51
|
Mai S, Inkielewicz-Stepniak I. Pancreatic Cancer and Platelets Crosstalk: A Potential Biomarker and Target. Front Cell Dev Biol 2021; 9:749689. [PMID: 34858977 PMCID: PMC8631477 DOI: 10.3389/fcell.2021.749689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Platelets have been recognized as key players in hemostasis, thrombosis, and cancer. Preclinical and clinical researches evidenced that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between cancer cells and platelets. Pancreatic cancer is a devastating disease with high morbidity and mortality worldwide. Although the relationship between pancreatic cancer and platelets in clinical diagnosis is described, the interplay between pancreatic cancer and platelets, the underlying pathological mechanism and pathways remain a matter of intensive study. This review summaries recent researches in connections between platelets and pancreatic cancer. The existing data showed different underlying mechanisms were involved in their complex crosstalk. Typically, pancreatic tumor accelerates platelet aggregation which forms thrombosis. Furthermore, extracellular vesicles released by platelets promote communication in a neoplastic microenvironment and illustrate how these interactions drive disease progression. We also discuss the advantages of novel model organoids in pancreatic cancer research. A more in-depth understanding of tumor and platelets crosstalk which is based on organoids and translational therapies may provide potential diagnostic and therapeutic strategies for pancreatic cancer progression.
Collapse
Affiliation(s)
- Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
52
|
Nan H, Zhou L, Liang W, Meng J, Lin K, Li M, Hou J, Wang L. Epigenetically associated CCL20 upregulation correlates with esophageal cancer progression and immune disorder. Pathol Res Pract 2021; 228:153683. [PMID: 34798484 DOI: 10.1016/j.prp.2021.153683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023]
Abstract
Chemokines have distinct effects on tumor progression by affecting cancer immunity and tumorigenesis. However, the characteristic chemokine profiles and their roles in immune cell recruitment and cancer cell biology are not entirely understood in esophageal cancer. Here, we scrutinized chemokine's expression profiles in independent esophageal cancer cohorts and identified the elevated CCL20 as a risk factor to predict patients' prognosis regardless of histology subtypes. Enhanced CCL20 expression was also associated with the acquisition of metastatic potential. Mechanistically, the upregulation of CCL20 in tumor cells was associated with promoter hypomethylation. Furthermore, by analyzing single-cell RNA sequencing data of a mouse model mimicking human ESCC development, we observed an imbalance among CD4+ T subtypes in the tumor microenvironment, namely Ccr6+ Th17 and Treg cells infiltration alongside the elevated Ccl20 expression in abnormal epithelial cells during the tumorigenic process. Together, these results reveal that hypomethylation-induced CCL20 promotes esophageal cancer progression and immune disorder. Targeting CCL20 might be a promising therapeutic approach in esophageal cancer.
Collapse
Affiliation(s)
- Hongxing Nan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lisha Zhou
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Weihua Liang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jin Meng
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Ke Lin
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Man Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China; Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Lianghai Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
53
|
Zhao C, Pang X, Yang Z, Wang S, Deng H, Chen X. Nanomaterials targeting tumor associated macrophages for cancer immunotherapy. J Control Release 2021; 341:272-284. [PMID: 34813877 DOI: 10.1016/j.jconrel.2021.11.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022]
Abstract
Tumor-associated macrophages (TAMs) play an important role in regulating tumor growth, invasion and metastasis, and constitute approximately 50% of tumor mass. TAMs can exist in two different subtypes, M1-polarized phenotype (pro-inflammatory and immunostimulatory) and M2-polarized phenotype (immunosuppressive myeloid cells). M2 macrophages can suppress CD8+ T cells to support tumor survival. A number of biological strategies aimed at engineering macrophages to modulate the tumor immune microenvironment remain at the forefront of cancer research. Here, we review the different therapeutic strategies that have been developed based on nanotechnology to modulate macrophage functions, such as inhibition of macrophage recruitment to tumor, depletion of M2-polarized macrophages, reprograming of M2-polarized macrophages to M1-polarized macrophages, and blocking of the CD47-signal-regulatory protein alpha (CD47-SIRPα) pathway. Furthermore, we also discuss how to image TAMs with nanoparticles to unravel novel treatment options and observe their responses to the various therapies. Overall, macrophage-mediated immune modulation based on nanotechnology can be further investigated to be effectively developed as an immunoadjuvant therapy against different cancers.
Collapse
Affiliation(s)
- Caiyan Zhao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xiaoyu Pang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
| | - Zuo Yang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Sheng Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
| | - Hongzhang Deng
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore 119228, Singapore.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore 119228, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
54
|
Cobb LP, Siamakpour-Reihani S, Zhang D, Qin X, Owzar K, Zhou C, Conrads TP, Maxwell GL, Darcy KM, Bateman NW, Litzi T, Bae-Jump V, Secord AA. Obesity and altered angiogenic-related gene expression in endometrial cancer. Gynecol Oncol 2021; 163:320-326. [PMID: 34538531 PMCID: PMC11018267 DOI: 10.1016/j.ygyno.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Evaluate association between obesity and angiogenic-related gene expression in endometrial cancer (EC). Evaluate interaction between diet and metformin on angiogenic-related gene expression. METHODS We evaluated the association between 168 human angiogenic-related genes and body mass index (BMI) in the TCGA Uterine Corpus Endometrial Carcinoma cohort (endometrioid endometrial cancer (EEC) cohort n = 290, and copy number high cohort n = 55), an independent validation cohort from Gynecologic Cancer Center of Excellence (GYN-COE) (n = 62) and corresponding 185 homologous mouse genes in an LKB1fl/flp53fl/fl mouse model of EC (n = 20). Mice received 60% of calories from fat in a high-fat diet (HFD), mimicking diet-induced obesity, versus 10% of calories from fat in a low-fat diet (LFD). After tumor growth, HFD (n = 5) and LFD (n = 5) mice were treated with metformin (200 mg/kg/day) or control. Whole transcriptome analysis of mouse tumors was performed using RNA-Seq. RESULTS At a false-discovery rate of 10%, twenty-one angiogenic-related genes were differentially expressed with respect to BMI when adjusting for grade in the TCGA EEC cohort. Evaluation of these genes in the mouse model control group revealed association between increased Edil3 expression in HFD versus LFD mice (2.5-fold change (FC); unadjusted p = 0.03). An interaction was observed for expression of Edil3 between diet and metformin treatment (unadjusted p = 0.009). Association between BMI and increased expression of EDIL3 was validated in one of four EDIL3 probesets in the GYN-COE cohort (p = 0.0011, adjusted p = 0.0342). CONCLUSIONS Obesity may promote tumor progression via differential modulation of angiogenic pathways in EEC. Our exploratory findings demonstrated that EDIL3 may be a candidate gene of interest.
Collapse
Affiliation(s)
- Lauren Patterson Cobb
- Department of Gynecologic Oncology and Reproductive Medicine, MD Anderson Cancer Center, Houston, TX, USA; Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.
| | - Sharareh Siamakpour-Reihani
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University Medical Center, USA
| | - Dadong Zhang
- Bioinformatics Shared Resource, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Xiaodi Qin
- Bioinformatics Shared Resource, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Kouros Owzar
- Bioinformatics Shared Resource, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA; Duke Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas P Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA; Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA
| | - G Larry Maxwell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA; Women's Health Integrated Research Center, Women's Service Line, Inova Health System, Falls Church, VA, USA; Inova Schar Cancer Institute, Inova Center for Personalized Health, Falls Church, VA, USA
| | - Kathleen M Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Nicholas W Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Tracy Litzi
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Walter Reed National Military Medical Center, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angeles Alvarez Secord
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
55
|
Jiang X, Zheng J, Liu L, Jiang K, Wen Y, Yan Y, Liu Y, Zhong L, Huang Y, Yao Z, Nie K, Zheng Z, Pan J, Liu P, Zhuang K, Liu F, Xu S, Li P. CXCR4 is a Novel Biomarker Correlated With Malignant Transformation and Immune Infiltrates in Gastric Precancerous Lesions. Front Mol Biosci 2021; 8:697993. [PMID: 34676245 PMCID: PMC8523893 DOI: 10.3389/fmolb.2021.697993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background: As early gastric cancer (EGC) has a far better prognosis than advanced gastric cancer (GC), early diagnosis and treatment are essential. However, understanding the mechanism of the process from gastric precancerous lesion (GPL) becoming EGC has made little advances. Besides, biomarkers that can monitor the progression of GPL-to-GC are still much insufficient. Methods: Key gene modules associated with GPL progression to EGC were identified by integrating two GPL-related data sets, GSE55696 and GSE130823, using the WGCNA method. Combining with the TCGA-STAD cohort, hub genes were identified. Immunofluorescence was conducted to validate the expression. To explore the implication of hub genes in GPL malignant transformation, a correlation test was conducted to identify their co-expression genes, co-expression cytokines, and co-expression immune cells. Least absolute shrinkage and selection operator (LASSO) Cox regression was applied to shrink CXCR4-related predictors and construct a prognostic model. Functional enrichment was applied for exploring the potential mechanism. Results: The green module in GSE55696 and the yellow module in GSE130823 were regarded as key gene modules associated with GPL progression to EGC, and 219 intersection genes from them were mainly enriched in critical immune biological processes. Combining with the TCGA-STAD cohort, CXCR4 was identified as a novel biomarker correlated with the malignant transformation of GPL, the positive rate of which was increased with GPL progression according to immunofluorescence. CXCR4 co-expression genes were found mainly involved in regulation of actin. CXCR4 co-expression cytokines were enriched in regulation of chemotaxis, cell chemotaxis, mononuclear cell migration, leukocyte chemotaxis, etc. As for co-expression immune cells, the expression level of CXCR4 was positively correlated with the abundance of macrophages but negatively correlated with that of effector memory T cells and NKT cells during GPL malignant transformation. In addition, the CXCR4-related prognostic model was able to predict the prognosis of GC and serve as an independent predictor for overall survival (OS). Conclusions: CXCR4 was a novel biomarker correlated with malignant transformation of GPL and played a vital role in the control of tumor immunity. CXCR4 is possible to serve as a therapeutic target for malignant transformation of GPL.
Collapse
Affiliation(s)
- Xiaotao Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junhui Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanxing Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kailin Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhua Yan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yufeng Liu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Limei Zhong
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yuancheng Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhengyang Yao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kechao Nie
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihua Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinglin Pan
- Department of Gastroenterology, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
| | - Peng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kunhai Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijie Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiwu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
56
|
Chen J, Liang T, Cen J, Jiang J, Pan S, Huang S, Chen L, Sun X, Li H, Chen T, Liang W, Liao S, Yu C, Yao Y, Ye Z, Chen W, Guo H, Zhan X, Liu C. A seven-gene signature and the C-C motif chemokine receptor family genes are the sarcoma-related immune genes. Bioengineered 2021; 12:7616-7630. [PMID: 34605725 PMCID: PMC8806857 DOI: 10.1080/21655979.2021.1981797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cells of the tumor microenvironment exert a vital influence on sarcoma prognosis. This study aimed to analyze and identify differentially expressed genes (DEGs) related to immunity and their significance as immune biomarkers for the accurate prediction of overall survival of patients with sarcoma. The Cancer Genome Atlas was adopted for obtaining sarcoma gene microarray and corresponding clinical information. ESTIMATE algorithm was used to calculate tumor immune microenvironment indices. Immune-associated DEGs were identified using the limma packages and were further analyzed using the ClusterProfiler package and STRING website. Based on the results of these analyses, we constructed a prognostic model. Furthermore, we assessed the prognosis prediction model through functional evaluation and analysis of GSE17674. The functional analysis revealed that the upregulated immune DEGs were related to immune-related aspects. Chemokine ligands/receptors and immune-related genes were found to be vital for sarcoma formation and progression. We established a prognostic signature of seven genes, which indicated that high-risk cases exhibit poor prognostic outcome. The prognostic signature constructed in this study can accurately predict the overall prognosis in patients with sarcoma. Moreover, the novel immune gene expression analysis may provide clinical guidance for predicting prognosis in patients with sarcoma.
Collapse
Affiliation(s)
- Jiarui Chen
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tuo Liang
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiemei Cen
- Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jie Jiang
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shixin Pan
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shengsheng Huang
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Liyi Chen
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xuhua Sun
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Hao Li
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tianyou Chen
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wei Liang
- Research Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shian Liao
- Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chaojie Yu
- Bone and Soft Tissue Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yuanlin Yao
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhen Ye
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wuhua Chen
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Hao Guo
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xinli Zhan
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chong Liu
- Spine and Osteopathy Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
57
|
Zhao X, Yang X, Wang X, Zhao X, Zhang Y, Liu S, Anderson GJ, Kim SJ, Li Y, Nie G. Penetration Cascade of Size Switchable Nanosystem in Desmoplastic Stroma for Improved Pancreatic Cancer Therapy. ACS NANO 2021; 15:14149-14161. [PMID: 34478262 DOI: 10.1021/acsnano.0c08860] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells are surrounded by a dense extracellular matrix (ECM), which greatly restricts the access of therapeutic agents, resulting in poor clinical response to chemotherapy. Transforming growth factor-β1 (TGF-β1) signaling plays a crucial role in construction of the desmoplastic stroma and provides potential targets for PDAC therapy. To surmount the pathological obstacle, we developed a size switchable nanosystem based on PEG-PLGA nanospheres encapsulated within liposomes for the combined delivery of vactosertib (VAC), a TGF-β1 receptor kinase inhibitor, and the cytotoxic drug paclitaxel (TAX). By surface modification of the liposomes with a peptide, APTEDB, the nanosystem can be anchored to abundant tumor-associated fibronectin in PDAC stroma and decreases its size by releasing encapsulated TAX-loaded nanospheres, as well as VAC after collapse of the liposomes. The inhibition of ECM hyperplasia by VAC allows TAX more ready access to the cancer cells in addition to its small size, thereby shrinking pancreatic tumor xenografts more effectively than a combination of the free drugs. This size switchable nanosystem enables sequential delivery of drugs at a fixed dose combination with simplified administration and provides an encouraging cascade approach of drug penetration for enhanced chemotherapy in cancers with a dense desmoplastic stroma.
Collapse
Affiliation(s)
- Xiaozheng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xudong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Shaoli Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul 06668, Republic of Korea
- Medpacto Inc., 92 Myeongdal-ro, Seocho-gu, Seoul 06668, Republic of Korea
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
58
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
59
|
Gu Z, Du Y, Zhao X, Wang C. Tumor microenvironment and metabolic remodeling in gemcitabine-based chemoresistance of pancreatic cancer. Cancer Lett 2021; 521:98-108. [PMID: 34461181 DOI: 10.1016/j.canlet.2021.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid malignant tumor with a very low operative rate and a poor patient prognosis. Therefore, gemcitabine (GEM)-based chemotherapy remains one of the most important treatment choices for PDAC. However, the efficacy of GEM monotherapy or GEM combination chemotherapy in improving the survival of patients with advanced PDAC is very limited, primarily due to GEM resistance. The mechanism of GEM resistance is complex and unclear. An extensive and dense fibrous matrix in the tumor microenvironment (TME) is an important feature of PDAC. Increasing evidence indicates that this fibrotic TME not only actively participates in the growth and spread of PDAC but also contributes to the induction of GEM resistance. Metabolic remodeling reduces GEM transport and synthesis in PDAC. This review focuses on the main cellular and molecular mechanisms underlying the involvement of the extracellular matrix (ECM), immune cells, and metabolic remodeling in the induction of GEM resistance; highlights the prospect of targeting the TME as an essential strategy to overcome GEM resistance; and provides new precise interventions for chemotherapy sensitization and improving the overall prognosis of patients with PDAC.
Collapse
Affiliation(s)
- Zongting Gu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yongxing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xueping Zhao
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chengfeng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
60
|
Mao M, Ling H, Lin Y, Chen Y, Xu B, Zheng R. Construction and Validation of an Immune-Based Prognostic Model for Pancreatic Adenocarcinoma Based on Public Databases. Front Genet 2021; 12:702102. [PMID: 34335699 PMCID: PMC8318842 DOI: 10.3389/fgene.2021.702102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a highly lethal and aggressive tumor with poor prognoses. The predictive capability of immune-related genes (IRGs) in PAAD has yet to be explored. We aimed to explore prognostic-related immune genes and develop a prediction model for indicating prognosis in PAAD. Methods The messenger (m)RNA expression profiles acquired from public databases were comprehensively integrated and differentially expressed genes were identified. Univariate analysis was utilized to identify IRGs that related to overall survival. Whereafter, a multigene signature in the Cancer Genome Atlas cohort was established based on the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Moreover, a transcription factors regulatory network was constructed to reveal potential molecular processes in PAAD. PAAD datasets downloaded from the Gene Expression Omnibus database were applied for the validations. Finally, correlation analysis between the prognostic model and immunocyte infiltration was investigated. Results Totally, 446 differentially expressed immune-related genes were screened in PAAD tissues and normal tissues, of which 43 IRGs were significantly related to the overall survival of PAAD patients. An immune-based prognostic model was developed, which contained eight IRGs. Univariate and multivariate Cox regression revealed that the risk score model was an independent prognostic indicator in PAAD (HR > 1, P < 0.001). Besides, the sensitivity of the model was evaluated by the receiver operating characteristic curve analysis. Finally, immunocyte infiltration analysis revealed that the eight-gene signature possibly played a pivotal role in the status of the PAAD immune microenvironment. Conclusion A novel prognostic model based on immune genes may serve to characterize the immune microenvironment and provide a basis for PAAD immunotherapy.
Collapse
Affiliation(s)
- Miaobin Mao
- The Graduate School, Fujian Medical University, Fuzhou, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Hongjian Ling
- The Graduate School, Fujian Medical University, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Yuping Lin
- The Graduate School, Fujian Medical University, Fuzhou, China.,Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.,Union Clinical Medicine College, Fujian Medical University, Fuzhou, China.,College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
61
|
Khare T, Bissonnette M, Khare S. CXCL12-CXCR4/CXCR7 Axis in Colorectal Cancer: Therapeutic Target in Preclinical and Clinical Studies. Int J Mol Sci 2021; 22:7371. [PMID: 34298991 PMCID: PMC8305488 DOI: 10.3390/ijms22147371] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Chemokines are chemotactic cytokines that promote cancer growth, metastasis, and regulate resistance to chemotherapy. Stromal cell-derived factor 1 (SDF1) also known as C-X-C motif chemokine 12 (CXCL12), a prognostic factor, is an extracellular homeostatic chemokine that is the natural ligand for chemokine receptors C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or cluster of differentiation 184 (CD184) and chemokine receptor type 7 (CXCR7). CXCR4 is the most widely expressed rhodopsin-like G protein coupled chemokine receptor (GPCR). The CXCL12-CXCR4 axis is involved in tumor growth, invasion, angiogenesis, and metastasis in colorectal cancer (CRC). CXCR7, recently termed as atypical chemokine receptor 3 (ACKR3), is amongst the G protein coupled cell surface receptor family that is also commonly expressed in a large variety of cancer cells. CXCR7, like CXCR4, regulates immunity, angiogenesis, stem cell trafficking, cell growth and organ-specific metastases. CXCR4 and CXCR7 are expressed individually or together, depending on the tumor type. When expressed together, CXCR4 and CXCR7 can form homo- or hetero-dimers. Homo- and hetero-dimerization of CXCL12 and its receptors CXCR4 and CXCR7 alter their signaling activity. Only few drugs have been approved for clinical use targeting CXCL12-CXCR4/CXCR7 axis. Several CXCR4 inhibitors are in clinical trials for solid tumor treatment with limited success whereas CXCR7-specific inhibitors are still in preclinical studies for CRC. This review focuses on current knowledge of chemokine CXCL12 and its receptors CXCR4 and CXCR7, with emphasis on targeting the CXCL12-CXCR4/CXCR7 axis as a treatment strategy for CRC.
Collapse
Affiliation(s)
- Tripti Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Marc Bissonnette
- Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| | - Sharad Khare
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| |
Collapse
|
62
|
Liu H, Shi Y, Qian F. Opportunities and delusions regarding drug delivery targeting pancreatic cancer-associated fibroblasts. Adv Drug Deliv Rev 2021; 172:37-51. [PMID: 33705881 DOI: 10.1016/j.addr.2021.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
A dense desmoplastic stroma formed by abundant extracellular matrix and stromal cells, including cancer-associated fibroblasts (CAFs) and immune cells, is a feature of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal cancer types. As the dominant cellular component of the PDAC stroma, CAFs orchestrate intensive and biologically diverse crosstalk with pancreatic cancer cells and immune cells and contribute to a unique PDAC tumor microenvironment promoting cancer proliferation, metastasis, and resistance against both chemo- and immunotherapies. Therefore, CAFs and CAF-related mechanisms have emerged as promising targets for PDAC therapy. However, several clinical setbacks and accumulating knowledge of the PDAC stroma have revealed the heterogeneity and multifaceted biological roles of CAFs, and concerns regarding "what to deliver" and "how to deliver" have arisen when designing CAF-targeted drug delivery systems to specifically inhibit tumor-supporting CAFs without impairing tumor-restricting CAFs. In this review, we will discuss the complexity of CAFs in the PDAC stroma as well as the potential opportunities and common misconceptions regarding drug delivery efforts targeting PDAC CAFs.
Collapse
Affiliation(s)
- Huiqin Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
63
|
Barman S, Fatima I, Singh AB, Dhawan P. Pancreatic Cancer and Therapy: Role and Regulation of Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22094765. [PMID: 33946266 PMCID: PMC8124621 DOI: 10.3390/ijms22094765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 12/21/2022] Open
Abstract
Despite significant improvements in clinical management, pancreatic cancer (PC) remains one of the deadliest cancer types, as it is prone to late detection with extreme metastatic properties. The recent findings that pancreatic cancer stem cells (PaCSCs) contribute to the tumorigenesis, progression, and chemoresistance have offered significant insight into the cancer malignancy and development of precise therapies. However, the heterogeneity of cancer and signaling pathways that regulate PC have posed limitations in the effective targeting of the PaCSCs. In this regard, the role for K-RAS, TP53, Transforming Growth Factor-β, hedgehog, Wnt and Notch and other signaling pathways in PC progression is well documented. In this review, we discuss the role of PaCSCs, the underlying molecular and signaling pathways that help promote pancreatic cancer development and metastasis with a specific focus on the regulation of PaCSCs. We also discuss the therapeutic approaches that target different PaCSCs, intricate mechanisms, and therapeutic opportunities to eliminate heterogeneous PaCSCs populations in pancreatic cancer.
Collapse
Affiliation(s)
- Susmita Barman
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, Omaha, NE 68198, USA; (S.B.); (I.F.); (A.B.S.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence:
| |
Collapse
|
64
|
Gu ZT, Li ZZ, Wang CF. Advances in research of extracellular mechanisms underlying gemcitabine resistance in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:421-434. [DOI: 10.11569/wcjd.v29.i8.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a solid malignant tumor with the worst prognosis worldwide, and about 90% of cases are pancreatic ductal adenocarcinoma (PDAC). Although surgical resection is the only potential way to cure PDAC, the overall survival rate after surgery is still not optimistic. Consequently, gemcitabine (GEM)-based chemotherapy is still one of the most important treatment options for PDAC. However, the survival improvement by GEM monotherapy for advanced PDAC is very limited, and GEM resistance is the key reason. The mechanism underlying gemcitabine resistance is complex and still unclear in PDAC. The extensive and dense fibrous mesenchyme in the tumor microenvironment (TME) is an important feature of PDAC. More and more evidence has shown that TME is not only an active participant in tumor growth and spread, but also a contributor to the induction of GEM resistance. This article will review the recent advances in the understanding of the cellular and molecular mechanisms underlying GEM resistance in PDAC, and discuss potential GEM chemosensitization strategies, in order to improve the effective rate of chemotherapy and the outcome.
Collapse
Affiliation(s)
- Zong-Ting Gu
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zong-Ze Li
- Cheng-Feng Wang, State Key Laboratory of Molecular Oncology & Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | |
Collapse
|
65
|
Cecati M, Giulietti M, Righetti A, Sabanovic B, Piva F. Effects of CXCL12 isoforms in a pancreatic pre-tumour cellular model: Microarray analysis. World J Gastroenterol 2021; 27:1616-1629. [PMID: 33958847 PMCID: PMC8058651 DOI: 10.3748/wjg.v27.i15.1616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of death among cancers, it is characterized by poor prognosis and strong chemoresistance. In the PDAC microenvironment, stromal cells release different extracellular components, including CXCL12. The CXCL12 is a chemokine promoting the communication between tumour and stromal cells. Six different splicing isoforms of CXCL12 are known (α, β, γ, δ, ε, θ) but their role in PDAC has not yet been characterized. AIM To investigate the specific role of α, β, and γ CXCL12 isoforms in PDAC onset. METHODS We used hTERT-HPNE E6/E7/KRasG12D (Human Pancreatic Nestin-Expressing) cell line as a pancreatic pre-tumour model and exposed it to the α, β, and γ CXCL12 isoforms. The altered expression profiles were assessed by microarray analyses and confirmed by Real-Time polymerase chain reaction. The functional enrichment analyses have been performed by Enrichr tool to highlight Gene Ontology enriched terms. In addition, wound healing assays have been carried out to assess the phenotypic changes, in terms of migration ability, induced by the α, β, and γ CXCL12 isoforms. RESULTS Microarray analysis of hTERT-HPNE cells treated with the three different CXCL12 isoforms highlighted that the expression of only a few genes was altered. Moreover, the α and β isoforms showed an alteration in expression of different genes, whereas γ isoform affected the expression of genes also common with α and β isoforms. The β isoform altered the expression of genes mainly involved in cell cycle regulation. In addition, all isoforms affected the expression of genes associated to cell migration, adhesion and cytoskeleton. In vitro cell migration assay confirmed that CXCL12 enhanced the migration ability of hTERT-HPNE cells. Among the CXCL12 splicing isoforms, the γ isoform showed higher induction of migration than α and β isoforms. CONCLUSION Our data suggests an involvement and different roles of CXCL12 isoforms in PDAC onset. However, more investigations are needed to confirm these preliminary observations.
Collapse
Affiliation(s)
- Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Alessandra Righetti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Berina Sabanovic
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| |
Collapse
|
66
|
Yu JL, Chan S, Fung MKL, Chan GCF. Mesenchymal stem cells accelerated growth and metastasis of neuroblastoma and preferentially homed towards both primary and metastatic loci in orthotopic neuroblastoma model. BMC Cancer 2021; 21:393. [PMID: 33838662 PMCID: PMC8035760 DOI: 10.1186/s12885-021-08090-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022] Open
Abstract
Background Majority of neuroblastoma patients develop metastatic disease at diagnosis and their prognosis is poor with current therapeutic approach. Major challenges are how to tackle the mechanisms responsible for tumorigenesis and metastasis. Human mesenchymal stem cells (hMSCs) may be actively involved in the constitution of cancer microenvironment. Methods An orthotopic neuroblastoma murine model was utilized to mimic the clinical scenario. Human neuroblastoma cell line SK-N-LP was transfected with luciferase gene, which were inoculated with/without hMSCs into the adrenal area of SCID-beige mice. The growth and metastasis of neuroblastoma was observed by using Xenogen IVIS 100 in vivo imaging and evaluating gross tumors ex vivo. The homing of hMSCs towards tumor was analyzed by tracing fluorescence signal tagged on hMSCs using CRI Maestro™ imaging system. Results hMSCs mixed with neuroblastoma cells significantly accelerated tumor growth and apparently enhanced metastasis of neuroblastoma in vivo. hMSCs could be recruited by primary tumor and also become part of the tumor microenvironment in the metastatic lesion. The metastatic potential was consistently reduced in lung and tumor when hMSCs were pre-treated with stromal cell derived factor-1 (SDF-1) blocker, AMD3100, suggesting that the SDF-1/CXCR4 axis was one of the prime movers in the metastatic process. Conclusions hMSCs accelerated and facilitated tumor formation, growth and metastasis. Furthermore, the homing propensity of hMSCs towards both primary tumor and metastatic loci can also provide new therapeutic insights in utilizing bio-engineered hMSCs as vehicles for targeted anti-cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08090-2.
Collapse
Affiliation(s)
- Jiao-Le Yu
- Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Shing Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Marcus Kwong-Lam Fung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Godfrey Chi-Fung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China. .,Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
67
|
Wu B, Wang Z, Lin N, Yan X, Lv Z, Ying Z, Ye Z. A panel of eight mRNA signatures improves prognosis prediction of osteosarcoma patients. Medicine (Baltimore) 2021; 100:e24118. [PMID: 33832059 PMCID: PMC8036027 DOI: 10.1097/md.0000000000024118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
Genetic alterations are vital to the progression of osteosarcoma carcinoma. The present study investigated a panel of gene signatures that could evaluate prognosis in osteosarcoma based on data from the Therapeutically Applicable Research To Generate Effective Treatments initiative. Osteosarcoma messenger RNA (mRNA) profiles and clinical data were downloaded from the therapeutically applicable research to generate effective treatments database. Patients with osteosarcoma were divided into two groups based on findings at diagnosis: with and without metastasis. Differentially expressed mRNAs were compared and analyzed between groups. Univariate and multivariate Cox regression analyses identified a set of eight mRNAs with the ability to classify patients into high-risk and low-risk groups with significantly different overall survival times. Further analysis indicated that the eight-mRNA signature was an independent prognostic factor after adjusting for other clinical factors. Receiver operating characteristic curve analysis demonstrated a good performance of the eight-mRNA signature. Further, the biological processes and signaling pathways of the eight-mRNA signature were reviewed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes resources. Finally, the results of the TCGA analysis were verified by other cohorts from Gene Expression Omnibus database. The identification of an eight-mRNA signature not only provides a prognostic biomarker of osteosarcoma but also offers the potential of novel therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Bo Wu
- Department of Orthopaedics, YongKangShi Hospital of Traditional Chinese Medicine, Yongkang
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Zhan Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Nong Lin
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Xiaobo Yan
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Zhangchun Lv
- Department of Orthopaedics, YongKangShi Hospital of Traditional Chinese Medicine, Yongkang
| | - Zhimin Ying
- Department of Orthopaedics, YongKangShi Hospital of Traditional Chinese Medicine, Yongkang
| | - Zhaoming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
68
|
Arias-Pinilla GA, Modjtahedi H. Therapeutic Application of Monoclonal Antibodies in Pancreatic Cancer: Advances, Challenges and Future Opportunities. Cancers (Basel) 2021; 13:1781. [PMID: 33917882 PMCID: PMC8068268 DOI: 10.3390/cancers13081781] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer remains as one of the most aggressive cancer types. In the absence of reliable biomarkers for its early detection and more effective therapeutic interventions, pancreatic cancer is projected to become the second leading cause of cancer death in the Western world in the next decade. Therefore, it is essential to discover novel therapeutic targets and to develop more effective and pancreatic cancer-specific therapeutic agents. To date, 45 monoclonal antibodies (mAbs) have been approved for the treatment of patients with a wide range of cancers; however, none has yet been approved for pancreatic cancer. In this comprehensive review, we discuss the FDA approved anticancer mAb-based drugs, the results of preclinical studies and clinical trials with mAbs in pancreatic cancer and the factors contributing to the poor response to antibody therapy (e.g. tumour heterogeneity, desmoplastic stroma). MAb technology is an excellent tool for studying the complex biology of pancreatic cancer, to discover novel therapeutic targets and to develop various forms of antibody-based therapeutic agents and companion diagnostic tests for the selection of patients who are more likely to benefit from such therapy. These should result in the approval and routine use of antibody-based agents for the treatment of pancreatic cancer patients in the future.
Collapse
Affiliation(s)
- Gustavo A. Arias-Pinilla
- Department of Oncology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| | - Helmout Modjtahedi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston-upon-Thames, Surrey KT1 2EE, UK
| |
Collapse
|
69
|
Hang Y, Tang S, Tang W, Větvička D, Zhang C, Xie Y, Yu F, Yu A, Sil D, Li J, Singh RK, Oupický D. Polycation fluorination improves intraperitoneal siRNA delivery in metastatic pancreatic cancer. J Control Release 2021; 333:139-150. [PMID: 33774121 DOI: 10.1016/j.jconrel.2021.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a growing medical problem associated with extensive metastasis and high mortality. Intraperitoneal (IP) administration of therapeutics promises to help the treatment of cancers originated from organs in the peritoneal cavity. In this study, we evaluated how physicochemical properties of self-assembled polycation/siRNA nanoparticles affect their IP delivery efficacy in an orthotopic PDAC model. We have examined the effect of covalent polycation modification with lipophobic and hydrophobic tetrafluoro-p-toluic acid (TFTA), hydrophobic cholesterol, and hydrophilic poly(ethylene glycol) respectively. The surface charge of the three different nanoparticles was also modulated by coating the surface with serum albumin. We found that positively charged fluorine-containing particles with lipophobic properties based on a mixture of positively charged polymeric AMD3100 CXCR4 antagonist (PAMD) and PAMD modified with TFTA (mPAMD-TFTA)/siRNA displayed the best cell uptake and transfection efficacy in vitro. Biodistribution evaluation of the nanoparticles in a syngeneic orthotopic PDAC model revealed that the fluorine-containing formulation also achieved the highest PDAC tumor accumulation after IP administration. With a combination of CXCR4 inhibition by PAMD and PLK1 downregulation by siRNA, the treatment with mPAMD-TFTA/siPLK1 showed significant inhibition of both primary and metastatic PDAC tumors. Overall, our study provides insights into and guides the design of the nanoparticles for improved IP delivery of siRNA in PDAC.
Collapse
Affiliation(s)
- Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Větvička
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Chuhan Zhang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
70
|
Wu X, Zhang H, Sui Z, Wang Y, Yu Z. The biological role of the CXCL12/CXCR4 axis in esophageal squamous cell carcinoma. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0140. [PMID: 33710803 PMCID: PMC8185864 DOI: 10.20892/j.issn.2095-3941.2020.0140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer is the eighth most common malignant tumor and the sixth leading cause of cancer-related death worldwide. Esophageal squamous cell carcinoma (ESCC) is the main histological type of esophageal cancer, and accounts for 90% of all cancer cases. Despite the progress made in surgery, chemotherapy, and radiotherapy, the mortality rate from esophageal cancer remains high, and the overall 5-year survival rate is less than 20%, even in developed countries. The C-X-C motif chemokine ligand 12 (CXCL12) is a member of the CXC chemokine subgroup, which is widely expressed in a variety of tissues and cells. CXCL12 participates in the regulation of many physiological and pathological processes by binding to its specific receptor, C-X-C motif chemokine receptor type 4 (CXCR4), where it causes embryonic development, immune response, and angiogenesis. In addition, increasing evidence indicates that the CXCL12/CXCR4 axis plays an important role in the biological processes of tumor cells. Studies have shown that CXCL12 and its receptor, CXCR4, are highly expressed in ESCC. This abnormal expression contributes to tumor proliferation, lymph node and distant metastases, and worsening prognosis. At present, antagonists and imaging agents against CXCL12 or CXCR4 have been developed to interfere with the malignant process and monitor metastasis of tumors. This article summarizes the structure, function, and regulatory mechanism of CXCL12/CXCR4 and its role in the malignancy of ESCC. Current results from preclinical research targeting CXCL12/CXCR4 are also summarized to provide a reference for the clinical diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Xianxian Wu
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hongdian Zhang
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhilin Sui
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yang Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhentao Yu
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
71
|
Ham IH, Lee D, Hur H. Cancer-Associated Fibroblast-Induced Resistance to Chemotherapy and Radiotherapy in Gastrointestinal Cancers. Cancers (Basel) 2021; 13:1172. [PMID: 33803229 PMCID: PMC7963167 DOI: 10.3390/cancers13051172] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/24/2022] Open
Abstract
In the past few decades, the role of cancer-associated fibroblasts (CAFs) in resistance to therapies for gastrointestinal (GI) cancers has emerged. Clinical studies focusing on GI cancers have revealed that the high expression of CAF-related molecules within tumors is significantly correlated with unfavorable therapeutic outcomes; however, the exact mechanisms whereby CAFs enhance resistance to chemotherapy and radiotherapy in GI cancers remain unclear. The cells of origin of CAFs in GI cancers include normal resident fibroblasts, mesenchymal stem cells, endothelial cells, pericytes, and even epithelial cells. CAFs accumulated within GI cancers produce cytokines, chemokines, and growth factors involved in resistance to therapies. CAF-derived exosomes can be engaged in stroma-related resistance to treatments, and several non-coding RNAs, such as miR-92a, miR-106b, CCAL, and H19, are present in CAF-derived exosomes and transferred to GI cancer cells. The CAF-induced desmoplastic reaction interferes with drug delivery to GI cancer cells, evoking resistance to chemotherapy. However, due to the heterogeneity of CAFs in GI cancers, identifying the exact mechanism underlying CAF-induced resistance may be difficult. Recent advancements in single-cell "omics" technologies could offer clues for revealing the specific subtypes and biomarkers related to resistance.
Collapse
Affiliation(s)
- In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon 16499, Korea; (I.-H.H.); (D.L.)
- Infamm-aging Translational Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Dagyeong Lee
- Department of Surgery, Ajou University School of Medicine, Suwon 16499, Korea; (I.-H.H.); (D.L.)
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon 16499, Korea; (I.-H.H.); (D.L.)
- Infamm-aging Translational Research Center, Ajou University School of Medicine, Suwon 16499, Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon 16499, Korea
| |
Collapse
|
72
|
Liu Y, Wu Y, Zhang P, Xu C, Liu Z, He C, Liu Y, Kang Z. CXCL12 and CD3E as Indicators for Tumor Microenvironment Modulation in Bladder Cancer and Their Correlations With Immune Infiltration and Molecular Subtypes. Front Oncol 2021; 11:636870. [PMID: 33747959 PMCID: PMC7971116 DOI: 10.3389/fonc.2021.636870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BLCA) represents the ninth most common malignant tumor in the world and is characterized by high recurrence risk. Tumor microenvironment (TME) plays an important role in regulating the progression of BLCA. Immunotherapy, including Bacillus Calmette-Guerin (BCG) and programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1), is closely associated with TME and is widely used for treating BLCA. But parts of BLCA patients have no response to these treatment ways, thus a better understanding of the complex TME of BLCA is still needed. We downloaded the gene expression profile and corresponding clinical information of 414 BLCA patients from the TCGA database. Via the ESTIMATE and CIBERSORT algorithm, we identified the two hub genes (CXCL12 and CD3E) and explored their correlations with immune infiltration. We found that BLCA patients with higher expression of CXCL12 and lower expression of CD3E had prolonged survival. Gene set enrichment analysis (GSEA) revealed that both CXCL12 and CD3E were enriched in immune-related pathways. We also discovered that stromal score and the level of CXCL12 were higher in luminal subtype, and immune score and the level of CD3E were higher in the basal subtype. Furtherly, we found that CXCL12 was associated with naive B cells, resting mast cell, M2 macrophages, follicular helper T cells, and dendritic cells. CD8+ T cells, CD4+ T cells, regulatory T cells (Tregs), and macrophages were correlated with CD3E. In conclusions, we found that CXCL12 and CD3E might serve as indicators of TME modulation in BLCA. Therapy targeting CXCL12 and CD3E had the potential as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yi Liu
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YuCai Wu
- Department of Urology, Peking University First Hospital, Beijing, China
| | - PeiPei Zhang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ChaoJie Xu
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ZeSen Liu
- Department of General Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ChaoJie He
- Department of General Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YiMing Liu
- Department of General Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ZhengJun Kang
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
73
|
Targeted Therapies for Pancreatic Cancer: Overview of Current Treatments and New Opportunities for Personalized Oncology. Cancers (Basel) 2021; 13:cancers13040799. [PMID: 33672917 PMCID: PMC7918504 DOI: 10.3390/cancers13040799] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic chemotherapy remains the only treatment option for most pancreatic ductal adenocarcinoma patients. Currently, the median overall survival of patients with advanced disease rarely exceeds 1 year. The complex network of pancreatic cancer composed of immune cells, endothelial cells, and cancer-associated fibroblasts confers intratumoral and intertumoral heterogeneity with distinct proliferative and metastatic propensity. This heterogeneity can explain why tumors do not behave uniformly and are able to escape therapy. The advance in technology of whole-genome sequencing has now provided the possibility of identifying every somatic mutation, copy-number change, and structural variant in a given cancer, giving rise to personalized targeted therapies. In this review, we provide an overview of the current and emerging treatment strategies in pancreatic cancer. By highlighting new paradigms in pancreatic ductal adenocarcinoma treatment, we hope to stimulate new thoughts for clinical trials aimed at improving patient outcomes.
Collapse
|
74
|
Zhang Z, Song J, Xie C, Pan J, Lu W, Liu M. Pancreatic Cancer: Recent Progress of Drugs in Clinical Trials. AAPS JOURNAL 2021; 23:29. [PMID: 33580411 DOI: 10.1208/s12248-021-00556-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer is a highly malignant tumor and one of the primary causes of cancer-related death. Because pancreatic cancer is difficult to diagnose in the early course of the disease, most patients present with advanced lesions at the time of diagnosis, and only 20% of patients are eligible for surgery. Consequently, drug treatment has become extremely important. At present, the main treatment regimens for pancreatic cancer are gemcitabine and the FORFIRINOX and MPACT regimens. However, none of these regimens substantially improves the prognosis of patients with pancreatic cancer. Extensive efforts have been dedicated to the study of pancreatic cancer in recent years. With the development and clinical application of biological targeted drugs, the biological targeted treatment of tumors has been widely accepted. Therefore, this article used relevant clinical trial data to summarize the research progress of traditional chemotherapy drugs and biological targeted drugs for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jie Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jun Pan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Min Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
75
|
Sunami Y, Böker V, Kleeff J. Targeting and Reprograming Cancer-Associated Fibroblasts and the Tumor Microenvironment in Pancreatic Cancer. Cancers (Basel) 2021; 13:697. [PMID: 33572223 PMCID: PMC7915918 DOI: 10.3390/cancers13040697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer deaths in the United States both in female and male, and is projected to become the second deadliest cancer by 2030. The overall five-year survival rate remains at around 10%. Pancreatic cancer exhibits a remarkable resistance to established therapeutic options such as chemotherapy and radiotherapy, due to dense stromal tumor microenvironment. Cancer-associated fibroblasts are the major stromal cell type and source of extracellular matrix proteins shaping a physical and metabolic barrier thereby reducing therapeutic efficacy. Targeting cancer-associated fibroblasts has been considered a promising therapeutic strategy. However, depleting cancer-associated fibroblasts may also have tumor-promoting effects due to their functional heterogeneity. Several subtypes of cancer-associated fibroblasts have been suggested to exhibit tumor-restraining function. This review article summarizes recent preclinical and clinical investigations addressing pancreatic cancer therapy through targeting specific subtypes of cancer-associated fibroblasts, deprogramming activated fibroblasts, administration of mesenchymal stem cells, as well as reprogramming tumor-promoting cancer-associated fibroblasts to tumor-restraining cancer-associated fibroblasts. Further, inter-cellular mediators between cancer-associated fibroblasts and the surrounding tissue microenvironment are discussed. It is important to increase our understanding of cancer-associated fibroblast heterogeneity and the tumor microenvironment for more specific and personalized therapies for pancreatic cancer patients in the future.
Collapse
Affiliation(s)
- Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle, Germany; (V.B.); (J.K.)
| | | | | |
Collapse
|
76
|
Wong W, Alouani E, Wei A, Ryu YK, Chabot JA, Manji GA. Future of immunotherapy in pancreas cancer and the trials, tribulations and successes thus far. Semin Oncol 2021; 48:57-68. [PMID: 33965249 DOI: 10.1053/j.seminoncol.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Abstract
Pancreas ductal adenocarcinoma (PDAC) has a dismal prognosis with a 5-year survival rate of 10%. Currently, chemotherapy remains the standard of care for systemic treatment. Immunotherapy with checkpoint inhibitors unfortunately has not been found to be effective in the treatment of PDAC to date, likely due to the highly desmoplastic and immunosuppressive tumor microenvironment (TME). Treatment targeting pathways against the immunosuppressive mechanisms of PDAC are of mounting interest to improve outcomes in PDAC. In this review, we discuss prior efforts and the current state of immunotherapy in PDAC. We will also review the emerging targets and treatments with significant clinical potential for the treatment of PDAC such as: CD40 pathway, the adenosine pathway, the CXCR4/CXCL12 axis, the CCR2/CCL2 axis, IDO pathway, and others.
Collapse
Affiliation(s)
- Winston Wong
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Emily Alouani
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Alexander Wei
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Yun Kyoung Ryu
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - John A Chabot
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY
| | - Gulam A Manji
- Division of Hematology and Oncology, Columbia University Irving Medical Center, and New York Presbyterian Hospital, New York, NY.
| |
Collapse
|
77
|
Myricetin: A review of the most recent research. Biomed Pharmacother 2020; 134:111017. [PMID: 33338751 DOI: 10.1016/j.biopha.2020.111017] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Myricetin(MYR) is a flavonoid compound widely found in many natural plants including bayberry. So far, MYR has been proven to have multiple biological functions and it is a natural compound with promising research and development prospects. This review comprehensively retrieved and collected the latest pharmacological abstracts on MYR, and discussed the potential molecular mechanisms of its effects. The results of our review indicated that MYR has a therapeutic effect on many diseases, including tumors of different types, inflammatory diseases, atherosclerosis, thrombosis, cerebral ischemia, diabetes, Alzheimer's disease and pathogenic microbial infections. Furthermore, it regulates the expression of Hippo, MAPK, GSK-3β, PI3K/AKT/mTOR, STAT3, TLR, IκB/NF-κB, Nrf2/HO-1, ACE, eNOS / NO, AChE and BrdU/NeuN. MYR also enhances the immunomodulatory functions, suppresses cytokine storms, improves cardiac dysfunction, possesses an antiviral potential, can be used as an adjuvant treatment against cancer, cardiovascular injury and nervous system diseases, and it may be a potential drug against COVID-19 and other viral infections. Generally, this article provides a theoretical basis for the clinical application of MYR and a reference for its further use.
Collapse
|
78
|
Shi Y, Riese DJ, Shen J. The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Front Pharmacol 2020; 11:574667. [PMID: 33363463 PMCID: PMC7753359 DOI: 10.3389/fphar.2020.574667] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Chemokines are a family of small, secreted cytokines which regulate a variety of cell functions. The C-X-C motif chemokine ligand 12 (CXCL12) binds to C-X-C chemokine receptor type 4 (CXCR4) and C-X-C chemokine receptor type 7 (CXCR7). The interaction of CXCL12 and its receptors subsequently induces downstream signaling pathways with broad effects on chemotaxis, cell proliferation, migration, and gene expression. Accumulating evidence suggests that the CXCL12/CXCR4/CXCR7 axis plays a pivotal role in tumor development, survival, angiogenesis, metastasis, and tumor microenvironment. In addition, this chemokine axis promotes chemoresistance in cancer therapy via complex crosstalk with other pathways. Multiple small molecules targeting CXCR4/CXCR7 have been developed and used for preclinical and clinical cancer treatment. In this review, we describe the roles of the CXCL12/CXCR4/CXCR7 axis in cancer progression and summarize strategies to develop novel targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| |
Collapse
|
79
|
Yang P, Hu Y, Zhou Q. The CXCL12-CXCR4 Signaling Axis Plays a Key Role in Cancer Metastasis and is a Potential Target for Developing Novel Therapeutics against Metastatic Cancer. Curr Med Chem 2020; 27:5543-5561. [PMID: 31724498 DOI: 10.2174/0929867326666191113113110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Metastasis is the main cause of death in cancer patients; there is currently no effective treatment for cancer metastasis. This is primarily due to our insufficient understanding of the metastatic mechanisms in cancer. An increasing number of studies have shown that the C-X-C motif chemokine Ligand 12 (CXCL12) is overexpressed in various tissues and organs. It is a key niche factor that nurtures the pre-metastatic niches (tumorigenic soil) and recruits tumor cells (oncogenic "seeds") to these niches, thereby fostering cancer cell aggression and metastatic capabilities. However, the C-X-C motif chemokine Receptor 4 (CXCR4) is aberrantly overexpressed in various cancer stem/progenitor cells and functions as a CXCL12 receptor. CXCL12 activates CXCR4 as well as multiple downstream multiple tumorigenic signaling pathways, promoting the expression of various oncogenes. Activation of the CXCL12-CXCR4 signaling axis promotes Epithelial-Mesenchymal Transition (EMT) and mobilization of cancer stem/progenitor cells to pre-metastatic niches. It also nurtures cancer cells with high motility, invasion, and dissemination phenotypes, thereby escalating multiple proximal or distal cancer metastasis; this results in poor patient prognosis. Based on this evidence, recent studies have explored either CXCL12- or CXCR4-targeted anti-cancer therapeutics and have achieved promising results in the preclinical trials. Further exploration of this new strategy and its potent therapeutics effect against metastatic cancer through the targeting of the CXCL12- CXCR4 signaling axis may lead to a novel therapy that can clean up the tumor microenvironment ("soil") and kill the cancer cells, particularly the cancer stem/progenitor cells ("seeds"), in cancer patients. Ultimately, this approach has the potential to effectively treat metastatic cancer.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine (School of Nursing), Nantong University, Nantong, Jiangsu 226000, China
| | - Yae Hu
- Department of Pathophysiology, School of Medicine (School of Nursing), Nantong University, Nantong, Jiangsu 226000, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University; Suzhou, Jiangsu 215123, China
| |
Collapse
|
80
|
Yue S, Ye X, Zhou T, Gan D, Qian H, Fang W, Yao M, Zhang D, Shi H, Chen T. PGRN -/- TAMs-derived exosomes inhibit breast cancer cell invasion and migration and its mechanism exploration. Life Sci 2020; 264:118687. [PMID: 33181174 DOI: 10.1016/j.lfs.2020.118687] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most malignant diseases world-wide and ranks the first among female cancers. Progranulin (PGRN) plays a carcinogenic role in breast cancer, but its mechanisms are not clear. In addition, there are few reports on the relationship between PGRN and tumor-associated macrophages (TAMs). AIMS To investigate the effects of exosomes derived from PGRN-/- TAMs on invasion and migration of breast cancer cells. MAIN METHODS Mouse breast cancer xenograft model was constructed to explore the effect of PGRN-/- tumor environment (TME) on breast cancer. Flow cytometry was used to compare TAMs of wild type (WT) and PGRN-/- tumor tissue. Transwell assay, wound healing assay and western blot were used to explore the effect of WT and PGRN-/- TAMs and their exosomes on invasion, migration and epithelial-mesenchymal transition (EMT) of breast cancer cells. MicroRNA (miRNA) assay was used to find out the differentially expressed miRNA of negative control (NC) and siPGRN-TAMs exosomes. Quantitative PCR and luciferase report assay were used to explore the target gene. KEY FINDINGS The lung metastasis of breast cancer of PGRN-/- mice was inhibited. PGRN-/- TAMs inhibited invasion, migration and EMT of breast cancer cells through their exosomes. MiR-5100 of PGRN-/- TAMs-derived exosomes was up-regulated, which might regulate expression of CXCL12, thereby inhibiting the CXCL12/CXCR4 axis, and ultimately inhibiting the invasion, migration and EMT of breast cancer cells. SIGNIFICANCE Our study elucidates a new molecular mechanism of lung metastasis of breast cancer, so it may contribute to efficient prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Shujun Yue
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiangsen Ye
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ting Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Delu Gan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenli Fang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Mengli Yao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - He Shi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
81
|
Liu H, Cheng Q, Xu DS, Wang W, Fang Z, Xue DD, Zheng Y, Chang AH, Lei YJ. Overexpression of CXCR7 accelerates tumor growth and metastasis of lung cancer cells. Respir Res 2020; 21:287. [PMID: 33129326 PMCID: PMC7603767 DOI: 10.1186/s12931-020-01518-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background Under physiological conditions, CXCL12 modulates cell proliferation, survival, angiogenesis, and migration mainly through CXCR4. Interestingly, the newly discovered receptor CXCR7 for CXCL12 is highly expressed in many tumor cells as well as tumor-associated blood vessels, although the level of CXCR7 in normal cells is low. Recently, many studies have suggested that CXCR7 promotes cell growth and metastasis in more than 20 human malignancies, among which lung cancer is the leading cause of cancer-associated deaths worldwide. Thus, the mechanism of CXCR7 in the progression of lung cancer is urgently needed. Methods First, we explored CXCR4 and CXCR7 expression in human lung cancer specimens and cell lines by immunohistochemistry, western blot and flow cytometry. Then, we chose the human lung adenocarcinoma cell line A549 that stably overexpressed CXCR7 through the way of lentivirus-mediated transduction. Next, “wound healing” assay and transwell assay were applied to compare the cell migration and invasion ability, and stripe assay was used to evaluate the cell polarization. Last, our team established a mouse xenograft model of human lung cancer and monitored tumor proliferation and metastasis by firefly luciferase bioluminescence imaging in SCID/Beige mice. Results In clinical lung cancer samples, CXCR7 expression was almost not detected in normal tissue but upregulated in lung tumor tissue, whereas, CXCR4 was highly expressed in both normal and tumor tissues. Furthermore, overexpression of CXCR7 enhanced A549 cell migration and polarization in vitro. Besides, mouse xenograft model of human lung cancer showed that CXCR7 promoted primary lung tumor’s growth and metastasis to the second organ, such as liver or bone marrow in SCID/Beige mice in vivo. Conclusions This study describes the multiple functions of CXCR7 in lung cancer. Thus, these results suggest that CXCR7 may be a malignancy marker and may provide a novel target for anticancer therapy.
Collapse
Affiliation(s)
- Huan Liu
- Department of Traditional Chinese Medicine, Xijing Hospital Affiliated to the Fourth Military Medical University, Xi'an, 710032, China.,Department of Immunology and Microbiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Qian Cheng
- Department of Anesthesiology, Cancer Hospital Affiliated to Fudan University, Shanghai, 200032, China
| | - Dong-Sheng Xu
- Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Wang
- Department of Traditional Chinese Medicine, Xijing Hospital Affiliated to the Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Fang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Dong-Dong Xue
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065, China
| | - Alex H Chang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200438, China.
| | - Yan-Jun Lei
- Department of Immunology and Microbiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
82
|
Xie Y, Wang Y, Xiang W, Wang Q, Cao Y. Molecular Mechanisms of the Action of Myricetin in Cancer. Mini Rev Med Chem 2020; 20:123-133. [PMID: 31648635 DOI: 10.2174/1389557519666191018112756] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/31/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Natural compounds, such as paclitaxel and camptothecin, have great effects on the treatment of tumors. Such natural chemicals often achieve anti-tumor effects through a variety of mechanisms. Therefore, it is of great significance to conduct further studies on the anticancer mechanism of natural anticancer agents to lay a solid foundation for the development of new drugs. Myricetin, originally isolated from Myrica nagi, is a natural pigment of flavonoids that can inhibit the growth of cancer cells (such as liver cancer, rectal cancer, skin cancer and lung cancer, etc.). It can regulate many intracellular activities (such as anti-inflammatory and blood lipids regulation) and can even be bacteriostatic. The purpose of this paper is to outline the molecular pathways of the anticancer effects of myricetin, including the effect on cancer cell death, proliferation, angiogenesis, metastasis and cell signaling pathway.
Collapse
Affiliation(s)
- Yutao Xie
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yunlong Wang
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Wei Xiang
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Qiaoying Wang
- Department of Cardiothoracic Surgery, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yajun Cao
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| |
Collapse
|
83
|
Wu B, Wang J, Wang X, Zhu M, Chen F, Shen Y, Zhong Z. CXCL5 expression in tumor tissues is associated with poor prognosis in patients with pancreatic cancer. Oncol Lett 2020; 20:257. [PMID: 32994820 PMCID: PMC7509746 DOI: 10.3892/ol.2020.12120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/25/2020] [Indexed: 02/02/2023] Open
Abstract
Immunotherapy based on the tumor microenvironment is a feasible method for treating cancer; therefore, it is necessary to investigate the immune microenvironment of pancreatic cancer and the influencing factors of the immune microenvironment. Chemokines are an important factor affecting the tumor immune microenvironment. In the present study, chemokines or chemokine receptors were screened to identify those differentially expressed in pancreatic cancer compared with normal controls and associated with patient prognosis. Chemokines or chemokine receptors that are differentially expressed in pancreatic cancer tumor tissues were initially screened using the Gene Expression Omnibus database. Next, survival analysis was performed using GEPIA, a website based on The Cancer Genome Atlas (TCGA) database. Immunohistochemical staining of CXCL5 was performed in tissue microarrays (TMAs) containing 119 cases of pancreatic cancer. Histochemistry score (H-SCORE) was used to evaluate the expression of CXCL5. Next, association analysis of the H-SCORE of CXCL5 and the clinical characteristics of patients was performed, as well as Kaplan-Meier survival and Cox multivariate regression analyses. The results of the bioinformatics analysis demonstrated that CXCL5 was highly expressed in pancreatic cancer tissues. High expression of CXCL5 in pancreatic cancer tissues was associated with a poor prognosis in patients in TCGA cohort. The expression level of CXCL5 in tumor tissues was significantly higher compared with that in adjacent peritumoral normal tissues in the immunohistochemical analysis. There was no significant association between CXCL5 expression in pancreatic cancer tumor tissues and clinicopathological factors. Patients with pancreatic cancer with high CXCL5 expression had a poor prognosis, as determined by Kaplan-Meier survival analysis based on the TMA dataset. The results of Cox multivariate regression analysis showed that CXCL5 was an independent factor for a poor prognosis in patients with pancreatic cancer. In conclusion, the results of the present study revealed that the chemokine CXCL5 was highly expressed in pancreatic cancer tissues; high CXCL5 expression was associated with a poor prognosis in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Jing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Xiaoguang Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Mingyuan Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Fei Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Zhengxiang Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
84
|
Diao X. CXCR4 polymeric nanocomplex-mediated pulmonary delivery of siPD-L1: A novel procedure to enhance immunotherapy. Thorac Cancer 2020; 11:2753-2754. [PMID: 32893969 DOI: 10.1111/1759-7714.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Xiayao Diao
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant, Tumor Epigenetics and Gene Regulation, Sun Yat-sen, Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
85
|
Litman-Zawadzka A, Łukaszewicz-Zając M, Gryko M, Kulczyńska-Przybik A, Kędra B, Mroczko B. Specific Receptors for the Chemokines CXCR2 and CXCR4 in Pancreatic Cancer. Int J Mol Sci 2020; 21:ijms21176193. [PMID: 32867211 PMCID: PMC7504436 DOI: 10.3390/ijms21176193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background: The mortality rate of pancreatic cancer (PC) is equal to its incidence and the majority of PC patients die within a few months of diagnosis. Therefore, a search for new biomarkers useful in the diagnosis and prognosis of PC is ongoing. Objectives: The aim of our study was to compare the utility of CXCR2 and CXCR4 in the diagnosis and prediction of PC with classical tumor marker (carcinoembryonic antigen, CEA) and marker of inflammation–C-reactive protein (CRP). Patients and Methods: The study comprised 64 subjects — 32 PC patients and 32 healthy volunteers. Serum concentrations of tested proteins were analysed using immunological methods. Results: Serum CXCR2 and CXCR4 concentrations, similarly to those of CEA and CRP, were significantly elevated in PC patients compared to healthy controls. Moreover, concentrations of CXCR4 were significantly correlated with CXCR2 and CRP levels, while CRP concentrations were correlated with CXCR2 and CEA levels. The diagnostic sensitivity and the predictive value for negative (PV−ve) results for CXCR4 were similar to those of CEA and higher than those of CXCR2 and CRP, while the area under the ROC curve (AUC) for CXCR4 was the highest among all tested proteins (CXCR2, CEA, CRP). Moreover, serum CXCR2 was found to be a significant predictor of PC risk. Conclusions: CXCR4 is a better candidate for a tumor marker than CXCR2 in the diagnosis of PC, while serum CXCR2 is a significant predictor of PC risk.
Collapse
Affiliation(s)
- Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (B.M.)
- Correspondence: ; Tel.: +48-85-8318785; Fax: +48-85-8318585
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Mariusz Gryko
- Second Department of General Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.G.); (B.K.)
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (B.M.)
| | - Bogusław Kędra
- Second Department of General Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.G.); (B.K.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; (A.K.-P.); (B.M.)
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland;
| |
Collapse
|
86
|
Wang Y, Ren S, Wang Z, Wang Z, Zhu N, Cai D, Ye Z, Ruan J. Chemokines in bone-metastatic breast cancer: Therapeutic opportunities. Int Immunopharmacol 2020; 87:106815. [PMID: 32711376 DOI: 10.1016/j.intimp.2020.106815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Due to non-response to chemotherapy, incomplete surgical resection, and resistance to checkpoint inhibitors, breast cancer with bone metastasis is notoriously difficult to cure. Therefore, the development of novel, efficient strategies to tackle bone metastasis of breast cancer is urgently needed. Chemokines, which induce directed migration of immune cells and act as guide molecules between diverse cells and tissues, are small proteins indispensable in immunity. These complex chemokine networks play pro-tumor roles or anti-tumor roles when produced by breast cancer cells in the tumor microenvironment. Additionally, chemokines have diverse roles when secreted by various immune cells in the tumor microenvironment of breast cancer, which can be roughly divided into immunosuppressive effects and immunostimulatory effects. Recently, targeting chemokine networks has been shown to have potential for use in treatment of metastatic malignancies, including bone-metastatic breast cancer. In this review, we focus on the role of chemokines networks in the biology of breast cancer and metastasis to the bone. We also discuss the therapeutic opportunities and future prospects of targeting chemokine networks, in combination with other current standard therapies, for the treatment of bone-metastatic breast cancer.
Collapse
Affiliation(s)
| | - Shihong Ren
- First People's Hospital of Wenling, Wenling, China
| | - Zhan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zenan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Zhu
- Hebei North University, Zhangjiakou, China
| | | | - Zhaoming Ye
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | | |
Collapse
|
87
|
Wan Y, Zhang X, Leng H, Yin W, Zeng W, Zhang C. Identifying hub genes of papillary thyroid carcinoma in the TCGA and GEO database using bioinformatics analysis. PeerJ 2020; 8:e9120. [PMID: 32714651 PMCID: PMC7354839 DOI: 10.7717/peerj.9120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/13/2020] [Indexed: 12/17/2022] Open
Abstract
Background Thyroid carcinoma (THCA) is a common endocrine malignant tumor. Papillary carcinoma with low degree of malignancy and good prognosis is the most common. It can occur at any age, but it is more common in young adults. Although the mortality rate is decreased due to early diagnosis, the survival rate varies depending on the type of tumor. Therefore, the purpose of this study is to identify hub biomarkers and novel therapeutic targets for THCA. Methods The GSE3467, GSE3678, GSE33630 and GSE53157 were obtained from the GEO database, including 100 thyroid tumors and 64 normal tissues to obtain the intersection of differentially expressed genes, and a protein-protein interaction network was constructed to obtain the HUB gene. The corresponding overall survival information from The Cancer Genome Atlas Project-THCA was then included in this research. The signature mechanism was studied by analyzing the gene ontology and the Kyoto Encyclopedia of Genes and Genome database. Results In this research, we identified eight candidate genes (FN1, CCND1, CDH2, CXCL12, MET, IRS1, DCN and FMOD) from the network. Also, expression verification and survival analysis of these candidate genes based on the TCGA database indicate the robustness of the above results. Finally, our hospital samples validated the expression levels of these genes. Conclusion The research identified eight mRNA (four up–regulated and four down–regulated) which serve as signatures and could be a potential prognostic marker of THCA.
Collapse
Affiliation(s)
- Ying Wan
- Department of Inspection, People's Hospital of Yichun City, Yichun, China
| | - Xiaolian Zhang
- Department of Blood Transfusion, People's Hospital of Yichun City, Yichun, China
| | - Huilin Leng
- Department of Neurology, People's Hospital of Yichun City, Yichun, China
| | - Weihua Yin
- Department of Oncology, People's Hospital of Yichun City, Yichun, China
| | - Wenxing Zeng
- Department of Inspection, People's Hospital of Yichun City, Yichun, China
| | - Congling Zhang
- Department of Inspection, People's Hospital of Yichun City, Yichun, China
| |
Collapse
|
88
|
Shih TC, Fan Y, Kiss S, Li X, Deng XN, Liu R, Chen XJ, Carney R, Chen A, Ghosh PM, Lam KS. Galectin-1 inhibition induces cell apoptosis through dual suppression of CXCR4 and Ras pathways in human malignant peripheral nerve sheath tumors. Neuro Oncol 2020; 21:1389-1400. [PMID: 31127849 DOI: 10.1093/neuonc/noz093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Ras signaling pathway is commonly dysregulated in human malignant peripheral nerve sheath tumors (MPNSTs). It is well known that galectin-1 (Gal-1) is essential to stabilize membrane Ras and thereby induce the activation of Ras. However, the role of Gal-1 in MPNST progression remains unknown. The aim of this study was to examine whether Gal-1 knockdown could have an effect on the Ras signaling pathway. METHODS Cell viability, apoptosis assay, and colony formation were performed to examine the effects of inhibition of Gal-1 in MPNST cells. We used a human MPNST xenograft model to assess growth and metastasis inhibitory effects of Gal-1 inhibitor LLS2. RESULTS Gal-1 was upregulated in MPNST patients and was highly expressed in MPNST cells. Knockdown of Gal-1 by small interfering (si)RNA in Gal-1 expressing MPNST cells significantly reduces cell proliferation through the suppression of C-X-C chemokine receptor type 4 (CXCR4) and the rat sarcoma viral oncogene homolog (RAS)/extracellular signal-regulated kinase (ERK) pathway, which are important oncogenic signaling in MPNST development. Moreover, Gal-1 knockdown induces apoptosis and inhibits colony formation. LLS2, a novel Gal-1 allosteric small molecule inhibitor, is cytotoxic against MPNST cells and was able to induce apoptosis and suppress colony formation in MPNST cells. LLS2 treatment and Gal-1 knockdown exhibited similar effects on the suppression of CXCR4 and RAS/ERK pathways. More importantly, inhibition of Gal-1 expression or function by treatment with either siRNA or LLS2 resulted in significant tumor responses in an MPNST xenograft model. CONCLUSION Our results identified an oncogenic role of Gal-1 in MPNST and that its inhibitor, LLS2, is a potential therapeutic agent, applied topically or systemically, against MPNST.
Collapse
Affiliation(s)
- Tsung-Chieh Shih
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, P R China
| | - Sophie Kiss
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Xiaojun Nicole Deng
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Xiao-Jia Chen
- Institute of Biomedicine & Cell Biology Department, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, and Guangdong Provincial Engineering Research Center of Biotechnological Medicine, Guangdong, Guangzhou, China
| | - Randy Carney
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Amanda Chen
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA
| | - Paramita M Ghosh
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA.,Department of Urology, University of California Davis, Sacramento, California, USA.,VA Northern California Health Care System, Sacramento, California, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California, USA.,UC Davis NCI Designated Comprehensive Cancer Center, University of California Davis, Sacramento, California, USA
| |
Collapse
|
89
|
Barillari G. The Impact of Matrix Metalloproteinase-9 on the Sequential Steps of the Metastatic Process. Int J Mol Sci 2020; 21:ijms21124526. [PMID: 32630531 PMCID: PMC7350258 DOI: 10.3390/ijms21124526] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
In industrialized countries, cancer is the second leading cause of death after cardiovascular disease. Most cancer patients die because of metastases, which consist of the self-transplantation of malignant cells in anatomical sites other than the one from where the tumor arose. Disseminated cancer cells retain the phenotypic features of the primary tumor, and display very poor differentiation indices and functional regulation. Upon arrival at the target organ, they replace preexisting, normal cells, thereby permanently compromising the patient's health; the metastasis can, in turn, metastasize. The spread of cancer cells implies the degradation of the extracellular matrix by a variety of enzymes, among which the matrix metalloproteinase (MMP)-9 is particularly effective. This article reviews the available published literature concerning the important role that MMP-9 has in the metastatic process. Additionally, information is provided on therapeutic approaches aimed at counteracting, or even preventing, the development of metastasis via the use of MMP-9 antagonists.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montpellier, 00133 Rome, Italy
| |
Collapse
|
90
|
Zhou C, Fan N, Liu F, Fang N, Plum PS, Thieme R, Gockel I, Gromnitza S, Hillmer AM, Chon SH, Schlösser HA, Bruns CJ, Zhao Y. Linking Cancer Stem Cell Plasticity to Therapeutic Resistance-Mechanism and Novel Therapeutic Strategies in Esophageal Cancer. Cells 2020; 9:1481. [PMID: 32560537 PMCID: PMC7349233 DOI: 10.3390/cells9061481] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is an aggressive form of cancer, including squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) as two predominant histological subtypes. Accumulating evidence supports the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. In this review, we aim to collect the current evidence on CSCs in esophageal cancer, including the biomarkers/characterization strategies of CSCs, heterogeneity of CSCs, and the key signaling pathways (Wnt/β-catenin, Notch, Hedgehog, YAP, JAK/STAT3) in modulating CSCs during esophageal cancer progression. Exploring the molecular mechanisms of therapy resistance in EC highlights DNA damage response (DDR), metabolic reprogramming, epithelial mesenchymal transition (EMT), and the role of the crosstalk of CSCs and their niche in the tumor progression. According to these molecular findings, potential therapeutic implications of targeting esophageal CSCs may provide novel strategies for the clinical management of esophageal cancer.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Ningbo Fan
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Fanyu Liu
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Nan Fang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing 210000, China
| | - Patrick S Plum
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany
| | - Sascha Gromnitza
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Hans A Schlösser
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| |
Collapse
|
91
|
Li TJ, Wang WQ, Yu XJ, Liu L. Killing the "BAD": Challenges for immunotherapy in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188384. [PMID: 32531324 DOI: 10.1016/j.bbcan.2020.188384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022]
Abstract
Cancer regression often fails after systemic immune activation, especially for solid tumors due to their local immunosuppressive microenvironments. Among these, the pancreatic cancer microenvironment is unique and an important reason for resistance to anti-cancer treatments that include immunotherapy. In this review, the three main "BAD" characteristics that create and maintain this immunosuppressive microenvironment are discussed for effector T cells: Barriers to overcome, Attraction problems, and their Disabilities. These inhibit both effector T-cell activation and infiltration, reducing immunotherapy effectiveness. Combination approaches for killing the "BAD" aim to normalize the tumor microenvironment and are recommended to enhance anti-cancer immune-system efficacy in pancreatic cancer.
Collapse
Affiliation(s)
- Tian-Jiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
92
|
Song R, Liu Z, Lu L, Liu F, Zhang B. Long Noncoding RNA SCAMP1 Targets miR-137/CXCL12 Axis to Boost Cell Invasion and Angiogenesis in Ovarian Cancer. DNA Cell Biol 2020; 39:1041-1050. [PMID: 32401536 DOI: 10.1089/dna.2019.5312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is one of gynecological malignancies that seriously affects women's health. Mounting evidence demonstrated that long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs) play important roles in various biological processes related to the pathogenesis of OC. This research aimed to investigate the regulatory mechanism of lncRNA SCAMP1/miR-137/CXCL12 (C-X-C motif chemokine ligand 12) axis on OC progression. In this study, we found that SCAMP1 was highly expressed in OC cells, which promoted OC cell invasion and angiogenesis. In addition, our research confirmed that SCAMP1 could bind with miR-137, and SCAMP1 sponged miR-137 to accelerate the progression of OC. We also observed that CXCL12 was a downstream target gene for miR-137, and miR-137 targeted CXCL12 to participate in the regulation of OC. Finally, through TCGA database, we found that SCAMP1 (or CXCL12) was upregulated as well as miR-137 was downregulated in OC tissues, and high (or low) level of them was associated with poor prognosis. miR-137 expression was negatively correlated with SCAMP1 (or CXCL12) expression, and SCAMP1 expression was positively correlated with CXCL12 expression in OC. In summary, our study clarified the role of SCAMP1/miR-137/CXCL12 axis in OC, and this finding may provide a potential therapeutic target of OC.
Collapse
Affiliation(s)
- Ran Song
- Department of Oncology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, P.R. China.,Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Zhihui Liu
- Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - Lijuan Lu
- Department of Gynecology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, P.R. China
| | - Fenglin Liu
- Department of Oncology, Xuzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, P.R. China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, P.R. China
| |
Collapse
|
93
|
Li Z, Wang Y, Shen Y, Qian C, Oupicky D, Sun M. Targeting pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to enhance anti-PD-L1 immunotherapy. SCIENCE ADVANCES 2020; 6:eaaz9240. [PMID: 32440550 PMCID: PMC7228744 DOI: 10.1126/sciadv.aaz9240] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/02/2020] [Indexed: 05/19/2023]
Abstract
Anti-programmed cell death 1 ligand 1 (PD-L1) therapy is extraordinarily effective in select patients with cancer. However, insufficient lymphocytic infiltration, weak T cell-induced inflammation, and immunosuppressive cell accumulation in the tumor microenvironment (TME) may greatly diminish the efficacy. Here, we report development of the FX@HP nanocomplex composed of fluorinated polymerized CXCR4 antagonism (FX) and paclitaxel-loaded human serum albumin (HP) for pulmonary delivery of anti-PD-L1 small interfering RNA (siPD-L1) to treat orthotopic lung tumors. FX@HP induced T cell infiltration, increased expression of calreticulin on tumor cells, and reduced the myeloid-derived suppressor cells/regulatory T cells in the TME, thereby acting synergistically with siPD-L1 for effective immunotherapy. Our work suggests that the CXCR4-inhibiting nanocomplex decreases tumor fibrosis, facilitates T cell infiltration and relieves immunosuppression to modulate the immune process to improve the objective response rate of anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Zhaoting Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yixin Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuexin Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chenggen Qian
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
94
|
He F, Zhong X, Lin Z, Lin J, Qiu M, Li X, Hu Z. Plasma exo-hsa_circRNA_0056616: A potential biomarker for lymph node metastasis in lung adenocarcinoma. J Cancer 2020; 11:4037-4046. [PMID: 32368286 PMCID: PMC7196257 DOI: 10.7150/jca.30360] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/04/2020] [Indexed: 12/20/2022] Open
Abstract
Background: To investigate the relationship between CXCR4-related circular RNAs (circRNAs) in exosomes and lymph node metastasis of lung adenocarcinoma. Methods: Totally 41 lung adenocarcinoma tissues (21 with lymph node metastasis and 20 without) were collected. Expression of CXCR4 protein was detected by western blotting analysis. A stable PC9/CXCR4-shRNA and PC14/CXCR4-shRNA knockdown lung adenocarcinoma cell lines were established and subjected to functional assays (cell proliferation, colony formation, migration and invasion) for phenotype changes. Exo-hsa-circRNAs (has-circRNAs in exosomes) were detected in vivo and in vitro. The diagnostic value of differentially expressed exo-has-circRNAs was evaluated. Results: Expression levels of CXCR4 were higher in patients with lymph node metastasis than in those without (P = 0.001). Silencing CXCR4 expression in PC9 and PC14 cell lines with short hairpin RNA could effectively abolish colony formation frequency, proliferation rate, migration rate, and the number of invasive cells (all P < 0.001). Exo_circRNA_0056616 was detected in both PC-9/CXCR4-shRNA cells and lung adenocarcinoma plasma at significantly higher levels than in the corresponding control (P < 0.001). When a receiver operating characteristic (ROC) curve for plasma exo-hsa_circRNA_0056616 levels and diagnosis of lymph node metastasis of lung adenocarcinoma was generated, a cutoff value of 0.394 was identified with an area under the curve of 0.812 (95% confidence interval 0.720-0.903), a sensitivity of 0.792, and specificity of 0.810. Conclusions: Taken together, our findings suggested that CXCR4 was higher in the lung adenocarcinoma tissues with lymph node metastasis. Higher plasma levels of exo-hsa_circRNA_0056616 in these patients also suggest that this circRNA represents a potential biomarker for lymph node metastasis predictor in lung adenocarcinoma.
Collapse
Affiliation(s)
- Fei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350108, China; Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
| | - Xuejing Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350108, China; Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.,Department of Science and Education, The Affiliated Longyan First Hospital of Fujian Medical University, Longyan, 364000, China
| | - Zheng Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350108, China; Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
| | - Jianbo Lin
- Department of Chest Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Minglian Qiu
- Department of Chest Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Xu Li
- Department of Chest Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350108, China; Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
| |
Collapse
|
95
|
Zhang Y, Ou DH, Zhuang DW, Zheng ZF, Lin ME. In silico analysis of the immune microenvironment in bladder cancer. BMC Cancer 2020; 20:265. [PMID: 32228629 PMCID: PMC7106767 DOI: 10.1186/s12885-020-06740-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/12/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Infiltrating immune and stromal cells are vital components of the bladder cancer (BC) microenvironment, which can significantly affect BC progression and outcome. However, the contribution of each subset of tumour-infiltrating immune cells is unclear. The objective of this study was to perform cell phenotyping and transcriptional profiling of the tumour immune microenvironment and analyse the association of distinct cell subsets and genes with BC prognosis. METHODS Clinical data of 412 patients with BC and 433 transcription files for normal and cancer tissues were downloaded from The Cancer Genome Atlas. The CIBERSORT algorithm was used to determine the relative abundance of 22 immune cell types in each sample and the ESTIMATE algorithm was used to identify differentially expressed genes within the tumour microenvironment of BC, which were subjected to functional enrichment and protein-protein interaction (PPI) analyses. The association of cell subsets and differentially expressed genes with patient survival and clinical parameters was examined by Cox regression analysis and the Kaplan-Meier method. RESULTS Resting natural killer cells and activated memory CD4+ and CD8+ T cells were associated with favourable patient outcome, whereas resting memory CD4+ T cells were associated with poor outcome. Differential expression analysis revealed 1334 genes influencing both immune and stromal cell scores; of them, 97 were predictive of overall survival in patients with BC. Among the top 10 statistically significant hub genes in the PPI network, CXCL12, FN1, LCK, and CXCR4 were found to be associated with BC prognosis. CONCLUSION Tumour-infiltrating immune cells and cancer microenvironment-related genes can affect the outcomes of patients and are likely to be important determinants of both prognosis and response to immunotherapy in BC.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, Guangdong, China
- Shantou University Medical College, No. 22, Xinling Road, Jinping District, Shantou, Guangdong, China
| | - De-Hua Ou
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, Guangdong, China
- Shantou University Medical College, No. 22, Xinling Road, Jinping District, Shantou, Guangdong, China
| | - Dong-Wu Zhuang
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, Guangdong, China
- Shantou University Medical College, No. 22, Xinling Road, Jinping District, Shantou, Guangdong, China
| | - Ze-Feng Zheng
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, Guangdong, China
- Shantou University Medical College, No. 22, Xinling Road, Jinping District, Shantou, Guangdong, China
| | - Ming-En Lin
- Department of Urology, The First Affiliated Hospital of Shantou University Medical College, No. 57, Changping Road, Jinping District, Shantou, Guangdong, China.
| |
Collapse
|
96
|
Lin M, Gao M, Pandalai PK, Cavnar MJ, Kim J. An Organotypic Microcosm for the Pancreatic Tumor Microenvironment. Cancers (Basel) 2020; 12:E811. [PMID: 32231028 PMCID: PMC7225919 DOI: 10.3390/cancers12040811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic duct adenocarcinoma (PDAC) is projected to become the second leading cause of cancer-related deaths in the next few years. Unfortunately, the development of novel therapies for PDAC has been challenged by a uniquely complex tumor microenvironment. The development of in vitro cancer organoids in recent years has demonstrated potential to increase therapies for patients with PDAC. Organoids have been established from PDAC murine and human tissues and they are representative of the primary tumor. Further, organoids have been shown beneficial in studies of molecular mechanisms and drug sensitivity testing. This review will cover the use of organoids to study PDAC development, invasiveness, and therapeutic resistance in the context of the tumor microenvironment, which is characterized by a dense desmoplastic reaction, hindered immune activity, and pro-tumor metabolic signaling. We describe investigations utilizing organoids to characterize the tumor microenvironment and also describe their limitations. Overall, organoids have great potential to serve as a versatile model of drug response and may be used to increase available therapies and improve survival for patients with PDAC.
Collapse
Affiliation(s)
| | | | | | | | - Joseph Kim
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA; (M.L.); (M.G.); (P.K.P.); (M.J.C.)
| |
Collapse
|
97
|
Ghafouri-Fard S, Shoorei H, Branicki W, Taheri M. Non-coding RNA profile in lung cancer. Exp Mol Pathol 2020; 114:104411. [PMID: 32112788 DOI: 10.1016/j.yexmp.2020.104411] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the most frequently diagnosed malignancy and the leading source of cancer-associated mortality. This kind of cancer has heterogeneous nature and is divided into two broad classes of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). In addition to aberrant expression of several signaling pathways and oncogenes, lung cancer is associated with dysregulation of expression of non-coding RNAs including both long non-coding RNAs (lncRNAs) and miRNAs. These aberrantly expressed transcripts are putative therapeutic targets and diagnostic/ prognostic markers. Integrative assessment of expression of lncRNAs, miRNAs and mRNAs has led to construction of competing endogenous RNA networks in which several lncRNAs act as molecular sponges to inhibit regulatory function of miRNAs on mRNAs. Notably, some of these networks seem to have subtype-specific functions in lung cancer. In this review, we summarize recent findings about the importance of these networks in the pathogenesis of lung cancer and provide a list of onco-miRNAs, tumor suppressor miRNAs, oncogenic lncRNAs and tumor suppressor lncRNAs based on their roles in the carcinogenic process in lung cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
98
|
Xie Y, Hang Y, Wang Y, Sleightholm R, Prajapati DR, Bader J, Yu A, Tang W, Jaramillo L, Li J, Singh RK, Oupický D. Stromal Modulation and Treatment of Metastatic Pancreatic Cancer with Local Intraperitoneal Triple miRNA/siRNA Nanotherapy. ACS NANO 2020; 14:255-271. [PMID: 31927946 PMCID: PMC7041410 DOI: 10.1021/acsnano.9b03978] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomedicines achieve tumor-targeted delivery mainly through enhanced permeability and retention (EPR) effect following intravenous (IV) administration. Unfortunately, the EPR effect is severely compromised in pancreatic cancer due to hypovascularity and dense desmoplastic stroma. Intraperitoneal (IP) administration may be an effective EPR-independent local delivery approach to target peritoneal tumors. Besides improved delivery, effective combination delivery strategies are needed to improve pancreatic cancer therapy by targeting both cancer cells and cellular interactions within the tumor stroma. Here, we described simple cholesterol-modified polymeric CXCR4 antagonist (PCX) nanoparticles (to block cancer-stroma interactions) for codelivery of anti-miR-210 (to inactivate stroma-producing pancreatic stellate cells (PSCs)) and siKRASG12D (to kill pancreatic cancer cells). IP administration delivered the nanoparticles to an orthotopic syngeneic pancreatic tumors as a result of preferential localization to the tumors and metastases with disrupted mesothelium and effective tumor penetration. The local IP delivery resulted in nearly 15-fold higher tumor accumulation than delivery by IV injection. Through antagonism of CXCR4 and downregulation of miR-210/KRASG12D, the triple-action nanoparticles favorably modulated desmoplastic tumor microenvironment via inactivating PSCs and promoting the infiltration of cytotoxic T cells. The combined therapy displayed improved therapeutic effect when compared with individual therapies as documented by the delayed tumor growth, depletion of stroma, reduction of immunosuppression, inhibition of metastasis, and prolonged survival. Overall, we present data that a local IP delivery of a miRNA/siRNA combination holds the potential to improve pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Yazhe Wang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Richard Sleightholm
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Dipakkumar R Prajapati
- Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Johannes Bader
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy , Ludwig-Maximilians-Universität München , 81337 Munich , Germany
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Lee Jaramillo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
- Bohemica Pharmaceuticals, LLC , La Vista , Nebraska 68128 , United States
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Rakesh K Singh
- Department of Pathology and Microbiology , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
99
|
Schröter P, Hartmann L, Osen W, Baumann D, Offringa R, Eisel D, Debus J, Eichmüller SB, Rieken S. Radiation-induced alterations in immunogenicity of a murine pancreatic ductal adenocarcinoma cell line. Sci Rep 2020; 10:686. [PMID: 31959787 PMCID: PMC6971029 DOI: 10.1038/s41598-020-57456-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is highlighted by resistance to radiotherapy with the possible exception of hypofractionated irradiation. As single photon doses were reported to increase immunogenicity, we investigated dose-dependent irradiation effects on clonogenic survival, expression of immunologically relevant cell surface molecules and susceptibility to cytotoxic T cell (CTL) mediated killing using a murine PDA cell line. Clonogenicity decreased in a dose-responsive manner showing enhanced radioresistance at single photon doses below 5 Gy. Cell cycle analysis revealed a predominant G2/M arrest, being most pronounced 12 h after irradiation. Polyploidy increased in a dose- and time-dependent manner reaching a maximum frequency 60 h following irradiation with 10 Gy. Irradiation increased surface expression of MHC class I molecules and of immunological checkpoint molecules PDL-1 and CD73, especially at doses ≥ 5 Gy, but not of MHC class II molecules and CXCR4 receptors. Cytotoxicity assays revealed increased CTL lysis of PDA cells at doses ≥ 5 Gy. For the PDA cell line investigated, our data show for the first time that single photon doses ≥ 5 Gy effectively inhibit colony formation and induce a G2/M cell cycle arrest. Furthermore, expression levels of immunomodulatory cell surface molecules became altered possibly enhancing the susceptibility of tumour cells to CTL lysis.
Collapse
Affiliation(s)
- Philipp Schröter
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- University Hospital Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, D-69120, Heidelberg, Germany
| | - Laura Hartmann
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Wolfram Osen
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Daniel Baumann
- German Cancer Research Center (DKFZ), Molecular Oncology of Gastrointestinal Tumors, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- University Hospital Heidelberg, Department of Surgery, Im Neuenheimer Feld 110, D-69120, Heidelberg, Germany
| | - Rienk Offringa
- German Cancer Research Center (DKFZ), Molecular Oncology of Gastrointestinal Tumors, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- University Hospital Heidelberg, Department of Surgery, Im Neuenheimer Feld 110, D-69120, Heidelberg, Germany
| | - David Eisel
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Jürgen Debus
- University Hospital Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, D-69120, Heidelberg, Germany
| | - Stefan B Eichmüller
- German Cancer Research Center (DKFZ), Research Group GMP & T Cell Therapy, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| | - Stefan Rieken
- University Hospital Heidelberg, Department of Radiation Oncology, Im Neuenheimer Feld 400, D-69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, D-69120, Heidelberg, Germany
| |
Collapse
|
100
|
Ding X, Huang R, Zhong Y, Cui N, Wang Y, Weng J, Chen L, Zang M. CTHRC1 promotes gastric cancer metastasis via HIF-1α/CXCR4 signaling pathway. Biomed Pharmacother 2019; 123:109742. [PMID: 31855733 DOI: 10.1016/j.biopha.2019.109742] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/16/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Metastasis is the main cause of gastric cancer (GC) related death and the underlying mechanisms still remain unclear. Collagen triple helix repeat containing 1 (CTHRC1) protein is known to be involved in tissue remodeling processes and closely associated with carcinogenesis and metastasis in solid tumors, but the functional role of CTHRC1 and its underlying mechanism with tumor metastasis in GC have not been fully illuminated. In the present study, CTHRC1 was highly expressed in tumor tissues and associated with poor prognosis of GC according to TCGA and GEO database. Functional studies revealed that CTHRC1 overexpression in GC significantly increased cell migration and invasion capacity. However, the promoting effects were abolished subsequent to silencing of CXCR4. In addition, CTHRC1 increased CXCR4 expression through upregulating HIF-1α expression, which eventually contributed to the promotion of cell migration and invasion. Inhibiting HIF-1α expression decreased CXCR4 expression and suppressed cell migration and invasion in GC. These results substantiated our hypothesis that HIF-1α/CXCR4 signaling pathway mediated the promoting effect of CTHRC1 on cell migration and invasion in GC.
Collapse
Affiliation(s)
- Xusheng Ding
- Department of Gastric Cancer Surgery, Fudan University, Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of General Surgery of Changzheng Hospital Affiliated to Naval Military Medical University, Fengyang Road, Shanghai, 200003, China; Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin Er Road, Shanghai 200025, China
| | - Renhong Huang
- Department of General Surgery of Changzheng Hospital Affiliated to Naval Military Medical University, Fengyang Road, Shanghai, 200003, China
| | - Yiming Zhong
- Department of General Surgery of Changzheng Hospital Affiliated to Naval Military Medical University, Fengyang Road, Shanghai, 200003, China; Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin Er Road, Shanghai 200025, China
| | - Na Cui
- Department of Pathology of Changzheng Hospital Affiliated to Naval Military Medical University, Fengyang Road, Shanghai, 200003, China
| | - Yifei Wang
- Department of Cardiothoracic Surgery of Changzheng Hospital Affiliated to Naval Military Medical University, Fengyang Road, Shanghai, 200003, China
| | - Junyong Weng
- Department of Gastric Cancer Surgery, Fudan University, Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Chen
- Department of Gastric Cancer Surgery, Fudan University, Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingde Zang
- Department of Gastric Cancer Surgery, Fudan University, Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin Er Road, Shanghai 200025, China.
| |
Collapse
|