51
|
Li Y, Xiao C, Pan Y, Qin L, Zheng L, Zhao M, Huang M. Optimization of Protein Folding for Improved Secretion of Human Serum Albumin Fusion Proteins in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18414-18423. [PMID: 37966975 DOI: 10.1021/acs.jafc.3c05330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The successful expression and secretion of recombinant proteins in cell factories significantly depend on the correct folding of nascent peptides, primarily achieved through disulfide bond formation. Thus, optimizing cellular protein folding is crucial, especially for proteins with complex spatial structures. In this study, protein disulfide isomerases (PDIs) from various species were introduced into Saccharomyces cerevisiae to facilitate proper disulfide bond formation and enhance recombinant protein secretion. The impacts of these PDIs on recombinant protein production and yeast growth metabolism were evaluated by substituting the endogenous PDI1. Heterologous PDIs cannot fully compensate the endogenous PDI. Furthermore, protein folding mediators, PDI and ER oxidoreductase 1 (Ero1), from different species were used to increase the production of complex human serum albumin (HSA) fusion proteins. The validated folding mediators were then introduced into unfolded protein response (UPR)-optimized strains, resulting in a 7.8-fold increase in amylase-HSA and an 18.2-fold increase in albiglutide compared with the control strain. These findings provide valuable insights for optimizing protein folding and expressing HSA-based drugs.
Collapse
Affiliation(s)
- Yanling Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Ling Qin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
52
|
Feng D, Wang J, Li D, Wu R, Tuo Z, Yu Q, Ye L, Miyamoto A, Yoo KH, Wang C, Cheng Y, Ye X, Zhang C, Wei W. Targeting Prolyl 4-Hydroxylase Subunit Beta (P4HB) in Cancer: New Roads to Travel. Aging Dis 2023; 15:2369-2380. [PMID: 38029391 PMCID: PMC11567247 DOI: 10.14336/ad.2023.1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023] Open
Abstract
Prolyl 4-hydroxylase subunit beta (P4HB) can catalyze the formation, breakage and rearrangement of disulfide bonds through two thioredoxin domains, which is important for the maintenance of oxidizing environment in endoplasmic reticulum. Recently, P4HB has been demonstrated its oncogenic role of tumorigenesis and development in cancers. Therefore, we comprehensively deciphered P4HB in human cancer from various aspects, including pan-cancer analysis and narrative summary. We also provided some possible interacted molecules and the top 10 predicted drugs targeting P4HB to contribute to future research. We proposed that P4HB was a potential target and brought new therapeutic opportunities for cancer patients.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Chengdu Basebio Company, China.
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Qingxin Yu
- Ningbo Diagnostic Pathology Center, Ningbo, Zhejiang, China.
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.
| | - Akira Miyamoto
- Department of Rehabilitation, West Kyushu University, Japan.
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea.
| | | | | | - Xing Ye
- Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
53
|
Hung CS, Lee KL, Huang WJ, Su FH, Liang YC. Pan-Inhibition of Protein Disulfide Isomerase Caused Cell Death through Disrupting Cellular Proteostasis in Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2023; 24:16467. [PMID: 38003657 PMCID: PMC10671009 DOI: 10.3390/ijms242216467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The protein disulfide isomerase (PDI) family is a group of thioredoxin endoplasmic reticulum (ER)-resident enzymes and molecular chaperones that play crucial roles in the correct folding of proteins. PDIs are upregulated in multiple cancer types and are considered a novel target for cancer therapy. In this study, we found that a potent pan-PDI inhibitor, E64FC26, significantly decreased the proliferation of pancreatic ductal adenocarcinoma (PDAC) cells. As expected, E64FC26 treatment increased ER stress and the unfolded protein response (UPR), as evidenced by upregulation of glucose-regulated protein, 78-kDa (GRP78), phosphorylated (p)-PKR-like ER kinase (PERK), and p-eukaryotic initiation factor 2α (eIF2α). Persistent ER stress was found to lead to apoptosis, ferroptosis, and autophagy, all of which are dependent on lysosomal functions. First, there was little cleaved caspase-3 in E64FC26-treated cells according to Western blotting, but a higher dose of E64FC26 was needed to induce caspase activity. Then, E64FC26-induced cell death could be reversed by adding the iron chelator, deferoxamine, and the reactive oxygen species scavengers, ferrostatin-1 and N-acetylcysteine. Furthermore, the autophagosome-specific marker, light chain 3B (LC3B)-II, increased, but the autolysosome marker, sequestosome 1 (SQSTM1)/p62, was not degraded in E64FC26-treated cells. Using the FUW mCherry-LC3 plasmid and acridine orange staining, we also discovered a lower number of acidic vesicles, such as autolysosomes and mature lysosomes, in E64FC26-treated cells. Finally, E64FC26 treatment increased the cathepsin L precursor (pre-CTSL) but decreased mature CTSL expression according to Western blotting, indicating a defective lysosome. These results suggested that the PDI inhibitor, E64FC26, might initially impede proper folding of proteins, and then induce ER stress and disrupt proteostasis, subsequently leading to lysosomal defects. Due to defective lysosomes, the extents of apoptosis and ferroptosis were limited, and fusion with autophagosomes was blocked in E64FC26-treated cells. Blockade of autolysosomal formation further led to the autophagic cell death of PDAC cells.
Collapse
Affiliation(s)
- Ching-Sheng Hung
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Kun-Lin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Fang-He Su
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
54
|
Nasoni MG, Crinelli R, Iuliano L, Luchetti F. When nitrosative stress hits the endoplasmic reticulum: Possible implications in oxLDL/oxysterols-induced endothelial dysfunction. Free Radic Biol Med 2023; 208:178-185. [PMID: 37544487 DOI: 10.1016/j.freeradbiomed.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Oxidized LDL (oxLDL) and oxysterols are known to play a crucial role in endothelial dysfunction (ED) by inducing endoplasmic reticulum stress (ERS), inflammation, and apoptosis. However, the precise molecular mechanisms underlying these pathophysiological processes remain incompletely understood. Emerging evidence strongly implicates excessive nitric oxide (NO) production in the progression of various pathological conditions. The accumulation of reactive nitrogen species (RNS) leading to nitrosative stress (NSS) and aberrant protein S-nitrosylation contribute to NO toxicity. Studies have highlighted the involvement of NSS and S-nitrosylation in perturbing ER signaling through the modification of ER sensors and resident isomerases in neurons. This review focuses on the existing evidence that strongly associates NO with ERS and the possible implications in the context of ED induced by oxLDL and oxysterols. The potential effects of perturbed NO synthesis on signaling effectors linking NSS with ERS in endothelial cells are discussed to provide a conceptual framework for further investigations and the development of novel therapeutic strategies targeting ED.
Collapse
Affiliation(s)
- M G Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - R Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - L Iuliano
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Latina, Italy.
| | - F Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
55
|
Zhang Y, Guo W, Feng Y, Yang L, Lin H, Zhou P, Zhao K, Jiang L, Yao B, Feng N. Identification of the H3K36me3 reader LEDGF/p75 in the pancancer landscape and functional exploration in clear cell renal cell carcinoma. Comput Struct Biotechnol J 2023; 21:4134-4148. [PMID: 37675289 PMCID: PMC10477754 DOI: 10.1016/j.csbj.2023.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF/p75) is a reader of epigenetic marks and a potential target for therapeutic intervention. Its involvement in human immunodeficiency virus (HIV) integration and the development of leukemia driven by MLL (also known as KMT2A) gene fusion make it an attractive candidate for drug development. However, exploration of LEDGF/p75 as an epigenetic reader of H3K36me3 in tumors is limited. Here, for the first time, we analyze the role of LEDGF/p75 in multiple cancers via multiple online databases and in vitro experiments. We used pancancer bulk sequencing data and online tools to analyze correlations of LEDGF/p75 with prognosis, genomic instability, DNA damage repair, prognostic alternative splicing, protein interactions, and tumor immunity. In summary, the present study identified that LEDGF/p75 may serve as a prognostic predictor for tumors such as adrenocortical carcinoma, kidney chromophobe, liver hepatocellular carcinoma, pancreatic adenocarcinoma, skin cutaneous melanoma, and clear cell renal cell carcinoma (ccRCC). In addition, in vitro experiments and gene microarray sequencing were performed to explore the function of LEDGF/p75 in ccRCC, providing new insights into the pathogenesis of the nonmutated SETD2 ccRCC subtype.
Collapse
Affiliation(s)
- Yuwei Zhang
- Nantong University Medical School, Nantong, China
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Wei Guo
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Yangkun Feng
- Nantong University Medical School, Nantong, China
| | - Longfei Yang
- Nantong University Medical School, Nantong, China
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Hao Lin
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
| | - Pengcheng Zhou
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Kejie Zhao
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Lin Jiang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bing Yao
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Ninghan Feng
- Nantong University Medical School, Nantong, China
- Department of Urology, Jiangnan University Medical Center, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
56
|
Guo Z, Yu X, Zhao S, Zhong X, Huang D, Feng R, Li P, Fang Z, Hu Y, Zhang Z, Abdurahman M, Huang L, Zhao Y, Wang X, Ge J, Li H. SIRT6 deficiency in endothelial cells exacerbates oxidative stress by enhancing HIF1α accumulation and H3K9 acetylation at the Ero1α promoter. Clin Transl Med 2023; 13:e1377. [PMID: 37598403 PMCID: PMC10440057 DOI: 10.1002/ctm2.1377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND SIRT6, an important NAD+ -dependent protein, protects endothelial cells from inflammatory and oxidative stress injuries. However, the role of SIRT6 in cardiac microvascular endothelial cells (CMECs) under ischemia-reperfusion injury (IRI) remains unclear. METHODS The HUVECs model of oxygen-glucose deprivation/reperfusion (OGD/R) was established to simulate the endothelial IRI in vitro. Endoplasmic reticulum oxidase 1 alpha (Ero1α) mRNA and protein levels in SIRT6-overexpressing or SIRT6-knockdown cells were measured by qPCR and Western blotting. The levels of H2 O2 and mitochondrial reactive oxygen species (ROS) were detected to evaluate the status of oxidative stress. The effects of SIRT6 deficiency and Ero1α knockdown on cellular endoplasmic reticulum stress (ERS), inflammation, apoptosis and barrier function were detected by a series of molecular biological experiments and functional experiments in vitro. Chromatin immunoprecipitation, Western blotting, qPCR, and site-specific mutation experiments were used to examine the underlying molecular mechanisms. Furthermore, endothelial cell-specific Sirt6 knockout (ecSirt6-/- ) mice were subjected to cardiac ischemia-reperfusion surgery to investigate the effects of SIRT6 in CMECs in vivo. RESULTS The expression of Ero1α was significantly upregulated in SIRT6-knockdown endothelial cells, and high Ero1α expression correlated with the accumulation of H2 O2 and mitochondrial ROS. In addition, SIRT6 deficiency increased ERS, inflammation, apoptosis and endothelial permeability, and these effects could be significantly attenuated by Ero1α knockdown. The deacetylase catalytic activity of SIRT6 was important in regulating Ero1α expression and these biological processes. Mechanistically, SIRT6 inhibited the enrichment of HIF1α and p300 at the Ero1α promoter through deacetylating H3K9, thereby antagonizing HIF1α/p300-mediated Ero1α expression. Compared with SIRT6-wild-type (SIRT6-WT) cells, cells expressing the SIRT6-H133Y-mutant and SIRT6-R65A-mutant exhibited increased Ero1α expression. Furthermore, ecSirt6-/- mice subjected to ischemia-reperfusion surgery exhibited increased Ero1α expression and ERS in CMECs and worsened injuries to microvascular barrier function and cardiac function. CONCLUSIONS Our results revealed an epigenetic mechanism associated with SIRT6 and Ero1α expression and highlighted the therapeutic potential of targeting the SIRT6-HIF1α/p300-Ero1α axis.
Collapse
Affiliation(s)
- Zhenyang Guo
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Xueting Yu
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Shuang Zhao
- Department of Medical ExaminationShanghai Xuhui District Central HospitalShanghaiChina
| | - Xin Zhong
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Dong Huang
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Runyang Feng
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Peng Li
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Zheyan Fang
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Yiqing Hu
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Zhentao Zhang
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Mukaddas Abdurahman
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| | - Lei Huang
- Department of MolecularCell and Cancer BiologyProgram in Molecular MedicineUniversity of Massachusetts Medical SchoolMAUSA
| | - Yun Zhao
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- State Key Laboratory of Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of SciencesShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced Study, University of Chinese Academy of SciencesHangzhouChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
- Department of CardiologyZhongshan Hospital, Fudan UniversityShanghaiChina
- National Clinical Research Center for Interventional MedicineShanghaiChina
- Shanghai Clinical Research Center for Interventional MedicineShanghaiChina
- Key Laboratory of Viral Heart DiseasesNational Health CommissionShanghaiChina
- Key Laboratory of Viral Heart DiseasesChinese Academy of Medical SciencesShanghaiChina
| | - Hua Li
- Department of Cardiology, Zhongshan HospitalShanghai Institute of Cardiovascular Diseases, Fudan UniversityShanghaiChina
| |
Collapse
|
57
|
Huang Q, Liu Z, Yang Y, Yang Y, Huang T, Hong Y, Zhang J, Chen Q, Zhao T, Xiao Z, Gong X, Jiang Y, Peng J, Nan Y, Ai K. Selenium Nanodots (SENDs) as Antioxidants and Antioxidant-Prodrugs to Rescue Islet β Cells in Type 2 Diabetes Mellitus by Restoring Mitophagy and Alleviating Endoplasmic Reticulum Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300880. [PMID: 37408520 DOI: 10.1002/advs.202300880] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/26/2023] [Indexed: 07/07/2023]
Abstract
Preventing islet β-cells death is crucial for treating type 2 diabetes mellitus (T2DM). Currently, clinical drugs are being developed to improve the quality of T2DM care and self-care, but drugs focused on reducing islets β-cell death are lacking. Given that β-cell death in T2DM is dominated ultimately by excessive reactive oxygen species (ROS), eliminating excessive ROS in β-cells is a highly promising therapeutic strategy. Nevertheless, no antioxidants have been approved for T2DM therapy because most of them cannot meet the long-term and stable elimination of ROS in β-cells without eliciting toxic side-effects. Here, it is proposed to restore the endogenous antioxidant capacity of β-cells to efficiently prevent β-cell death using selenium nanodots (SENDs), a prodrug of the antioxidant enzyme glutathione peroxidase 1 (GPX1). SENDs not only scavenge ROS effectively, but also "send" selenium precisely to β-cells with ROS response to greatly enhance the antioxidant capacity of β-cells by increasing GPX1 expression. Therefore, SENDs greatly rescue β-cells by restoring mitophagy and alleviating endoplasmic reticulum stress (ERS), and demonstrate much stronger efficacy than the first-line drug metformin for T2DM treatment. Overall, this strategy highlights the great clinical application prospects of SENDs, offering a paradigm for an antioxidant enzyme prodrug for T2DM treatment.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zerun Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunrong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuqi Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ting Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ying Hong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinping Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xuejun Gong
- Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jiang Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
58
|
Qin G, Qu M, Jia B, Wang W, Luo Z, Song CP, Tao WA, Wang P. FAT-switch-based quantitative S-nitrosoproteomics reveals a key role of GSNOR1 in regulating ER functions. Nat Commun 2023; 14:3268. [PMID: 37277371 PMCID: PMC10241878 DOI: 10.1038/s41467-023-39078-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/26/2023] [Indexed: 06/07/2023] Open
Abstract
Reversible protein S-nitrosylation regulates a wide range of biological functions and physiological activities in plants. However, it is challenging to quantitively determine the S-nitrosylation targets and dynamics in vivo. In this study, we develop a highly sensitive and efficient fluorous affinity tag-switch (FAT-switch) chemical proteomics approach for S-nitrosylation peptide enrichment and detection. We quantitatively compare the global S-nitrosylation profiles in wild-type Arabidopsis and gsnor1/hot5/par2 mutant using this approach, and identify 2,121 S-nitrosylation peptides in 1,595 protein groups, including many previously unrevealed S-nitrosylated proteins. These are 408 S-nitrosylated sites in 360 protein groups showing an accumulation in hot5-4 mutant when compared to wild type. Biochemical and genetic validation reveal that S-nitrosylation at Cys337 in ER OXIDOREDUCTASE 1 (ERO1) causes the rearrangement of disulfide, resulting in enhanced ERO1 activity. This study offers a powerful and applicable tool for S-nitrosylation research, which provides valuable resources for studies on S-nitrosylation-regulated ER functions in plants.
Collapse
Affiliation(s)
- Guochen Qin
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, 261000, Weifang, Shandong, China
| | - Menghuan Qu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bei Jia
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Zhuojun Luo
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
59
|
Zhang J, Li X, Wang X, Guan W. Transcriptome analysis of two bloom-forming Prorocentrum species reveals physiological changes related to light and temperature. HARMFUL ALGAE 2023; 125:102421. [PMID: 37220974 DOI: 10.1016/j.hal.2023.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 05/25/2023]
Abstract
Temperature and light substantially influence red tide succession. However, it remains unclear whether the molecular mechanisms differ among species. In this study, we measured the variation in the physiological parameters of growth and pigments and transcriptional levels of two bloom-forming dinoflagellates, namely Prorocentrum micans and P. cordatum. This was undertaken in four treatments that represented two factorial temperature combinations (LT: 20 °C, HT: 28 °C) and light conditions (LL: 50 µmol photons m-2 s-1, HL: 400 µmol photons m-2 s-1) for 7-day batch culture. Growth under high temperature and high light (HTHL) was the fastest, while growth under high temperature and low light (HTLL) was the slowest. The pigments (chlorophyll a and carotenoids) decreased significantly in all high light (HL) treatments, but not in high temperature (HT) treatments. HL alleviated the low light-caused photolimitation and enhanced the growth of both species at low temperatures. However, HT inhibited the growth of both species by inducing oxidative stress under low light conditions. HL mitigated the HT-induced stress on growth in both species by upregulating photosynthesis, antioxidase activity, protein folding, and degradation. The cells of P. micans were more sensitive to HT and HL than those of P. cordatum. This study deepens our understanding of the species-specific mechanism of dinoflagellates at the transcriptomic level, adapting to the future ocean changes including higher solar radiation and higher temperatures in the upper mixed layer.
Collapse
Affiliation(s)
- Jiazhu Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuanwen Li
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinjie Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
60
|
Luo S, Kong C, Zhao S, Tang X, Wang Y, Zhou X, Li R, Liu X, Tang X, Sun S, Xie W, Zhang ZR, Jing Q, Gu A, Chen F, Wang D, Wang H, Han Y, Xie L, Ji Y. Endothelial HDAC1-ZEB2-NuRD Complex Drives Aortic Aneurysm and Dissection Through Regulation of Protein S-Sulfhydration. Circulation 2023; 147:1382-1403. [PMID: 36951067 DOI: 10.1161/circulationaha.122.062743] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Aortic aneurysm and aortic dissection (AAD) are life-threatening vascular diseases, with endothelium being the primary target for AAD treatment. Protein S-sulfhydration is a newly discovered posttranslational modification whose role in AAD has not yet been defined. This study aims to investigate whether protein S-sulfhydration in the endothelium regulates AAD and its underlying mechanism. METHODS Protein S-sulfhydration in endothelial cells (ECs) during AAD was detected and hub genes regulating homeostasis of the endothelium were identified. Clinical data of patients with AAD and healthy controls were collected, and the level of the cystathionine γ lyase (CSE)/hydrogen sulfide (H2S) system in plasma and aortic tissue were determined. Mice with EC-specific CSE deletion or overexpression were generated, and the progression of AAD was determined. Unbiased proteomics and coimmunoprecipitation combined with mass spectrometry analysis were conducted to determine the upstream regulators of the CSE/H2S system and the findings were confirmed in transgenic mice. RESULTS Higher plasma H2S levels were associated with a lower risk of AAD, after adjustment for common risk factors. CSE was reduced in the endothelium of AAD mouse and aorta of patients with AAD. Protein S-sulfhydration was reduced in the endothelium during AAD and protein disulfide isomerase (PDI) was the main target. S-sulfhydration of PDI at Cys343 and Cys400 enhanced PDI activity and mitigated endoplasmic reticulum stress. EC-specific CSE deletion was exacerbated, and EC-specific overexpression of CSE alleviated the progression of AAD through regulating the S-sulfhydration of PDI. ZEB2 (zinc finger E-box binding homeobox 2) recruited the HDAC1-NuRD complex (histone deacetylase 1-nucleosome remodeling and deacetylase) to repress the transcription of CTH, the gene encoding CSE, and inhibited PDI S-sulfhydration. EC-specific HDAC1 deletion increased PDI S-sulfhydration and alleviated AAD. Increasing PDI S-sulfhydration with the H2S donor GYY4137 or pharmacologically inhibiting HDAC1 activity with entinostat alleviated the progression of AAD. CONCLUSIONS Decreased plasma H2S levels are associated with an increased risk of aortic dissection. The endothelial ZEB2-HDAC1-NuRD complex transcriptionally represses CTH, impairs PDI S-sulfhydration, and drives AAD. The regulation of this pathway effectively prevents AAD progression.
Collapse
Affiliation(s)
- Shanshan Luo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Chuiyu Kong
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Xin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Yu Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Xuechun Zhou
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Rui Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Xingeng Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Xinlong Tang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (Xinlong Tang, W.X., D.W.)
| | - Shixiu Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Wei Xie
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (Xinlong Tang, W.X., D.W.)
| | - Zhi-Ren Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin Medical University, Heilongjiang, China (Z.-R.Z., Y.J.)
- NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China (Z.-R.Z., Y.J.)
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China (Q.J.)
| | - Aihua Gu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Feng Chen
- Department of Forensic Medicine (F.C.), Nanjing Medical University, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (Xinlong Tang, W.X., D.W.)
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA (H.W.)
| | - Yi Han
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, China (Y.H.)
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School (S.L., C.K., S.Z., Xin Tang, Y.W., X.Z., R.L., X.L., S.S., A.G., L.X., Y.J.), Nanjing Medical University, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin Medical University, Heilongjiang, China (Z.-R.Z., Y.J.)
- NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China (Z.-R.Z., Y.J.)
| |
Collapse
|
61
|
Han JW, Park HJ. Perfluorooctanoic acid induces cell death in TM3 cells via the ER stress-mitochondrial apoptosis pathway. Reprod Toxicol 2023; 118:108383. [PMID: 37044272 DOI: 10.1016/j.reprotox.2023.108383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an environmentally ubiquitous synthetic chemical highly persistent in organisms. PFOA exposure is pernicious to reproductive health as indicated by reports of male infertility. However, the PFOA toxicity mechanism to Leydig cells remains poorly understood. Therefore, this study aimed to investigate the toxicological events occurring in TM3 Leydig cells treated with PFOA (250, 500, 750µM) for 24h. PFOA was shown to significantly decrease cell viability resulting from inhibition of proliferation and elevation of apoptotic ratio in a dose dependent manner. Upregulation of pro-apoptotic gene expressions such as Bax, Bad, and p53, was observed in combination with an increase in the apoptosis-related protein levels of Bax, cleaved caspase-3, cleaved caspase-8, and phosphorylated p53. Furthermore, exposure of PFOA lead to mitochondrial damage involving mitochondrial membrane permeabilization. A release of cytochrome c and collapse of the mitochondrial membrane potential (∆Ψm) were observed compared to the untreated control. Additionally, PFOA stimulated unfolded protein response (UPR) upregulating ER stress marker, Bip/GRP78, and upregulated protein levels of UPR signal molecules IRE1, p-JNK, p-ERK1/2, p-p53, CHOP, and ERO1. Overall, the present study elucidated the ER stress-mitochondrial apoptosis pathway-related molecular mechanisms involved in PFOA-induced cell death in TM3 Leydig cells.
Collapse
Affiliation(s)
- Jong-Won Han
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, 26339, Republic of Korea.
| |
Collapse
|
62
|
Wang S, Zhao Y, Mao S, Zhu J, Zhan Y, Cai D, Ma X, Wang D, Chen S. Enhancing the activity of disulfide-bond-containing proteins via promoting disulfide bond formation in Bacillus licheniformis. Int J Biol Macromol 2023; 233:123468. [PMID: 36731702 DOI: 10.1016/j.ijbiomac.2023.123468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Disulfide bonds in proteins have strongly influence on the folding efficiency by constraining the conformational space. The inefficient disulfide bond formation of proteins is the main limiting factor of enzyme activity and stability. This study aimed to increase the activity of disulfide-bond-containing proteins via promoting disulfide bonds formation in Bacillus licheniformis. Initially, the glutamate decarboxylase GAD from Escherichia coli was selected as the model protein and introduced into the B. licheniformis. Then, the disulfide isomerase and oxidoreductase from different sources were excavated and overexpressed successively to improve the catalytic efficiency of GAD. The final engineered B. licheniformis showed significantly improved GAD specific activity (from 10.4 U/mg to 80.0 U/mg), which also presented perfect adaptability for other disulfide-bond-containing proteins, for instance, UDP-glucosyltransferase from Arabidopsis thaliana. Taken together, our work demonstrated that the activity of GAD in B. licheniformis was regulated by the disulfide bonds formation status and provided a promising platform for the expression of disulfide-bond-containing proteins.
Collapse
Affiliation(s)
- Shiyi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yiwen Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shufen Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Dong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
63
|
Guidarelli A, Spina A, Fiorani M, Zito E, Cantoni O. Arsenite enhances ERO1α expression via ryanodine receptor dependent and independent mechanisms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104080. [PMID: 36781116 DOI: 10.1016/j.etap.2023.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Arsenite is a potent carcinogen and toxic compound inducing an array of deleterious effects via different mechanisms, which include the Ca2+-dependent formation of reactive oxygen species. The mechanism whereby the metalloid affects Ca2+ homeostasis involves an initial stimulation of the inositol 1, 4, 5-triphosphate receptor, an event associated with an endoplasmic reticulum (ER) stress leading to increased ERO1α expression, and ERO1α dependent activation of the ryanodine receptor (RyR). Ca2+ release from the RyR is then critically connected with the mitochondrial accumulation of Ca2+. We now report that the resulting formation of mitochondrial superoxide triggers a second mechanism of ER stress dependent ERO1α expression, which however fails to impact on Ca2+ release from the RyR or, more generally, on Ca2+ homeostasis. Our results therefore demonstrate that arsenite stimulates two different and sequential mechanisms leading to increased ERO1α expression with different functions, possibly due to their different subcellular compartmentalization.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Spina
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ester Zito
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy; Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
64
|
Jiang L, Guan X, Liu H, Chang X, Sun J, Sun C, Zhao C. Improved Production of Recombinant Carboxylesterase FumDM by Co-Expressing Molecular Chaperones in Pichia pastoris. Toxins (Basel) 2023; 15:156. [PMID: 36828470 PMCID: PMC9960120 DOI: 10.3390/toxins15020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Fumonisins (FBs) are mycotoxins that threaten public health and food safety worldwide. Enzymatic degradation of Fumonisin B1 (FB1) through decarboxylation has attracted much attention, whereas application of FB1 carboxylesterase in detoxification requires more effective expression of the recombinant carboxylesterase. In this study, the carboxylesterase FumDM from Sphingopyxis sp. ASAG22 was codon-optimized and co-expressed with five different molecular chaperones (PDI, CPR5, ERO1, HAC1, and Bip) in order to improve the expression level of FumDM in Pichia pastoris (also known as Komagataella phaffii) GS115. The co-expression of different chaperones caused varying degrees of improvement in FumDM activity for FB1. The enzyme activities of recombinant strains over-expressing PDI and CPR5 reached the highest levels of 259.47 U/mL and 161.34 U/mL, 635% and 357% higher than the original enzyme activity, respectively. Transcriptomic analysis of the two recombinant strains in comparison with the control strain showed that the correct folding of proteins assisted by molecular chaperones played a key role in the improvement of FumDM expression and its enzyme activity. This study demonstrated that co-expression of carboxylesterase FumDM and folding chaperones was an efficient strategy and therefore might inspire new perspectives on the improvement of carboxylesterase for detoxification of FB1.
Collapse
Affiliation(s)
- Lixiang Jiang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hujun Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaojiao Chang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jing Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Chengcheng Zhao
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
65
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
66
|
Kuang Y, He Z, Li L, Wang C, Cheng X, Shi Q, Fu G, Ying J, Tao Q, Hu X. The developmental regulator HAND1 inhibits gastric carcinogenesis through enhancing ER stress apoptosis via targeting CHOP and BAK which is augmented by cisplatin. Int J Biol Sci 2023; 19:120-136. [PMID: 36594085 PMCID: PMC9760445 DOI: 10.7150/ijbs.76345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022] Open
Abstract
Epigenetic disruption of tumor suppressor genes, particularly aberrant CpG methylation, plays a crucial role in gastric cancer (GC) pathogenesis. Through CpG methylome and expression profiling, a developmental transcription factor - Hand-And-Neural-crest-Derivative-expressed 1 (HAND1), was identified methylated and downregulated in GC. However, its role and underlying mechanisms in GC progression are poorly understood. Here, we show that HAND1 was frequently downregulated in GC by promoter methylation, and significantly correlated with tumor progression and poor prognosis of GC patients. High expression of HAND1 in GC patients was associated with significantly higher 5-year overall survival rates. Ectopic expression of HAND1 inhibited GC cell growth and migration in vitro and in vivo. HAND1 expression increased ROS levels and cytosolic Ca2+ concentration, enhanced cisplatin-induced apoptosis through endoplasmic reticulum (ER) stress/mitochondria-mediated apoptosis. Knockdown of CHOP and BAK attenuated HAND1-induced cell apoptosis. Overexpression of CHOP increased BAK expression. HAND1 interacts with CHOP, also directly binds to CHOP and BAK promoters and positively regulates BAK transcription. Thus, the present study demonstrates that HAND1 is a tumor suppressor gene methylated in GC, induces ER stress and apoptosis via CHOP and BAK, which is augmented by cisplatin. Low HAND1 expression is an independent poor prognostic factor for GC. The tumor-specific methylation of HAND1 promoter could be a candidate biomarker for GC.
Collapse
Affiliation(s)
- Yeye Kuang
- Biomedical Research Center, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Pathology, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310016, Zhejiang, China
| | - Zhanglian He
- Biomedical Research Center, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310016, Zhejiang, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Chan Wang
- Biomedical Research Center, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Pathology, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310016, Zhejiang, China
| | - Xiaoqing Cheng
- Department of Pathology, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinglan Shi
- Biomedical Research Center, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310016, Zhejiang, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jianming Ying
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.,✉ Corresponding authors: X Hu () or Q Tao ()
| | - Xiaotong Hu
- Biomedical Research Center, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Pathology, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou 310016, Zhejiang, China.,✉ Corresponding authors: X Hu () or Q Tao ()
| |
Collapse
|
67
|
Wang L, Wang CC. Oxidative protein folding fidelity and redoxtasis in the endoplasmic reticulum. Trends Biochem Sci 2023; 48:40-52. [PMID: 35871147 DOI: 10.1016/j.tibs.2022.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 02/09/2023]
Abstract
In eukaryotic cells, oxidative protein folding occurs in the lumen of the endoplasmic reticulum (ER), catalyzed by ER sulfhydryl oxidase 1 (Ero1) and protein disulfide isomerase (PDI). The efficiency and fidelity of oxidative protein folding are vital for the function of secretory cells. Here, we summarize oxidative protein folding in yeast, plants, and mammals, and discuss how the conformation and activity of human Ero1-PDI machinery is regulated through various post-translational modifications (PTMs). We propose that oxidative protein folding fidelity and ER redox homeostasis are maintained by both the precise control of Ero1 oxidase activity and the division of labor between PDI family members. We also discuss how deregulated Ero1-PDI functions contribute to human diseases and can be leveraged for therapeutic interventions.
Collapse
Affiliation(s)
- Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
68
|
Zhang J, Guo J, Yang N, Huang Y, Hu T, Rao C. Endoplasmic reticulum stress-mediated cell death in liver injury. Cell Death Dis 2022; 13:1051. [PMID: 36535923 PMCID: PMC9763476 DOI: 10.1038/s41419-022-05444-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum is an important intracellular organelle that plays an important role in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are induced when the body is exposed to adverse external stimuli. It has been established that ERS can induce different cell death modes, including autophagy, apoptosis, ferroptosis, and pyroptosis, through three major transmembrane receptors on the ER membrane, including inositol requirement enzyme 1α, protein kinase-like endoplasmic reticulum kinase and activating transcription factor 6. These different modes of cell death play an important role in the occurrence and development of various diseases, such as neurodegenerative diseases, inflammation, metabolic diseases, and liver injury. As the largest metabolic organ, the liver is rich in enzymes, carries out different functions such as metabolism and secretion, and is the body's main site of protein synthesis. Accordingly, a well-developed endoplasmic reticulum system is present in hepatocytes to help the liver perform its physiological functions. Current evidence suggests that ERS is closely related to different stages of liver injury, and the death of hepatocytes caused by ERS may be key in liver injury. In addition, an increasing body of evidence suggests that modulating ERS has great potential for treating the liver injury. This article provided a comprehensive overview of the relationship between ERS and four types of cell death. Moreover, we discussed the mechanism of ERS and UPR in different liver injuries and their potential therapeutic strategies.
Collapse
Affiliation(s)
- Jian Zhang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Jiafu Guo
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Nannan Yang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Yan Huang
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Tingting Hu
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| | - Chaolong Rao
- grid.411304.30000 0001 0376 205XSchool of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XR&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China ,grid.411304.30000 0001 0376 205XState Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137 China
| |
Collapse
|
69
|
Zhao J, Li J, Li G, Chen M. The role of mitochondria-associated membranes mediated ROS on NLRP3 inflammasome in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1059576. [PMID: 36588561 PMCID: PMC9794868 DOI: 10.3389/fcvm.2022.1059576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) metabolism is essential for the homeostasis of cells. Appropriate production of ROS is an important signaling molecule, but excessive ROS production can damage cells. ROS and ROS-associated proteins can act as damage associated molecular pattern molecules (DAMPs) to activate the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in cardiovascular diseases. Previous studies have shown that there are connected sites, termed mitochondria-associated membranes (MAMs), between mitochondria and the endoplasmic reticulum. In cardiovascular disease progression, MAMs play multiple roles, the most important of which is the ability to mediate ROS generation, which further activates the NLPR3 inflammasome, exacerbating the progression of disease. In this review, the following topics will be covered: 1. Molecular structures on MAMs that can mediate ROS generation; 2. Specific mechanisms of molecule-mediated ROS generation and the molecules' roles in cardiovascular disease, 3. The effects of MAMs-mediated ROS on the NLRP3 inflammasome in cardiovascular disease. The purpose of this review is to provide a basis for subsequent clinical treatment development.
Collapse
Affiliation(s)
- Jiahao Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Guoyong Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Mao Chen
| |
Collapse
|
70
|
Lu Z, Chen Y, Chen S, Zhu X, Wang C, Wang Z, Yao Q. Comprehensive Prognostic Analysis of Immune Implication Value and Oxidative Stress Significance of NECAP2 in Low-Grade Glioma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1494520. [PMID: 36531205 PMCID: PMC9750773 DOI: 10.1155/2022/1494520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/07/2023]
Abstract
Adaptin ear-binding coat-associated protein 2 (NECAP2) belongs to the family of proteins encoding adaptin-ear-binding coat-associated proteins. However, its immune effect on tumors and its microenvironment are still unclear. Here, we systematically evaluated the differences (variations) in NECAP2 expression for low-grade glioma (LGG) and pan-cancer in the LGG dataset of The Cancer Genome Atlas (TCGA) utilizing bioinformatics methods. We found for the first time that NECAP2 level was elevated in gliomas and that this upregulation increased as the tumor grade increased. In addition, Pearson correlations of NECAP2 with five immune pathways and significant gene mutations associated with NECAP2 were also analyzed. Univariate survival and multivariate Cox analyses were used to compare the clinical characteristics and survival of the patients. Glioma patients with NECAP2 overexpression have a remarkably higher risk of developing malignant behavior and a worse prognosis. The correlation between the expression levels of NECAP2 and the prognosis of glioma patients was identified. Kaplan-Meier curves showed that patients with upregulated NECAP2 expression exhibited an unfavorable prognosis. Western blotting showed that NECAP2 was overexpressed in glioma patients. IHC staining results illustrated an elevation in the NECAP2 protein expression level with the development of tumor malignancy. Additionally, qRT-PCR verified that oxidative stress in glioma tissues reduced the expression of stress-related genes and oxidative stress capacity compared to normal tissues, which may be associated with tumor evasion of immune surveillance and tumor progression. In vitro wound-healing and Transwell assay confirmed that NECAP2 promotes glioma cell migration and invasion. Our study also thoroughly examined the immune significance of NECAP2 in the TCGA-LGG samples, using CIBERSORT and ESTIMATE to explore the correlation between NECAP2 and cancer immune infiltration. The NECAP2 expression levels were correlated with the infiltration degree of immune cells such as neutrophils, CD4+ T cells, macrophages, CD8+ T cells, and B cells. Therefore, our results indicate that NECAP2 strongly correlates with the overall immune infiltration level of glioma and could independently serve as a prognostic biological marker for glioma patients.
Collapse
Affiliation(s)
- Zhichao Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yixun Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Siqi Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xingjia Zhu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Chenxing Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Ziheng Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
71
|
Kim EK, Kim Y, Yang JY, Jang HH. Prx1 Regulates Thapsigargin-Mediated UPR Activation and Apoptosis. Genes (Basel) 2022; 13:2033. [PMID: 36360274 PMCID: PMC9689921 DOI: 10.3390/genes13112033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 09/21/2023] Open
Abstract
Endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) signaling via the accumulation of unfolded and misfolded proteins. ER stress leads to the production of reactive oxygen species (ROS), which are necessary to maintain redox homeostasis in the ER. Although peroxiredoxin 1 (Prx1) is an antioxidant enzyme that regulates intracellular ROS levels, the link between Prx1 and ER stress remains unclear. In this study, we investigated the role of Prx1 in X-box binding protein 1 (XBP-1) activation, the C/EBP homologous protein (CHOP) pathway, and apoptosis in response to ER stress. We observed that Prx1 overexpression inhibited the nuclear localization of XBP-1 and the expression of XBP-1 target genes and CHOP after thapsigargin (Tg) treatment to induce ER stress. In addition, Prx1 inhibited apoptosis and ROS production during ER stress. The ROS scavenger inhibited ER stress-induced apoptosis but did not affect XBP-1 activation and CHOP expression. Therefore, the biological role of Prx1 in ER stress may have important implications for ER stress-related diseases.
Collapse
Affiliation(s)
| | | | | | - Ho Hee Jang
- Department of Biochemistry, College of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| |
Collapse
|
72
|
Nogueira V, Chang CK, Lan CY, Pereira C, Costa V, Teixeira V. Causative links between ER stress and oxidative damage in a yeast model of human N88S seipinopathy. Free Radic Biol Med 2022; 192:165-181. [PMID: 36126862 DOI: 10.1016/j.freeradbiomed.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Seipin is encoded by the gene Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) and FLD1/SEI1 in yeast. The gain-of-function N88S mutation in the BSCL2 gene was identified in a cohort of autosomal dominant motor neuron diseases (MNDs) collectively known as seipinopathies. Previous work has shown that this mutation disrupts N-glycosylation, leading to the formation of inclusion bodies (IBs) and contributing to severe Endoplasmic Reticulum (ER) stress and cell death. In this work, we established a humanized yeast model of N88S seipinopathy that recapitulated the formation of IBs and activation of the unfolded protein response (UPR) observed in mammalian systems. Autophagy and the Hrd1-mediated endoplasmic reticulum-associated degradation (ERAD) were fully functional in cells expressing mutant homomers and WT-mutant heteromers of seipin, discarding the possibility that mutant seipin accumulate due to impaired protein quality control systems. Importantly, the N88S seipin form IBs that appear to induce changes in ER morphology, in association with Kar2 chaperone and the Hsp104 disaggregase. For the first time, we have determined that N88S homo-oligomers expressing cells present reduced viability, decreased antioxidant activity and increased oxidative damage associated with loss of mitochondrial membrane potential, higher reactive oxygen species (ROS) levels and lipid peroxidation. This was correlated with the activation of oxidative stress sensor Yap1. Moreover, activation of ERAD and UPR quality control mechanisms were essential for proper cell growth, and crucial to prevent excessive accumulation of ROS in cells expressing N88S homomers solely. Overall, this study provides new insights into the molecular underpinnings of these rare diseases and offers novel targets for potential pharmacological intervention.
Collapse
Affiliation(s)
- Verónica Nogueira
- Yeast Signalling Networks, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Che-Kang Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Clara Pereira
- Yeast Signalling Networks, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vítor Costa
- Yeast Signalling Networks, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Vitor Teixeira
- Yeast Signalling Networks, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
73
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
74
|
Peroxiredoxin 4 secreted by cumulus cells ameliorates the maturation of oocytes in vitro. Biochem Biophys Res Commun 2022; 636:155-161. [DOI: 10.1016/j.bbrc.2022.10.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
|
75
|
Hepatocyte-Derived Prostaglandin E2-Modulated Macrophage M1-Type Polarization via mTOR-NPC1 Axis-Regulated Cholesterol Transport from Lysosomes to the Endoplasmic Reticulum in Hepatitis B Virus x Protein-Related Nonalcoholic Steatohepatitis. Int J Mol Sci 2022; 23:ijms231911660. [PMID: 36232960 PMCID: PMC9569602 DOI: 10.3390/ijms231911660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lipid metabolic dysregulation and liver inflammation have been reported to be associated with nonalcoholic steatohepatitis (NASH), but the underlying mechanisms remain unclear. Hepatitis B virus x protein (HBx) is a risk factor for NASH. Based on metabolomic and transcriptomic screens and public database analysis, we found that HBx-expressing hepatocyte-derived prostaglandin E2 (PGE2) induced macrophage polarization imbalance via prostaglandin E2 receptor 4 (EP4) through in vitro, ex vivo, and in vivo models. Here, we revealed that the M1-type polarization of macrophages induced by endoplasmic reticulum oxidoreductase-1-like protein α (ERO1α)-dependent endoplasmic reticulum stress was associated with the HBx-related hepatic NASH phenotype. Mechanistically, HBx promoted Niemann-Pick type C1 (NPC1)/oxysterol-binding protein-related protein 5 (ORP5)-mediated cholesterol transport from the lysosome to the endoplasmic reticulum via mammalian target of rapamycin (mTOR) activation. This study provides a novel basis for screening potential biomarkers in the macrophage mTOR-cholesterol homeostasis-polarization regulatory signaling pathway and evaluating targeted interventions for HBx-associated NASH.
Collapse
|
76
|
Anikin DA, Solovyeva IA, Demko IV, Sobko EA, Kraposhina AY, Gordeeva NV. Free-radical oxidation as a pathogenetic factor of metabolic syndrome. OBESITY AND METABOLISM 2022. [DOI: 10.14341/omet12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The medical and social significance of cardiovascular diseases remains high. One of the factors that determine cardiovascular risks is metabolic syndrome. As a result of excessive accumulation of lipid and carbohydrate metabolism products in metabolic syndrome, oxidative (oxidative) stress develops. The article considers both domestic and foreign scientific studies, which highlight various aspects of the influence of reactive oxygen and nitrogen species, as well as other free radicals on the formation of oxidative stress in pathological conditions that are part of the metabolic syndrome complex. This describes the mechanisms of the formation of chronic inflammation through excessive secretion of pro-inflammatory cytokines and adipokines, activation of the transcription factor NF-kB, as well as damage to the antioxidant system in obesity. Separately, a number of mechanisms of the stimulating effect of adipokines: leptin, adiponectin, chimerine, omentin 1, resistin, on the formation of oxidative stress have been noted. The ways of activating the polyol pathway, as well as diacyl-glycerol — protein kinase C — the signaling pathway of oxidative stress, the formation of mitochondrial dysfunction is described. As a result of which there is an excessive production of free radicals in insulin resistance, diabetes mellitus and macroand microvascular complications of diabetes. In addition, the influence of oxidative stress directly on the formation of cardiovascular diseases of atherosclerotic genesis, as well as arterial hypertension, has been shown.
Collapse
Affiliation(s)
- D. A. Anikin
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University;
Krasnoyarsk Clinical Regional Hospital
| | - I. A. Solovyeva
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University;
Krasnoyarsk Clinical Regional Hospital
| | - I. V. Demko
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University;
Krasnoyarsk Clinical Regional Hospital
| | - E. A. Sobko
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University;
Krasnoyarsk Clinical Regional Hospital
| | - A. Yu. Kraposhina
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University;
Krasnoyarsk Clinical Regional Hospital
| | - N. V. Gordeeva
- Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University;
Krasnoyarsk Clinical Regional Hospital
| |
Collapse
|
77
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
78
|
Zhu J, Ma X, Jing Y, Zhang G, Zhang D, Mao Z, Ma X, Liu H, Chen F. P4HB UFMylation regulates mitochondrial function and oxidative stress. Free Radic Biol Med 2022; 188:277-286. [PMID: 35753586 DOI: 10.1016/j.freeradbiomed.2022.06.237] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
UFMylation is a ubiquitin-like modification which attaches the ubiquitin-fold modifier 1 to target proteins. To date, only a few UFMylation targets have been identified. In the current study, we demonstrated that P4HB is a new target protein for UFMylation and it can be UFMylated at three lysine residues in the form of mono-UFMylation. P4HB has oxidoreductase, chaperone and isomerase effects. It presents in the endoplasmic reticulum, mitochondria and cytosol. Next, we generated a stable HepG2 cell line, the hepatocellular cells, with defective P4HB UFMylation. Our data show that P4HB UFMylation defect promotes P4HB protein degradation via the ubiquitin-proteasome pathway. Defective P4HB UFMylation causes mitochondrial function damage, oxidative stress, and endoplasmic reticulum stress in HepG2 cells. These effects are more obvious when treating HepG2 cells with palmitic acid, which is frequently used as one of the cell models of non-alcoholic fatty liver disease (NAFLD). Our results identify UFMylation as a key post-translational modification for the maintenance of P4HB stability and biological functions in HepG2 cells, and point to P4HB UFMylation as a potential direction in the study of NAFLD.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangya Zhang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Zhang
- Department of Endocrinology, Xi'an No. 1 Hospital, First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowen Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
79
|
Characterization and Utilization of Disulfide-Bonded SARS-CoV-2 Receptor Binding Domain of Spike Protein Synthesized by Wheat Germ Cell-Free Production System. Viruses 2022; 14:v14071461. [PMID: 35891441 PMCID: PMC9321213 DOI: 10.3390/v14071461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
The spike protein (SP) of SARS-CoV-2 is an important target for COVID-19 therapeutics and vaccines as it binds to the ACE2 receptor and enables viral infection. Rapid production and functional characterization of properly folded SP is of the utmost importance for studying the immunogenicity and receptor-binding activity of this protein considering the emergence of highly infectious viral variants. In this study, we attempted to express the receptor-binding region (RBD) of SARS-CoV-2 SP containing disulfide bonds using the wheat germ cell-free protein synthesis system. By adding protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase (ERO1α) to the translational reaction mixture, we succeeded in synthesizing a functionally intact RBD protein that can interact with ACE2. Using this RBD protein, we have developed a high-throughput AlphaScreen assay to evaluate the RBD–ACE2 interaction, which can be applied for drug screening and mutation analysis. Thus, our method sheds new light on the structural and functional properties of SARS-CoV-2 SP and has the potential to contribute to the development of new COVID-19 therapeutics.
Collapse
|
80
|
Evidence of RedOX Imbalance during Zika Virus Infection Promoting the Formation of Disulfide-Bond-Dependent Oligomers of the Envelope Protein. Viruses 2022; 14:v14061131. [PMID: 35746600 PMCID: PMC9227265 DOI: 10.3390/v14061131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Flaviviruses replicate in membrane factories associated with the endoplasmic reticulum (ER). Significant levels of flavivirus viral protein accumulation contribute to ER stress. As a consequence, the host cell exhibits an Unfolded Protein Response (UPR), subsequently stimulating appropriate cellular responses such as adaptation, autophagy or apoptosis. The correct redox conditions of this compartment are essential to forming native disulfide bonds in proteins. Zika virus (ZIKV) has the ability to induce persistent ER stress leading to the activation of UPR pathways. In this study, we wondered whether ZIKV affects the redox balance and consequently the oxidative protein folding in the ER. We found that ZIKV replication influences the redox state, leading to the aggregation of the viral envelope protein as amyloid-like structures in the infected cells.
Collapse
|
81
|
Chen G, Wang Q, Wang K. MicroRNA-218-5p affects lung adenocarcinoma progression through targeting endoplasmic reticulum oxidoreductase 1 alpha. Bioengineered 2022; 13:10061-10070. [PMID: 35441565 PMCID: PMC9161986 DOI: 10.1080/21655979.2022.2063537] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lung adenocarcinoma (LUAD) severely threatens the health of people owing to its lethality. Nonetheless, the underlying mechanisms on LUAD development remain unclear to a great extent. This work aimed to probe the functions of miR-218-5p in LUAD. MiR-218-5p and endoplasmic reticulum oxidoreductase 1 alpha (ERO1A) were screened as differently downregulated and upregulated RNAs in LUAD, respectively, by bioinformatics analyses. The results of cell functional assays stated that enforced expression of miR-218-5p notably restrained cell viability, invasion, and migration in LUAD. MiR-218-5p may interact with 3’-untranslated region of ERO1A mRNA as analyzed by bioinformatics. Afterward, western blot and dual-luciferase reporter gene analyses were introduced to identify their interaction. ERO1A overexpression reversed the suppressive impacts of miR-218-5p on LUAD cell progression, indicating the implication of miR-218-5p/ERO1A axis in suppressing cancer development. We also observed that this regulatory axis suppressed angiogenesis in LUAD. Taken together, miR-218-5p/ERO1A axis exerted an imperative role in LUAD cell progression, which provides a valuable clue for the development of LUAD therapeutic regimen.
Collapse
Affiliation(s)
- Gang Chen
- Internal Medicine-oncology, The First People's Hospital Of Jiashan, Jiaxing, China
| | - Qihao Wang
- Department of Clinical Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Kunyu Wang
- Surgery, Taizhou First People's HospitalDepartment of Cardio-Thoracic, Taizhou, China
| |
Collapse
|
82
|
Wan Y, Yang L, Jiang S, Qian D, Duan J. Excessive Apoptosis in Ulcerative Colitis: Crosstalk Between Apoptosis, ROS, ER Stress, and Intestinal Homeostasis. Inflamm Bowel Dis 2022; 28:639-648. [PMID: 34871402 DOI: 10.1093/ibd/izab277] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Indexed: 02/06/2023]
Abstract
Ulcerative colitis (UC), an etiologically complicated and relapsing gastrointestinal disease, is characterized by the damage of mucosal epithelium and destruction of the intestinal homeostasis, which has caused a huge social and economic burden on the health system all over the world. Its pathogenesis is multifactorial, including environmental factors, genetic susceptibility, epithelial barrier defect, symbiotic flora imbalance, and dysregulated immune response. Thus far, although immune cells have become the focus of most research, it is increasingly clear that intestinal epithelial cells play an important role in the pathogenesis and progression of UC. Notably, apoptosis is a vital catabolic process in cells, which is crucial to maintain the stability of intestinal environment and regulate intestinal ecology. In this review, the mechanism of apoptosis induced by reactive oxygen species and endoplasmic reticulum stress, as well as excessive apoptosis in intestinal epithelial dysfunction and gut microbiology imbalance are systematically and comprehensively summarized. Further understanding the role of apoptosis in the pathogenesis of UC may provide a novel strategy for its therapy in clinical practices and the development of new drugs.
Collapse
Affiliation(s)
- Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | | |
Collapse
|
83
|
Erythropoietin Nanobots: Their Feasibility for the Controlled Release of Erythropoietin and Their Neuroprotective Bioequivalence in Central Nervous System Injury. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Erythropoietin (EPO) plays important roles in neuroprotection in central nervous system injury. Due to the limited therapeutic time window and coexistence of hematopoietic/extrahematopoietic receptors displaying heterogenic and phylogenetic differences, fast, targeted delivery agents, such as nanobots, are needed. To confirm the feasibility of EPO-nanobots (ENBs) as therapeutic tools, the authors evaluated controlled EPO release from ENBs and compared the neuroprotective bioequivalence of these substances after preconditioning sonication. Methods: ENBs were manufactured by a nanospray drying technique with preconditioning sonication. SH-SY5Y neuronal cells were cotreated with thapsigargin and either EPO or ENBs before cell viability, EPO receptor activation, and endoplasmic reticulum stress-related pathway deactivation were determined over 24 h. Results: Preconditioning sonication (50–60 kHz) for 1 h increased the cumulative EPO release from the ENBs (84% versus 25% at 24 h). Between EPO and ENBs at 24 h, both neuronal cell viability (both > 65% versus 15% for thapsigargin alone) and the expression of the proapoptotic/apoptotic biomolecular markers JAK2, PDI, PERK, GRP78, ATF6, CHOP, TGF-β, and caspase-3 were nearly the same or similar. Conclusion: ENBs controlled EPO release in vitro after preconditioning sonication, leading to neuroprotection similar to that of EPO at 24 h.
Collapse
|
84
|
Law ME, Yaaghubi E, Ghilardi AF, Davis BJ, Ferreira RB, Koh J, Chen S, DePeter SF, Schilson CM, Chiang CW, Heldermon CD, Nørgaard P, Castellano RK, Law BK. Inhibitors of ERp44, PDIA1, and AGR2 induce disulfide-mediated oligomerization of Death Receptors 4 and 5 and cancer cell death. Cancer Lett 2022; 534:215604. [PMID: 35247515 DOI: 10.1016/j.canlet.2022.215604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023]
Abstract
Breast cancer mortality remains unacceptably high, indicating a need for safer and more effective therapeutic agents. Disulfide bond Disrupting Agents (DDAs) were previously identified as a novel class of anticancer compounds that selectively kill cancers that overexpress the Epidermal Growth Factor Receptor (EGFR) or its family member HER2. DDAs kill EGFR+ and HER2+ cancer cells via the parallel downregulation of EGFR, HER2, and HER3 and activation/oligomerization of Death Receptors 4 and 5 (DR4/5). However, the mechanisms by which DDAs mediate these effects are unknown. Affinity purification analyses employing biotinylated-DDAs reveal that the Protein Disulfide Isomerase (PDI) family members AGR2, PDIA1, and ERp44 are DDA target proteins. Further analyses demonstrate that shRNA-mediated knockdown of AGR2 and ERp44, or expression of ERp44 mutants, enhance basal DR5 oligomerization. DDA treatment of breast cancer cells disrupts PDIA1 and ERp44 mixed disulfide bonds with their client proteins. Together, the results herein reveal DDAs as the first small molecule, active site inhibitors of AGR2 and ERp44, and demonstrate roles for AGR2 and ERp44 in regulating the activity, stability, and localization of DR4 and DR5, and activation of Caspase 8.
Collapse
Affiliation(s)
- Mary E Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Elham Yaaghubi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Amanda F Ghilardi
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Bradley J Davis
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Renan B Ferreira
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Jin Koh
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry Facility, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA; Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Sadie F DePeter
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | | | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine and Center for Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Coy D Heldermon
- Department of Medicine, University of Florida, Gainesville, FL, 32610, USA; UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Peter Nørgaard
- Department of Pathology, Copenhagen University Hospital Herlev, DK, 2730, Herlev, Denmark
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA; UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Brian K Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA; UF-Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
85
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Clinical Prognostic Value of the PLOD Gene Family in Lung Adenocarcinoma. Front Mol Biosci 2022; 8:770729. [PMID: 35265665 PMCID: PMC8899219 DOI: 10.3389/fmolb.2021.770729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence has implicated members of the procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) gene family, PLOD1, PLOD2, and PLOD3, in cancer progression and metastasis. However, their expression, prognostic value, and mechanisms underlying their roles in lung adenocarcinoma (LUAD) have not yet been reported. We downloaded PLOD data for LUAD and normal tissues from The Cancer Genome Atlas (TCGA). PLOD1-3 protein expression was evaluated using the Clinical Proteomics Tumor Analysis Consortium and Human Protein Atlas. Survival analysis was performed using the Kaplan–Meier method. A protein–protein interaction network was constructed using STRING software. The “ClusterProfiler” package was used for functional-enrichment analysis. The relationship between PLOD mRNA expression and immune infiltration was analyzed using the Tumor Immunity Assessment Resource and Tumor Immune System Interaction Database. The expression of PLODs in LUAD tissues was significantly upregulated compared with that in adjacent normal tissues. PLOD mRNA overexpression is associated with lymph node metastasis and high TNM staging. Receiver operating characteristic curve analysis showed that when the cut-off level was 6.073, the accuracy, sensitivity, and specificity of PLOD1 in distinguishing LUAD from adjacent controls were 84.4, 79.7, and 82.6%, respectively. The accuracy, sensitivity, and specificity of PLOD2 in distinguishing LUAD from adjacent controls were 81.0, 98.3, and 68.0%, respectively, at a cut-off value of 4.360. The accuracy, sensitivity, and specificity of PLOD3 in distinguishing LUAD from adjacent controls were 69.0, 86.4, and 52.0%, respectively, with a cut-off value of 5.499. Kaplan–Meier survival analysis demonstrated that LUAD patients with high PLODs had a worse prognosis than those with low PLODs. Correlation analysis showed that PLOD mRNA expression was related to immune infiltration and tumor purity. Upregulation of PLOD expression was significantly associated with poor survival and immune cell infiltration in LUAD. Our research shows that PLOD family members have potential as novel biomarkers for poor prognosis and as potential immunotherapy targets for LUAD.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Tao Yu, ; Haozhe Piao,
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Tao Yu, ; Haozhe Piao,
| |
Collapse
|
86
|
Liu Z, Zhang K, Zhao Z, Qin Z, Tang H. Prognosis-related autophagy genes in female lung adenocarcinoma. Medicine (Baltimore) 2022; 101:e28500. [PMID: 35029906 PMCID: PMC8735786 DOI: 10.1097/md.0000000000028500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
To screen the prognosis-related autophagy genes of female lung adenocarcinoma by the transcriptome data and clinical data from The Cancer Genome Atlas (TCGA) database.In this study, screen meaningful female lung adenocarcinoma differential genes in TCGA, use univariate Cox proportional regression model to select genes related to prognosis, and establish the best risk model. In this study, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were applied for carrying out bioinformatics analysis of gene function.The gene expression and clinical data of 264 female lung adenocarcinoma patient samples were downloaded from TCGA. Twelve down-regulated genes: NRG3, DLC1, NLRC4, DAPK2, HSPB8, PPP1R15A, FOS, NRG1, PRKCQ, GRID1, MAP1LC3C, GABARAPL1. Up-regulated 15 genes: PARP1, BNIP3, P4HB, ATIC, IKBKE, ITGB4, VMP1, PTK6, EIF4EBP1, GAPDH, ATG9B, ERO1A, TMEM74, CDKN2A, BIRC5. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that these genes were significantly associated with autophagy and mitochondria (animals). Multifactor Cox analysis of autophagy-related genes showed that ITGA6, ERO1A, FKBP1A, BAK1, CCR2, FADD, EDEM1, ATG10, ATG4A, DLC1, VAMP7, ST13 were identified as independent prognostic indicators. According to the multivariate Cox proportional hazard regression model, there was a significant difference in the survival rate observed between the high-risk group (n = 124) and the low-risk group (n = 126) during the 10-year follow-up (P < .05). Univariate Cox analysis showed that tumor stage, T, M, and N stages, and risk score were all related to the survival rate of female lung adenocarcinoma patients. Multivariate Cox analysis found that autophagy-related risk scores were independent predictors, with an area under curve (AUC) value of 0.842. At last, there is autophagy genes differentially expressed among various clinicopathological parameters: ATG4A, BAK1, CCR2, DLC1, ERO1A, FKBP1A, ITGA6.The risk score can be used as an independent prognostic indicator for female patients with lung adenocarcinoma. The autophagy genes ITGA6, ERO1A, FKBP1A, BAK1, CCR2, FADD, EDEM1, ATG10, ATG4A, DLC1, VAMP7, ST13 were identified as prognostic genes in female lung adenocarcinoma, which may be the targets of treatment in the future.
Collapse
Affiliation(s)
- Zhongxiang Liu
- Department of Pulmonary and Critical Care Medicine, Yancheng First People's Hospital, Yancheng, China
| | - Koudong Zhang
- Department of Pulmonary and Critical Care Medicine, Yancheng First People's Hospital, Yancheng, China
| | - Zhangyan Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhu Qin
- Department of Pulmonary and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haicheng Tang
- Department of Pulmonary and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
87
|
Wang L, Wang X, Lv X, Jin Q, Shang H, Wang CC, Wang L. The extracellular Ero1α/PDI electron transport system regulates platelet function by increasing glutathione reduction potential. Redox Biol 2022; 50:102244. [PMID: 35077997 PMCID: PMC8792282 DOI: 10.1016/j.redox.2022.102244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/18/2023] Open
Abstract
Protein disulfide isomerase (PDI), an oxidoreductase, possesses two vicinal cysteines in the -Cys-Gly-His-Cys-motif that either form a disulfide bridge (S–S) or exist in a sulfhydryl form (-SH), forming oxidized or reduced PDI, respectively. PDI has been proven to be critical for platelet aggregation, thrombosis, and hemostasis, and PDI inhibition is being evaluated as a novel antithrombotic strategy. The redox states of functional PDI during the regulation of platelet aggregation, however, remain to be elucidated. Endoplasmic reticulum (ER) oxidoreductin-1α (Ero1α) and PDI constitute the pivotal oxidative folding pathway in the ER and play an important role in ER redox homeostasis. Whether Ero1α and PDI constitute an extracellular electron transport pathway to mediate platelet aggregation is an open question. Here, we found that oxidized but not reduced PDI promotes platelet aggregation. On the platelet surface, Ero1α constitutively oxidizes PDI and further regulates platelet aggregation in a glutathione-dependent manner. The Ero1α/PDI system oxidizes reduced glutathione (GSH) and establishes a reduction potential optimal for platelet aggregation. Therefore, platelet aggregation is mediated by the Ero1α-PDI-GSH electron transport system on the platelet surface. We further showed that targeting the functional interplay between PDI and Ero1α by small molecule inhibitors may be a novel strategy for antithrombotic therapy. Oxidized but not reduced PDI promotes platelet aggregation. Ero1α and PDI constitute an electron transport pathway on platelet surface. Ero1α and PDI provide a redox environment optimal for platelet aggregation. The functional interplay between Ero1α and PDI can be a new target for antiplatelet therapy.
Collapse
Affiliation(s)
- Lu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiying Lv
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qiushuo Jin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
88
|
Conroy LR, Hawkinson TR, Young LEA, Gentry MS, Sun RC. Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol Metab 2021; 32:980-993. [PMID: 34756776 PMCID: PMC8589112 DOI: 10.1016/j.tem.2021.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
N-linked glycosylation is a complex, co- and post-translational series of events that connects metabolism to signaling in almost all cells. Metabolic assembly of N-linked glycans spans multiple cellular compartments, and early N-linked glycan biosynthesis is a central mediator of protein folding and the unfolded protein response (UPR). In the brain, N-linked glycosylated proteins participate in a myriad of processes, from electrical gradients to neurotransmission. However, it is less clear how perturbations in N-linked glycosylation impact and even potentially drive aspects of neurological disorders. In this review, we discuss our current understanding of the metabolic origins of N-linked glycans in the brain, their role in modulating neuronal function, and how aberrant N-linked glycosylation can drive neurological disorders.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA; Sanders Brown Center for Aging, Lexington, KY 40508-0536, USA.
| |
Collapse
|
89
|
Gao Y, Xiong X, Wang H, Wang J, Bi Y, Yan Y, Cao Z, Li D, Song F. Ero1-Pdi1 module-catalysed dimerization of a nucleotide sugar transporter, FonNst2, regulates virulence of Fusarium oxysporum on watermelon. Environ Microbiol 2021; 24:1200-1220. [PMID: 34587346 DOI: 10.1111/1462-2920.15789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Fusarium oxysporum f. sp. niveum (Fon) is a soil-borne fungus causing vascular Fusarium wilt on watermelon; however, the molecular network regulating Fon virulence remains to be elucidated. Here, we report the function and mechanism of nucleotide sugar transporters (Nsts) in Fon. Fon genome harbours nine FonNst genes with distinct functions in vegetative growth, asexual production, cell wall stress response and virulence. FonNst2 and FonNst3 are required for full virulence of Fon on watermelon and FonNst2 is mainly involved in fungal colonization of the plant tissues. FonNst2 and FonNst3 form homo- or hetero-dimers but function independently in Fon virulence. FonNst2, which has UDP-galactose transporter activity in yeast, interacts with FonEro1 and FonPdi1, both of which are required for full virulence of Fon. FonNst2, FonPdi1 and FonEro1 target to endoplasmic reticulum (ER) and are essential for ER homeostasis and function. FonEro1-FonPdi1 module catalyses the dimerization of FonNst2, which is critical for Fon virulence. Undimerized FonNst2 is unstable and degraded via ER-associated protein degradation in vivo. These data demonstrate that FonEro1-FonPdi1 module-catalysed dimerization of FonNst2 is critical for Fon virulence on watermelon and provide new insights into the regulation of virulence in plant fungal pathogens via disulfide bond formation of key pathogenicity factors.
Collapse
Affiliation(s)
- Yizhou Gao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohui Xiong
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hui Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiajing Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yan Bi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuqing Yan
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhongye Cao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
90
|
Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 2021; 81:3691-3707. [PMID: 34547234 DOI: 10.1016/j.molcel.2021.08.018] [Citation(s) in RCA: 519] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Redox reactions are intrinsically linked to energy metabolism. Therefore, redox processes are indispensable for organismal physiology and life itself. The term reactive oxygen species (ROS) describes a set of distinct molecular oxygen derivatives produced during normal aerobic metabolism. Multiple ROS-generating and ROS-eliminating systems actively maintain the intracellular redox state, which serves to mediate redox signaling and regulate cellular functions. ROS, in particular hydrogen peroxide (H2O2), are able to reversibly oxidize critical, redox-sensitive cysteine residues on target proteins. These oxidative post-translational modifications (PTMs) can control the biological activity of numerous enzymes and transcription factors (TFs), as well as their cellular localization or interactions with binding partners. In this review, we describe the diverse roles of redox regulation in the context of physiological cellular metabolism and provide insights into the pathophysiology of diseases when redox homeostasis is dysregulated.
Collapse
Affiliation(s)
- Claudia Lennicke
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Helena M Cochemé
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
91
|
The regulation of Ero1-alpha in homocysteine-induced macrophage apoptosis and vulnerable plaque formation in atherosclerosis. Atherosclerosis 2021; 334:39-47. [PMID: 34478920 DOI: 10.1016/j.atherosclerosis.2021.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis and plaque vulnerability. Macrophage apoptosis mediated by endoplasmic reticulum (ER) stress plays an important role in the pathogenesis of HHcy-aggravated atherosclerosis. Endoplasmic reticulum oxidoreductase 1α (Ero1α) is critical for ER stress-induced apoptosis. We hypothesized that Ero1α may contribute to ER-stress induced macrophage apoptosis and plaque stability in advanced atherosclerotic lesions by HHcy. METHODS Apoe-/- mice were maintained on drinking water containing homocysteine (Hcy, 1.8 g/L) to establish HHcy atherosclerotic models. The role of Ero1α in atherosclerotic plaque stability, macrophage apoptosis and ER stress were monitored in the plaque of aortic roots in HHcy Apoe-/- mice with or without silence or overexpression of Ero1α through lentivirus. Mouse peritoneal macrophages were used to confirm the regulation of Ero1α on ER stress dependent apoptosis in the presence of HHcy. RESULTS Atherosclerotic plaque vulnerability and macrophage apoptosis were promoted in Apoe-/- mice by high Hcy diet, accompanied by the upregulation of Ero1α expression and ER stress. Inhibition of Ero1α prevented macrophage apoptosis and atherosclerotic plaque vulnerability, and vice versa. Consistently, in mouse peritoneal macrophages, ER stress and apoptosis were attenuated by Ero1α deficiency, but enhanced by Ero1α overexpression. CONCLUSIONS Hcy, via upregulation of Ero1α expression, activates ER stress-dependent macrophage apoptosis to promote vulnerable plaque formation in atherosclerosis. Ero1α may be a potential therapeutic target for atherosclerosis induced by Hcy.
Collapse
|
92
|
Mahmood F, Xu R, Awan MUN, Song Y, Han Q, Xia X, Zhang J. PDIA3: Structure, functions and its potential role in viral infections. Biomed Pharmacother 2021; 143:112110. [PMID: 34474345 DOI: 10.1016/j.biopha.2021.112110] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
The catalysis of disulphide (SS) bonds is the most important characteristic of protein disulphide isomerase (PDI) family. Catalysis occurs in the endoplasmic reticulum, which contains many proteins, most of which are secretory in nature and that have at least one s-s bond. Protein disulphide isomerase A3 (PDIA3) is a member of the PDI family that acts as a chaperone. PDIA3 is highly expressed in response to cellular stress, and also intercept the apoptotic cellular death related to endoplasmic reticulum (ER) stress, and protein misfolding. PDIA3 expression is elevated in almost 70% of cancers and its expression has been linked with overall low cell invasiveness, survival and metastasis. Viral diseases present a significant public health threat. The presence of PDIA3 on the cell surface helps different viruses to enter the cells and also helps in replication. Therefore, inhibitors of PDIA3 have great potential to interfere with viral infections. In this review, we summarize what is known about the basic structure, functions and role of PDIA3 in viral infections. The review will inspire studies of pathogenic mechanisms and drug targeting to counter viral diseases.
Collapse
Affiliation(s)
- Faisal Mahmood
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Ruixian Xu
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Maher Un Nisa Awan
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Yuzhu Song
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Qinqin Han
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China
| | - Xueshan Xia
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| | - Jinyang Zhang
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 Jingming South Road, Kunming 650500, China.
| |
Collapse
|
93
|
Agellon LB, Michalak M. A View of the Endoplasmic Reticulum Through the Calreticulin Lens. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:1-11. [PMID: 34050859 DOI: 10.1007/978-3-030-67696-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Calreticulin is well known as an ER-resident protein that serves as the major endoplasmic reticulum (ER) Ca2+ binding protein. This protein has been the major topic of discussion in an international workshop that has been meeting for a quarter of a century. In sharing information about this protein, the field also witnessed remarkable insights into the importance of the ER as an organelle and the role of ER Ca2+ in coordinating ER and cellular functions. Recent technological advances have helped to uncover the contributions of calreticulin in maintaining Ca2+ homeostasis in the ER and to unravel its involvement in a multitude of cellular processes as highlighted in this collection of articles. The continuing revelations of unexpected involvement of calreticulin and Ca2+ in many critical aspects of cellular function promises to further improve insights into the significance of this protein in the promotion of physiology as well as prevention of pathology.
Collapse
Affiliation(s)
- Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
94
|
Porcine circovirus 2 manipulates PERK-ERO1α axis of endoplasmic reticulum in favor of its replication by derepressing viral DNA from HMGB1 sequestration within nuclei. J Virol 2021; 95:e0100921. [PMID: 34287039 DOI: 10.1128/jvi.01009-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) causes several disease syndromes in grower pigs. PCV2 infection triggers endoplasmic reticulum (ER) stress, autophagy and oxidative stress, all of which support PCV2 replication. We have recently reported that nuclear HMGB1 is an anti-PCV2 factor by binding to viral genomic DNA. However, how PCV2 manipulates host cell responses to favor its replication has not been explored. Here, we demonstrate that PCV2 infection increased expression of ERO1α, generation of ROS and nucleocytoplasmic migration of HMGB1 via PERK activation in PK-15 cells. Inhibition of PERK or ERO1α repressed ROS production in PCV2-infected cells and increased HMGB1 retention within nuclei. These findings indicate that PCV2-induced activation of the PERK-ERO1α axis would lead to enhanced generation of ROS sufficient to decrease HMGB1 retention in the nuclei, thus derepressing viral DNA from HMGB1 sequestration. The viral Rep and Cap proteins were able to induce PERK-ERO1α-mediated ROS accumulation. Cysteine residues 107 and 305 of Rep or 108 of Cap played important roles in PCV2-induced PERK activation and distribution of HMGB1. Of the mutant viruses, only the mutant PCV2 with substitution of all three cysteine residues failed to activate PERK with reduced ROS generation and decreased nucleocytoplasmic migration of HMGB1. Collectively, this study offers novel insight into the mechanism of enhanced viral replication in which PCV2 manipulates ER to perturb its redox homeostasis via the PERK-ERO1α axis and the ER-sourced ROS from oxidative folding is sufficient to reduce HMGB1 retention in the nuclei, hence the release of HMGB1-bound viral DNA for replication. IMPORTANCE Considering the fact that clinical PCVAD mostly results from activation of latent PCV2 infection by confounding factors such as co-infection or environmental stresses, we propose that such confounding factors might impose oxidative stress to the animals where PCV2 in infected cells might utilize the elevated ROS to promote HMGB1 migration out of nuclei in favor of its replication. An animal infection model with a particular stressor could be approached with or without antioxidant treatment to examine the relationship among the stressor, ROS level, HMGB1 distribution in target tissues, virus replication and severity of PCVAD. This will help decide the use of antioxidants in the feeding regime on pig farms that suffer from PCVAD. Further investigation could examine if similar strategies are employed by DNA viruses, such as PCV3 and BFDV and if there is cross-talk among ER stress, autophagy/mitophagy and mitochondria-sourced ROS in favor of PCV2 replication.
Collapse
|
95
|
Pang Y, Zhang H, Ai HW. Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity. Chem Res Toxicol 2021; 34:1826-1845. [PMID: 34284580 DOI: 10.1021/acs.chemrestox.1c00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Redox-active molecules play essential roles in cell homeostasis, signaling, and other biological processes. Dysregulation of redox signaling can lead to toxic effects and subsequently cause diseases. Therefore, real-time tracking of specific redox-signaling molecules in live cells would be critical for deciphering their functional roles in pathophysiology. Fluorescent protein (FP)-based genetically encoded redox indicators (GERIs) have emerged as valuable tools for monitoring the redox states of various redox-active molecules from subcellular compartments to live organisms. In the first section of this review, we overview the background, focusing on the sensing mechanisms of various GERIs. Next, we review a list of selected GERIs according to their analytical targets and discuss their key biophysical and biochemical properties. In the third section, we provide several examples which applied GERIs to understanding redox signaling and oxidative toxicology in pathophysiological processes. Lastly, a summary and outlook section is included.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hao Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States.,The UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
96
|
Huang X, He D, Pan Z, Luo G, Deng J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater Today Bio 2021; 11:100124. [PMID: 34458716 PMCID: PMC8379340 DOI: 10.1016/j.mtbio.2021.100124] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) mediate multiple physiological functions; however, the over-accumulation of ROS causes premature aging and/or death and is associated with various inflammatory conditions. Nevertheless, there are limited clinical treatment options that are currently available. The good news is that owing to the considerable advances in nanoscience, multiple types of nanomaterials with unique ROS-scavenging abilities that influence the temporospatial dynamic behaviors of ROS in biological systems have been developed. This has led to the emergence of next-generation nanomaterial-controlled strategies aimed at ameliorating ROS-related inflammatory conditions. Accordingly, herein we reviewed recent progress in research on nanotherapy based on ROS scavenging. The underlying mechanisms of the employed nanomaterials are emphasized. Furthermore, important issues in developing cross-disciplinary nanomedicine-based strategies for ROS-based inflammatory conditions are discussed. Our review of this increasing interdisciplinary field will benefit ongoing studies and clinical applications of nanomedicine based on ROS scavenging.
Collapse
Affiliation(s)
- X. Huang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| | - D. He
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| | - Z. Pan
- Department of Endocrinology and Nephrology, The Seventh People's Hospital of Chongqing
| | - G. Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| | - J. Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| |
Collapse
|
97
|
Xu X, Chiu J, Chen S, Fang C. Pathophysiological roles of cell surface and extracellular protein disulfide isomerase and their molecular mechanisms. Br J Pharmacol 2021; 178:2911-2930. [PMID: 33837960 DOI: 10.1111/bph.15493] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 12/21/2022] Open
Abstract
Protein disulfide isomerase (PDI) is the prototypic member of the thiol isomerase family that catalyses disulfide bond rearrangement. Initially identified in the endoplasmic reticulum as folding catalysts, PDI and other members in its family have also been widely reported to reside on the cell surface and in the extracellular matrix. Although how PDI is exported and retained on the cell surface remains a subject of debate, this unique pool of PDI is developing into an important mechanism underlying the redox regulation of protein sulfhydryls that are critical for the cellular activities under various disease conditions. This review aims to provide an overview of the pathophysiological roles of surface and extracellular PDI and their underlying molecular mechanisms. Understanding the involvement of extracellular PDI in these diseases will advance our knowledge in the molecular aetiology to facilitate the development of novel pharmacological strategies by specifically targeting PDI in extracellular compartments.
Collapse
Affiliation(s)
- Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Joyce Chiu
- The Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Shuai Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| |
Collapse
|
98
|
Honer J, Niemeyer KM, Fercher C, Diez Tissera AL, Jaberolansar N, Jafrani YMA, Zhou C, Caramelo JJ, Shewan AM, Schulz BL, Brodsky JL, Zacchi LF. TorsinA folding and N-linked glycosylation are sensitive to redox homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119073. [PMID: 34062155 PMCID: PMC8889903 DOI: 10.1016/j.bbamcr.2021.119073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
The Endoplasmic Reticulum (ER) is responsible for the folding and post-translational modification of secretory proteins, as well as for triaging misfolded proteins. During folding, there is a complex yet only partially understood interplay between disulfide bond formation, which is an enzyme catalyzed event in the oxidizing environment of the ER, along with other post-translational modifications (PTMs) and chaperone-supported protein folding. Here, we used the glycoprotein torsinA as a model substrate to explore the impact of ER redox homeostasis on PTMs and protein biogenesis. TorsinA is a AAA+ ATPase with unusual oligomeric properties and controversial functions. The deletion of a C-terminal glutamic acid residue (∆E) is associated with the development of Early-Onset Torsion Dystonia, a severe movement disorder. TorsinA differs from other AAA+ ATPases since it is an ER resident, and as a result of its entry into the ER torsinA contains two N-linked glycans and at least one disulfide bond. The role of these PTMs on torsinA biogenesis and function and the identity of the enzymes that catalyze them are poorly defined. Using a yeast torsinA expression system, we demonstrate that a specific protein disulfide isomerase, Pdi1, affects the folding and N-linked glycosylation of torsinA and torsinA∆E in a redox-dependent manner, suggesting that the acquisition of early torsinA folding intermediates is sensitive to perturbed interactions between Cys residues and the quality control machinery. We also highlight the role of specific Cys residues during torsinA biogenesis and demonstrate that torsinA∆E is more sensitive than torsinA when these Cys residues are mutated.
Collapse
Affiliation(s)
- Jonas Honer
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Katie M Niemeyer
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Christian Fercher
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ana L Diez Tissera
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), 1405 Buenos Aires, Argentina
| | - Noushin Jaberolansar
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yohaann M A Jafrani
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Chun Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Julio J Caramelo
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), 1405 Buenos Aires, Argentina
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Benjamin L Schulz
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Lucía F Zacchi
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States of America; Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), 1405 Buenos Aires, Argentina; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
99
|
Amodio G, Pagliara V, Moltedo O, Remondelli P. Structural and Functional Significance of the Endoplasmic Reticulum Unfolded Protein Response Transducers and Chaperones at the Mitochondria-ER Contacts: A Cancer Perspective. Front Cell Dev Biol 2021; 9:641194. [PMID: 33842465 PMCID: PMC8033034 DOI: 10.3389/fcell.2021.641194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023] Open
Abstract
In the last decades, the endoplasmic reticulum (ER) has emerged as a key coordinator of cellular homeostasis, thanks to its physical interconnection to almost all intracellular organelles. In particular, an intense and mutual crosstalk between the ER and mitochondria occurs at the mitochondria–ER contacts (MERCs). MERCs ensure a fine-tuned regulation of fundamental cellular processes, involving cell fate decision, mitochondria dynamics, metabolism, and proteostasis, which plays a pivotal role in the tumorigenesis and therapeutic response of cancer cells. Intriguingly, recent studies have shown that different components of the unfolded protein response (UPR) machinery, including PERK, IRE1α, and ER chaperones, localize at MERCs. These proteins appear to exhibit multifaceted roles that expand beyond protein folding and UPR transduction and are often related to the control of calcium fluxes to the mitochondria, thus acquiring relevance to cell survival and death. In this review, we highlight the novel functions played by PERK, IRE1α, and ER chaperones at MERCs focusing on their impact on tumor development.
Collapse
Affiliation(s)
- Giuseppina Amodio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Valentina Pagliara
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| | - Ornella Moltedo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Paolo Remondelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, Italy
| |
Collapse
|
100
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|