in Patients Affected by Liang-Wang Syndrome Carrying KCNMA1 Variant p.(Gly375Arg) Suggest a Potential Role of Ca 2+ and Voltage-Activated K + Channel Activity in Human Insulin Secretion. Curr Issues Mol Biol 2021; 43:1036-1042. [PMID: 34563042 PMCID: PMC8928946 DOI: 10.3390/cimb43020073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
Liang-Wang syndrome (LIWAS) is a polymalformative syndrome first described in 2019 caused by heterozygous mutation of the KCNMA1 gene encoding the Ca2+ and voltage-activated K+ channel (BKC). The KCNMA1 variant p.(Gly356Arg) abolishes the function of BKC and blocks the generation of K+ current. The phenotype of this variant includes developmental delay, and visceral and connective tissue malformations. So far, only three cases of LWAS have been described, one of which also had neonatal diabetes (ND). We present the case of a newborn affected by LIWAS carrying the p.(Gly375Arg) variant who manifested diabetes in the first week of life. The description of our case strongly increases the frequency of ND in LIWAS patients and suggests a role of BK inactivation in human insulin secretion. The knowledge on the role of BKC in insulin secretion is very poor. Analyzing the possible mechanisms that could explain the association of LIWAS with ND, we speculate that BK inactivation might impair insulin secretion through the alteration of ion-dependent membrane activities and mitochondrial functions in β-cells, as well as the impaired intra-islet vessel reactivity.
Collapse
|
61
|
Mesto N, Bailbe D, Eskandar M, Pommier G, Gil S, Tolu S, Movassat J, Tourrel-Cuzin C. Involvement of P2Y signaling in the restoration of glucose-induced insulin exocytosis in pancreatic β cells exposed to glucotoxicity. J Cell Physiol 2021; 237:881-896. [PMID: 34435368 DOI: 10.1002/jcp.30564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/27/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Purinergic P2Y receptors, by binding adenosine triphosphate (ATP), are known for enhancing glucose-stimulated insulin secretion (GSIS) in pancreatic β cells. However, the impact of these receptors in the actin dynamics and insulin granule exocytosis in these cells is not established, neither in normal nor in glucotoxic environment. In this study, we investigate the involvement of P2Y receptors on the behavior of insulin granules and the subcortical actin network dynamics in INS-1 832/13 β cells exposed to normal or glucotoxic environment and their role in GSIS. Our results show that the activation of P2Y purinergic receptors by ATP or its agonist increase the insulin granules exocytosis and the reorganization of the subcortical actin network and participate in the potentiation of GSIS. In addition, their activation in INS-1832/13 β-cells, with impaired insulin secretion following exposure to elevated glucose levels, restores GSIS competence through the distal steps of insulin exocytosis. These results are confirmed ex vivo by perifusion experiments on islets from type 2 diabetic (T2D) Goto-Kakizaki (GK) rats. Indeed, the P2Y receptor agonist restores the altered GSIS, which is normally lost in this T2D animal model. Moreover, we observed an improvement of the glucose tolerance, following the acute intraperitoneal injection of the P2Y agonist concomitantly with glucose, in diabetic GK rats. All these data provide new insights into the unprecedented therapeutic role of P2Y purinergic receptors in the pathophysiology of T2D.
Collapse
Affiliation(s)
- Nour Mesto
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| | - Danielle Bailbe
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| | - Myriam Eskandar
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| | - Gaëlle Pommier
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| | - Stéphanie Gil
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France.,Université de Paris, UFR Sciences du Vivant (SDV), Paris, France
| | - Stefania Tolu
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| | - Jamileh Movassat
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| | - Cécile Tourrel-Cuzin
- 'Université de Paris' 'Unit of Functional and Adaptative Biology (BFA)', CNRS, UMR 8251, Team 'Biologie et Pathologie du Pancréas Endocrine', Paris, France
| |
Collapse
|
62
|
Vilas-Boas EA, Carlein C, Nalbach L, Almeida DC, Ampofo E, Carpinelli AR, Roma LP, Ortis F. Early Cytokine-Induced Transient NOX2 Activity Is ER Stress-Dependent and Impacts β-Cell Function and Survival. Antioxidants (Basel) 2021; 10:antiox10081305. [PMID: 34439552 PMCID: PMC8389306 DOI: 10.3390/antiox10081305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023] Open
Abstract
In type 1 diabetes (T1D) development, proinflammatory cytokines (PIC) released by immune cells lead to increased reactive oxygen species (ROS) production in β-cells. Nonetheless, the temporality of the events triggered and the role of different ROS sources remain unclear. Isolated islets from C57BL/6J wild-type (WT), NOX1 KO and NOX2 KO mice were exposed to a PIC combination. We show that cytokines increase O2•− production after 2 h in WT and NOX1 KO but not in NOX2 KO islets. Using transgenic mice constitutively expressing a genetically encoded compartment specific H2O2 sensor, we show, for the first time, a transient increase of cytosolic/nuclear H2O2 in islet cells between 4 and 5 h during cytokine exposure. The H2O2 increase coincides with the intracellular NAD(P)H decrease and is absent in NOX2 KO islets. NOX2 KO confers better glucose tolerance and protects against cytokine-induced islet secretory dysfunction and death. However, NOX2 absence does not counteract the cytokine effects in ER Ca2+ depletion, Store-Operated Calcium Entry (SOCE) increase and ER stress. Instead, the activation of ER stress precedes H2O2 production. As early NOX2-driven ROS production impacts β-cells’ function and survival during insulitis, NOX2 might be a potential target for designing therapies against early β-cell dysfunction in the context of T1D onset.
Collapse
Affiliation(s)
- Eloisa A. Vilas-Boas
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Christopher Carlein
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Davidson C. Almeida
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66424 Homburg, Germany; (L.N.); (E.A.)
| | - Angelo R. Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Leticia P. Roma
- Center for Human and Molecular Biology (ZHMB), Department of Biophysics, Saarland University, 66424 Homburg, Germany; (E.A.V.-B.); (C.C.)
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, SP, Brazil;
- Correspondence: (L.P.R.); (F.O.); Tel.: +06841-16-16240 (L.P.R.); +55-(11)-3091-0923 (F.O.); Fax: +06841-16-16302 (L.P.R.)
| |
Collapse
|
63
|
A High-Content Screen for the Identification of Plant Extracts with Insulin Secretion-Modulating Activity. Pharmaceuticals (Basel) 2021; 14:ph14080809. [PMID: 34451906 PMCID: PMC8402219 DOI: 10.3390/ph14080809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Bioactive plant compounds and extracts are of special interest for the development of pharmaceuticals. Here, we describe the screening of more than 1100 aqueous plant extracts and synthetic reference compounds for their ability to stimulate or inhibit insulin secretion. To quantify insulin secretion in living MIN6 β cells, an insulin–Gaussia luciferase (Ins-GLuc) biosensor was used. Positive hits included extracts from Quillaja saponaria, Anagallis arvensis, Sapindus mukorossi, Gleditsia sinensis and Albizia julibrissin, which were identified as insulin secretion stimulators, whereas extracts of Acacia catechu, Myrtus communis, Actaea spicata L., Vaccinium vitis-idaea and Calendula officinalis were found to exhibit insulin secretion inhibitory properties. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to characterize several bioactive compounds in the selected plant extracts, and these bioactives were retested for their insulin-modulating properties. Overall, we identified several plant extracts and some of their bioactive compounds that may be used to manipulate pancreatic insulin secretion.
Collapse
|
64
|
Liu Z, Yang H, Zhi L, Xue H, Lu Z, Zhao Y, Cui L, Liu T, Ren S, He P, Liu Y, Zhang Y. Sphingosine 1-phosphate Stimulates Insulin Secretion and Improves Cell Survival by Blocking Voltage-dependent K + Channels in β Cells. Front Pharmacol 2021; 12:683674. [PMID: 34322019 PMCID: PMC8313013 DOI: 10.3389/fphar.2021.683674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Recent studies suggest that Sphingosine 1-phosphate (S1P) plays an important role in regulating glucose metabolism in type 2 diabetes. However, its effects and mechanisms of promoting insulin secretion remain largely unknown. Here, we found that S1P treatment decreased blood glucose level and increased insulin secretion in C57BL/6 mice. Our results further showed that S1P promoted insulin secretion in a glucose-dependent manner. This stimulatory effect of S1P appeared to be irrelevant to cyclic adenosine monophosphate signaling. Voltage-clamp recordings showed that S1P did not influence voltage-dependent Ca2+ channels, but significantly blocked voltage-dependent potassium (Kv) channels, which could be reversed by inhibition of phospholipase C (PLC) and protein kinase C (PKC). Calcium imaging revealed that S1P increased intracellular Ca2+ levels, mainly by promoting Ca2+ influx, rather than mobilizing intracellular Ca2+ stores. In addition, inhibition of PLC and PKC suppressed S1P-induced insulin secretion. Collectively, these results suggest that the effects of S1P on glucose-stimulated insulin secretion (GSIS) depend on the inhibition of Kv channels via the PLC/PKC signaling pathway in pancreatic β cells. Further, S1P improved β cell survival; this effect was also associated with Kv channel inhibition. This work thus provides new insights into the mechanisms whereby S1P regulates β cell function in diabetes.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Huanhuan Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Linping Zhi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Huan Xue
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhihong Lu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yanli Zhao
- Department of Emergency Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Tao Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shouan Ren
- Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
65
|
Wortham M, Sander M. Transcriptional mechanisms of pancreatic β-cell maturation and functional adaptation. Trends Endocrinol Metab 2021; 32:474-487. [PMID: 34030925 PMCID: PMC8259463 DOI: 10.1016/j.tem.2021.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
Pancreatic β-cells secrete insulin commensurate to circulating nutrient levels to maintain normoglycemia. The ability of β-cells to couple insulin secretion to nutrient stimuli is acquired during a postnatal maturation process. In mature β-cells the insulin secretory response adapts to changes in nutrient state. Both β-cell maturation and functional adaptation rely on the interplay between extracellular cues and cell type-specific transcriptional programs. Here we review emerging evidence that developmental and homeostatic regulation of β-cell function involves collaboration between lineage-determining and signal-dependent transcription factors (LDTFs and SDTFs, respectively). A deeper understanding of β-cell SDTFs and their cognate signals would delineate mechanisms of β-cell maturation and functional adaptation, which has direct implications for diabetes therapies and for generating mature β-cells from stem cells.
Collapse
Affiliation(s)
- Matthew Wortham
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maike Sander
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
66
|
Respiratory Parameters for the Classification of Dysfunctional Insulin Secretion by Pancreatic Islets. Metabolites 2021; 11:metabo11060405. [PMID: 34205530 PMCID: PMC8235780 DOI: 10.3390/metabo11060405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
The development of obesity and type 2 diabetes (T2D) has been associated with impaired mitochondrial function. In pancreatic beta (β) cells, mitochondrial energy metabolism plays a central role in triggering and controlling glucose-stimulated insulin secretion (GSIS). Here, we have explored whether mitochondrial bioenergetic parameters assessed with Seahorse extracellular flux technology can quantitatively predict insulin secretion. We metabolically stressed male C57BL/6 mice by high-fat feeding (HFD) and measured the glucose sensitivity of islet respiration and insulin secretion. The diet-induced obese (DIO) mice developed hyperinsulinemia, but no pathological secretory differences were apparent between isolated DIO and chow islets. Real-time extracellular flux analysis, however, revealed a lower respiratory sensitivity to glucose in DIO islets. Correlation of insulin secretion with respiratory parameters uncovers compromised insulin secretion in DIO islets by oxidative power. Normalization to increased insulin contents during DIO improves the quantitative relation between GSIS and respiration, allowing to classify dysfunctional properties of pancreatic insulin secretion, and thereby serving as valuable biomarker for pancreatic islet glucose responsiveness and health.
Collapse
|
67
|
Gerber KM, Whitticar NB, Rochester DR, Corbin KL, Koch WJ, Nunemaker CS. The Capacity to Secrete Insulin Is Dose-Dependent to Extremely High Glucose Concentrations: A Key Role for Adenylyl Cyclase. Metabolites 2021; 11:metabo11060401. [PMID: 34205432 PMCID: PMC8235240 DOI: 10.3390/metabo11060401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin secretion is widely thought to be maximally stimulated in glucose concentrations of 16.7-to-30 mM (300-to-540 mg/dL). However, insulin secretion is seldom tested in hyperglycemia exceeding these levels despite the Guinness World Record being 147.6 mM (2656 mg/dL). We investigated how islets respond to 1-h exposure to glucose approaching this record. Insulin secretion from human islets at 12 mM glucose intervals dose-dependently increased until at least 72 mM glucose. Murine islets in 84 mM glucose secreted nearly double the insulin as in 24 mM (p < 0.001). Intracellular calcium was maximally stimulated in 24 mM glucose despite a further doubling of insulin secretion in higher glucose, implying that insulin secretion above 24 mM occurs through amplifying pathway(s). Increased osmolarity of 425-mOsm had no effect on insulin secretion (1-h exposure) or viability (48-h exposure) in murine islets. Murine islets in 24 mM glucose treated with a glucokinase activator secreted as much insulin as islets in 84 mM glucose, indicating that glycolytic capacity exists above 24 mM. Using an incretin mimetic and an adenylyl cyclase activator in 24 mM glucose enhanced insulin secretion above that observed in 84 mM glucose while adenylyl cyclase inhibitor reduced stimulatory effects. These results highlight the underestimated ability of islets to secrete insulin proportionally to extreme hyperglycemia through adenylyl cyclase activity.
Collapse
Affiliation(s)
- Katherine M. Gerber
- Translational Health, Honors Tutorial College, Ohio University, Athens, OH 45701, USA;
| | - Nicholas B. Whitticar
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
- Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Daniel R. Rochester
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
| | - Kathryn L. Corbin
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
| | - William J. Koch
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
- Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Craig S. Nunemaker
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (N.B.W.); (D.R.R.); (K.L.C.); (W.J.K.)
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +740-593-2387
| |
Collapse
|
68
|
Rustenbeck I, Schulze T, Morsi M, Alshafei M, Panten U. What Is the Metabolic Amplification of Insulin Secretion and Is It (Still) Relevant? Metabolites 2021; 11:metabo11060355. [PMID: 34199454 PMCID: PMC8229681 DOI: 10.3390/metabo11060355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
The pancreatic beta-cell transduces the availability of nutrients into the secretion of insulin. While this process is extensively modified by hormones and neurotransmitters, it is the availability of nutrients, above all glucose, which sets the process of insulin synthesis and secretion in motion. The central role of the mitochondria in this process was identified decades ago, but how changes in mitochondrial activity are coupled to the exocytosis of insulin granules is still incompletely understood. The identification of ATP-sensitive K+-channels provided the link between the level of adenine nucleotides and the electrical activity of the beta cell, but the depolarization-induced Ca2+-influx into the beta cells, although necessary for stimulated secretion, is not sufficient to generate the secretion pattern as produced by glucose and other nutrient secretagogues. The metabolic amplification of insulin secretion is thus the sequence of events that enables the secretory response to a nutrient secretagogue to exceed the secretory response to a purely depolarizing stimulus and is thus of prime importance. Since the cataplerotic export of mitochondrial metabolites is involved in this signaling, an orienting overview on the topic of nutrient secretagogues beyond glucose is included. Their judicious use may help to define better the nature of the signals and their mechanism of action.
Collapse
Affiliation(s)
- Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
- Correspondence: ; Tel.: +49-(0)53-139-156-70
| | - Torben Schulze
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
| | - Mai Morsi
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
- Department of Pharmacology, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mohammed Alshafei
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
| | - Uwe Panten
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, D38106 Braunschweig, Germany; (T.S.); (M.M.); (M.A.); (U.P.)
| |
Collapse
|
69
|
Kilanowska A, Szkudelski T. Effects of inhibition of phosphodiesterase 3B in pancreatic islets on insulin secretion: a potential link with some stimulatory pathways. Arch Physiol Biochem 2021; 127:250-257. [PMID: 31240952 DOI: 10.1080/13813455.2019.1628071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Elevated intracellular cAMP concentrations potentiate insulin secretion from pancreatic β cells. Phosphodiesterase 3B (PDE3B) is highly expressed in these cells and plays a role in the regulation of insulin secretion. MATERIALS AND METHODS In this study, effects of amrinone, an inhibitor of PDE3B on insulin release from isolated pancreatic islets, were determined. RESULTS Exposure of islets to amrinone for 15, 30 and 90 min markedly increased secretion induced by 6.7 mM glucose. Amrinone enhanced also secretion stimulated by 6.7 mM glucose and DB-cAMP, an activator of PKA. It was also demonstrated that amrinone potentiated insulin secretion induced by 6.7 mM glucose in the combination with PMA (activator of PKC) or acetylcholine. However, the insulin-secretory response to glucose and glibenclamide was unchanged by amrinone. CONCLUSIONS These results indicate that amrinone is capable of increasing insulin secretion; however, its action is restricted.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, University of Zielona Gora, Zielona Gora, Poland
| | - Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
70
|
GRK2 contributes to glucose mediated calcium responses and insulin secretion in pancreatic islet cells. Sci Rep 2021; 11:11129. [PMID: 34045505 PMCID: PMC8159944 DOI: 10.1038/s41598-021-90253-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023] Open
Abstract
Diabetes is a metabolic syndrome rooted in impaired insulin and/or glucagon secretory responses within the pancreatic islets of Langerhans (islets). Insulin secretion is primarily regulated by two key factors: glucose-mediated ATP production and G-protein coupled receptors (GPCRs) signaling. GPCR kinase 2 (GRK2), a key regulator of GPCRs, is reported to be downregulated in the pancreas of spontaneously obesogenic and diabetogenic mice (ob/ob). Moreover, recent studies have shown that GRK2 non-canonically localizes to the cardiac mitochondrion, where it can contribute to glucose metabolism. Thus, islet GRK2 may impact insulin secretion through either mechanism. Utilizing Min6 cells, a pancreatic ß-cell model, we knocked down GRK2 and measured glucose-mediated intracellular calcium responses and insulin secretion. Silencing of GRK2 attenuated calcium responses, which were rescued by pertussis toxin pre-treatment, suggesting a Gαi/o-dependent mechanism. Pancreatic deletion of GRK2 in mice resulted in glucose intolerance with diminished insulin secretion. These differences were due to diminished insulin release rather than decreased insulin content or gross differences in islet architecture. Furthermore, a high fat diet feeding regimen exacerbated the metabolic phenotype in this model. These results suggest a new role for pancreatic islet GRK2 in glucose-mediated insulin responses that is relevant to type 2 diabetes disease progression.
Collapse
|
71
|
Saadati M, Jamali Y. The effects of beta-cell mass and function, intercellular coupling, and islet synchrony on [Formula: see text] dynamics. Sci Rep 2021; 11:10268. [PMID: 33986325 PMCID: PMC8119479 DOI: 10.1038/s41598-021-89333-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/26/2021] [Indexed: 11/30/2022] Open
Abstract
Type 2 diabetes (T2D) is a challenging metabolic disorder characterized by a substantial loss of [Formula: see text]-cell mass and alteration of [Formula: see text]-cell function in the islets of Langerhans, disrupting insulin secretion and glucose homeostasis. The mechanisms for deficiency in [Formula: see text]-cell mass and function during the hyperglycemia development and T2D pathogenesis are complex. To study the relative contribution of [Formula: see text]-cell mass to [Formula: see text]-cell function in T2D, we make use of a comprehensive electrophysiological model of human [Formula: see text]-cell clusters. We find that defect in [Formula: see text]-cell mass causes a functional decline in single [Formula: see text]-cell, impairment in intra-islet synchrony, and changes in the form of oscillatory patterns of membrane potential and intracellular [Formula: see text] concentration, which can lead to changes in insulin secretion dynamics and in insulin levels. The model demonstrates a good correspondence between suppression of synchronizing electrical activity and published experimental measurements. We then compare the role of gap junction-mediated electrical coupling with both [Formula: see text]-cell synchronization and metabolic coupling in the behavior of [Formula: see text] concentration dynamics within human islets. Our results indicate that inter-[Formula: see text]-cellular electrical coupling depicts a more important factor in shaping the physiological regulation of islet function and in human T2D. We further predict that varying the whole-cell conductance of delayed rectifier [Formula: see text] channels modifies oscillatory activity patterns of [Formula: see text]-cell population lacking intercellular coupling, which significantly affect [Formula: see text] concentration and insulin secretion.
Collapse
Affiliation(s)
- Maryam Saadati
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Jamali
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
72
|
Carmean CM, Zhao L, Landeche M, Chellan B, Sargis RM. Dimethyl sulfoxide acutely enhances regulated insulin secretion in the MIN6-K8 mouse insulinoma cell line. Histochem Cell Biol 2021; 156:69-73. [PMID: 33743067 DOI: 10.1007/s00418-021-01984-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2021] [Indexed: 11/29/2022]
Abstract
Diabetes mellitus is a metabolic disorder projected to afflict 700 million people globally by 2045. Fundamental to the progression of diabetes is an insufficient supply of insulin to meet metabolic demand. The MIN6-K8 cell line is a mouse insulinoma model of pancreatic β-cells frequently used to study the mechanisms of insulin secretion. Here, we evaluated the effects of short-term exposure to dimethyl sulfoxide (DMSO), a polar aprotic solvent commonly used in drug screening, on physiological characteristics of MIN6-K8 cells. Short-term exposure of MIN6-K8 cells to DMSO enhanced glucose-induced and tolbutamide-stimulated insulin secretion without significant effects on basal secretion or potassium responsiveness. Calcium influx was enhanced during glucose and tolbutamide treatments, suggesting that DMSO's mechanism of action is upstream of calcium-dependent insulin granule exocytosis. Based on these studies, investigators should use caution when conducting experiments with DMSO in the MIN6-K8 cell line and should report all DMSO concentrations when used as a solvent.
Collapse
Affiliation(s)
- Christopher M Carmean
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Suite E625, M/C 640, Chicago, IL, 60612, USA. .,Chicago Center for Health and Environment (CACHET), University of Illinois at Chicago, Chicago, IL, USA.
| | - Lidan Zhao
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Suite E625, M/C 640, Chicago, IL, 60612, USA
| | - Michael Landeche
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Suite E625, M/C 640, Chicago, IL, 60612, USA
| | - Bijoy Chellan
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Suite E625, M/C 640, Chicago, IL, 60612, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism; Department of Medicine, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Suite E625, M/C 640, Chicago, IL, 60612, USA.,Chicago Center for Health and Environment (CACHET), University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
73
|
Henquin JC. Glucose-induced insulin secretion in isolated human islets: Does it truly reflect β-cell function in vivo? Mol Metab 2021; 48:101212. [PMID: 33737253 PMCID: PMC8065218 DOI: 10.1016/j.molmet.2021.101212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetes always involves variable degrees of β-cell demise and malfunction leading to insufficient insulin secretion. Besides clinical investigations, many research projects used rodent islets to study various facets of β-cell pathophysiology. Their important contributions laid the foundations of steadily increasing numbers of experimental studies resorting to isolated human islets. SCOPE OF REVIEW This review, based on an analysis of data published over 60 years of clinical investigations and results of more recent studies in isolated islets, addresses a question of translational nature. Does the information obtained in vitro with human islets fit with our knowledge of insulin secretion in man? The aims are not to discuss specificities of pathways controlling secretion but to compare qualitative and quantitative features of glucose-induced insulin secretion in isolated human islets and in living human subjects. MAJOR CONCLUSIONS Much of the information gathered in vitro can reliably be translated to the in vivo situation. There is a fairly good, though not complete, qualitative and quantitative coherence between insulin secretion rates measured in vivo and in vitro during stimulation with physiological glucose concentrations, but the concordance fades out under extreme conditions. Perplexing discrepancies also exist between insulin secretion in subjects with Type 2 diabetes and their islets studied in vitro, in particular concerning the kinetics. Future projects should ascertain that the experimental conditions are close to physiological and do not alter the function of normal and diabetic islets.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
74
|
Zhou F, Zhang L, Zhu K, Bai M, Zhang Y, Zhu Q, Wang S, Sheng C, Yuan M, Liu Y, Lu J, Shao L, Wang X, Zhou L. SIRT2 ablation inhibits glucose-stimulated insulin secretion through decreasing glycolytic flux. Am J Cancer Res 2021; 11:4825-4838. [PMID: 33754030 PMCID: PMC7978320 DOI: 10.7150/thno.55330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/06/2021] [Indexed: 11/30/2022] Open
Abstract
Rationale: Sirtuins are NAD+-dependent protein deacylases known to have protective effects against age-related diseases such as diabetes, cancer, and neurodegenerative disease. SIRT2 is the only primarily cytoplasmic isoform and its overall role in glucose homeostasis remains uncertain. Methods: SIRT2-knockout (KO) rats were constructed to evaluate the role of SIRT2 in glucose homeostasis. The effect of SIRT2 on β-cell function was detected by investigating the morphology, insulin secretion, and metabolomic state of islets. The deacetylation and stabilization of GKRP in β-cells by SIRT2 were determined by western blot, adenoviral infection, and immunoprecipitation. Results: SIRT2-KO rats exhibited impaired glucose tolerance and glucose-stimulated insulin secretion (GSIS), without change in insulin sensitivity. SIRT2 deficiency or inhibition by AGK2 decreased GSIS in isolated rat islets, with lowered oxygen consumption rate. Adenovirus-mediated overexpression of SIRT2 enhanced insulin secretion from rat islets. Metabolomics analysis revealed a decrease in metabolites of glycolysis and tricarboxylic acid cycle in SIRT2-KO islets compared with control islets. Our study further demonstrated that glucokinase regulatory protein (GKRP), an endogenous inhibitor of glucokinase (GCK), was expressed in rat islets. SIRT2 overexpression deacetylated GKRP in INS-1 β-cells. SIRT2 knockout or inhibition elevated GKRP protein stability in islet β-cells, leading to an increase in the interaction of GKRP and GCK. On the contrary, SIRT2 inhibition promoted the protein degradation of ALDOA, a glycolytic enzyme. Conclusions: SIRT2 ablation inhibits GSIS through blocking GKRP protein degradation and promoting ALDOA protein degradation, resulting in a decrease in glycolytic flux.
Collapse
|
75
|
Zhu M, Liu X, Liu W, Lu Y, Cheng J, Chen Y. β cell aging and age-related diabetes. Aging (Albany NY) 2021; 13:7691-7706. [PMID: 33686020 PMCID: PMC7993693 DOI: 10.18632/aging.202593] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023]
Abstract
Type 2 diabetes is characterized by insulin resistance and loss of β cell mass and function. Aging is considered as a major risk factor for development of type 2 diabetes. However, the roles of pancreatic β cell senescence and systemic aging in the pathogenesis of type 2 diabetes in elderly people remain poorly understood. In this review, we aimed to discuss the current findings and viewpoints focusing on β cell aging and the development of type 2 diabetes.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaohong Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Wen Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
76
|
A Practical Guide to Rodent Islet Isolation and Assessment Revisited. Biol Proced Online 2021; 23:7. [PMID: 33641671 PMCID: PMC7919091 DOI: 10.1186/s12575-021-00143-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Insufficient insulin secretion is a key component of both type 1 and type 2 diabetes. Since insulin is released by the islets of Langerhans, obtaining viable and functional islets is critical for research and transplantation. The effective and efficient isolation of these small islands of endocrine cells from the sea of exocrine tissue that is the rest of the pancreas is not necessarily simple or quick. Choosing and administering the digestive enzyme, separation of the islets from acinar tissue, and culture of islets are all things that must be considered. The purpose of this review is to provide a history of the development of islet isolation procedures and to serve as a practical guide to rodent islet research for newcomers to islet biology. We discuss key elements of mouse islet isolation including choosing collagenase, the digestion process, purification of islets using a density gradient, and islet culture conditions. In addition, this paper reviews techniques for assessing islet viability and function such as visual assessment, glucose-stimulated insulin secretion and intracellular calcium measurements. A detailed protocol is provided that describes a common method our laboratory uses to obtain viable and functional mouse islets for in vitro study. This review thus provides a strong foundation for successful procurement and purification of high-quality mouse islets for research purposes.
Collapse
|
77
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|
78
|
Ghanemi A, Yoshioka M, St-Amand J. High-Fat Diet-Induced Trefoil Factor Family Member 2 (TFF2) to Counteract the Immune-Mediated Damage in Mice. Animals (Basel) 2021; 11:ani11020258. [PMID: 33494143 PMCID: PMC7909836 DOI: 10.3390/ani11020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary High-fat (HF) diet induces both immune-mediated damage and trefoil factor family member 2 (Tff2) expression. As TFF2 has tissue repair and protection properties, this suggests that HF diet-induced Tff2 production and the resulting TFF2 mucosal protective effects would be a mechanism to counteract the HF diet-induced tissue damage. On the other hand, the induction of Tff2 by HF diet could indicate that TFF2 is a food intake regulator (appetite control) since Tff2 is also expressed in the brain. This highlights the importance of exploring TFF2-related pathways in the context of obesity management towards potential therapies. Abstract Physiological homeostasis requires a balance between the immunological functions and the resulting damage/side effects of the immunological reactions including those related to high-fat (HF) diet. Within this context, whereas HF diet, through diverse mechanisms (such as inflammation), leads to immune-mediated damage, trefoil factor family member 2 (Tff2) represents a HF diet-induced gene. On the other hand, TFF2 both promotes tissue repair and reduces inflammation. These properties are towards counteracting the immune-mediated damage resulting from the HF diet. These observations suggest that the HF diet-induction of Tff2 could be a regulatory pathway aiming to counteract the immune-mediated damage resulting from the HF diet. Interestingly, since Tff2 expression increases with HF diet and with Tff2 also expressed in the brain, we also hypothesize that TFF2 could be a HF diet-induced food intake-control signal that reduces appetite. This hypothesis fits with counteracting the immune damage since reducing the food intake will reduce the HF intake and therefore, reduces the HF diet-induced tissue damage. Such food intake signaling would be an indirect mechanism by which TFF2 promotes tissue repair as well as a pathway worth exploring for potential obesity management pharmacotherapies.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 46448); Fax: +1-(418)-654-2298
| |
Collapse
|
79
|
Postnatal maturation of calcium signaling in islets of Langerhans from neonatal mice. Cell Calcium 2020; 94:102339. [PMID: 33422769 DOI: 10.1016/j.ceca.2020.102339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Pancreatic islet cells develop mature physiological responses to glucose and other fuels postnatally. In this study, we used fluorescence imaging techniques to measure changes in intracellular calcium ([Ca2+]i) to compare islets isolated from mice on postnatal days 0, 4, and 12 with islets from adult CD-1 mice. In addition, we used publicly available RNA-sequencing data to compare expression levels of key genes in β-cell physiology with [Ca2+]i data across these ages. We show that islets isolated from mice on postnatal day 0 displayed elevated [Ca2+]i in basal glucose (≤4 mM) but lower [Ca2+]i responses to stimulation by 12-20 mM glucose compared to adult. Neonatal islets displayed more adult-like [Ca2+]i in basal glucose by day 4 but continued to show lower [Ca2+]i responses to 16 and 20 mM glucose stimulation up to at least day 12. A right shift in glucose sensing (EC50) correlated with lower fragment-per-kilobase-of-transcript-per-million-reads-mapped (FPKM) of Slc2a2 (glut2) and Actn3 and increased FPKM for Galk1 and Nupr1. Differences in [Ca2+]i responses to additional stimuli were also observed. Calcium levels in the endoplasmic reticulum were elevated on day 0 but became adult-like by day 4, which corresponded with reduced expression in Atp2a2 (SERCA2) and novel K+-channel Ktd17, increased expression of Pml, Wfs1, Thada, and Herpud1, and basal [Ca2+]i maturing to adult levels. Ion-channel activity also matured rapidly, but RNA sequencing data mining did not yield strong leads. In conclusion, the maturation of islet [Ca2+]i signaling is complex and multifaceted; several possible gene targets were identified that may participate in this process.
Collapse
|
80
|
Kilanowska A, Ziółkowska A. Role of Phosphodiesterase in the Biology and Pathology of Diabetes. Int J Mol Sci 2020; 21:E8244. [PMID: 33153226 PMCID: PMC7662747 DOI: 10.3390/ijms21218244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Glucose metabolism is the initiator of a large number of molecular secretory processes in β cells. Cyclic nucleotides as a second messenger are the main physiological regulators of these processes and are functionally divided into compartments in pancreatic cells. Their intracellular concentration is limited by hydrolysis led by one or more phosphodiesterase (PDE) isoenzymes. Literature data confirmed multiple expressions of PDEs subtypes, but the specific roles of each in pancreatic β-cell function, particularly in humans, are still unclear. Isoforms present in the pancreas are also found in various tissues of the body. Normoglycemia and its strict control are supported by the appropriate release of insulin from the pancreas and the action of insulin in peripheral tissues, including processes related to homeostasis, the regulation of which is based on the PDE- cyclic AMP (cAMP) signaling pathway. The challenge in developing a therapeutic solution based on GSIS (glucose-stimulated insulin secretion) enhancers targeted at PDEs is the selective inhibition of their activity only within β cells. Undeniably, PDEs inhibitors have therapeutic potential, but some of them are burdened with certain adverse effects. Therefore, the chance to use knowledge in this field for diabetes treatment has been postulated for a long time.
Collapse
Affiliation(s)
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-046 Zielona Gora, Poland;
| |
Collapse
|
81
|
Kumar S, Behl T, Sachdeva M, Sehgal A, Kumari S, Kumar A, Kaur G, Yadav HN, Bungau S. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci 2020; 264:118661. [PMID: 33121986 DOI: 10.1016/j.lfs.2020.118661] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Abstract
Obesity and diabetes are the two major metabolic complications linked with bad eating habits and the sedentary (lazy) lifestyle. In the worst-case situation, metabolic problems are a causative factor for numerous other conditions. There is also an increased demand to control the emergence of such diseases. Dietary and lifestyle improvements contribute to their leadership at an elevated level. The present review, therefore, recommends the use of the ketogenic diet (KD) in obesity and diabetes treatment. The KD involves a diet that replaces glucose sugar with ketone bodies and is effective in numerous diseases, such as metabolic disorders, epileptic seizures, autosomal dominant polycystic disease of the kidney, cancers, peripheral neuropathy, and skeletal muscle atrophy. A lot of high profile pathways are available for KD action, including sustaining the metabolic actions on glucose sugar, suppressing insulin-like growth factor-1 (IGF1) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways, altering homeostasis of the systemic ketone bodies, contributing to lowering diabetic hyperketonemia, and others. The KD regulates the level of glucose sugar and insulin and can thus claim to be an effective diabetes approach. Thus, a stopgap between obesity and diabetes treatment can also be evidenced by KD.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shilpa Kumari
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gagandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Romania
| |
Collapse
|
82
|
Kalwat MA, Huang Z, Binns DD, McGlynn K, Cobb MH. α 2-Adrenergic Disruption of β Cell BDNF-TrkB Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2020; 8:576396. [PMID: 33178692 PMCID: PMC7593622 DOI: 10.3389/fcell.2020.576396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Adrenergic signaling is a well-known input into pancreatic islet function. Specifically, the insulin-secreting islet β cell expresses the Gi/o-linked α2-adrenergic receptor, which upon activation suppresses insulin secretion. The use of the adrenergic agonist epinephrine at micromolar doses may have supraphysiological effects. We found that pretreating β cells with micromolar concentrations of epinephrine differentially inhibited activation of receptor tyrosine kinases. We chose TrkB as an example because of its relative sensitivity to the effects of epinephrine and due to its potential regulatory role in the β cell. Our characterization of brain-derived neurotrophic factor (BDNF)-TrkB signaling in MIN6 β cells showed that TrkB is activated by BDNF as expected, leading to canonical TrkB autophosphorylation and subsequent downstream signaling, as well as chronic effects on β cell growth. Micromolar, but not nanomolar, concentrations of epinephrine blocked BDNF-induced TrkB autophosphorylation and downstream mitogen-activated protein kinase pathway activation, suggesting an inhibitory phenomenon at the receptor level. We determined epinephrine-mediated inhibition of TrkB activation to be Gi/o-dependent using pertussis toxin, arguing against an off-target effect of high-dose epinephrine. Published data suggested that inhibition of potassium channels or phosphoinositide-3-kinase signaling may abrogate the negative effects of epinephrine; however, these did not rescue TrkB signaling in our experiments. Taken together, these results show that (1) TrkB kinase signaling occurs in β cells and (2) use of epinephrine in studies of insulin secretion requires careful consideration of concentration-dependent effects. BDNF-TrkB signaling in β cells may underlie pro-survival or growth signaling and warrants further study.
Collapse
Affiliation(s)
- Michael A. Kalwat
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | | | | |
Collapse
|
83
|
Abstract
The islet of Langerhans is a complex endocrine micro-organ consisting of a multitude of endocrine and non-endocrine cell types. The two most abundant and prominent endocrine cell types, the beta and the alpha cells, are essential for the maintenance of blood glucose homeostasis. While the beta cell produces insulin, the only blood glucose-lowering hormone of the body, the alpha cell releases glucagon, which elevates blood glucose. Under physiological conditions, these two cell types affect each other in a paracrine manner. While the release products of the beta cell inhibit alpha cell function, the alpha cell releases factors that are stimulatory for beta cell function and increase glucose-stimulated insulin secretion. The aim of this review is to provide a comprehensive overview of recent research into the regulation of beta cell function by alpha cells, focusing on the effect of alpha cell-secreted factors, such as glucagon and acetylcholine. The consequences of differences in islet architecture between species on the interplay between alpha and beta cells is also discussed. Finally, we give a perspective on the possibility of using an in vivo imaging approach to study the interactions between human alpha and beta cells under in vivo conditions. Graphical abstract.
Collapse
Affiliation(s)
- Tilo Moede
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden.
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska Sjukhuset L1:03, 17176, Stockholm, Sweden
| |
Collapse
|
84
|
Aghelan Z, Kiani S, Nasiri A, Sadeghi M, Farrokhi A, Khodarahmi R. Factors Influencing Mitochondrial Function as a Key Mediator of Glucose-Induced Insulin Release: Highlighting Nicotinamide Nucleotide Transhydrogenase. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:107-122. [PMID: 32934948 PMCID: PMC7489113 DOI: 10.22088/ijmcm.bums.9.2.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic β-cells recognize blood glucose changes and release insulin that is a peptide hormone responsible for stable glycemia. Diabetes, a chronic disorder of insulin insufficiency, leads to disturbed glucose homeostasis and multi-organ problems. Glucose and insulin are key markers in the follow-up and control of this disease. Mitochondrial metabolism of pancreatic beta cells is a crucial part of glucose-stimulated cascade of insulin secretion. Effective factors on β-cells mitochondrial function in production of compounds such as tricarboxylic acid intermediates, glutamate, nicotinamide adenine dinucleotide phosphate, and reactive oxygen species can have great effects on the secretion of insulin under diabetes. This review enhances our knowledge of factors influencing mitochondrial function as a key mediator of glucose-induced insulin release that accordingly will be helpful to further our understanding of the mechanisms implicated in the progressive beta cell failure that results in diabetes.
Collapse
Affiliation(s)
- Zahra Aghelan
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abolfazl Nasiri
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Sadeghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Farrokhi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
85
|
Wang Q, Henry TAN, Pronin AN, Jang GF, Lubaczeuski C, Crabb JW, Bernal-Mizrachi E, Slepak VZ. The regulatory G protein signaling complex, Gβ5-R7, promotes glucose- and extracellular signal-stimulated insulin secretion. J Biol Chem 2020; 295:7213-7223. [PMID: 32229584 PMCID: PMC7247291 DOI: 10.1074/jbc.ra119.011534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/05/2020] [Indexed: 12/29/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important modulators of glucose-stimulated insulin secretion, essential for maintaining energy homeostasis. Here we investigated the role of Gβ5-R7, a protein complex consisting of the atypical G protein β subunit Gβ5 and a regulator of G protein signaling of the R7 family. Using the mouse insulinoma MIN6 cell line and pancreatic islets, we investigated the effects of G protein subunit β 5 (Gnb5) knockout on insulin secretion. Consistent with previous work, Gnb5 knockout diminished insulin secretion evoked by the muscarinic cholinergic agonist Oxo-M. We found that the Gnb5 knockout also attenuated the activity of other GPCR agonists, including ADP, arginine vasopressin, glucagon-like peptide 1, and forskolin, and, surprisingly, the response to high glucose. Experiments with MIN6 cells cultured at different densities provided evidence that Gnb5 knockout eliminated the stimulatory effect of cell adhesion on Oxo-M-stimulated glucose-stimulated insulin secretion; this effect likely involved the adhesion GPCR GPR56. Gnb5 knockout did not influence cortical actin depolymerization but affected protein kinase C activity and the 14-3-3ϵ substrate. Importantly, Gnb5-/- islets or MIN6 cells had normal total insulin content and released normal insulin amounts in response to K+-evoked membrane depolarization. These results indicate that Gβ5-R7 plays a role in the insulin secretory pathway downstream of signaling via all GPCRs and glucose. We propose that the Gβ5-R7 complex regulates a phosphorylation event participating in the vesicular trafficking pathway downstream of G protein signaling and actin depolymerization but upstream of insulin granule release.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Taylor A N Henry
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Alexey N Pronin
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136
| | - Geeng-Fu Jang
- Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Camila Lubaczeuski
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami School of Medicine, Miami, Florida 33136
| | - John W Crabb
- Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, University of Miami School of Medicine, Miami, Florida 33136
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136.
| |
Collapse
|
86
|
Cherkas A, Holota S, Mdzinarashvili T, Gabbianelli R, Zarkovic N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants (Basel) 2020; 9:antiox9020140. [PMID: 32033390 PMCID: PMC7070274 DOI: 10.3390/antiox9020140] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
A human organism depends on stable glucose blood levels in order to maintain its metabolic needs. Glucose is considered to be the most important energy source, and glycolysis is postulated as a backbone pathway. However, when the glucose supply is limited, ketone bodies and amino acids can be used to produce enough ATP. In contrast, for the functioning of the pentose phosphate pathway (PPP) glucose is essential and cannot be substituted by other metabolites. The PPP generates and maintains the levels of nicotinamide adenine dinucleotide phosphate (NADPH) needed for the reduction in oxidized glutathione and protein thiols, the synthesis of lipids and DNA as well as for xenobiotic detoxification, regulatory redox signaling and counteracting infections. The flux of glucose into a PPP—particularly under extreme oxidative and toxic challenges—is critical for survival, whereas the glycolytic pathway is primarily activated when glucose is abundant, and there is lack of NADP+ that is required for the activation of glucose-6 phosphate dehydrogenase. An important role of glycogen stores in resistance to oxidative challenges is discussed. Current evidences explain the disruptive metabolic effects and detrimental health consequences of chronic nutritional carbohydrate overload, and provide new insights into the positive metabolic effects of intermittent fasting, caloric restriction, exercise, and ketogenic diet through modulation of redox homeostasis.
Collapse
Affiliation(s)
- Andriy Cherkas
- Department of Internal Medicine # 1, Lviv National Medical University, 79010 Lviv, Ukraine
- Correspondence:
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Eastern European National University, 43025 Lutsk, Ukraine
| | - Tamaz Mdzinarashvili
- Institute of Medical and Applied Biophysics, I. Javakhishvili Tbilisi State University, 0128 Tbilisi, Georgia;
| | - Rosita Gabbianelli
- Unit of Molecular Biology, School of Pharmacy, University of Camerino, 62032 Camerino, Italy;
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Institute “Rudjer Boskovic”, HR-10000 Zagreb, Croatia;
| |
Collapse
|
87
|
Liu M, Ren L, Zhong X, Ding Y, Liu T, Liu Z, Yang X, Cui L, Yang L, Fan Y, Liu Y, Zhang Y. D2-Like Receptors Mediate Dopamine-Inhibited Insulin Secretion via Ion Channels in Rat Pancreatic β-Cells. Front Endocrinol (Lausanne) 2020; 11:152. [PMID: 32318020 PMCID: PMC7154177 DOI: 10.3389/fendo.2020.00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/04/2020] [Indexed: 11/25/2022] Open
Abstract
Dopamine (DA) has a vital role in the central nervous system and also modulates lipid and glucose metabolism. The present study aimed to investigate the effect of dopamine on insulin secretion and the underlying mechanisms in rat pancreatic β-cells. Data from the radioimmunoassay indicated that dopamine inhibited insulin secretion in a glucose- and dose-dependent manner. This inhibitory effect of dopamine was mediated mainly by D2-like receptors, but not D1-like receptors. Whole-cell patch-clamp recordings showed that dopamine decreased voltage-dependent Ca2+ channel currents, which could be reversed by inhibition of the D2-like receptor. Dopamine increased voltage-dependent potassium (KV) channel currents and shortened action potential duration, which was antagonized by inhibition of D2-like receptors. Further experiments showed that D2-like receptor activation by quinpirole increased KV channel currents. In addition, using calcium imaging techniques, we found that dopamine reduced intracellular Ca2+ concentration, which was also reversed by D2-like receptor antagonists. Similarly, quinpirole was found to decrease intracellular Ca2+ levels. Taken together, these findings demonstrate that dopamine inhibits insulin secretion mainly by acting on D2-like receptors, inhibiting Ca2+ channels, and activating Kv channels. This process results in shortened action potential duration and decreased intracellular Ca2+ levels in β-cells. This work offers new insights into a glucose-dependent mechanism whereby dopamine regulates insulin secretion.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Xiangqin Zhong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yaqin Ding
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Tao Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Zhihong Liu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Xiaohua Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Cui
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Lijun Yang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yanying Fan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yunfeng Liu
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Yi Zhang
| |
Collapse
|
88
|
Bai T, Yang H, Wang H, Zhi L, Liu T, Cui L, Liu W, Wang Y, Zhang M, Liu Y, Zhang Y. Inhibition of voltage-gated K+ channels mediates docosahexaenoic acid-stimulated insulin secretion in rat pancreatic β-cells. Food Funct 2020; 11:8893-8904. [DOI: 10.1039/d0fo01891k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kv channels play a vital role in DHA-augmented insulin secretion through GPR40/AC/cAMP/PLC signaling pathway in rat pancreatic β-cells.
Collapse
|
89
|
Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X. The Role of the Pentose Phosphate Pathway in Diabetes and Cancer. Front Endocrinol (Lausanne) 2020; 11:365. [PMID: 32582032 PMCID: PMC7296058 DOI: 10.3389/fendo.2020.00365] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
The pentose phosphate pathway (PPP) branches from glucose 6-phosphate (G6P), produces NADPH and ribose 5-phosphate (R5P), and shunts carbons back to the glycolytic or gluconeogenic pathway. The PPP has been demonstrated to be a major regulator for cellular reduction-oxidation (redox) homeostasis and biosynthesis. Enzymes in the PPP are reported to play important roles in many human diseases. In this review, we will discuss the role of the PPP in type 2 diabetes and cancer.
Collapse
|
90
|
Borck PC, Leite NDC, Valcanaia AC, Rickli S, Alípio JCDL, Machado M, Vellosa JC, Mathias PCDF, Boschero AC, Grassiolli S. Swimming training reduces glucose‐amplifying pathway and cholinergic responses in islets from lean‐ and MSG‐obese rats. Clin Exp Pharmacol Physiol 2019; 47:286-293. [DOI: 10.1111/1440-1681.13197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Patricia C. Borck
- Department of Structural and Functional Biology Institute of Biology University of Campinas/UNICAMP Campinas Brazil
| | - Nayara de C. Leite
- Department of Structural and Functional Biology Institute of Biology University of Campinas/UNICAMP Campinas Brazil
| | - Ana C. Valcanaia
- Biologica Science and Health Center University of West Parana (UNIOESTE) Cascavel Brazil
| | - Sarah Rickli
- Department of Structural and Functional Biology Institute of Biology University of Campinas/UNICAMP Campinas Brazil
| | | | - Michael Machado
- Department of Nursing University of Ponta Grossa/UEPG Ponta Grossa Brazil
| | - Jose C. Vellosa
- Department of Pharmaceutical Sciences University of Ponta Grossa/UEPG Ponta Grossa Brazil
| | - Paulo C. de F. Mathias
- Department of Biotechnology, Genetics and Cell Biology University of Maringá/UEM Maringa Brazil
| | - Antonio C. Boschero
- Department of Structural and Functional Biology Institute of Biology University of Campinas/UNICAMP Campinas Brazil
- Biologica Science and Health Center University of West Parana (UNIOESTE) Cascavel Brazil
| | - Sabrina Grassiolli
- Biologica Science and Health Center University of West Parana (UNIOESTE) Cascavel Brazil
| |
Collapse
|
91
|
Roma LP, Jonas JC. Nutrient Metabolism, Subcellular Redox State, and Oxidative Stress in Pancreatic Islets and β-Cells. J Mol Biol 2019; 432:1461-1493. [PMID: 31634466 DOI: 10.1016/j.jmb.2019.10.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
Insulin-secreting pancreatic β-cells play a critical role in blood glucose homeostasis and the development of type 2 diabetes (T2D) in the context of insulin resistance. Based on data obtained at the whole cell level using poorly specific chemical probes, reactive oxygen species (ROS) such as superoxide and hydrogen peroxide have been proposed to contribute to the stimulation of insulin secretion by nutrients (positive role) and to the alterations of cell survival and secretory function in T2D (negative role). This raised the controversial hypothesis that any attempt to decrease β-cell oxidative stress and apoptosis in T2D would further impair insulin secretion. Over the last decade, the development of genetically-encoded redox probes that can be targeted to cellular compartments of interest and are specific of redox couples allowed the evaluation of short- and long-term effects of nutrients on β-cell redox changes at the subcellular level. The data indicated that the nutrient regulation of β-cell redox signaling and ROS toxicity is far more complex than previously thought and that the subcellular compartmentation of these processes cannot be neglected when evaluating the mechanisms of ROS production or the efficacy of antioxidant enzymes and antioxidant drugs under glucolipotoxic conditions and in T2D. In this review, we present what is currently known about the compartmentation of redox homeostatic systems and tools to investigate it. We then review data about the effects of nutrients on β-cell subcellular redox state under normal conditions and in the context of T2D and discuss challenges and opportunities in the field.
Collapse
Affiliation(s)
- Leticia P Roma
- Universität des Saarlandes, Biophysics Department, Center for Human and Molecular Biology, Kirbergerstrasse Building 48, 66421, Homburg/Saar, Germany
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), B-1200 Brussels, Belgium.
| |
Collapse
|
92
|
Arsenijevic T, Perret J, Van Laethem JL, Delporte C. Aquaporins Involvement in Pancreas Physiology and in Pancreatic Diseases. Int J Mol Sci 2019; 20:E5052. [PMID: 31614661 PMCID: PMC6834120 DOI: 10.3390/ijms20205052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
Aquaporins are a family of transmembrane proteins permeable to water. In mammals, they are subdivided into classical aquaporins that are permeable to water; aquaglyceroporins that are permeable to water, glycerol and urea; peroxiporins that facilitate the diffusion of H2O2 through cell membranes; and so called unorthodox aquaporins. Aquaporins ensure important physiological functions in both exocrine and endocrine pancreas. Indeed, they are involved in pancreatic fluid secretion and insulin secretion. Modification of aquaporin expression and/or subcellular localization may be involved in the pathogenesis of pancreatic insufficiencies, diabetes and pancreatic cancer. Aquaporins may represent useful drug targets for the treatment of pathophysiological conditions affecting pancreatic function, and/or diagnostic/predictive biomarker for pancreatic cancer. This review summarizes the current knowledge related to the involvement of aquaporins in the pancreas physiology and physiopathology.
Collapse
Affiliation(s)
- Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium.
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Erasme, Université Libre de Bruxelles, 808, Route de Lennik, 1070 Brussels, Belgium.
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium.
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Erasme, Université Libre de Bruxelles, 808, Route de Lennik, 1070 Brussels, Belgium.
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| |
Collapse
|
93
|
PACAP stimulates insulin secretion by PAC1 receptor and ion channels in β-cells. Cell Signal 2019; 61:48-56. [DOI: 10.1016/j.cellsig.2019.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023]
|
94
|
Pedersen MG, Tagliavini A, Henquin JC. Calcium signaling and secretory granule pool dynamics underlie biphasic insulin secretion and its amplification by glucose: experiments and modeling. Am J Physiol Endocrinol Metab 2019; 316:E475-E486. [PMID: 30620637 DOI: 10.1152/ajpendo.00380.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glucose-stimulated insulin secretion from pancreatic β-cells is controlled by a triggering pathway that culminates in calcium influx and regulated exocytosis of secretory granules, and by a less understood amplifying pathway that augments calcium-induced exocytosis. In response to an abrupt increase in glucose concentration, insulin secretion exhibits a first peak followed by a lower sustained second phase. This biphasic secretion pattern is disturbed in diabetes. It has been attributed to depletion and subsequent refilling of a readily releasable pool of granules or to the phasic cytosolic calcium dynamics induced by glucose. Here, we apply mathematical modeling to experimental data from mouse islets to investigate how calcium and granule pool dynamics interact to control dynamic insulin secretion. Experimental calcium traces are used as inputs in three increasingly complex models of pool dynamics, which are fitted to insulin secretory patterns obtained using a set of protocols of glucose and tolbutamide stimulation. New calcium and secretion data for so-called staircase protocols, in which the glucose concentration is progressively increased, are presented. These data can be reproduced without assuming any heterogeneity in the model, in contrast to previous modeling, because of nontrivial calcium dynamics. We find that amplification by glucose can be explained by increased mobilization and priming of granules. Overall, our results indicate that calcium dynamics contribute substantially to shaping insulin secretion kinetics, which implies that better insight into the events creating phasic calcium changes in human β-cells is needed to understand the cellular mechanisms that disturb biphasic insulin secretion in diabetes.
Collapse
Affiliation(s)
- Morten Gram Pedersen
- Department of Information Engineering, University of Padova , Padova , Italy
- Department of Mathematics "Tullio Levi-Civita, " University of Padova , Padova , Italy
- Padova Neuroscience Center, University of Padova , Padova , Italy
| | - Alessia Tagliavini
- Department of Information Engineering, University of Padova , Padova , Italy
| | - Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain , Brussels , Belgium
| |
Collapse
|
95
|
Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomed Pharmacother 2019; 111:947-957. [PMID: 30841474 DOI: 10.1016/j.biopha.2018.12.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 12/19/2022] Open
Abstract
Although the currently available antidiabetic medications are effective in managing hyperglycemia, vascular complications are common in diabetic patients. Cohort studies have shown preserved beta cell function has a protective role against the development of diabetic complications. Accordingly, beta cell mass and function are important pharmacological targets in the field of diabetes. Growing number of evidence supports the efficacy of flavonoids (e.g., quercetin, kaempferol, luteolin, and epicatechin) for prevention and attenuation of diabetes consequences. The focus of this paper is to give an overview regarding the effects of flavonoids on pancreatic beta cells. Experiments on insulin-releasing cell lines, isolated pancreatic islets, and diabetic animal models have shown that flavonoids strengthen the survival processes and insulin secretory capacity of beta cells. The proposed mechanisms by which flavonoids preserve beta cells survival (against cytokines, glucotoxicity, and lipotoxicity) include inhibition of NF-κB signaling, activation of PI3K/Akt pathway, inhibition of nitric oxide generation, and decrease of reactive oxygen species levels. Improving mitochondrial bioenergetic function and stimulating pathways of insulin secretion (e.g., PLC/PKC and/or cAMP/PKA signaling) are mechanisms by which flavonoids improve the secretory capacity of beta cells. These beneficial effects of flavonoids are of great importance because may protect beta cells of diabetic patients before dramatic dysfunction and degeneration.
Collapse
Affiliation(s)
- Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Shafiee-Nick
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
96
|
Sanchez-Andres JV, Malaisse WJ, Kojima I. Electrophysiology of the pancreatic islet β-cell sweet taste receptor TIR3. Pflugers Arch 2018; 471:647-654. [PMID: 30552496 DOI: 10.1007/s00424-018-2237-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
Over recent years, the presence of the sweet taste receptor TIR3 in rodent and human insulin-producing pancreatic islet β-cells was documented. The activation of this receptor by sweet-tasting sucralose mimics several biochemical and functional effects of D-glucose in the β-cells. The present study extends this analogy to the bioelectrical response of β-cells. In this respect, sucralose was inefficient in the absence of D-glucose, but induced on occasion electrical activity in mouse β-cells exposed to low non-stimulatory concentrations of the hexose and potentiated, in a concentration-related manner, the response to stimulatory concentrations of D-glucose. These data indicate that sucralose, acting as an agonist of the TIR3 receptor, exerts an excitatory effect upon pancreatic β-cell bioelectrical activity.
Collapse
Affiliation(s)
| | - Willy J Malaisse
- Department of Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Itaru Kojima
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
97
|
Sedwick C. Probing insulin secretion with a new tool. J Gen Physiol 2018; 150:1595. [PMID: 30455181 PMCID: PMC6279365 DOI: 10.1085/jgp.201812283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
JGP study explains how chromomycin A2 affects insulin secretion.
Collapse
|
98
|
Abstract
The brain hosts a vast and diverse repertoire of neuropeptides, a class of signalling molecules often described as neurotransmitters. Here I argue that this description entails a catalogue of misperceptions, misperceptions that feed into a narrative in which information processing in the brain can be understood only through mapping neuronal connectivity and by studying the transmission of electrically conducted signals through chemical synapses. I argue that neuropeptide signalling in the brain involves primarily autocrine, paracrine and neurohormonal mechanisms that do not depend on synaptic connectivity and that it is not solely dependent on electrical activity but on mechanisms analogous to secretion from classical endocrine cells. As in classical endocrine systems, to understand the role of neuropeptides in the brain, we must understand not only how their release is regulated, but also how their synthesis is regulated and how the sensitivity of their targets is regulated. We must also understand the full diversity of effects of neuropeptides on those targets, including their effects on gene expression.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Correspondence should be addressed to G Leng:
| |
Collapse
|
99
|
Frank JA, Broichhagen J, Yushchenko DA, Trauner D, Schultz C, Hodson DJ. Optical tools for understanding the complexity of β-cell signalling and insulin release. Nat Rev Endocrinol 2018; 14:721-737. [PMID: 30356209 DOI: 10.1038/s41574-018-0105-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Following stimulation, pancreatic β-cells must orchestrate a plethora of signalling events to ensure the appropriate release of insulin and maintenance of normal glucose homeostasis. Failure at any point in this cascade leads to impaired insulin secretion, elevated blood levels of glucose and eventually type 2 diabetes mellitus. Likewise, β-cell replacement or regeneration strategies for the treatment of both type 1 and type 2 diabetes mellitus might fail if the correct cell signalling phenotype cannot be faithfully recreated. However, current understanding of β-cell function is complicated because of the highly dynamic nature of their intracellular and intercellular signalling as well as insulin release itself. β-Cells must precisely integrate multiple signals stemming from multiple cues, often with differing intensities, frequencies and cellular and subcellular localizations, before converging these signals onto insulin exocytosis. In this respect, optical approaches with high resolution in space and time are extremely useful for properly deciphering the complexity of β-cell signalling. An increased understanding of β-cell signalling might identify new mechanisms underlying insulin release, with relevance for future drug therapy and de novo stem cell engineering of functional islets.
Collapse
Affiliation(s)
- James A Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Dmytro A Yushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dirk Trauner
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, New York University, New York, NY, USA
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany.
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
100
|
Kalwat MA, Hwang IH, Macho J, Grzemska MG, Yang JZ, McGlynn K, MacMillan JB, Cobb MH. Chromomycin A 2 potently inhibits glucose-stimulated insulin secretion from pancreatic β cells. J Gen Physiol 2018; 150:1747-1757. [PMID: 30352794 PMCID: PMC6279362 DOI: 10.1085/jgp.201812177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
Drugs that target insulin secretion are useful to understand β cell function and the pathogenesis of diabetes. Kalwat et al. investigate an aureolic acid that inhibits insulin secretion and reveal that it disrupts Wnt signaling, interferes with gene expression, and suppresses Ca2+ influx in β cells. Modulators of insulin secretion could be used to treat diabetes and as tools to investigate β cell regulatory pathways in order to increase our understanding of pancreatic islet function. Toward this goal, we previously used an insulin-linked luciferase that is cosecreted with insulin in MIN6 β cells to perform a high-throughput screen of natural products for chronic effects on glucose-stimulated insulin secretion. In this study, using multiple phenotypic analyses, we found that one of the top natural product hits, chromomycin A2 (CMA2), potently inhibited insulin secretion by at least three potential mechanisms: disruption of Wnt signaling, interference of β cell gene expression, and partial suppression of Ca2+ influx. Chronic treatment with CMA2 largely ablated glucose-stimulated insulin secretion even after washout, but it did not inhibit glucose-stimulated generation of ATP or Ca2+ influx. However, by using the KATP channel opener diazoxide, we uncovered defects in depolarization-induced Ca2+ influx that may contribute to the suppressed secretory response. Glucose-responsive ERK1/2 and S6 phosphorylation were also disrupted by chronic CMA2 treatment. By querying the FUSION bioinformatic database, we revealed that the phenotypic effects of CMA2 cluster with a number of Wnt–GSK3 pathway-related genes. Furthermore, CMA2 consistently decreased GSK3β phosphorylation and suppressed activation of a β-catenin activity reporter. CMA2 and a related compound, mithramycin, are known to have DNA interaction properties, possibly abrogating transcription factor binding to critical β cell gene promoters. We observed that CMA2 but not mithramycin suppressed expression of PDX1 and UCN3. However, neither expression of INSI/II nor insulin content was affected by chronic CMA2. The mechanisms of CMA2-induced insulin secretion defects may involve components both proximal and distal to Ca2+ influx. Therefore, CMA2 is an example of a chemical that can simultaneously disrupt β cell function through both noncytotoxic and cytotoxic mechanisms. Future therapeutic applications of CMA2 and similar aureolic acid analogues should consider their potential effects on pancreatic islet function.
Collapse
Affiliation(s)
- Michael A Kalwat
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - In Hyun Hwang
- Department of Pharmacy, Woosuk University, Wanju, South Korea
| | - Jocelyn Macho
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA
| | - Magdalena G Grzemska
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jonathan Z Yang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kathleen McGlynn
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| | - John B MacMillan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|