51
|
Lampros M, Vlachos N, Voulgaris S, Alexiou GA. The Role of Hsp27 in Chemotherapy Resistance. Biomedicines 2022; 10:897. [PMID: 35453647 PMCID: PMC9028095 DOI: 10.3390/biomedicines10040897] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Heat shock protein (Hsp)-27 is a small-sized, ATP-independent, chaperone molecule that is overexpressed under conditions of cellular stress such as oxidative stress and heat shock, and protects proteins from unfolding, thus facilitating proteostasis and cellular survival. Despite its protective role in normal cell physiology, Hsp27 overexpression in various cancer cell lines is implicated in tumor initiation, progression, and metastasis through various mechanisms, including modulation of the SWH pathway, inhibition of apoptosis, promotion of EMT, adaptation of CSCs in the tumor microenvironment and induction of angiogenesis. Investigation of the role of Hsp27 in the resistance of various cancer cell types against doxorubicin, herceptin/trastuzumab, gemcitabine, 5-FU, temozolomide, and paclitaxel suggested that Hsp27 overexpression promotes cancer cell survival against the above-mentioned chemotherapeutic agents. Conversely, Hsp27 inhibition increased the efficacy of those chemotherapy drugs, both in vitro and in vivo. Although numerous signaling pathways and molecular mechanisms were implicated in that chemotherapy resistance, Hsp27 most commonly contributed to the upregulation of Akt/mTOR signaling cascade and inactivation of p53, thus inhibiting the chemotherapy-mediated induction of apoptosis. Blockage of Hsp27 could enhance the cytotoxic effect of well-established chemotherapeutic drugs, especially in difficult-to-treat cancer types, ultimately improving patients' outcomes.
Collapse
Affiliation(s)
| | | | | | - George A. Alexiou
- Department of Neurosurgery, University Hospital of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| |
Collapse
|
52
|
Circular RNA_0057209 Acts as ceRNA to Inhibit Thyroid Cancer Progression by Promoting the STK4-Mediated Hippo Pathway via Sponging MicroRNA-183. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9974639. [PMID: 35308166 PMCID: PMC8933075 DOI: 10.1155/2022/9974639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022]
Abstract
Thyroid cancer is the most common malignancy of the endocrine system, and its outcome remains unsatisfactory. In recent years, circular RNAs (circRNAs) have emerged as crucial regulators in cancers. In the current study, we aimed to investigate whether and how circRNA_0057209 functioned in thyroid cancer. Initial results revealed that circRNA_0057209 and STK4 were both reduced, while miR-183 was up-regulated in thyroid cancer tissues and cells. Experiments including RNA pull-down and RIP assays further identified that upregulation of circRNA_0057209 augmented the expression of STK4, a target gene of miR-183, by competitively-binding to miR-183. Furthermore, functional experiments provided evidence that overexpression of circRNA_0057209 not only inhibited the proliferative, migratory, and invasive properties of thyroid cancer cells while facilitating their apoptosis but also delayed tumor growth. Conversely, upregulation of miR-183 or silencing of STK4 reversed the changes induced by circRNA_0057209. Meanwhile, mechanistic experimentation demonstrated that circRNA_0057209 promoted STK4 expression by sponging miR-183, while STK4 enhanced YAP phosphorylation to mediate the Hippo pathway, thereby suppressing tumor progression. Altogether, our findings indicated that circRNA_0057209 may serve as a competing endogenous RNA of miR-183 to increase STK4 expression, thus inhibiting the development of thyroid cancer.
Collapse
|
53
|
Su F, Fang Y, Yu J, Jiang T, Lin S, Zhang S, Lv L, Long T, Pan H, Qi J, Zhou Q, Tang W, Ding G, Wang L, Tan L, Yin J. The Single Nucleotide Polymorphisms of AP1S1 are Associated with Risk of Esophageal Squamous Cell Carcinoma in Chinese Population. Pharmgenomics Pers Med 2022; 15:235-247. [PMID: 35321090 PMCID: PMC8938157 DOI: 10.2147/pgpm.s342743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background The σ1A subunit of the adaptor protein 1 (AP1S1) participates in various intracellular transport pathways, especially the maintenance of copper homeostasis, which is pivotal in carcinogenesis. It is therefore rational to presume that AP1S1 might also be involved in carcinogenesis. In this hospital-based case-control study, we investigated the genetic susceptibility to ESCC in relation to SNPs of AP1S1 among Chinese population. Methods A database containing a total of 1303 controls and 1043 ESCC patients were retrospectively studied. The AP1S1 SNPs were analyzed based on ligation detection reaction (LDR) method. Then, the relationship between ESCC and SNPs of AP1S1 was determined with a significant crude P<0.05. Then the logistic regression analysis was used for the calculation for adjusted P in the demographic stratification comparison if a significant difference was observed in the previous step. Results AP1S1 rs77387752 C>T genotype TT was an independent risk factor for ESCC, while rs4729666 C>T genotype TC and rs35208462 C>T genotype TC were associated with a lower risk for ESCC, especially in co-dominant model and allelic test for younger, male subjects who are not alcohol-drinkers nor cigarette smokers. Conclusion AP1S1 rs77387752, rs4729666 and rs35208462 polymorphisms are associated with susceptibility to ESCC in Chinese individuals. AP1S1 SNPs may exert an important role in esophageal carcinogenesis and could serve as potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Feng Su
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yong Fang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Jinjie Yu
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Siyun Lin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Tao Long
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Huiwen Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Junqing Qi
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Qiang Zhou
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan, People’s Republic of China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Jiangsu, People’s Republic of China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Liming Wang
- Department of Respiratory, Shanghai Xuhui Central Hospital, Shanghai, People’s Republic of China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Correspondence: Jun Yin; Lijie Tan, Zhongshan Hospital of Fudan University, 180 Fenglin road, Xuhui District, Shanghai, 200032, People’s Republic of China, Email ;
| |
Collapse
|
54
|
Zeng ML, Cheng JJ, Kong S, Yang XL, Jia XL, Cheng XL, Chen L, He FG, Liu YM, Fan YT, Gongga L, Chen TX, Liu WH, He XH, Peng BW. Inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4) Mitigates Seizures. Neurotherapeutics 2022; 19:660-681. [PMID: 35182379 PMCID: PMC9226259 DOI: 10.1007/s13311-022-01198-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/08/2023] Open
Abstract
Astrocytes are critical regulators of the immune/inflammatory response in several human central nervous system (CNS) diseases. Emerging evidence suggests that dysfunctional astrocytes are crucial players in seizures. The objective of this study was to investigate the role of transient receptor potential vanilloid 4 (TRPV4) in 4-aminopyridine (4-AP)-induced seizures and the underlying mechanism. We also provide evidence for the role of Yes-associated protein (YAP) in seizures. 4-AP was administered to mice or primary cultured astrocytes. YAP-specific small interfering RNA (siRNA) was administered to primary cultured astrocytes. Mouse brain tissue and surgical specimens from epileptic patient brains were examined, and the results showed that TRPV4 was upregulated, while astrocytes were activated and polarized to the A1 phenotype. The levels of glial fibrillary acidic protein (GFAP), cytokine production, YAP, signal transducer activator of transcription 3 (STAT3), intracellular Ca2+([Ca2+]i) and the third component of complement (C3) were increased in 4-AP-induced mice and astrocytes. Perturbations in the immune microenvironment in the brain were balanced by TRPV4 inhibition or the manipulation of [Ca2+]i in astrocytes. Knocking down YAP with siRNA significantly inhibited 4-AP-induced pathological changes in astrocytes. Our study demonstrated that astrocytic TRPV4 activation promoted neuroinflammation through the TRPV4/Ca2+/YAP/STAT3 signaling pathway in mice with seizures. Astrocyte TRPV4 inhibition attenuated neuroinflammation, reduced neuronal injury, and improved neurobehavioral function. Targeting astrocytic TRPV4 activation may provide a promising therapeutic approach for managing epilepsy.
Collapse
Affiliation(s)
- Meng-liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Jing-jing Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Xing-liang Yang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Xiang-lei Jia
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Xue-lei Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Ling Chen
- Institute of Forensic Medicine, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Fang-gang He
- Institute of Forensic Medicine, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Yu-min Liu
- Department of Neurology, Zhongnan Hospital, Wuhan University, Donghu Road 169#, 430071 Wuhan, Hubei China
| | - Yuan-teng Fan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Donghu Road 169#, 430071 Wuhan, Hubei China
| | - Lanzi Gongga
- Tibet University Medical College, 850000 Lhasa, Tibet China
| | - Tao-xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| | - Wan-hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Xiao-hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071 Wuhan, Hubei China
| | - Bi-wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Donghu Rd185#, 430071 Wuhan, Hubei China
| |
Collapse
|
55
|
Liu J, Shao J, Zhang C, Qin G, Liu J, Li M, Wu P, Zhao X, Zhang Y. Immuno-oncological role of 20S proteasome alpha-subunit 3 in aggravating the progression of esophageal squamous cell carcinoma. Eur J Immunol 2022; 52:338-351. [PMID: 34755333 DOI: 10.1002/eji.202149441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/05/2022]
Abstract
PSMA3, a member of the proteasome subunit, has been shown to play a major player in protein degradation. Reportedly, PSMA3 functions as a negative regulator in various cancers including colon, pancreatic and gastric cancers. However, the contributions of PSMA3 to the progression of esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. Therefore, in this study, we investigated whether PSMA3 is involved in ESCC progression and the potential underlying mechanism. The results revealed that PSMA3 was highly expressed in the ESCC tumor tissues and functioned as a negative indicator according to the data from The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) datasets and clinical patients' samples. Pathway enrichment analysis showed that PSMA3 was closely correlated with ESCC cancer stemness and the inflammatory response; however, this correlation was absent after knockdown of PSMA3 in vitro. We further demonstrated that PSMA3 suppressed CD8+ T-cells infiltration depending on the C-C motif chemokine ligand 3 (CCL3)/C-C motif chemokine receptor 5 (CCR5) axis. Collectively, these results demonstrate the role of PSMA3 in ESCC cancer stemness and the negative regulation of CD8 T-cells infiltration mediated by PSMA3. The results of this study may provide a potential target for the immuno-oncology effect of PSMA3 in ESCC therapy.
Collapse
Affiliation(s)
- Jinyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jingwen Shao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jiayin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Miaomiao Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Peng Wu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Xuan Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
- Key Laboratory for Tumor Immunology and Biotherapy of Henan Province, Zhengzhou, Henan, P. R. China
| |
Collapse
|
56
|
Kilanowska A, Ziółkowska A. Apoptosis in Type 2 Diabetes: Can It Be Prevented? Hippo Pathway Prospects. Int J Mol Sci 2022; 23:636. [PMID: 35054822 PMCID: PMC8775644 DOI: 10.3390/ijms23020636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus is a heterogeneous disease of complex etiology and pathogenesis. Hyperglycemia leads to many serious complications, but also directly initiates the process of β cell apoptosis. A potential strategy for the preservation of pancreatic β cells in diabetes may be to inhibit the implementation of pro-apoptotic pathways or to enhance the action of pancreatic protective factors. The Hippo signaling pathway is proposed and selected as a target to manipulate the activity of its core proteins in therapy-basic research. MST1 and LATS2, as major upstream signaling kinases of the Hippo pathway, are considered as target candidates for pharmacologically induced tissue regeneration and inhibition of apoptosis. Manipulating the activity of components of the Hippo pathway offers a wide range of possibilities, and thus is a potential tool in the treatment of diabetes and the regeneration of β cells. Therefore, it is important to fully understand the processes involved in apoptosis in diabetic states and completely characterize the role of this pathway in diabetes. Therapy consisting of slowing down or stopping the mechanisms of apoptosis may be an important direction of diabetes treatment in the future.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-001 Zielona Gora, Poland;
| | | |
Collapse
|
57
|
The YAP/TAZ Signaling Pathway in the Tumor Microenvironment and Carcinogenesis: Current Knowledge and Therapeutic Promises. Int J Mol Sci 2021; 23:ijms23010430. [PMID: 35008857 PMCID: PMC8745604 DOI: 10.3390/ijms23010430] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
The yes-associated protein (YAP) and the transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators, members of the Hippo signaling pathway, which play a critical role in cell growth regulation, embryonic development, regeneration, proliferation, and cancer origin and progression. The mechanism involves the nuclear binding of the un-phosphorylated YAP/TAZ complex to release the transcriptional enhanced associate domain (TEAD) from its repressors. The active ternary complex is responsible for the aforementioned biological effects. Overexpression of YAP/TAZ has been reported in cancer stem cells and tumor resistance. The resistance involves chemotherapy, targeted therapy, and immunotherapy. This review provides an overview of YAP/TAZ pathways’ role in carcinogenesis and tumor microenvironment. Potential therapeutic alternatives are also discussed.
Collapse
|
58
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
59
|
Yang D, Zhang N, Li M, Hong T, Meng W, Ouyang T. The Hippo Signaling Pathway: The Trader of Tumor Microenvironment. Front Oncol 2021; 11:772134. [PMID: 34858852 PMCID: PMC8632547 DOI: 10.3389/fonc.2021.772134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway regulates cancer biology in many aspects and the crosstalk with other pathways complicates its role. Accumulated evidence has shown that the bidirectional interactions between tumor cells and tumor microenvironment (TME) are the premises of tumor occurrence, development, and metastasis. The relationship among different components of the TME constitutes a three-dimensional network. We point out the core position of the Hippo pathway in this network and discuss how the regulatory inputs cause the chain reaction of the network. We also discuss the important role of Hippo-TME involvement in cancer treatment.
Collapse
Affiliation(s)
- Duo Yang
- Department of the Forth Clinical Medical College of Nanchang University, Nanchang, China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
60
|
Li Y, Xu Z, Chang S. Glucocorticoids induce osteonecrosis of the femoral head through the Hippo signaling pathway. Open Life Sci 2021; 16:1130-1140. [PMID: 34746414 PMCID: PMC8549681 DOI: 10.1515/biol-2021-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) induced by glucocorticoids (GCs) has been considered to be associated with the dysfunction of bone marrow mesenchymal stem cells (BMSCs). Studies have reported that GCs can regulate the normal differentiation of BMSCs. However, the exact mechanism of this regulation remains unclear. In this study, we used methylprednisolone (MPS) to induce BMSCs, and then found that the Hippo signaling pathway was upregulated in a dose-dependent manner compared to that in the control group. In addition, the osteogenic ability of BMSCs was decreased, as evaluated by Alizarin Red S staining analysis and alkaline phosphatase activity assays, accompanied by the downregulated expression of Runx2, osteopontin, and osteocalcin. Additionally, the adipogenic capacity of BMSCs under the MPS conditions was increased, as identified by Oil Red O staining with upregulated triglyceride and PPARγ expression. Moreover, suppression by knockdown of MST1 was found to attenuate the Hippo signaling pathway and adipogenic differentiation, while enhancing osteogenic differentiation. In conclusion, our findings revealed that the Hippo signaling pathway was involved in GC-ONFH by affecting the osteogenic and adipogenic differentiation capacities of BMSCs. Our study could provide a basis for further investigation of the specific function of the Hippo pathway in ONFH.
Collapse
Affiliation(s)
- Yugang Li
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, No. 278 Baoguang Avenue, Xindu District, Chengdu 610500, Sichuan, People's Republic of China
| | - Zechuan Xu
- Department of Orthopedics, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu 610057, Sichuan, People's Republic of China
| | - Shan Chang
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, No. 278 Baoguang Avenue, Xindu District, Chengdu 610500, Sichuan, People's Republic of China
| |
Collapse
|
61
|
Riluzole-induced apoptosis in osteosarcoma is mediated through Yes-associated protein upon phosphorylation by c-Abl Kinase. Sci Rep 2021; 11:20974. [PMID: 34697383 PMCID: PMC8546089 DOI: 10.1038/s41598-021-00439-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Our lab has previously demonstrated Riluzole to be an effective drug in inhibiting proliferation and inducing apoptosis in both human and mouse osteosarcoma. Yes-associated protein is a transcription co-activator, known to be involved in cell proliferation or apoptosis depending on its protein partner. In the present study we investigated the role of YAP in apoptosis in osteosarcoma, we hypothesized that YAP may be activated by Riluzole to induce apoptosis in osteosarcoma. By knocking down the expression of YAP, we have demonstrated that Riluzole failed to induce apoptosis in YAP deficient osteosarcoma cells. Riluzole caused translocation of YAP from the cytoplasm to the nucleus, indicating YAP’s role in apoptosis. Both Riluzole-induced phosphorylation of YAP at tyrosine 357 and Riluzole-induced apoptosis were blocked by inhibitors of c-Abl kinase. In addition, knockdown of c-Abl kinase prevented Riluzole-induced apoptosis in LM7 cells. We further demonstrated that Riluzole promoted interaction between YAP and p73, while c-Abl kinase inhibitors abolished the interaction. Subsequently, we demonstrated that Riluzole enhanced activity of the Bax promoter in a luciferase reporter assay and enhanced YAP/p73 binding on endogenous Bax promoter in a ChIP assay. Our data supports a novel mechanism in which Riluzole activates c-Abl kinase to regulate pro-apoptotic activity of YAP in osteosarcoma.
Collapse
|
62
|
Zeng Y, Xu Q, Xu N. Long non-coding RNA LOC107985656 represses the proliferation of hepatocellular carcinoma cells through activation of the tumor-suppressive Hippo pathway. Bioengineered 2021; 12:7964-7974. [PMID: 34565286 PMCID: PMC8806957 DOI: 10.1080/21655979.2021.1984005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play important regulatory roles in hepatocellular carcinoma (HCC). However, the function of LOC107985656 in HCC progression remains unclear. The lncRNA, mRNA and miRNA levels in HCC tissues or cells were measured using real-time quantitative polymerase chain reaction (RT-qPCR). The proliferation of cancer cells was evaluated using 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) viability and colony formation assays. Bioinformatics prediction, dual luciferase assay and RNA pull-down assay were performed to analyze the relationships between LOC107985656 and miR-106b-5p, or miR-106b-5p and large tumor suppressor 1 (LATS1). The protein expression levels were detected using Western blot. Results showed that LncRNA LOC107985656 was downregulated in HCC tissues and cells. Upregulation of LOC107985656 inhibited the proliferation of HCC cells, whereas its knockdown promoted this phenomenon. LOC107985656 could activate the tumor-suppressive Hippo pathway by repressing yes association protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1, also known as TAZ) (two homologs of Yki) protein expression in HCC. Further investigation suggested that LOC107985656 regulated the expression of LATS1 by acting as a sponge for absorbing miR-106b-5p in HCC cells. In conclusion, this study unraveled the role of LOC107985656 following a ceRNA (competing endogenous RNAs) mechanism for the miR-106b-5p/LATS1 axis in HCC. The results indicate potential diagnostic and therapeutic applications of LOC107985656 in HCC.
Abbreviations:
HCC: hepatocellular carcinoma; LncRNA: long non-coding RNA; LATS1: large tumor suppressor 1; MTT: 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; YAP: yes association protein; WWTR1: WW domain-containing transcription regulator protein 1; cDNA: single‐stranded complementary DNA; RT-qPCR: real-time quantitative polymerase chain reaction; Radio-Immunoprecipitation Assay (RIPA); BCA: bicinchoninic acid; ASO: antisense oligonucleotide; MST1/2: Ste20-like kinases 1/2; TEAD: TEA domain transcription factor; ceRNA: competing endogenous RNAs.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Internal Medicine, Chenglong Campus Hospital, Sichuan Normal University, Sichuan Province China
| | - Qin Xu
- Department of Infectious Diseases, First Affiliated Hospital of Xinjiang Medical University, Xinjiang China
| | - Nan Xu
- Department of Infectious Diseases, West China Hospital of Sichuan University, Sichuan Province China
| |
Collapse
|
63
|
Takemoto M, Tanaka T, Tsuji R, Togashi Y, Higashi M, Fumino S, Tajiri T. The synergistic antitumor effect of combination therapy with a MEK inhibitor and YAP inhibitor on pERK-positive neuroblastoma. Biochem Biophys Res Commun 2021; 570:41-46. [PMID: 34271435 DOI: 10.1016/j.bbrc.2021.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND We previously reported the in vitro and in vivo antitumor effects of trametinib, a MEK inhibitor, on neuroblastoma with MAPK pathway mutations. As we observed eventual resistance to trametinib in our previous study, we evaluated the combination therapy of CA3, a YAP inhibitor, with trametinib, based on a recent report suggesting the potential involvement of YAP in the mechanism underlying the resistance to trametinib in neuroblastoma. METHODS SK-N-AS cells (a neuroblastoma cell line harboring RAS mutation) were treated with CA3 in vitro and subjected to a viability assay, immunocytochemistry and flow cytometry. Next, we analyzed the in vitro combination effect of CA3 and trametinib using the CompuSyn software program. Finally, we administered CA3, trametinib or both to SK-N-AS xenograft mice for 10 weeks to analyze the combination effect. RESULTS CA3 inhibited cell proliferation by both cell cycle arrest and apoptosis in vitro. Combination of CA3 and trametinib induced a significant synergistic effect in vitro (Combination Index <1). Regarding the in vivo experiment, combination therapy suppressed tumor growth, and 100% of mice in the combination therapy group survived, whereas the survival rates were 0% in the CA3 group and 33% in the trametinib group. However, despite this promising survival rate in the combination group, the tumors gradually grew after seven weeks with MAPK reactivation. CONCLUSION Our results indicated that CA3 and trametinib exerted synergistic antitumor effects on neuroblastoma in vitro and in vivo, and CA3 may be a viable option for concomitant drug therapy with trametinib, since it suppressed the resistance to trametinib. However, this combination effect was not sufficient to achieve complete remission. Therefore, we need to adjust the protocol to obtain a better outcome by determining the mechanism underlying regrowth in the future.
Collapse
Affiliation(s)
- Masakazu Takemoto
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ku, Kyoto-shi, Kyoto-fu, 602-0841, Japan.
| | - Tomoko Tanaka
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ku, Kyoto-shi, Kyoto-fu, 602-0841, Japan
| | - Ryota Tsuji
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ku, Kyoto-shi, Kyoto-fu, 602-0841, Japan
| | - Yuichi Togashi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ku, Kyoto-shi, Kyoto-fu, 602-0841, Japan
| | - Mayumi Higashi
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ku, Kyoto-shi, Kyoto-fu, 602-0841, Japan
| | - Shigehisa Fumino
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ku, Kyoto-shi, Kyoto-fu, 602-0841, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ku, Kyoto-shi, Kyoto-fu, 602-0841, Japan
| |
Collapse
|
64
|
Wang X, Su P, Kang Y, Xu C, Qiu J, Wu J, Sheng P, Huang D, Zhang Z. Combination of Melatonin and Zoledronic Acid Suppressed the Giant Cell Tumor of Bone in vitro and in vivo. Front Cell Dev Biol 2021; 9:690502. [PMID: 34447747 PMCID: PMC8382950 DOI: 10.3389/fcell.2021.690502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Melatonin (Mlt) confers potential antitumor effects in various types of cancer. However, to the best of our knowledge, the role of Mlt in the giant cell tumor of bone (GCTB) remains unknown. Moreover, further research is required to assess whether Mlt can enhance the therapeutic effect of zoledronic acid (Zol), a commonly used anti-GCTB drug. In this research, we investigated the effects of Mlt, Zol, and the combination of these two drugs on GCTB cells’ characteristics, including cell proliferation, apoptosis, osteogenic differentiation, migration, and invasion. The cell counting kit-8 (CCK-8) assay, colony formation assay, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay (TUNEL), alkaline phosphatase (ALP) staining, alizarin red staining (ARS), scratch wound healing assay, and transwell experiment were performed, respectively. Our results showed that Mlt could effectively inhibit the proliferation, migration, and invasion of GCTB cells, as well as promote the apoptosis and osteogenic differentiation of tumor cells. Of note, a stronger antitumor effect was observed when Mlt was combined with Zol treatment. This therapeutic effect might be achieved by inhibiting the activation of both the Hippo and NF-κB pathways. In conclusion, our study suggests that Mlt can be a new treatment for GCTB, which could further enhance the antitumor effect of Zol.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peiqiang Su
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Kang
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Caixia Xu
- Research Centre for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinna Wu
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Puyi Sheng
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziji Zhang
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
65
|
Qing X, Xu W, Zong J, Du X, Peng H, Zhang Y. Emerging treatment modalities for systemic therapy in hepatocellular carcinoma. Biomark Res 2021; 9:64. [PMID: 34419152 PMCID: PMC8380325 DOI: 10.1186/s40364-021-00319-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has long been a major global clinical problem as one of the most common malignant tumours with a high rate of recurrence and mortality. Although potentially curative therapies are available for the early and intermediate stages, the treatment of patients with advanced HCC remains to be resolved. Fortunately, the past few years have shown the emergence of successful systemic therapies to treat HCC. At the molecular level, HCC is a heterogeneous disease, and current research on the molecular characteristics of HCC has revealed numerous therapeutic targets. Targeted agents based on signalling molecules have been successfully supported in clinical trials, and molecular targeted therapy has already become a milestone for disease management in patients with HCC. Immunotherapy, a viable approach for the treatment of HCC, recognizes the antigens expressed by the tumour and treats the tumour using the immune system of the host, making it both selective and specific. In addition, the pipeline for HCC is evolving towards combination therapies with promising clinical outcomes. More drugs designed to focus on specific pathways and immune checkpoints are being developed in the clinic. It has been demonstrated that some drugs can improve the prognosis of patients with HCC in first- or second-line settings, and these drugs have been approved by the Food and Drug Administration or are nearing approval. This review describes targeting pathways and systemic treatment strategies in HCC and summarizes effective targeted and immune-based drugs for patients with HCC and the problems encountered.
Collapse
Affiliation(s)
- Xin Qing
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Wenjing Xu
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jingjing Zong
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xuanlong Du
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Hao Peng
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Yewei Zhang
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
66
|
Pang L, Shah H, Qian S, Sathish V. Iminodibenzyl redirected cyclooxygenase-2 catalyzed dihomo-γ-linolenic acid peroxidation pattern in lung cancer. Free Radic Biol Med 2021; 172:167-180. [PMID: 34102280 PMCID: PMC8355066 DOI: 10.1016/j.freeradbiomed.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
Cyclooxygenase-2 (COX-2) is up-regulated by redox imbalance and is considered a target for cancer therapy. The rationale of the COX-2 inhibitor lies in suppressing COX-2 catalyzed peroxidation of omega-6 polyunsaturated fatty acids (PUFAs), which are essential and pervasive in our daily diet. However, COX-2 inhibitors fail to improve cancer patients' survival and may lead to severe side effects. Here, instead of directly inhibiting COX-2, we utilize a small molecule, iminodibenzyl, which could reprogram the COX-2 catalyzed omega-6 PUFAs peroxidation in lung cancer by inhibiting delta-5-desaturase (D5D) activity. Iminodibenzyl breaks the conversion from dihomo-γ-linolenic acid (DGLA) to arachidonic acid, resulting in the formation of a distinct byproduct, 8-hydroxyoctanoic acid, in lung cancer cells and solid tumors. By utilizing COX-2 overexpression in cancer, the combination of DGLA supplementation and iminodibenzyl suppressed YAP1/TAZ pathway, decreasing the tumor size and lung metastasis in nude mice and C57BL/6 mice. This D5D inhibition-based strategy selectively damaged lung cancer cells with a high COX-2 level, whereas it could avoid harassing normal lung epithelial cells. This finding challenged the COX-2 redox basis in cancer, providing a new direction for developing omega-6 (DGLA)-based diet/regimen in lung cancer therapy.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Harshit Shah
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Steven Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
67
|
Devos M, Grosbois J, Demeestere I. Interaction between PI3K/AKT and Hippo pathways during in vitro follicular activation and response to fragmentation and chemotherapy exposure using a mouse immature ovary model. Biol Reprod 2021; 102:717-729. [PMID: 31786608 DOI: 10.1093/biolre/ioz215] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Understanding and control of the massive and accelerated follicular growth that occurs during in vitro culture of ovarian tissue is a crucial step toward the development of efficient culture systems that offer an attractive alternative to ovarian tissue transplantation for fertility restoration in cancer survivors. One outstanding question focuses on processes that occur prior to cryopreservation, such as tissue sectioning or chemotherapeutic treatment, might exacerbate this follicular activation. Although the PI3K/AKT/mTOR pathway is well known as a major trigger of physiological and chemotherapy-induced follicular activation, studies have shown that disruption of Hippo pathway due to ovarian fragmentation acts as an additional stimulator. This study aimed to characterize the possible interactions between these pathways using post-natal day 3 mouse ovaries cultured for 4 or 48 h. Morphology, gene transcription, and protein levels were assessed to investigate the impact of sectioning or chemotherapy exposure (4-hydroperoxycyclophosphamide [4HC], 3 and 20 μM). The effect of an mTORC1 inhibitor, Everolimus, alone or as a 4HC co-treatment to prevent follicle activation was evaluated. The results showed that organ removal from its physiological environment was as effective as sectioning for disruption of Hippo pathway and induction of follicle activation. Both PI3K/AKT/mTOR and Hippo pathways were involved in chemotherapy-induced follicular activation and responded to fragmentation. Surprisingly, Everolimus was able to prevent the activation of both pathways during chemotherapy exposure, suggesting cross-talk between them. This study underscores the major involvement of PI3K/AKT/mTOR and Hippo pathways in in vitro follicle activation and provides evidence that both can be regulated using mTORC1 inhibitor.
Collapse
Affiliation(s)
- Melody Devos
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - Johanne Grosbois
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles, Brussels, Belgium.,Fertility Clinic, CUB-Erasme, Brussels, Belgium
| |
Collapse
|
68
|
Hayashi H, Uemura N, Zhao L, Matsumura K, Sato H, Shiraishi Y, Baba H. Biological Significance of YAP/TAZ in Pancreatic Ductal Adenocarcinoma. Front Oncol 2021; 11:700315. [PMID: 34395269 PMCID: PMC8358930 DOI: 10.3389/fonc.2021.700315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal types of cancer. Despite major advances in defining the molecular mutations driving PDAC, this disease remains universally lethal with an overall 5-year survival rate of only about 7–8%. Genetic alterations in PDAC are exemplified by four critical genes (KRAS, TP53, CDKN2A, and SMAD4) that are frequently mutated. Among these, KRAS mutation ranges from 88% to 100% in several studies. Hippo signaling is an evolutionarily conserved network that plays a key role in normal organ development and tissue regeneration. Its core consists of the serine/threonine kinases mammalian sterile 20-like kinase 1 and 2 (MST1/2) and large tumor suppressor 1 and 2. Interestingly, pancreas-specific MST1/2 double knockout mice have been reported to display a decreased pancreas mass. Many of the genes involved in the Hippo signaling pathway are recognized as tumor suppressors, while the Hippo transducers Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) are identified as oncogenes. By dephosphorylation, YAP and TAZ accumulate in the nucleus and interact with transcription factors such as TEA domain transcription factor-1, 2, 3, and 4. Dysregulation of Hippo signaling and activation of YAP/TAZ have been recognized in a variety of human solid cancers, including PDAC. Recent studies have elucidated that YAP/TAZ play a crucial role in the induction of acinar-to-ductal metaplasia, an initial step in the progression to PDAC, in genetically engineered mouse models. YAP and TAZ also play a key role in the development of PDAC by both KRAS-dependent and KRAS-independent bypass mechanisms. YAP/TAZ have become extensively studied in PDAC and their biological importance during the development and progression of PDAC has been uncovered. In this review, we summarize the biological significance of a dysregulated Hippo signaling pathway or activated YAP/TAZ in PDAC and propose a role for YAP/TAZ as a therapeutic target.
Collapse
Affiliation(s)
- Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Norio Uemura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Liu Zhao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuki Matsumura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroki Sato
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuta Shiraishi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
69
|
Ren D, Sun Y, Zhang D, Li D, Liu Z, Jin X, Wu H. SGLT2 promotes pancreatic cancer progression by activating the Hippo signaling pathway via the hnRNPK-YAP1 axis. Cancer Lett 2021; 519:277-288. [PMID: 34314754 DOI: 10.1016/j.canlet.2021.07.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/03/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022]
Abstract
SGLT2 is overexpressed in various cancers, including pancreatic cancer. However, the mechanisms underlying the tumorigenic effects of SGLT2 in pancreatic cancer remain unclear. In this study, we demonstrated that SGLT2 inhibition significantly suppressed the growth of pancreatic cancer cells in vitro and in vivo. RNA sequencing, real-time PCR, and Western blot analyses revealed that SGLT2 silencing or inhibition suppressed Hippo signaling activation by downregulating YAP1 expression. Liquid chromatography-mass spectrometry and immunoprecipitation analyses showed that SGLT2 interacted with hnRNPK, promoting its nuclear translocation and thereby enhancing hnRNPK-induced YAP1 transcription. Importantly, YAP1 inhibitor enhanced the anti-pancreatic cancer effect of SGLT2 inhibitor in mice bearing pancreatic tumors. These findings suggest that SGLT2 promotes pancreatic cancer progression by activating the Hippo signaling pathway through the hnRNPK-YAP1 axis. Hence, SGLT2 inhibition alone or combined with YAP1 inhibition may represent a promising therapeutic approach for pancreatic cancer.
Collapse
Affiliation(s)
- Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Dan Li
- Cardiovascular Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhiqiang Liu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha,Hunan, 410011, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
70
|
Cao J, Zhang M, Wang B, Zhang L, Fang M, Zhou F. Chemoresistance and Metastasis in Breast Cancer Molecular Mechanisms and Novel Clinical Strategies. Front Oncol 2021; 11:658552. [PMID: 34277408 PMCID: PMC8281885 DOI: 10.3389/fonc.2021.658552] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/23/2021] [Indexed: 01/16/2023] Open
Abstract
Breast cancer is the most common malignant tumor in females worldwide. Chemotherapy is the standard breast cancer treatment; however, chemoresistance is often seen in patients with metastatic breast cancer. Owing to high heterogeneity, the mechanisms of breast cancer chemoresistance and metastasis have not been fully investigated. The possible molecular mechanisms of chemoresistance in breast cancer include efflux transporters, signaling pathways, non-coding RNAs, and cancer stem cells. However, to overcome this hurdle, the use of novel clinical strategies such as drug carriers, immunotherapy, and autophagy regulation, are being investigated. The goal of this review is to summarize the current data about the molecular mechanisms of breast cancer chemoresistance and the novel clinical strategies; thus, providing a useful clinical tool to explore optimal treatment for breast cancer.
Collapse
Affiliation(s)
- Jun Cao
- Department of Rare and Head and Neck Oncology, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Mengdi Zhang
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bin Wang
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Long Zhang
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Meiyu Fang
- Department of Rare and Head and Neck Oncology, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| |
Collapse
|
71
|
Wu Y, Aegerter P, Nipper M, Ramjit L, Liu J, Wang P. Hippo Signaling Pathway in Pancreas Development. Front Cell Dev Biol 2021; 9:663906. [PMID: 34079799 PMCID: PMC8165189 DOI: 10.3389/fcell.2021.663906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
The Hippo signaling pathway is a vital regulator of pancreatic development and homeostasis, directing cell fate decisions, morphogenesis, and adult pancreatic cellular plasticity. Through loss-of-function research, Hippo signaling has been found to play key roles in maintaining the proper balance between progenitor cell renewal, proliferation, and differentiation in pancreatic organogenesis. Other studies suggest that overactivation of YAP, a downstream effector of the pathway, promotes ductal cell development and suppresses endocrine cell fate specification via repression of Ngn3. After birth, disruptions in Hippo signaling have been found to lead to de-differentiation of acinar cells and pancreatitis-like phenotype. Further, Hippo signaling directs pancreatic morphogenesis by ensuring proper cell polarization and branching. Despite these findings, the mechanisms through which Hippo governs cell differentiation and pancreatic architecture are yet to be fully understood. Here, we review recent studies of Hippo functions in pancreatic development, including its crosstalk with NOTCH, WNT/β-catenin, and PI3K/Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States.,Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pauline Aegerter
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Michael Nipper
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Logan Ramjit
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Jun Liu
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| | - Pei Wang
- Department of Cell Systems and Anatomy, The University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
72
|
Cha YJ, Kim D, Bae SJ, Ahn SG, Jeong J, Cho MK, Paik PS, Yoo TK, Park WC, Yoon CI. The association between the expression of nuclear Yes-associated protein 1 (YAP1) and p53 protein expression profile in breast cancer patients. PLoS One 2021; 16:e0250986. [PMID: 33970925 PMCID: PMC8109764 DOI: 10.1371/journal.pone.0250986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/19/2021] [Indexed: 01/17/2023] Open
Abstract
Background Yes-associated protein 1 (YAP1) is a key effector molecule regulated by the Hippo pathway and described as a poor prognostic factor in breast cancer. Tumor protein 53 (TP53) mutation is well known as a biomarker related to poor survival outcomes. So far clinical characteristics and survival outcome according to YAP1 and TP53 mutation have been poorly identified in breast cancer. Patients and methods Retrospectively, 533 breast tumor tissues were collected at the Seoul St Mary’s hospital and Gangnam Severance Hospital from 1992 to 2017. Immunohistochemistry with YAP1 and p53 specific antibodies were performed, and the clinical data were analyzed. Results Mutant p53 pattern was associated with aggressive tumor features and advanced anatomical stage. Inferior overall survival (OS) and recurrence free survival (RFS) were related with mutant p53 pattern cases with low nuclear YAP1 expression (P = 0.0009 and P = 0.0011, respectively). Multivariate analysis showed that mutant p53 pattern was an independent prognostic marker for OS [hazard ratios (HR): 2.938, 95% confidence intervals (CIs): 1.028–8.395, P = 0.044] and RFS (HR: 1.842, 95% CIs: 1.026–3.304). However, in cases with high nuclear YAP1 expression, there were no significantly difference in OS and RFS according to p53 staining pattern. Conclusion We found that mutant p53 pattern is a poor prognostic biomarker in breast tumor with low nuclear YAP1 expression. Our findings suggest that interaction between nuclear YAP1 and p53 expression pattern impact survival outcomes.
Collapse
Affiliation(s)
- Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dooreh Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Soong June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Kyung Cho
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
| | - Pill Sun Paik
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
| | - Tae-Kyung Yoo
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
| | - Woo-Chan Park
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
| | - Chang Ik Yoon
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
- * E-mail:
| |
Collapse
|
73
|
He M, Yan G, Wang Y, Gong R, Lei H, Yu S, He X, Li G, Du W, Ma T, Gao M, Yu M, Liu S, Xu Z, Idiiatullina E, Zagidullin N, Pavlov V, Cai B, Yuan Y, Yang L. Blue LED causes autophagic cell death in human osteosarcoma by increasing ROS generation and dephosphorylating EGFR. J Cell Mol Med 2021; 25:4962-4973. [PMID: 33960631 PMCID: PMC8178260 DOI: 10.1111/jcmm.16412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumour in adolescence. Lately, light‐emitting diodes (LED)‐based therapy has emerged as a new promising approach for several diseases. However, it remains unknown in human OS. Here, we found that the blue LED irradiation significantly suppressed the proliferation, migration and invasion of human OS cells, while we observed blue LED irradiation increased ROS production through increased NADPH oxidase enzymes NOX2 and NOX4, as well as decreased Catalase (CAT) expression levels. Furthermore, we revealed blue LED irradiation‐induced autophagy characterized by alterations in autophagy protein markers including Beclin‐1, LC3‐II/LC3‐I and P62. Moreover, we demonstrated an enhanced autophagic flux. The blockage of autophagy displayed a remarkable attenuation of anti‐tumour activities of blue LED irradiation. Next, ROS scavenger N‐acetyl‐L‐cysteine (NAC) and NOX inhibitor diphenyleneiodonium (DPI) blocked suppression of OS cell growth, indicating that ROS accumulation might play an essential role in blue LED‐induced autophagic OS cell death. Additionally, we observed blue LED irradiation decreased EGFR activation (phosphorylation), which in turn led to Beclin‐1 release and subsequent autophagy activation in OS cells. Analysis of EGFR colocalization with Beclin‐1 and EGFR‐immunoprecipitation (IP) assay further revealed the decreased interaction of EGFR and Beclin‐1 upon blue LED irradiation in OS cells. In addition, Beclin‐1 down‐regulation abolished the effects of blue LED irradiation on OS cells. Collectively, we concluded that blue LED irradiation exhibited anti‐tumour effects on OS by triggering ROS and EGFR/Beclin‐1‐mediated autophagy signalling pathway, representing a potential approach for human OS treatment.
Collapse
Affiliation(s)
- Mingyu He
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Gege Yan
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yang Wang
- Department of Orthopedics, Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Rui Gong
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Hong Lei
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Shuting Yu
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiaoqi He
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Guanghui Li
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Weijie Du
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
| | - Tianshuai Ma
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Manqi Gao
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Meixi Yu
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Shenzhen Liu
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Zihang Xu
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Elina Idiiatullina
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, Russia
| | - Naufal Zagidullin
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, Russia
| | - Valentin Pavlov
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, Russia
| | - Benzhi Cai
- Department of Orthopedics, Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
| | - Ye Yuan
- Department of Orthopedics, Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
| | - Lei Yang
- Department of Orthopedics, Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
74
|
Swaroop B SS, Kanumuri R, Ezhil I, Naidu Sampangi JK, Kremerskothen J, Rayala SK, Venkatraman G. KIBRA connects Hippo signaling and cancer. Exp Cell Res 2021; 403:112613. [PMID: 33901448 DOI: 10.1016/j.yexcr.2021.112613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022]
Abstract
The Hippo signaling pathway is a tumor suppressor pathway that plays an important role in tissue homeostasis and organ size control. KIBRA is one of the many upstream regulators of the Hippo pathway. It functions as a tumor suppressor by positively regulating the core Hippo kinase cascade. However, there are accumulating shreds of evidence showing that KIBRA has an oncogenic function, which we speculate may arise from its functions away from the Hippo pathway. In this review, we have attempted to provide an overview of the Hippo signaling with a special emphasis on evidence showing the paradoxical role of KIBRA in cancer.
Collapse
Affiliation(s)
- Srikanth Swamy Swaroop B
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India; Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Rahul Kanumuri
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India; Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Inemai Ezhil
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India
| | - Jagadeesh Kumar Naidu Sampangi
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India
| | - Joachim Kremerskothen
- Department of Nephrology, Hypertension and Rheumatology, University Hospital Münster, Münster, Germany
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, Tamil Nadu, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India.
| |
Collapse
|
75
|
New Insights into YES-Associated Protein Signaling Pathways in Hematological Malignancies: Diagnostic and Therapeutic Challenges. Cancers (Basel) 2021; 13:cancers13081981. [PMID: 33924049 PMCID: PMC8073623 DOI: 10.3390/cancers13081981] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary YES-associated protein (YAP) is a co-transcriptional activator that binds to transcriptional factors to increase the rate of transcription of a set of genes, and it can intervene in the onset and progression of different tumors. Most of the data in the literature refer to the effects of the YAP system in solid neoplasms. In this review, we analyze the possibility that YAP can also intervene in hematological neoplasms such as lymphomas, multiple myeloma, and acute and chronic leukemias, modifying the phenomena of cell proliferation and cell death. The possibilities of pharmacological intervention related to the YAP system in an attempt to use its modulation therapeutically are also discussed. Abstract The Hippo/YES-associated protein (YAP) signaling pathway is a cell survival and proliferation-control system with its main activity that of regulating cell growth and organ volume. YAP operates as a transcriptional coactivator in regulating the onset, progression, and treatment response in numerous human tumors. Moreover, there is evidence suggesting the involvement of YAP in the control of the hematopoietic system, in physiological conditions rather than in hematological diseases. Nevertheless, several reports have proposed that the effects of YAP in tumor cells are cell-dependent and cell-type-determined, even if YAP usually interrelates with extracellular signaling to stimulate the onset and progression of tumors. In the present review, we report the most recent findings in the literature on the relationship between the YAP system and hematological neoplasms. Moreover, we evaluate the possible therapeutic use of the modulation of the YAP system in the treatment of malignancies. Given the effects of the YAP system in immunosurveillance, tumorigenesis, and chemoresistance, further studies on interactions between the YAP system and hematological malignancies will offer very relevant information for the targeting of these diseases employing YAP modifiers alone or in combination with chemotherapy drugs.
Collapse
|
76
|
Wang M, Xu T, Feng W, Liu J, Wang Z. Advances in Understanding the LncRNA-Mediated Regulation of the Hippo Pathway in Cancer. Onco Targets Ther 2021; 14:2397-2415. [PMID: 33854336 PMCID: PMC8039192 DOI: 10.2147/ott.s283157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of RNA molecules that are longer than 200 nucleotides and cannot encode proteins. Over the past decade, lncRNAs have been defined as regulatory elements of multiple biological processes, and their aberrant expression contributes to the development and progression of various malignancies. Recent studies have shown that lncRNAs are involved in key cancer-related signaling pathways, including the Hippo signaling pathway, which plays a prominent role in controlling organ size and tissue homeostasis by regulating cell proliferation, apoptosis, and differentiation. However, dysregulation of this pathway is associated with pathological conditions, especially cancer. Accumulating evidence has revealed that lncRNAs can modulate the Hippo signaling pathway in cancer. In this review, we elaborate on the role of the Hippo signaling pathway and the advances in the understanding of its lncRNA-mediated regulation in cancer. This review provides additional insight into carcinogenesis and will be of great clinical value for developing novel early detection and treatment strategies for this deadly disease.
Collapse
Affiliation(s)
- Mengwei Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenyan Feng
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Junxia Liu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
77
|
Zhang G, Dai S, Chen Y, Wang H, Chen T, Shu Q, Chen S, Shou L, Cai X. Aqueous extract of Taxus chinensis var. mairei regulates the Hippo-YAP pathway and promotes apoptosis of non-small cell lung cancer via ATF3 in vivo and in vitro. Biomed Pharmacother 2021; 138:111506. [PMID: 33740524 DOI: 10.1016/j.biopha.2021.111506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/21/2023] Open
Abstract
Taxus chinensis var. mairei (TC) is a traditional Chinese ornamental and medicinal plant, the leaves and twigs of which are used in anti-tumor therapy in southern China. However, the mechanism and role of aqueous extract of TC (AETC) in promoting apoptosis in non-small cell lung cancer (NSCLC) cell lines has remained unclear. In this research, we observed that AETC inhibited the suppression of the proliferation of NSCLC cells and highly inhibited the proliferation of NCI-1975 cells. Furthermore, AETC exerted minimal inhibitory effects on normal human lung epithelial cells and induced apoptosis in NCI-1975 and A549 cells. The findings of RNA sequencing, qRT-PCR, western blotting, and immunofluorescence showed that upregulated ATF3 expression and ATF3 gene knockdown, respectively, increased and decreased the anti-tumor effects of AETC associated with Hippo pathway inhibition and decreased YAP degradation. Furthermore, AETC reduced the tumor volume and weight in nude mice; upregulated ATF3, p-MOB1, and p-YAP (Ser397); and actively regulated cleaved PARP and cleaved caspase-9/8/3. These findings suggest that AETC induced NSCLC cell apoptosis via the ATF3-Hippo-YAP pathway in vivo and in vitro. We also found that AETC is non-toxic to normal cells and nude mice. Thus, AETC might represent a promising adjuvant for anti-tumor therapy against NSCLC.
Collapse
MESH Headings
- A549 Cells
- Activating Transcription Factor 3/antagonists & inhibitors
- Activating Transcription Factor 3/metabolism
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- Hippo Signaling Pathway
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Taxus
- Water/pharmacology
- Xenograft Model Antitumor Assays/methods
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Gaochenxi Zhang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuying Dai
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiyi Chen
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haibin Wang
- Central Laboratory, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Chen
- Department of Neurology, the Second People's Hospital of Fuyang City, Hangzhou, China
| | - Qijin Shu
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuyi Chen
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liumei Shou
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolu Cai
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
78
|
MAGI1 inhibits the AMOTL2/p38 stress pathway and prevents luminal breast tumorigenesis. Sci Rep 2021; 11:5752. [PMID: 33707576 PMCID: PMC7952706 DOI: 10.1038/s41598-021-85056-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
Alterations to cell polarization or to intercellular junctions are often associated with epithelial cancer progression, including breast cancers (BCa). We show here that the loss of the junctional scaffold protein MAGI1 is associated with bad prognosis in luminal BCa, and promotes tumorigenesis. E-cadherin and the actin binding scaffold AMOTL2 accumulate in MAGI1 deficient cells which are subjected to increased stiffness. These alterations are associated with low YAP activity, the terminal Hippo-pathway effector, but with an elevated ROCK and p38 Stress Activated Protein Kinase activities. Blocking ROCK prevented p38 activation, suggesting that MAGI1 limits p38 activity in part through releasing actin strength. Importantly, the increased tumorigenicity of MAGI1 deficient cells is rescued in the absence of AMOTL2 or after inhibition of p38, demonstrating that MAGI1 acts as a tumor-suppressor in luminal BCa by inhibiting an AMOTL2/p38 stress pathway.
Collapse
|
79
|
Su W, Zhu S, Chen K, Yang H, Tian M, Fu Q, Shi G, Feng S, Ren D, Jin X, Yang C. Overexpressed WDR3 induces the activation of Hippo pathway by interacting with GATA4 in pancreatic cancer. J Exp Clin Cancer Res 2021; 40:88. [PMID: 33648545 PMCID: PMC7923337 DOI: 10.1186/s13046-021-01879-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/14/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND WD repeat domain 3 (WDR3) is involved in a variety of cellular processes including gene regulation, cell cycle progression, signal transduction and apoptosis. However, the biological role of WDR3 in pancreatic cancer and the associated mechanism remains unclear. We seek to explore the immune-independent functions and relevant mechanism for WDR3 in pancreatic cancer. METHODS The GEPIA web tool was searched, and IHC assays were conducted to determine the mRNA and protein expression levels of WDR3 in pancreatic cancer patients. MTS, colony formation, and transwell assays were conducted to determine the biological role of WDR3 in human cancer. Western blot analysis, RT-qPCR, and immunohistochemistry were used to detect the expression of specific genes. An immunoprecipitation assay was used to explore protein-protein interactions. RESULTS Our study proved that overexpressed WDR3 was correlated with poor survival in pancreatic cancer and that WDR3 silencing significantly inhibited the proliferation, invasion, and tumor growth of pancreatic cancer. Furthermore, WDR3 activated the Hippo signaling pathway by inducing yes association protein 1 (YAP1) expression, and the combination of WDR3 silencing and administration of the YAP1 inhibitor TED-347 had a synergistic inhibitory effect on the progression of pancreatic cancer. Finally, the upregulation of YAP1 expression induced by WDR3 was dependent on an interaction with GATA binding protein 4 (GATA4), the transcription factor of YAP1, which interaction induced the nuclear translocation of GATA4 in pancreatic cancer cells. CONCLUSIONS We identified a novel mechanism by which WDR3 plays a critical role in promoting pancreatic cancer progression by activating the Hippo signaling pathway through the interaction with GATA4. Therefore, WDR3 is potentially a therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Wenjie Su
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Shikai Zhu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Kai Chen
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Hongji Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Mingwu Tian
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
| | - Qiang Fu
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China
- Transplant Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02148, USA
| | - Ganggang Shi
- Jack Bell Research Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shijian Feng
- Jack Bell Research Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Xin Jin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Chong Yang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
80
|
Wu Y, Li M, Lin J, Hu C. Hippo/TEAD4 signaling pathway as a potential target for the treatment of breast cancer. Oncol Lett 2021; 21:313. [PMID: 33692845 PMCID: PMC7933775 DOI: 10.3892/ol.2021.12574] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is the most common type of cancer among women worldwide. The Hippo signaling pathway is strongly associated with cell proliferation, migration, invasion, metastasis and resistance to breast cancer treatment. The upstream factors involved in the Hippo signaling pathway, including mammalian Ste20 kinases 1/2, large tumor suppressor kinases 1/2 and transcription coactivator Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ), have been extensively studied as they are considered therapeutic targets for breast cancer. Recently, it has been suggested that the transcriptional enhancer factor domain (TEAD) family of transcription factors, particularly TEAD4, plays an important role in breast cancer. TEADs interact with YAP/TAZ to act as transcription factors. Notably, recent studies have demonstrated that TEAD4 may also function in a YAP/TAZ-independent manner and serve as a prognostic marker for breast cancer. The present review summarizes the current research on the effect of the aberrant activation of the Hippo signaling pathway on breast cancer progression. Furthermore, the latest advances on the role of the TEAD family in breast cancer are highlighted, and the role of TEAD4 as a potential target for therapeutic intervention in breast cancer is discussed.
Collapse
Affiliation(s)
- Yujian Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Mengjie Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jiayi Lin
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Chenxia Hu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
81
|
Manno G, Filorizzo C, Fanale D, Brando C, Di Lisi D, Lunetta M, Bazan V, Russo A, Novo G. Role of the HIPPO pathway as potential key player in the cross talk between oncology and cardiology. Crit Rev Oncol Hematol 2021; 159:103246. [PMID: 33545354 DOI: 10.1016/j.critrevonc.2021.103246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
The HIPPO pathway (HP) is a highly conserved kinase cascade that affects organ size by regulating proliferation, cell survival and differentiation. Discovered in Drosophila melanogaster to early 2000, it immediately opened wide frontiers in the field of research. Over the last years the field of knowledge on HP is quickly expanding and it is thought will offer many answers on complex pathologies. Here, we summarized the results of several studies that have investigated HP signaling both in oncology than in cardiology field, with an overview on future perspectives in cardiology research.
Collapse
Affiliation(s)
- Girolamo Manno
- Cardiology Unit, University Hospital P. Giaccone, Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (ProMISE) "G. D'Alessandro", Palermo, Italy
| | - Clarissa Filorizzo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy
| | - Chiara Brando
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy
| | - Daniela Di Lisi
- Cardiology Unit, University Hospital P. Giaccone, Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (ProMISE) "G. D'Alessandro", Palermo, Italy
| | - Monica Lunetta
- Cardiology Unit, University Hospital P. Giaccone, Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (ProMISE) "G. D'Alessandro", Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Italy.
| | - Giuseppina Novo
- Cardiology Unit, University Hospital P. Giaccone, Department of Excellence of Sciences for Health Promotion and Mothernal-Child Care, Internal Medicine and Specialities (ProMISE) "G. D'Alessandro", Palermo, Italy
| |
Collapse
|
82
|
Wang F, Fan M, Zhou X, Yu Y, Cai Y, Wu H, Zhang Y, Liu J, Huang S, He N, Hu Z, Ding G, Jin X. A positive feedback loop between TAZ and miR-942-3p modulates proliferation, angiogenesis, epithelial-mesenchymal transition process, glycometabolism and ROS homeostasis in human bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:44. [PMID: 33499877 PMCID: PMC7836562 DOI: 10.1186/s13046-021-01846-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022]
Abstract
Background Transcriptional coactivator with PDZ-binding motif (TAZ) has been reported to be involved in tumor progression, angiogenesis, epithelial-mesenchymal transition (EMT), glycometabolic modulation and reactive oxygen species (ROS) buildup. Herein, the underlying molecular mechanisms of the TAZ-induced biological effects in bladder cancer were discovered. Methods qRT-PCR, western blotting and immunohistochemistry were performed to determine the levels of TAZ in bladder cancer cells and tissues. CCK-8, colony formation, tube formation, wound healing and Transwell assays and flow cytometry were used to evaluate the biological functions of TAZ, miR-942-3p and growth arrest-specific 1 (GAS1). QRT-PCR and western blotting were used to determine the expression levels of related genes. Chromatin immunoprecipitation and a dual-luciferase reporter assay were performed to confirm the interaction between TAZ and miR-942. In vivo tumorigenesis and colorimetric glycolytic assays were also conducted. Results We confirmed the upregulation and vital roles of TAZ in bladder cancer. TAZ-induced upregulation of miR-942-3p expression amplified upstream signaling by inhibiting the expression of large tumor suppressor 2 (LATS2, a TAZ inhibitor). MiR-942-3p attenuated the impacts on cell proliferation, angiogenesis, EMT, glycolysis and ROS levels induced by TAZ knockdown. Furthermore, miR-942-3p restrained the expression of GAS1 to modulate biological behaviors. Conclusion Our study identified a novel positive feedback loop between TAZ and miR-942-3p that regulates biological functions in bladder cancer cells via GAS1 expression and illustrated that TAZ, miR-942-3p and GAS1 might be potential therapeutic targets for bladder cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01846-5.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Mengjing Fan
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P.R. China
| | - Xuejian Zhou
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Yanlan Yu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yueshu Cai
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Hongshen Wu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Yan Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Jiaxin Liu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Shihan Huang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Zhenghui Hu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China
| | - Guoqing Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, P. R. China.
| | - Xiaodong Jin
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P.R. China.
| |
Collapse
|
83
|
Höffken V, Hermann A, Pavenstädt H, Kremerskothen J. WWC Proteins: Important Regulators of Hippo Signaling in Cancer. Cancers (Basel) 2021; 13:cancers13020306. [PMID: 33467643 PMCID: PMC7829927 DOI: 10.3390/cancers13020306] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The conserved Hippo pathway regulates cell proliferation and apoptosis via a complex interplay of transcriptional activities, post-translational protein modifications, specific protein–protein interactions and cellular transport processes. Deregulating this highly balanced system can lead to hyperproliferation, organ overgrowth and cancer. Although WWC proteins are known as components of the Hippo signaling pathway, their association with tumorigenesis is often neglected. This review aims to summarize the current knowledge on WWC proteins and their contribution to Hippo signaling in the context of cancer. Abstract The Hippo signaling pathway is known to regulate cell differentiation, proliferation and apoptosis. Whereas activation of the Hippo signaling pathway leads to phosphorylation and cytoplasmic retention of the transcriptional coactivator YAP, decreased Hippo signaling results in nuclear import of YAP and subsequent transcription of pro-proliferative genes. Hence, a dynamic and precise regulation of the Hippo signaling pathway is crucial for organ size control and the prevention of tumor formation. The transcriptional activity of YAP is controlled by a growing number of upstream regulators including the family of WWC proteins. WWC1, WWC2 and WWC3 represent cytosolic scaffolding proteins involved in intracellular transport processes and different signal transduction pathways. Earlier in vitro experiments demonstrated that WWC proteins positively regulate the Hippo pathway via the activation of large tumor suppressor kinases 1/2 (LATS1/2) kinases and the subsequent cytoplasmic accumulation of phosphorylated YAP. Later, reduced WWC expression and subsequent high YAP activity were shown to correlate with the progression of human cancer in different organs. Although the function of WWC proteins as upstream regulators of Hippo signaling was confirmed in various studies, their important role as tumor modulators is often overlooked. This review has been designed to provide an update on the published data linking WWC1, WWC2 and WWC3 to cancer, with a focus on Hippo pathway-dependent mechanisms.
Collapse
|
84
|
ALKBH5 suppresses tumor progression via an m 6A-dependent epigenetic silencing of pre-miR-181b-1/YAP signaling axis in osteosarcoma. Cell Death Dis 2021; 12:60. [PMID: 33431791 PMCID: PMC7801648 DOI: 10.1038/s41419-020-03315-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023]
Abstract
ALKBH5 is the main enzyme for m6A-based demethylation of RNAs and it has been implicated in many biological and pathophysiological processes. Here, we aimed to explore the potential involvement of ALKBH5 in osteosarcoma and decipher the underlying cellular/molecular mechanisms. We discovered downregulated levels of demethylase ALKBH5 were correlated with increased m6A methylation in osteosarcoma cells/tissues compared with normal osteoblasts cells/tissues. ALKBH5 overexpression significantly suppressed osteosarcoma cell growth, migration, invasion, and trigged cell apoptosis. In contrast, inhibition of ALKBH5 produced the opposite effects. Whereas ALKBH5 silence enhanced m6A methylations of pre-miR-181b-1 and YAP-mRNA exerting oncogenic functions in osteosarcoma. Moreover, upregulation of YAP or downregulation of mature miR-181b-5p displayed a remarkable attenuation of anti-tumor activities caused by ALKBH5. Further results revealed that m6A methylated pre-miR-181b-1 was subsequently recognized by m6A-binding protein YTHDF2 to mediate RNA degradation. However, methylated YAP transcripts were recognized by YTHDF1 to promote its translation. Therefore, ALKBH5-based m6A demethylation suppressed osteosarcoma cancer progression through m6A-based direct/indirect regulation of YAP. Thus, ALKBH5 overexpression might be considered a new approach of replacement therapy for osteosarcoma treatment.
Collapse
|
85
|
Gao H, A L, Huang X, Chen X, Xu H. Müller Glia-Mediated Retinal Regeneration. Mol Neurobiol 2021; 58:2342-2361. [PMID: 33417229 DOI: 10.1007/s12035-020-02274-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Müller glia originate from neuroepithelium and are the principal glial cells in the retina. During retinal development, Müller glia are one of the last cell types to be born. In lower vertebrates, such as zebrafish, Müller glia possess a remarkable capacity for retinal regeneration following various forms of injury through a reprogramming process in which endogenous Müller glia proliferate and differentiate into all types of retinal cells. In mammals, Müller glia become reactive in response to damage to protect or to further impair retinal function. Although mammalian Müller glia have regenerative potential, it is limited as far as repairing damaged retina. Lessons learned from zebrafish will help reveal the critical mechanisms involved in Müller glia reprogramming. Progress has been made in triggering Müller glia to reprogram and generate functional neurons to restore vision in mammals indicating that Müller glia reprogramming may be a promising therapeutic strategy for human retinal diseases. This review comprehensively summarizes the mechanisms related to retinal regeneration in model animals and the critical advanced progress made in Müller glia reprogramming in mammals.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Chen
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
86
|
Xia L, Chen X, Yang J, Zhu S, Zhang L, Yin Q, Hong Y, Chen H, Chen G, Li H. Long Non-Coding RNA-PAICC Promotes the Tumorigenesis of Human Intrahepatic Cholangiocarcinoma by Increasing YAP1 Transcription. Front Oncol 2021; 10:595533. [PMID: 33552968 PMCID: PMC7856545 DOI: 10.3389/fonc.2020.595533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a heterogeneous hepatobiliary tumor with poor prognosis, and it lacks reliable prognostic biomarkers and effective therapeutic targets. Long non-coding RNAs (lncRNAs) have been documented to be involved in the progression of various cancers. However, the role of lncRNAs in ICC remains largely unknown. In the present work, we used bioinformatics analysis to identify the differentially expressed lncRNAs in human ICC tissues, among which lncRNA-PAICC was found to be an independent prognostic marker in ICC. Moreover, lncRNA-PAICC promoted the proliferation and invasion of ICC cells. Mechanistically, lncRNA-PAICC acted as a competitive endogenous RNA (ceRNA) that directly sponged the tumor suppressive microRNAs miR-141-3p and miR-27a-3p. The competitive binding property was essential for lncRNA-PAICC to promote tumor growth and metastasis through activating the Hippo pathway. In summary, our results highlighted the important role of the lncRNA-PAICC-miR-141-3p/27a-3p-Yap1 axis in ICC, which offers a novel perspective on the molecular pathogenesis and may serve as a potential target for antimetastatic molecular therapies of ICC.
Collapse
Affiliation(s)
- Long Xia
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaolong Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiarui Yang
- Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Biliary-Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuguang Zhu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lei Zhang
- Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Biliary-Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Yin
- Department of Project, CookGen Biosciences Center, Guangzhou, China
| | - Yueyu Hong
- Department of Bioinformation, Forevergen Biosciences Co., Ltd, Guangzhou, China
| | - Haoqi Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
87
|
Abstract
Hepatoblastoma (HB) is the predominant primary liver tumor in children. While the prognosis is favorable when the tumor can be resected, the outcome is dismal for patients with progressed HB. Therefore, a better understanding of the molecular mechanisms responsible for HB is imperative for early detection and effective treatment. Sequencing analysis of human HB specimens unraveled the pivotal role of Wnt/β-catenin pathway activation in this disease. Nonetheless, β-catenin activation alone does not suffice to induce HB, implying the need for additional alterations. Perturbations of several pathways, including Hippo, Hedgehog, NRF2/KEAP1, HGF/c-Met, NK-1R/SP, and PI3K/AKT/mTOR cascades and aberrant activation of c-MYC, n-MYC, and EZH2 proto-oncogenes, have been identified in HB, although their role requires additional investigation. Here, we summarize the current knowledge on HB molecular pathogenesis, the relevance of the preclinical findings for the human disease, and the innovative therapeutic strategies that could be beneficial for the treatment of HB patients.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Antonio Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Cairo
- XenTech, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
88
|
Wang N, Wu D, Long Q, Yan Y, Chen X, Zhao Z, Yan H, Zhang X, Xu M, Deng W, Liu X. Dysregulated YY1/PRMT5 axis promotes the progression and metastasis of laryngeal cancer by targeting Hippo pathway. J Cell Mol Med 2021; 25:946-959. [PMCID: PMC7812261 DOI: 10.1111/jcmm.16156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Metastases lead to high mortality in laryngeal cancer, but the regulation of its underlying mechanisms remains elusive. We identified Protein arginine methyltransferase 5 (PRMT5) was significantly up‐regulated in laryngeal cancer tissues, which predicts poor patient prognosis. Functional assays demonstrated that PRMT5 overexpression promoted the invasive capacity and lymph node metastasis in vitro and in vivo. Mechanistic experiments suggested that LATS2 was a downstream target of PRMT5. PRMT5 inhibition increased the expression of LATS2 and YAP phosphorylation in laryngeal cancer cells, thereby promoting laryngeal cancer metastasis. Furthermore, informatics and experimental data confirmed that PRMT5 gene was transcriptionally activated by YY1. Collectively, our results unravelled the important role of PRMT5 in laryngeal cancer tumorigenesis and metastasis. The dysregulation YY1/PRMT5/LATS2/YAP axis may contribute to laryngeal cancer progression; thus, PRMT5 may be a potential therapeutic strategy for patients with laryngeal cancer.
Collapse
Affiliation(s)
- Nan Wang
- School of Life SciencesJiaying UniversityMeizhouChina
| | - Di Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Qian Long
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Yue Yan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Xiaoqi Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Zheng Zhao
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Honghong Yan
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Xinrui Zhang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Meilan Xu
- School of Life SciencesJiaying UniversityMeizhouChina
| | - Wuguo Deng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Xuekui Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| |
Collapse
|
89
|
Goeman F, De Nicola F, Amoreo CA, Scalera S, Marinelli D, Sperati F, Mazzotta M, Terrenato I, Pallocca M, Ciuffreda L, Sperandio E, Barba M, Pizzuti L, Sergi D, Amodio A, Paoletti G, Krasniqi E, Vici P, Casini B, Gallo E, Buglioni S, Diodoro MG, Pescarmona E, Vitale I, De Maria R, Grazi GL, Ciliberto G, Fanciulli M, Maugeri-Saccà M. Multicohort and cross-platform validation of a prognostic Wnt signature in colorectal cancer. Clin Transl Med 2020; 10:e199. [PMID: 33377637 PMCID: PMC7770515 DOI: 10.1002/ctm2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 11/15/2022] Open
Affiliation(s)
- Frauke Goeman
- Oncogenomic and Epigenetic Unit, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Carla Azzurra Amoreo
- Department of Pathology, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Daniele Marinelli
- Medical Oncology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Sperati
- Biostatistics Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Marco Mazzotta
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Irene Terrenato
- Biostatistics-Scientific Direction, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Ludovica Ciuffreda
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Eleonora Sperandio
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Maddalena Barba
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Laura Pizzuti
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Domenico Sergi
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Antonella Amodio
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Giancarlo Paoletti
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Eriseld Krasniqi
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Patrizia Vici
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Beatrice Casini
- Department of Pathology, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Enzo Gallo
- Department of Pathology, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- Department of Pathology, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Edoardo Pescarmona
- Department of Pathology, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Ilio Vitale
- Italian Institute for Genomic Medicine (IIGM), IRCSS Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Turin, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy.,Institute of General Pathology, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Gian Luca Grazi
- Hepato-Pancreato-Biliary Surgery, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS "Regina Elena" National Cancer Institute, Rome, Italy
| |
Collapse
|
90
|
Zeng M, Li B, Yang L, Guan Q. CBX2 depletion inhibits the proliferation, invasion and migration of gastric cancer cells by inactivating the YAP/β-catenin pathway. Mol Med Rep 2020; 23:137. [PMID: 33313949 PMCID: PMC7751489 DOI: 10.3892/mmr.2020.11776] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is the most common and fast-growing malignancy of the digestive system, which has a high mortality. Chromobox homolog 2 (CBX2) has been reported to be highly expressed in cancer tissues compared with adjacent normal tissues. It has also been established that CBX2 is upregulated in GC cell lines by searching the Cancer Cell Line Encyclopedia. The aim of the present study was to investigate the biomolecular role and underlying mechanism of CBX2 in the proliferation, invasion and migration of GC cells. Short hairpin RNA-CBX2 and yes-associated protein (YAP) overexpression plasmids were constructed to regulate CBX2 and YAP expression, respectively. Additionally, the expression of certain mRNAs and proteins involved in the YAP/β-catenin pathway and those associated with cell invasion were assessed by western blotting and reverse transcription-quantitative PCR, respectively. The cellular behaviors of MFC cells were analyzed using Cell Counting Kit-8, colony formation wound-healing and Transwell assays. The results of the present study revealed that increased CBX2 expression was observed in GC cell lines compared with normal gastric cells. In addition, CBX2 knockdown inhibited the nuclear cytoplasm translocation of YAP, inducing its phosphorylation, and suppressing the activation of the β-catenin signaling pathway. The results also demonstrated that CBX2 depletion inhibited the proliferation, migration and invasion of GC cells by inactivating the YAP/β-catenin pathway. It was determined that CBX2 promoted the proliferation, invasion and migration of GC cells by activating the YAP/β-catenin pathway, suggesting that CBX2 is involved in the pathogenesis of GC and may represent a novel target for the clinical treatment of GC.
Collapse
Affiliation(s)
- Miaomiao Zeng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bangxue Li
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Lei Yang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Quanlin Guan
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
91
|
Zhang J, Ma X, Zhou R, Zhou Y. TRPS1 and YAP1 Regulate Cell Proliferation and Drug Resistance of Osteosarcoma via Competitively Binding to the Target of circTADA2A - miR-129-5p. Onco Targets Ther 2020; 13:12397-12407. [PMID: 33293831 PMCID: PMC7719346 DOI: 10.2147/ott.s276953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction The yes-associated protein (YAP) and trichorhinophalangeal syndrome 1 (TRPS1) have been reported to account for the pathogenesis of cancers and may play an important role in osteosarcoma (OS). This study intended to investigate the modulatory effect and relationship of TRPS1 and YAP1 in OS cells. Methods The expression difference of YAP1 and TRPS1 in OS cells was measured. Then, the effect of circTADA2A silence on YAP1 and TRPS1 expression as well as OS proliferation and drug resistance was estimated. Results TRPS1 and YAP1 were upregulated in OS cell lines, and TRPS1 and YAP1 were highly expressed in MG63 and U2OS cells, respectively. The cell proliferation of MG63 was lower than that of U2OS, but the opposite result was observed in the presence of cisplatin (DDP). CircTADA2A was upregulated while miR-129-5p was downregulated in MG63 and U2OS cells compared. Besides, circTADA2A knockdown inhibited cell proliferation and reduced DDP resistance in both MG63 and U2OS. MiR-129-5p was increased but TRPS1 and YAP1 were decreased by circTADA2A knockdown. Meanwhile, circTADA2A knockdown reduced TRPS1 protein expression but enhanced phosphorylated (p)-YAP1. In xenograft OS tumor mice, circTADA2A knockdown inhibited tumor growth in the absence or presence of DDP. Finally, miR-129-5p could bind to circTADA2A, TRPS1 and YAPS. Discussion CircRNA TADA2A could target miR-129-5p, which was competitively bound by TRPS1 and YAP1, thereby regulating OS cell proliferation and drug resistance.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, People's Republic of China
| | - Xiang Ma
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, People's Republic of China
| | - Ruiqi Zhou
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, People's Republic of China
| | - Yichi Zhou
- Department of Orthopaedics, CR & WISCO General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430000, People's Republic of China
| |
Collapse
|
92
|
Zhang Y, Xin C, Cheng C, Wang Z. Antitumor activity of nanoemulsion based on essential oil of Pinus koraiensis pinecones in MGC-803 tumor-bearing nude mice. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
93
|
Han J, Xu X, Liu Z, Li Z, Wu Y, Zuo D. Recent advances of molecular mechanisms of regulating PD-L1 expression in melanoma. Int Immunopharmacol 2020; 88:106971. [DOI: 10.1016/j.intimp.2020.106971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
|
94
|
A new perspective on the interaction between the Vg/VGLL1-3 proteins and the TEAD transcription factors. Sci Rep 2020; 10:17442. [PMID: 33060790 PMCID: PMC7566471 DOI: 10.1038/s41598-020-74584-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
The most downstream elements of the Hippo pathway, the TEAD transcription factors, are regulated by several cofactors, such as Vg/VGLL1-3. Earlier findings on human VGLL1 and here on human VGLL3 show that these proteins interact with TEAD via a conserved amino acid motif called the TONDU domain. Surprisingly, our studies reveal that the TEAD-binding domain of Drosophila Vg and of human VGLL2 is more complex and contains an additional structural element, an Ω-loop, that contributes to TEAD binding. To explain this unexpected structural difference between proteins from the same family, we propose that, after the genome-wide duplications at the origin of vertebrates, the Ω-loop present in an ancestral VGLL gene has been lost in some VGLL variants. These findings illustrate how structural and functional constraints can guide the evolution of transcriptional cofactors to preserve their ability to compete with other cofactors for binding to transcription factors.
Collapse
|
95
|
Zheng J, Yu H, Zhou A, Wu B, Liu J, Jia Y, Xiang L. It takes two to tango: coupling of Hippo pathway and redox signaling in biological process. Cell Cycle 2020; 19:2760-2775. [PMID: 33016196 DOI: 10.1080/15384101.2020.1824448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hippo pathway is a chain of kinases consists of a series of protein kinases and transcription factors. Meanwhile, oxidative stress is a condition of elevated concentrations of reactive oxygen species (ROS) that cause molecular damage to vital structures and functions. Both of them are key regulators in cell proliferation, survival, and development. These processes are strictly regulated by highly coordinated mechanisms, including c-Jun n-terminal kinase (JNK) pathway, mTOR pathway and a number of extrinsic and intrinsic factors. Recently, emerging evidence suggests that Hippo pathway is involved in the responses to cellular stresses, including mechanic stress, DNA damage, and oxidative stress, to mediate biological process, such as apoptosis, pyroptosis, and metastasis. But the exact mechanism remains to be further explored. Therefore, the purpose of this review is to summarize recent findings and discuss how Hippo pathway, oxidative stress, and the crosstalk between them regulate some biological process which determines cell fate.
Collapse
Affiliation(s)
- Jianan Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Hui Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Anqi Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Yinan Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University , Chengdu, China
| |
Collapse
|
96
|
Pang L, Shah H, Wang H, Shu D, Qian SY, Sathish V. EpCAM-Targeted 3WJ RNA Nanoparticle Harboring Delta-5-Desaturase siRNA Inhibited Lung Tumor Formation via DGLA Peroxidation. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:222-235. [PMID: 33230429 PMCID: PMC7515975 DOI: 10.1016/j.omtn.2020.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Knocking down delta-5-desaturase (D5D) expression by D5D small interfering RNA (siRNA) has been reported that could redirect the cyclooxygenase-2 (COX-2)-catalyzed dihomo-γ-linolenic acid (DGLA) peroxidation from producing prostaglandin E2 to 8-hydroxyoctanoic acid (8-HOA), resulting in the inhibition of colon and pancreatic cancers. However, the effect of D5D siRNA on lung cancer is still unknown. In this study, by incorporating epithelial cell adhesion molecule (EpCAM) aptamer and validated D5D siRNA into the innovative three-way junction (3WJ) RNA nanoparticle, target-specific accumulation and D5D knockdown were achieved in the lung cancer cell and mouse models. By promoting the 8-HOA formation from the COX-2-catalyzed DGLA peroxidation, the 3WJ-EpCAM-D5D siRNA nanoparticle inhibited lung cancer growth in vivo and in vitro. As a potential histone deacetylases inhibitor, 8-HOA subsequently inhibited cancer proliferation and induced apoptosis via suppressing YAP1/TAZ nuclear translocation and expression. Therefore, this 3WJ-RNA nanoparticle could improve the targeting and effectiveness of D5D siRNA in lung cancer therapy.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Harshit Shah
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Hongzhi Wang
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH 43210, USA
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH 43210, USA
- College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Steven Y. Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58102, USA
- Corresponding author: Venkatachalem Sathish, Department of Pharmaceutical Sciences, North Dakota State University, Sudro 203, 1401 Albrecht Blvd., Fargo, ND 58102, USA.
| |
Collapse
|
97
|
RNA-binding protein Musashi2 regulates Hippo signaling via SAV1 and MOB1 in pancreatic cancer. Med Oncol 2020; 37:84. [PMID: 32780197 DOI: 10.1007/s12032-020-01384-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/02/2020] [Indexed: 10/23/2022]
Abstract
Musashi 2 (MSI2), a member of the Musashi RNA-binding family, is reported to be an oncoprotein in pancreatic ductal adenocarcinoma (PDAC), but the mechanisms of MSI2 in the development and progression of PDAC have not been fully demonstrated. In this research, we studied the clinical significance, biologic effects and the underlying mechanism of MSI2 in the progression of PDAC. The expression of MSI2, Mps-binding protein 1 (MOB1) and Salvador family WW domain-containing protein 1 (SAV1) in PDAC tissues were analyzed immunohistochemically. The biologic effects of MSI2 regarding PDAC cell proliferation, migration and invasion were studied using gain- and loss-of-function assays. MSI2 regulated Hippo signaling pathway via SAV1 and MOB1 was tested in several PDAC cell lines, and the mechanisms were studied using molecular biologic methods. The expression of MSI2 was significantly increased in PDAC cell lines and tissues, and positively associated with tumor poorer differentiation, lymph nodes metastasis and TNM stages. Overexpression of MSI2 promoted PDAC cells proliferation, migration and invasion. Further studies demonstrated that MSI2 regulated the Hippo signaling pathway via directly binding to the mRNAs of SAV1 and MOB1, and controlled the translation and stability of SAV1 and the translation of MOB1. This study demonstrated that MSI2 regulated the Hippo signaling pathway via suppressing SAV1 and MOB1 at post-transcriptional level and promoted PDAC progression.
Collapse
|
98
|
Targeting post-translational modification of transcription factors as cancer therapy. Drug Discov Today 2020; 25:1502-1512. [DOI: 10.1016/j.drudis.2020.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
|
99
|
Zhou X, Li Y, Wang W, Wang S, Hou J, Zhang A, Lv B, Gao C, Yan Z, Pang D, Lu K, Ahmad NH, Wang L, Zhu J, Zhang L, Zhuang T, Li X. Regulation of Hippo/YAP signaling and Esophageal Squamous Carcinoma progression by an E3 ubiquitin ligase PARK2. Theranostics 2020; 10:9443-9457. [PMID: 32863938 PMCID: PMC7449928 DOI: 10.7150/thno.46078] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: Esophageal squamous cell carcinoma (ESCC) is one of the most commonly diagnosed cancer types in China. Recent genomic sequencing analysis indicated the over-activation of Hippo/YAP signaling might play important roles for the carcinogenic process and progression for ESCC patients. However, little is known about the molecular mechanisms that controls Hippo signaling activity in ESCC. Our previous studies indicated that PLCE1-an important risk factor for ESCC-linked to ESCC progression through snail signaling, during this period, we found PARK2 was an important downstream target of PLCE1-snail axis. PARK2 was decreased in ESCC human samples, and correlated with good prognosis in ESCC patients. Further research showed that PARK2 could inhibit YAP, which functions as key downstream effectors of the Hippo pathway. Here, we aim to reveal the molecular mechanisms of PARK2 modulated Hippo pathway in ESCC. Methods: To evaluate the function of PARK2 in ESCC, we used a tissue microarray (TMA) of 223 human ESCC patients and immunohistochemistry to analyze the correlation between PARK2 expression and clinicopathologic variables. Depletion of endogenous PARK2 and YAP from ESCC cells using CRISPR/Cas9 technologies. Flow cytometry and EdU cell proliferation assay were used to detect proliferation of ESCC cells. Nude mice subcutaneous injection and Ki-67 staining were used to evaluate tumor growth in vivo. Migration and invasion assays were performed. In addition, lung metastasis models in mice were used to validate the function of PARK2 in vivo. Identification of PARK2 involved in hippo pathway was achieved by expression microarray screening, double immunofluorescence staining and co-immunoprecipitation assays. The RNA-seq analysis results were validated through quantitative real-time PCR (qRT-PCR) analysis. The protein half-life of YAP was analyzed by Cycloheximide assay, and the TEAD activity was detected by Luciferase reporter assays. Results: Clinical sample of ESCC revealed that low PARK2 expression correlated with late tumor stage (P < 0.001), poor differentiation (P < 0.04), lymph node (P < 0.001) and distant metastasis (P = 0.0087). Multivariate Cox proportional regression analysis further revealed that PARK2 expression (P = 0.032) is an independent prognostic factor for the overall survival of ESCC patients. Besides, the immunohistochemistry results showed that PARK2 negatively correlated with YAP protein level (P < 0.001). PARK2 depletion promotes ESCC progression both through Hippo/YAP axis, while PARK2 overexpression suppresses ESCC tumor progression by Hippo signaling. Co-IP and ubiquitination assays revealed that PARK2 could interact with YAP in the cytosol and promotes YAP K48-linked ubiquitination at K90 sites. Conclusion: Clinical sample analysis and mechanistic study have validated PARK2 as a tumor suppressor for ESCC. Multivariate Cox proportional regression analysis further revealed that PARK2 is an independent prognostic factor for the overall survival of ESCC patients. Cellular and molecular mechanisms in this study showed that PARK2 associated with YAP protein in the cytosol, promoted YAP ubiquitination and proteasome-dependent degradation in ESCC cells. Therefore, as a novel modulator for Hippo signaling, modulation of PARK2 activity or gene expression level could be an appealing strategy to treat esophageal.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
- Henan Key Laboratory of immunology and targeted therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Yajie Li
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Weilong Wang
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Sujie Wang
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Jinghan Hou
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Aijia Zhang
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Benjie Lv
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Can Gao
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Ziyi Yan
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Dan Pang
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Kui Lu
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| | - Nor Hazwani Ahmad
- Oncological and Radiological Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Lidong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Jian Zhu
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Xinxiang, 453003, Henan Province, P.R. China
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, P.R. China
| | - Lichen Zhang
- Henan Key Laboratory of immunology and targeted therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Ting Zhuang
- Henan Key Laboratory of immunology and targeted therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Xinxiang Key Laboratory of Tumor Migration, Invasion and Precision Medicine, Xinxiang, 453003, Henan Province, P.R. China
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Xiumin Li
- Xinxiang Key Laboratory for Molecular Therapy of Cancer, Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
- Department of Gastroenterology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, P.R. China
| |
Collapse
|
100
|
Yang T, Heng C, Zhou Y, Hu Y, Chen S, Wang H, Yang H, Jiang Z, Qian S, Wang Y, Wang J, Zhu X, Du L, Yin X, Lu Q. Targeting mammalian serine/threonine-protein kinase 4 through Yes-associated protein/TEA domain transcription factor-mediated epithelial-mesenchymal transition ameliorates diabetic nephropathy orchestrated renal fibrosis. Metabolism 2020; 108:154258. [PMID: 32376130 DOI: 10.1016/j.metabol.2020.154258] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
RATIONALE Tubulointerstitial fibrosis, which is closely related to functional injury of the kidney, can be observed in advanced stages of diabetic nephropathy (DN). Mammalian serine/threonine-protein kinase 4 (MST1), a core component of the Hippo pathway that is involved in cellular proliferation and differentiation, plays a crucial role in the pathogenesis of multiple metabolic diseases, kidney diseases and cancer. METHODS In type 1 and type 2 diabetic animals, as well as in human proximal tubular epithelial cells (HK-2), activation of MST1 was analyzed by immunohistochemistry and western blotting. In db/db mice, MST1 protein was knocked down or overexpressed by shRNA, and renal function, fibrosis, and downstream signaling were then investigated. RNA silencing and overexpression were performed by using an MST1 or YAP knockdown/expression lentivirus to investigate the regulation of MST1-mediated YAP/TEAD signaling pathways in the fibrosis process in HK-2 cells. Luciferase and coimmunoprecipitation (co-IP) assays were used to identify whether YAP directly regulated TEAD activation by forming a YAP-TEAD heterodimer, which ultimately leads to tubulointerstitial fibrosis. RESULTS MST1 activation was significantly decreased in type 1 and type 2 diabetic nephropathy. Notably, the downregulation of MST1 activation was also observed in HK-2 cells in a glucose- and time-dependent manner. In vivo, downregulation of MST1 was sufficient to promote renal dysfunction and fibrosis in db/m mice, whereas overexpression of MST1 ameliorated diabetic nephropathy-induced renal fibrosis. Further mechanistic study demonstrated that activated YAP induced by MST1 inhibition directly upregulated TEAD activation by binding to TEAD and forming a YAP-TEAD heterodimer, resulting in the promotion of epithelial-mesenchymal transition (EMT) and fibrosis in renal tubular epithelial. CONCLUSIONS MST1 activation represents a potential therapeutic strategy to treat or prevent the progression of diabetic nephropathy-induced renal fibrosis.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Cai Heng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yinlu Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Shangxiu Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Haiyan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yinan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jianyun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|