51
|
Zhang XS, Lu Y, Tao T, Wang H, Liu GJ, Liu XZ, Liu C, Xia DY, Hang CH, Li W. Fucoxanthin Mitigates Subarachnoid Hemorrhage-Induced Oxidative Damage via Sirtuin 1-Dependent Pathway. Mol Neurobiol 2020; 57:5286-5298. [PMID: 32876840 DOI: 10.1007/s12035-020-02095-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is a key component of the pathological cascade in subarachnoid hemorrhage (SAH). Fucoxanthin (Fx) possesses a strong antioxidant property and has shown neuroprotective effects in acute brain injuries such as ischemic stroke and traumatic brain injury. Here, we investigated the beneficial effects of Fx against SAH-induced oxidative insults and the possible molecular mechanisms. Our data showed that Fx could significantly inhibit SAH-induced reactive oxygen species production and lipid peroxidation, and restore the impairment of endogenous antioxidant enzymes activities. In addition, Fx supplementation improved mitochondrial morphology, ameliorated neural apoptosis, and reduced brain edema after SAH. Moreover, Fx administration exerted an improvement in short-term and long-term neurobehavior functions after SAH. Mechanistically, Fx inhibited oxidative damage and brain injury after SAH by deacetylation of forkhead transcription factors of the O class and p53 via sirtuin 1 (Sirt1) activation. EX527, a selective Sirt1 inhibitor, significantly abated Fx-induced Sirt1 activation and abrogated the antioxidant and neuroprotective effects of Fx after SAH. In primary neurons, Fx similarly suppressed oxidative insults and improved cell viability. These effects were associated with Sirt1 activation and were reversed by EX527 treatment. Taken together, our study explored that Fx provided protection against SAH-induced oxidative insults by inducing Sirt1 signaling, indicating that Fx might serve as a potential therapeutic drug for SAH.
Collapse
Affiliation(s)
- Xiang-Sheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Han Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Da-Yong Xia
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
52
|
Zhou Y, Tian Q, Zheng C, Yang J, Fan J, Shentu Y. Myocardial infarction-induced anxiety-like behavior is associated with epigenetic alterations in the hippocampus of rat. Brain Res Bull 2020; 164:172-183. [PMID: 32871241 DOI: 10.1016/j.brainresbull.2020.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023]
Abstract
Epidemiological and experimental animal studies indicate that there is a high risk for the incidence of neuropsychiatric disorders suffering from cardiovascular diseases such as myocardial infarction (MI). However, the potential mechanism of this association remains largely unknown. This study sought to evaluate whether epigenetic alterations in the hippocampus is associated with MI-induced anxiety-like behavior in rats. MI was induced by occlusion of the left anterior descending artery in adult female rats. Anxiety-like behavior was examined by elevated plus maze, light-dark box, and open field test. Relative gene and protein levels expression in the hippocampus were tested by qRT-PCR and western blotting, respectively. We found that MI rats exhibited anxiety-like behavior compared with those in controls, and there is a positive correlation between MI and anxiety-like behavior. We also found that MI decreased KDM6B while increased SIRT1 expression in the hippocampus of MI rats relative to those in controls. In addition, MI not only increased levels of IL-1β, bax, and cleaved-caspase 3, but also increased Iba-1 and GFAP expression in the hippocampus, as compared to those in controls, suggesting a promotion of neuro-inflammation and apoptosis in hippocampus. Co-immunoprecipitation assay illustrated that H3K27me3 functioned by counteracting with YAP activation in the hippocampus of MI rats relative to those in controls. Together, these results suggest a potential role of hippocampal epigenetic signaling in MI-induced anxiety-like behavior in rats, and pharmacological targeting KDM6B or SIRT1 could be a strategy to ameliorate anxiety-like behavior induced by MI.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuyun Tian
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jinge Yang
- Department of Medical Technology, Jiangxi Medical College, Shangrao, Jiangxi, 334709, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
53
|
Prashantha Kumar BR, Kumar AP, Jose JA, Prabitha P, Yuvaraj S, Chipurupalli S, Jeyarani V, Manisha C, Banerjee S, Jeyabalan JB, Mohankumar SK, Dhanabal SP, Justin A. Minutes of PPAR-γ agonism and neuroprotection. Neurochem Int 2020; 140:104814. [PMID: 32758586 DOI: 10.1016/j.neuint.2020.104814] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-γ) is one of the ligand-activated transcription factors which regulates a number of central events and considered as a promising target for various neurodegenerative disease conditions. Numerous reports implicate that PPAR-γ agonists have shown neuroprotective effects by regulating genes transcription associated with the pathogenesis of neurodegeneration. In regards, this review critically appraises the recent knowledge of PPAR-γ receptors in neuroprotection in order to hypothesize potential neuroprotective mechanism of PPAR-γ agonism in chronic neurological conditions. Of note, the PPAR-γ's interaction dynamics with PPAR-γ coactivator-1α (PGC-1α) has gained significant attention for neuroprotection. Likewise, a plethora of studies suggest that the PPAR-γ pathway can be actuated by the endogenous ligands present in the CNS and thus identification and development of novel agonist for the PPAR-γ receptor holds a vow to prevent neurodegeneration. Together, the critical insights of this review enlighten the translational possibilities of developing novel neuroprotective therapeutics targeting PPAR-γ for various neurodegenerative disease conditions.
Collapse
Affiliation(s)
- B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - Ashwini Prem Kumar
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Jincy A Jose
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - P Prabitha
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - S Yuvaraj
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Victoria Jeyarani
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Chennu Manisha
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Sayani Banerjee
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Jeyaram Bharathi Jeyabalan
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Suresh Kumar Mohankumar
- TIFAC CORE in HD, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - S P Dhanabal
- TIFAC CORE in HD, Department of Pharmacognosy, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India
| | - Antony Justin
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, Nilgiris, Tamilnadu, India.
| |
Collapse
|
54
|
Li M, Li SC, Dou BK, Zou YX, Han HZ, Liu DX, Ke ZJ, Wang ZF. Cycloastragenol upregulates SIRT1 expression, attenuates apoptosis and suppresses neuroinflammation after brain ischemia. Acta Pharmacol Sin 2020; 41:1025-1032. [PMID: 32203080 PMCID: PMC7471431 DOI: 10.1038/s41401-020-0386-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
Cycloastragenol (CAG) is the active form of astragaloside IV isolated from Astragalus Radix, which displays multiple pharmacological effects. Silent information regulator 1 (SIRT1), a class III histone deacetylase, has been shown to play an important role in neuroprotection against cerebral ischemia. In this study, we investigated whether CAG protected against ischemic brain injury and, if so, whether the beneficial effects were associated with the regulation of SIRT1 in the ischemic brain. Mice were subjected to 45 min of middle cerebral artery occlusion (MCAO) followed by reperfusion. CAG (5, 10, 20 mg/kg) was injected intraperitoneally at the onset of reperfusion, 12 h later and then twice daily for up to three days. CAG dose-dependently reduced brain infarct volume, significantly ameliorated functional deficits, and prevented neuronal cell loss in MCAO mice. Meanwhile, CAG significantly reduced matrix metalloproteinase-9 activity, prevented tight junction degradation and subsequently ameliorated blood-brain barrier disruption. Moreover, CAG significantly upregulated SIRT1 expression in the ischemic brain but did not directly activate its enzymatic activity. Concomitant with SIRT1 upregulation, CAG reduced p53 acetylation and the ratio of Bax to Bcl-2 in the ischemic brain. CAG also inhibited NF-κB p65 nuclear translocation. As a result, CAG suppressed the mRNA expression of pro-inflammatory cytokines, including TNF-α and IL-1β, and inhibited the activation of microglia and astrocytes in the ischemic brain. Our findings suggest that CAG is neuroprotective against ischemic brain injury in mice and that its beneficial effect may involve SIRT1 upregulation and the inhibition of apoptosis and neuroinflammation in the ischemic brain.
Collapse
|
55
|
Nan D, Yuqi C, Zonglin S, Chenglong D, Na L, Fang L, Cong Z, Xiufeng X. Association of a SIRT1 polymorphism with changes of gray matter volume in patients with first-episode medication-naïve major depression. Psychiatry Res Neuroimaging 2020; 301:111101. [PMID: 32447184 DOI: 10.1016/j.pscychresns.2020.111101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/18/2020] [Accepted: 04/23/2020] [Indexed: 01/08/2023]
Abstract
A single nucleotide polymorphism (SNP) rs12415800 of the silent mating type information regulation 2 homolog 1 gene (SIRT1) has shown a genome-wide significant association with major depression disorder (MDD) in a recent GWAS using a large sample. Subsequent studies of SIRT1's biological functions were supportive of a possible role in the pathophysiology of MDD. However, SIRT1-mediated physiopathology of MDD may be brain region specific. In the present study, we investigated the impact of SIRT1 rs12415800 genotypes on gray matter volumes (GMV) among different brain regions in both MDD patients and healthy controls. The rs12415800 was genotyped in 170 patients with first-episode medication-naïve MDD (cases) and 170 healthy controls. Magnetic resonance imaging was conducted and the voxel-based morphometry (VBM) approach was employed to analyze obtained images. When compared with the cases carrying GG genotype, the cases carrying GA or AA genotypes (A for risk allele) showed decreased GMV in right precuneus, left cuneus/precuneus, and right frontal superior. In contrast, the rs12415800-associated GMV abnormalities were not observed in controls. The SIRT1-rs12415800 polymorphism may be associated with the changes of GMV in MDD patients.
Collapse
Affiliation(s)
- Dai Nan
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Cheng Yuqi
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Shen Zonglin
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Dong Chenglong
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Li Na
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Liu Fang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Zhou Cong
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China
| | - Xu Xiufeng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang RD, Kunming 650032, Kunming, Yunnan, China.
| |
Collapse
|
56
|
Gareri P, Cotroneo AM, Orsitto G, Putignano S. The CITIMEM study: A pilot study. Optimizing pharmacological treatment in dementia. Arch Gerontol Geriatr 2020; 89:104073. [PMID: 32447126 DOI: 10.1016/j.archger.2020.104073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/15/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Citicoline can have beneficial effects both in degenerative and in vascular cognitive decline; it works through an increase in acetylcholine intrasynaptic levels and promoting phospholipid synthesis, (chiefly phosphatidylcholine), cellular function, and neuronal repair. Memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist used for the treatment of mild to moderate Alzheimer's disease (AD). When co-administered they could have a synergistic action in patients affected with AD and mixed dementia (MD) too. SCOPE The aim of the present study was to show the effectiveness of oral citicoline plus memantine in patients affected with AD and MD. PATIENTS AND METHODS This was a retrospective study between 2015 and 2017 on 126 patients aged 65 years old or older affected with AD or MD (mean age 80.7 ± 5.2 years old). The study involved four different centers for dementia all over Italy. Diagnosis of AD was made according to clinical symptoms, neuropsychological tests and brain imaging. Diagnosis of MD was made when symptoms typical of AD such as memory loss were associated to symptoms due to cerebrovascular deficits, i.e., impaired judgement, ability to make decisions, plan or organize, and brain imaging. 58 patients were treated with memantine (group A), 68 patients with memantine plus citicoline 1 g/day given orally (group B). In both groups memantine dosage was 10-20 mg/day according to its tolerability. 24 patients of group A and 29 patients of group B were affected with MD. Cognitive functions were assessed by MMSE, daily life functions by ADL and IADL, behavioral symptoms by NPI, comorbidities by CIRS, and mood by GDS-short form. Tests were administered at baseline (T0), after 6 (T1), and 12 months (T2). The primary outcomes were the effects of combined treatment versus memantine alone on cognitive functions assessed by MMSE. The secondary outcomes were the possible side effects or adverse events of combination therapy versus memantine alone, influence on daily life functions and behavioral symptoms. RESULTS AND CONCLUSIONS Patients treated with citicoline plus memantine showed an increase in MMSE between T0 and T1 (16.6 ± 2.9 vs 17.4 ± 2.7) and between T1 and T2 (17.4 ± 2.7 vs 17.7 ± 2.8). The difference in MMSE score was significant when comparing the two groups, both at T1 (p = 0.003) and T2 (p = 0.000). Since it is important to maximize the pharmacological means in AD and MD, the present study encourages the role of combined administration of memantine plus citicoline in disease management and in slowing down the progression of disease.
Collapse
Affiliation(s)
- Pietro Gareri
- Center for Cognitive Disorders and Dementia - Catanzaro Lido, ASP Catanzaro, Catanzaro, Italy.
| | - Antonino Maria Cotroneo
- Department of Elderly Health Care - Birago di Vische Hospital and Botticelli Territorial Geriatrics - ASL TO 2, Turin, Italy.
| | - Giuseppe Orsitto
- U.O.C. Internal Medicine Ward, P.O. Bari Sud "Di Venere", Bari, Azienda Sanitaria Locale di Bari, Italy.
| | | |
Collapse
|
57
|
Epileptic brain fluorescent imaging reveals apigenin can relieve the myeloperoxidase-mediated oxidative stress and inhibit ferroptosis. Proc Natl Acad Sci U S A 2020; 117:10155-10164. [PMID: 32327603 DOI: 10.1073/pnas.1917946117] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myeloperoxidase (MPO)-mediated oxidative stress has been suggested to play an important role in the pathological dysfunction of epileptic brains. However, there is currently no robust brain-imaging tool to detect real-time endogenous hypochlorite (HClO) generation by MPO or a fluorescent probe for rapid high-throughput screening of antiepileptic agents that control the MPO-mediated chlorination stress. Herein, we report an efficient two-photon fluorescence probe (named HCP) for the real-time detection of endogenous HClO signals generated by MPO in the brain of kainic acid (KA)-induced epileptic mice, where HClO-dependent chlorination of quinolone fluorophore gives the enhanced fluorescence response. With this probe, we visualized directly the endogenous HClO fluxes generated by the overexpression of MPO activity in vivo and ex vivo in mouse brains with epileptic behaviors. Notably, by using HCP, we have also constructed a high-throughput screening approach to rapidly screen the potential antiepileptic agents to control MPO-mediated oxidative stress. Moreover, from this screen, we identified that the flavonoid compound apigenin can relieve the MPO-mediated oxidative stress and inhibit the ferroptosis of neuronal cells. Overall, this work provides a versatile fluorescence tool for elucidating the role of HClO generation by MPO in the pathology of epileptic seizures and for rapidly discovering additional antiepileptic agents to prevent and treat epilepsy.
Collapse
|
58
|
Lin JY, Kuo WW, Baskaran R, Kuo CH, Chen YA, Chen WST, Ho TJ, Day CH, Mahalakshmi B, Huang CY. Swimming exercise stimulates IGF1/ PI3K/Akt and AMPK/SIRT1/PGC1α survival signaling to suppress apoptosis and inflammation in aging hippocampus. Aging (Albany NY) 2020; 12:6852-6864. [PMID: 32320382 PMCID: PMC7202519 DOI: 10.18632/aging.103046] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Hippocampus is one of the most vulnerable brain regions in terms of age-related pathological change. Exercise is presumed to delay the aging process and promote health because it seems to improve the function of most of the aging mechanisms. The purpose of this study is to evaluate the effects of swimming exercise training on brain inflammation, apoptotic and survival pathways in the hippocampus of D-galactose-induced aging in SD rats. The rats were allocated to the following groups: (1) control; (2) swimming exercise; (3) induced-aging by injecting D-galactose; (4) induced-aging rats with swimming exercise. The longevity-related AMPK/SIRT1/PGC-1α signaling pathway and brain IGF1/PI3K/Akt survival pathway were significantly reduced in D-galactose-induced aging group compared to non-aging control group and increased after exercise training. The inflammation pathway markers were over-expressed in induced-aging hippocampus, exercise significantly inhibited the inflammatory signaling activity. Fas-dependent and mitochondrial-dependent apoptotic pathways were significantly increased in the induced-aging group relative to the control group whereas they were decreased in the aging-exercise group. This study demonstrated that swimming exercise not only reduced aging-induced brain apoptosis and inflammatory signaling activity, but also enhanced the survival pathways in the hippocampus, which provides one of the new beneficial effects for exercise training in aging brain.
Collapse
Affiliation(s)
- Jing-Ying Lin
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Yun-An Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - William Shao-Tsu Chen
- Division of Addictive Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | | | - B Mahalakshmi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
59
|
Lu S, Yin X, Wang J, Gu Q, Huang Q, Jin N, Chu D, Xu Z, Liu F, Qian W. SIRT1 regulates O-GlcNAcylation of tau through OGT. Aging (Albany NY) 2020; 12:7042-7055. [PMID: 32310828 PMCID: PMC7202539 DOI: 10.18632/aging.103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/09/2020] [Indexed: 04/19/2023]
Abstract
Tau is modified with O-GlcNAcylation extensively in human brain. The O-GlcNAcylation levels of tau are decreased in Alzheimer's disease (AD) brain. Sirtuin type 1 (SIRT1) is an enzyme that deacetylates proteins including transcriptional factors and associates with neurodegenerative diseases, such as AD. Aberrant SIRT1 expression levels in AD brain is in parallel with the accumulation of tau. cAMP response element binding protein (CREB), a cellular transcription factor, plays a critical role in learning and memory. In this present study, we found SIRT1 deacetylates CREB and inhibits phosphorylation of CREB at Ser133. The inactivated CREB suppresses OGT expression and therefore decreases the O-GlcNAcylation of tau and thus increases the phosphorylation of tau at specific sites. These findings suggest that SIRT1 may be a potential therapeutic target for treating tauopathies.
Collapse
Affiliation(s)
- Shu Lu
- Department of Intensive Care Unit, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, P. R. China
| | - Xiaomin Yin
- Department of Biochemistry and Molecular Biology, Medical School, Nantong, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P. R. China
| | - Jia Wang
- Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P. R. China
| | - Qun Gu
- Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P. R. China
| | - Qin Huang
- Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P. R. China
| | - Nana Jin
- Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P. R. China
| | - Dandan Chu
- Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P. R. China
| | - Ziqi Xu
- Department of Biochemistry and Molecular Biology, Medical School, Nantong, Jiangsu, P. R. China
| | - Fei Liu
- Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P. R. China
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, Medical School, Nantong, Jiangsu, P. R. China
- Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, P. R. China
| |
Collapse
|
60
|
Zuo JX, Li M, Jiang L, Lan F, Tang YY, Kang X, Zou W, Wang CY, Zhang P, Tang XQ. Hydrogen Sulfide Prevents Sleep Deprivation-Induced Hippocampal Damage by Upregulation of Sirt1 in the Hippocampus. Front Neurosci 2020; 14:169. [PMID: 32218719 PMCID: PMC7078349 DOI: 10.3389/fnins.2020.00169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/14/2020] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation (SD) induces hippocampal damage. Hydrogen sulfide (H2S) is a neuronal protective factor. Silence information regulating factor 1 (Sirt1) plays an important role in neuroprotection. Therefore, this study was aimed at exploring whether H2S meliorates SD-induced hippocampal damage and whether Sirt1 mediates this protective role of H2S. We found that sodium hydrosulfide (NaHS, a donor of H2S) alleviated SD-generated hippocampal oxidative stress, including increases in the activation of SOD and the level of GSH as well as a decrease in the level of MDA. Meanwhile, we found that NaHS reduced SD-exerted hippocampal endoplasmic reticulum (ER) Stress, including downregulations of GRP78, CHOP, and cleaved-caspase-12 expression. Moreover, NaHS reduced the apoptosis in the SD-exposed hippocampus, and this included decreases in the number of apoptotic cells and the activation of caspase-3, downregulation of Bax expression, and upregulation of Bcl-2 expression. NaHS upregulated the expression of Sirt1 in the hippocampus of SD-exposed rats. Furthermore, Sirtinol, the inhibitor of Sirt1, abrogated the protection of NaHS against SD-exerted hippocampal oxidative stress, ER stress, and apoptosis. These results suggested that H2S alleviates SD-induced hippocampal damage by upregulation of hippocampal Sirt1.
Collapse
Affiliation(s)
- Jin-Xi Zuo
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Min Li
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Li Jiang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Fang Lan
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Yun Tang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Kang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Chun-Yan Wang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
61
|
Zhou C, Wu Y, Ding X, Shi N, Cai Y, Pan ZZ. SIRT1 Decreases Emotional Pain Vulnerability with Associated CaMKIIα Deacetylation in Central Amygdala. J Neurosci 2020; 40:2332-2342. [PMID: 32005763 PMCID: PMC7083291 DOI: 10.1523/jneurosci.1259-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/09/2020] [Accepted: 01/24/2020] [Indexed: 11/21/2022] Open
Abstract
Emotional disorders are common comorbid conditions that further exacerbate the severity and chronicity of chronic pain. However, individuals show considerable vulnerability to the development of chronic pain under similar pain conditions. In this study on male rat and mouse models of chronic neuropathic pain, we identify the histone deacetylase Sirtuin 1 (SIRT1) in central amygdala as a key epigenetic regulator that controls the development of comorbid emotional disorders underlying the individual vulnerability to chronic pain. We found that animals that were vulnerable to developing behaviors of anxiety and depression under the pain condition displayed reduced SIRT1 protein levels in central amygdala, but not those animals resistant to the emotional disorders. Viral overexpression of local SIRT1 reversed this vulnerability, but viral knockdown of local SIRT1 mimicked the pain effect, eliciting the pain vulnerability in pain-free animals. The SIRT1 action was associated with CaMKIIα downregulation and deacetylation of histone H3 lysine 9 at the CaMKIIα promoter. These results suggest that, by transcriptional repression of CaMKIIα in central amygdala, SIRT1 functions to guard against the emotional pain vulnerability under chronic pain conditions. This study indicates that SIRT1 may serve as a potential therapeutic molecule for individualized treatment of chronic pain with vulnerable emotional disorders.SIGNIFICANCE STATEMENT Chronic pain is a prevalent neurological disease with no effective treatment at present. Pain patients display considerably variable vulnerability to developing chronic pain, indicating individual-based molecular mechanisms underlying the pain vulnerability, which is hardly addressed in current preclinical research. In this study, we have identified the histone deacetylase Sirtuin 1 (SIRT1) as a key regulator that controls this pain vulnerability. This study reveals that the SIRT1-CaMKIIaα pathway in central amygdala acts as an epigenetic mechanism that guards against the development of comorbid emotional disorders under chronic pain, and that its dysfunction causes increased vulnerability to the development of chronic pain. These findings suggest that SIRT1 activators may be used in a novel therapeutic approach for individual-based treatment of chronic pain.
Collapse
Affiliation(s)
- Chenghua Zhou
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, and
| | - Yuqing Wu
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 266061, People's Republic of China
| | - Xiaobao Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, and
| | - Naihao Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, and
| | - Youqin Cai
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Zhizhong Z Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
| |
Collapse
|
62
|
Jamali-Raeufy N, Mojarrab Z, Baluchnejadmojarad T, Roghani M, Fahanik-Babaei J, Goudarzi M. The effects simultaneous inhibition of dipeptidyl peptidase-4 and P2X7 purinoceptors in an in vivo Parkinson's disease model. Metab Brain Dis 2020; 35:539-548. [PMID: 32016817 DOI: 10.1007/s11011-020-00538-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
Loss of dopaminergic neurons following Parkinson's disease (PD) diminishes quality of life in patients. The present study was carried out to investigate the protective effects of simultaneous inhibition of dipeptidyl peptidase-4 (DPP-4) and P2X7 purinoceptors in a PD model and explore possible mechanisms. The 6-hydroxydopamine (6-OHDA) was used as a tool to establish PD model in male Wister rats. The expressions of SIRT1, SIRT3, mTOR, PGC-1α, PTEN, P53 and DNA fragmentation were evaluated by ELISA assay. Behavioral impairments were determined using apomorphine-induced rotational and narrow beam tests. Dopamine synthesis and TH-positive neurons were detected by tyrosine hydroxylase (TH) immunohistochemistry. Neuronal density was determined by Nissl staining. OHDA-lesioned rats exhibited behavioral impairments that reversed by BBG, lin and lin + BBG. We found significant reduced levels of SIRT1, SIRT3, PGC-1α and mTOR in both mid brain and striatum from OHDA-lesioned rats that reversed by BBG, lin and lin + BBG. Likewise, significant increased levels of PTEN and P53 were found in both mid brain and striatum from OHDA-lesioned rats that was reversed by BBG, lin and lin + BBG. TH-positive neurons and neuronal density were markedly reduced OHDA-lesioned rats that reversed by BBG, lin and lin + BBG. Collectively, our results showed protective effects of simultaneous inhibition of DPP-4 and P2X7 purinoceptors in a rat model of PD can be linked to targeting SIRT1/SIRT3, PTEN-mTOR pathways. Moreover, our findings demonstrated that simultaneous inhibition of DPP-4 and P2X7 purinoceptors might have stronger effect on mitochondrial biogenesis compared to only one.
Collapse
Affiliation(s)
- Nida Jamali-Raeufy
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Mojarrab
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Javad Fahanik-Babaei
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Goudarzi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
63
|
Merlo S, Luaces JP, Spampinato SF, Toro-Urrego N, Caruso GI, D’Amico F, Capani F, Sortino MA. SIRT1 Mediates Melatonin's Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence. Biomolecules 2020; 10:biom10030364. [PMID: 32120833 PMCID: PMC7175216 DOI: 10.3390/biom10030364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin exerts direct neuroprotection against cerebral hypoxic damage, but the mechanisms of its action on microglia have been less characterized. Using both in vitro and in vivo models of hypoxia, we here focused on the role played by silent mating type information regulation 2 homolog 1 (SIRT1) in melatonin's effects on microglia. Viability of rat primary microglia or microglial BV2 cells and SH-SY5Y neurons was significantly reduced after chemical hypoxia with CoCl2 (250 μM for 24 h). Melatonin (1 μM) significantly attenuated CoCl2 toxicity on microglia, an effect prevented by selective SIRT1 inhibitor EX527 (5 μM) and AMP-activated protein kinase (AMPK) inhibitor BML-275 (2 μM). CoCl2 did not modify SIRT1 expression, but prevented nuclear localization, while melatonin appeared to restore it. CoCl2 induced nuclear localization of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-kB), an effect contrasted by melatonin in an EX527-dependent fashion. Treatment of microglia with melatonin attenuated potentiation of neurotoxicity. Common carotid occlusion was performed in p7 rats, followed by intraperitoneal injection of melatonin (10 mg/kg). After 24 h, the number of Iba1+ microglia in the hippocampus of hypoxic rats was significantly increased, an effect not prevented by melatonin. At this time, SIRT1 was only detectable in the amoeboid, Iba1+ microglial population selectively localized in the corpus callosum. In these cells, nuclear localization of SIRT1 was significantly lower in hypoxic animals, an effect prevented by melatonin. NF-kB showed an opposite expression pattern, where nuclear localization in Iba1+ cells was significantly higher in hypoxic, but not in melatonin-treated animals. Our findings provide new evidence for a direct effect of melatonin on hypoxic microglia through SIRT1, which appears as a potential pharmacological target against hypoxic-derived neuronal damage.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Juan Pablo Luaces
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Nicolas Toro-Urrego
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Grazia Ilaria Caruso
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Fabio D’Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
- Correspondence: ; Tel.: +39-095-4781192
| |
Collapse
|
64
|
Long H, Ruan J, Zhang M, Wang C, Huang Y. Gastrodin alleviates Tourette syndrome via Nrf-2/HO-1/HMGB1/NF-кB pathway. J Biochem Mol Toxicol 2019; 33:e22389. [PMID: 31468582 DOI: 10.1002/jbt.22389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 11/08/2022]
Abstract
The aim is to study the effects of gastrodin (GA) on striatal inflammation and oxidative stress in rats with Tourette syndrome (TS). The rat model of TS was induced by 3,3'-iminodipropionitrile. Behavioral tests were carried out by stereotype experiment. The concentrations of amino acid transmitters glutamic acid (Glu) and γ-aminobutyric acid (GABA) in striatum were determined by high-performance liquid chromatography. Superoxide dismutase (SOD) and malondialdehyde (MDA) in serum and striatum were detected by commercial kits. Cytokines in serum and striatum were detected by enzyme-linked immunosorbent assay kits. Western blot analysis was used to detect striatum nuclear erythroid factor 2-related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1)/high mobility group box 1 protein (HMGB1)/nuclear factor-кB (NF-кB) pathway-related proteins. The expressions of Nrf-2 and P-NF-кBp65 in striatum were detected by immunohistochemistry. Compared with the control group, the stereotype scores of rats in the model group significantly increased, and the contents of Glu and GABA in striatum obviously increased. GA significantly reduced the stereotype scores and decreased the contents of Glu and GABA. The levels of SOD in serum and striatum were decreased and the content of MDA in serum and striatum were increased compared with the control group, while GA significantly restored the changes. GA significantly adjusted Nrf-2/HO-1/HMGB1/NF-кB pathway-related proteins changes consistent with immunohistochemical changes. GA may protect striatum of rats with TS by regulating Nrf-2/HO-1/HMGB1/NF-кB pathway protein changes in striatum.
Collapse
Affiliation(s)
- Hongyan Long
- Central Laboratory, Nanjing Hospital of Chinese Medicine, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Ruan
- Central Laboratory, Nanjing Hospital of Chinese Medicine, The Affiliated Nanjing Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Chunyan Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaruo Huang
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
65
|
Khan M, Ullah R, Rehman SU, Shah SA, Saeed K, Muhammad T, Park HY, Jo MH, Choe K, Rutten BPF, Kim MO. 17β-Estradiol Modulates SIRT1 and Halts Oxidative Stress-Mediated Cognitive Impairment in a Male Aging Mouse Model. Cells 2019; 8:cells8080928. [PMID: 31430865 PMCID: PMC6721687 DOI: 10.3390/cells8080928] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress has been considered the main mediator in neurodegenerative disease and in normal aging processes. Several studies have reported that the accumulation of reactive oxygen species (ROS), elevated oxidative stress, and neuroinflammation result in cellular malfunction. These conditions lead to neuronal cell death in aging-related neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease. Chronic administration of d-galactose (d-gal) for a period of 10 weeks causes ROS generation and neuroinflammation, ultimately leading to cognitive impairment. In this study, we evaluated the estrogen receptor α (ERα)/silent mating type information regulation 2 homolog 1 (SIRT1)-dependent antioxidant efficacy of 17β-estradiol against d-gal-induced oxidative damage-mediated cognitive dysfunction in a male mouse model. The results indicate that 17β-estradiol, by stimulating ERα/SIRT1, halts d-gal-induced oxidative stress–mediated JNK/NF-ҡB overexpression, neuroinflammation and neuronal apoptosis. Moreover, 17β-estradiol ameliorated d-gal-induced AD-like pathophysiology, synaptic dysfunction and memory impairment in adult mouse brains. Interestingly, inhibition of SIRT1 with Ex527 (a potent and selective SIRT1 inhibitor) further enhanced d-gal-induced toxicity and abolished the beneficial effect of 17β-estradiol. Most importantly, for the first time, our molecular docking study reveals that 17β-estradiol allosterically increases the expression of SIRT1 and abolishes the inhibitory potential of d-ga. In summary, we can conclude that 17β-estradiol, in an ERα/SIRT1-dependent manner, abrogates d-gal-induced oxidative stress–mediated memory impairment, neuroinflammation, and neurodegeneration in adult mice.
Collapse
Affiliation(s)
- Mehtab Khan
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Rahat Ullah
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Shafiq Ur Rehman
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Shahid Ali Shah
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Kamran Saeed
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Tahir Muhammad
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Medical Center (MUMC+), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience (EURON), 6229ER Maastricht, The Netherlands
| | - Myeung Hoon Jo
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Kyonghwan Choe
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Medical Center (MUMC+), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience (EURON), 6229ER Maastricht, The Netherlands
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Medical Center (MUMC+), Faculty of Health, Medicine and Life Sciences, Maastricht University, European Graduate School of Neuroscience (EURON), 6229ER Maastricht, The Netherlands
| | - Myeong Ok Kim
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
66
|
Mild hypothermia improves neurological outcome in mice after cardiopulmonary resuscitation through Silent Information Regulator 1-actviated autophagy. Cell Death Discov 2019; 5:129. [PMID: 31428461 PMCID: PMC6690976 DOI: 10.1038/s41420-019-0209-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/16/2019] [Accepted: 07/16/2019] [Indexed: 01/07/2023] Open
Abstract
Mild hypothermia treatment (MHT) improves the neurological function of cardiac arrest (CA) patients, but the exact mechanisms of recovery remain unclear. Herein, we generated a CA and cardiopulmonary resuscitation (CPR) mouse model to elucidate such function. Naïve mice were randomly divided into two groups, a normothemia (NT) group, in which animals had normal body temperature, and a MHT group, in which animals had a body temperature of 33 °C (range: 32–34 °C), after the return of spontaneous circulation (ROSC), followed by CA/CPR. MHT significantly improved the survival rate of CA/CPR mice compared with NT. Mechanistically, MHT increased the expression of Silent Information Regulator 1 (Sirt1) and decreased P53 phosphorylation (p-P53) in the cortex of CA/CPR mice, which coincided with the elevated autophagic flux. However, Sirt1 deletion compromised the neuroprotection offered by MHT, indicating that Sirt1 plays an important role. Consistent with the observations obtained from in vivo work, our in vitro study utilizing cultured neurons subjected to oxygen/glucose deprivation and reperfusion (OGD/R) also indicated that Sirt1 knockdown increased OGD/R-induced neuron necrosis and apoptosis, which was accompanied by decreased autophagic flux and increased p-P53. However, the depletion of P53 did not suppress neuron death, suggesting that P53 was not critically involved in MHT-induced neuroprotection. In contrast, the application of autophagic inhibitor 3-methyladenine attenuated MHT-improved neuron survival after OGD/R, further demonstrating that increased autophagic flux significantly contributes to MHT-linked neuroprotection of CA/CRP mice. Our findings indicate that MHT improves neurological outcome of mice after CA/CPR through Sirt1-mediated activation of autophagic flux.
Collapse
|
67
|
Sirtuin 1 Regulates Mitochondrial Biogenesis and Provides an Endogenous Neuroprotective Mechanism Against Seizure-Induced Neuronal Cell Death in the Hippocampus Following Status Epilepticus. Int J Mol Sci 2019; 20:ijms20143588. [PMID: 31340436 PMCID: PMC6678762 DOI: 10.3390/ijms20143588] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Status epilepticus may decrease mitochondrial biogenesis, resulting in neuronal cell death occurring in the hippocampus. Sirtuin 1 (SIRT1) functionally interacts with peroxisome proliferator-activated receptors and γ coactivator 1α (PGC-1α), which play a crucial role in the regulation of mitochondrial biogenesis. In Sprague-Dawley rats, kainic acid was microinjected unilaterally into the hippocampal CA3 subfield to induce bilateral seizure activity. SIRT1, PGC-1α, and other key proteins involving mitochondrial biogenesis and the amount of mitochondrial DNA were investigated. SIRT1 antisense oligodeoxynucleotide was used to evaluate the relationship between SIRT1 and mitochondrial biogenesis, as well as the mitochondrial function, oxidative stress, and neuronal cell survival. Increased SIRT1, PGC-1α, and mitochondrial biogenesis machinery were found in the hippocampus following experimental status epilepticus. Downregulation of SIRT1 decreased PGC-1α expression and mitochondrial biogenesis machinery, increased Complex I dysfunction, augmented the level of oxidized proteins, raised activated caspase-3 expression, and promoted neuronal cell damage in the hippocampus. The results suggest that the SIRT1 signaling pathway may play a pivotal role in mitochondrial biogenesis, and could be considered an endogenous neuroprotective mechanism counteracting seizure-induced neuronal cell damage following status epilepticus.
Collapse
|
68
|
Foolad F, Khodagholi F, Javan M. Sirtuins in Multiple Sclerosis: The crossroad of neurodegeneration, autoimmunity and metabolism. Mult Scler Relat Disord 2019; 34:47-58. [PMID: 31228716 DOI: 10.1016/j.msard.2019.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/26/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
Abstract
Multiple Sclerosis (MS) is a challenging and disabling condition particularly in the secondary progressive (SP) phase of this disease. The available treatments cannot ameliorate or stop disease progression in this phase, and there is an urgent need to focus on effective therapies and the molecular pathways involved SPMS. Given the significant impact of neurodegeneration, autoimmunity and metabolic alterations in MS, focusing on the molecules that target these different pathways could help in finding new treatments. Sirtuins (SIRTs) are NAD+ dependent epigenetic and metabolic regulators, which have critical roles in the physiology of central nervous system, immune system and metabolism. Based on these facts, SIRTs are crucial candidates of therapeutic targets in MS and collecting the information related to MS disease for each SIRT individually is noteworthy and highlights the lack of investigation in each part. In this review we summarized the role of different sirtuins as key regulator in neurodegeneration, autoimmunity and metabolism pathways. We also clarify the rationale behind selecting SIRTs as therapeutic targets in MS disease by collecting the researches showing alteration of these proteins in human samples of MS patients and animal model of MS, and also the improvement of modeled animals after SIRT-directed treatments.
Collapse
Affiliation(s)
- Forough Foolad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
69
|
Regulation of sirtuin expression in autoimmune neuroinflammation: Induction of SIRT1 in oligodendrocyte progenitor cells. Neurosci Lett 2019; 704:116-125. [DOI: 10.1016/j.neulet.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022]
|
70
|
Hongyan L, Mengjiao Z, Chunyan W, Yaruo H. Rhynchophylline Attenuates Neurotoxicity in Tourette Syndrome Rats. Neurotox Res 2019; 36:679-687. [PMID: 31115771 DOI: 10.1007/s12640-019-00059-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 01/27/2023]
Abstract
Tourette syndrome (TS) is a chronic neuropsychiatric disorder with clinical manifestations of involuntary and repeated muscle twitching and vocal twitching. The drugs used to treat TS are relatively limited. The aim of this study was to investigate the effects of rhynchophylline (RH) and the underlying mechanism in 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced neurotoxicity in a TS rat model. A TS model was induced with DOI. The rats were divided into control, TS, TS + tiapride (25 mg/kg), and TS + RH (20 and 40 mg/kg) groups. Behavioral tests were performed 24 h after the last administration by nodding and stereotype experiments. Interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) levels in striatum and serum were detected with an enzyme-linked immunosorbent assay (ELISA). Western blot analysis was used to detect the expression levels of Toll-like receptor (TLR)/nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3)/nuclear factor kappa B (NF-κB) signal proteins in the striatum. The expression of TLR2 and NF-κB p65 subunit was detected with immunohistochemical analysis. RH may significantly improve behavioral changes in rats with DOI-induced TS and reduce the levels of inflammatory factors in serum and striatum. RH inhibited the activation of TLR/NLRP3/NF-κB signaling proteins in the striatum of TS rats. In BV2 cells, DOI-induced inflammation mediated through TLR/NLRP3/NF-κB was significantly inhibited following RH administration. The therapeutic effect of RH in TS was studied and its mechanism of action mediated via the TLR/NLRP3/NF-κB pathway was clarified in vitro and in vivo.
Collapse
Affiliation(s)
- Long Hongyan
- Central Laboratory, Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China.
| | - Zhang Mengjiao
- Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Wang Chunyan
- Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Huang Yaruo
- Nanjing University of Chinese Medicine, Nanjing, 210046, China
| |
Collapse
|
71
|
Zhang Z, Li D, Xu L, Li HP. Sirt1 improves functional recovery by regulating autophagy of astrocyte and neuron after brain injury. Brain Res Bull 2019; 150:42-49. [PMID: 31102754 DOI: 10.1016/j.brainresbull.2019.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) triggers neuronal death mechanisms that significantly induce neuronal loss and neurological dysfunction. Our previous study revealed that Sirt1 could improve the neuroprotective effect by reducing the astrocyte activation after TBI. Nevertheless, the underlying mechanisms of Sirt1 attenuating astrocyte activation still remain unclear. The following study examined whether the protection of Sirt1 in nigrostriatal pathway injury is associated with autophagy regulation. We established a nigrostriatal pathway injury in the mouse brain in order to mimic the traumatic brain injury and up-regulated Sirt1 expression by resveratrol. Consequently, we analyzed the effect of Sirt1 up-regulation on LC3 and monitored the LC3 localization in the astrocytes, microglial cells and neurons. We found that the Sirt1 up-regulation by resveratrol increased the expression of LC3 around the lesion site after injury. Confocal results showed that Sirt1 up-regulation increased the expression of LC3 in astrocytes and decreased the expression in the neurons, while low effect was found on the microglial cells. Moreover, compared the resveratrol treatment groups, a typical nucleocytoplasmic localization with strong distribution in the nucleus (in astrocyte and neurons) was observed in the control group (treated with DMSO). To sum up, our data suggested that regulation of Sirt1 expression could enhance autophagy in the astrocytes and decrease the expression in the neurons. This mechanism, which may probably relate to the distribution of LC3 in cytoplasm and nucleus, provides a new theoretical basis for exploring the neuroprotective mechanism of Sirt1 after brain injury.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Li Xu
- Department of Ophthalmology, Forth People's Hospital, Shenyang, China.
| | - Hong-Peng Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
72
|
Xu N, Huang F, Jian C, Qin L, Lu F, Wang Y, Zhang Z, Zhang Q. Neuroprotective effect of salidroside against central nervous system inflammation-induced cognitive deficits: A pivotal role of sirtuin 1-dependent Nrf-2/HO-1/NF-κB pathway. Phytother Res 2019; 33:1438-1447. [PMID: 30848530 DOI: 10.1002/ptr.6335] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/17/2019] [Accepted: 02/09/2019] [Indexed: 12/21/2022]
Abstract
Central nervous system (CNS) inflammation occurs in cognitive dysfunctions, but the underlying mechanisms remain unclear. Here, we investigated the role of sirtuin 1 (SIRT1) and salidroside in CNS inflammation-induced cognitive deficits model. In vivo, CNS inflammation was initiated by a single intracerebroventricular injection of lipopolysaccharide (LPS). The levels of inflammatory cytokines and the capability of free radial scavenging were determined after the LPS challenge. In vivo, salidroside and nicotinamide, a SIRT1 inhibitor, were used in PC12 cell. Of note, with the treatment of salidroside, LPS-induced learning and memory impairments were effectively improved. Salidroside also remarkably inhibited the inflammatory cytokines, up-regulated the concentration of superoxide dismutase and inhibited the vitalities of malondialdehyde in serum, hippocampus, and cell supernatant. Besides, the expression of Sirt1, Nrf-2, HO-1, Bax, Bcl-2, caspase-9, and caspase-3 and the phosphorylation of AMPK, NF-κBp65, and IκBα were increased accompanying with the LPS-induced cognitive impairments, which were significantly suppressed by salidroside treatment. In PC12 cell model, nicotinamide significantly abrogated the beneficial effects of salidroside, as indicated by the antioxidant, anti-inflammatory, and antiapoptosis signaling. Together, our results showed that salidroside may be a novel therapy drug in neurodegenerative diseases, and the protective effect was involved in SIRT1-dependent Nrf-2/HO-1/NF-κB pathway.
Collapse
Affiliation(s)
- Ning Xu
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| | - Fang Huang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| | - Chongdong Jian
- Department of Neurology, Affiliated Hospital of Youjiang Medical for Nationalities, Baise, China
| | - Lina Qin
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| | - Fang Lu
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| | - Yimei Wang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| | - Zhao Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| | - Qian Zhang
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and The First People's Hospital of Nanning, Nanning, China
| |
Collapse
|
73
|
Resveratrol Promotes Mitochondrial Biogenesis and Protects against Seizure-Induced Neuronal Cell Damage in the Hippocampus Following Status Epilepticus by Activation of the PGC-1α Signaling Pathway. Int J Mol Sci 2019; 20:ijms20040998. [PMID: 30823590 PMCID: PMC6412811 DOI: 10.3390/ijms20040998] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 12/27/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is known to regulate mitochondrial biogenesis. Resveratrol is present in a variety of plants, including the skin of grapes, blueberries, raspberries, mulberries, and peanuts. It has been shown to offer protective effects against a number of cardiovascular and neurodegenerative diseases, stroke, and epilepsy. This study examined the neuroprotective effect of resveratrol on mitochondrial biogenesis in the hippocampus following experimental status epilepticus. Kainic acid was microinjected into left hippocampal CA3 in Sprague Dawley rats to induce bilateral prolonged seizure activity. PGC-1α expression and related mitochondrial biogenesis were investigated. Amounts of nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (Tfam), cytochrome c oxidase 1 (COX1), and mitochondrial DNA (mtDNA) were measured to evaluate the extent of mitochondrial biogenesis. Increased PGC-1α and mitochondrial biogenesis machinery after prolonged seizure were found in CA3. Resveratrol increased expression of PGC-1α, NRF1, and Tfam, NRF1 binding activity, COX1 level, and mtDNA amount. In addition, resveratrol reduced activated caspase-3 activity and attenuated neuronal cell damage in the hippocampus following status epilepticus. These results suggest that resveratrol plays a pivotal role in the mitochondrial biogenesis machinery that may provide a protective mechanism counteracting seizure-induced neuronal damage by activation of the PGC-1α signaling pathway.
Collapse
|
74
|
Marin C, Langdon C, Alobid I, Fuentes M, Bonastre M, Mullol J. Recovery of Olfactory Function After Excitotoxic Lesion of the Olfactory Bulbs Is Associated with Increases in Bulbar SIRT1 and SIRT4 Expressions. Mol Neurobiol 2019; 56:5643-5653. [DOI: 10.1007/s12035-019-1472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022]
|
75
|
Xu J, Jackson CW, Khoury N, Escobar I, Perez-Pinzon MA. Brain SIRT1 Mediates Metabolic Homeostasis and Neuroprotection. Front Endocrinol (Lausanne) 2018; 9:702. [PMID: 30532738 PMCID: PMC6265504 DOI: 10.3389/fendo.2018.00702] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Sirtuins are evolutionarily conserved proteins that use nicotinamide adenine dinucleotide (NAD+) as a co-substrate in their enzymatic reactions. There are seven proteins (SIRT1-7) in the human sirtuin family, among which SIRT1 is the most conserved and characterized. SIRT1 in the brain, in particular, within the hypothalamus, plays crucial roles in regulating systemic energy homeostasis and circadian rhythm. Apart from this, SIRT1 has also been found to mediate beneficial effects in neurological diseases. In this review, we will first summarize how SIRT1 in the brain relates to obesity, type 2 diabetes, and circadian synchronization, and then we discuss the neuroprotective roles of brain SIRT1 in the context of cerebral ischemia and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jing Xu
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charlie W. Jackson
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Nathalie Khoury
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Iris Escobar
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Miguel A. Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
76
|
Rovira-Llopis S, Apostolova N, Bañuls C, Muntané J, Rocha M, Victor VM. Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeutic Targets. Antioxid Redox Signal 2018; 29:749-791. [PMID: 29256638 DOI: 10.1089/ars.2017.7313] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Type 2 diabetes mellitus and hyperglycemia can lead to the development of comorbidities such as atherosclerosis and microvascular/macrovascular complications. Both type 2 diabetes and its complications are related to mitochondrial dysfunction and oxidative stress. Type 2 diabetes is also a chronic inflammatory condition that leads to inflammasome activation and the release of proinflammatory mediators, including interleukins (ILs) IL-1β and IL-18. Moreover, sirtuins are energetic sensors that respond to metabolic load, which highlights their relevance in metabolic diseases, such as type 2 diabetes. Recent Advances: Over the past decade, great progress has been made in clarifying the signaling events regulated by mitochondria, inflammasomes, and sirtuins. Nod-like receptor family pyrin domain containing 3 (NLRP3) is the best characterized inflammasome, and the generation of oxidant species seems to be critical for its activation. NLRP3 inflammasome activation and altered sirtuin levels have been observed in type 2 diabetes. Critical Issue: Despite increasing evidence of the relationship between the NLRP3 inflammasome, mitochondrial dysfunction, and oxidative stress and of their participation in type 2 diabetes physiopathology, therapeutic strategies to combat type 2 diabetes that target NLRP3 inflammasome and sirtuins are yet to be consolidated. FUTURE DIRECTIONS In this review article, we attempt to provide an overview of the existing literature concerning the crosstalk between mitochondrial impairment and the inflammasome, with particular attention to cellular and mitochondrial redox metabolism and the potential role of the NLRP3 inflammasome and sirtuins in the pathogenesis of type 2 diabetes. In addition, we discuss potential targets for therapeutic intervention based on these molecular interactions. Antioxid. Redox Signal. 29, 749-791.
Collapse
Affiliation(s)
- Susana Rovira-Llopis
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Nadezda Apostolova
- 2 Department of Pharmacology, University of Valencia , Valencia, Spain
- 4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Celia Bañuls
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Jordi Muntané
- 3 Department of General Surgery, Hospital University "Virgen del Rocío"/IBiS/CSIC/University of Seville , Seville, Spain
- 4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Milagros Rocha
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Victor M Victor
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
- 5 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
77
|
Zhang X, Wu Q, Lu Y, Wan J, Dai H, Zhou X, Lv S, Chen X, Zhang X, Hang C, Wang J. Cerebroprotection by salvianolic acid B after experimental subarachnoid hemorrhage occurs via Nrf2- and SIRT1-dependent pathways. Free Radic Biol Med 2018; 124:504-516. [PMID: 29966698 PMCID: PMC6286712 DOI: 10.1016/j.freeradbiomed.2018.06.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/19/2023]
Abstract
Salvianolic acid B (SalB), a natural polyphenolic compound extracted from the herb of Salvia miltiorrhiza, possesses antioxidant and neuroprotective properties and has been shown to be beneficial for diseases that affect vasculature and cognitive function. Here we investigated the protective effects of SalB against subarachnoid hemorrhage (SAH)-induced oxidative damage, and the involvement of underlying molecular mechanisms. In a rat model of SAH, SalB inhibited SAH-induced oxidative damage. The reduction in oxidative damage was associated with suppressed reactive oxygen species generation; decreased lipid peroxidation; and increased glutathione peroxidase, glutathione, and superoxide dismutase activities. Concomitant with the suppressed oxidative stress, SalB significantly reduced neurologic impairment, brain edema, and neural cell apoptosis after SAH. Moreover, SalB dramatically induced nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation and increased expression of heme oxygenase-1 and NADPH: quinine oxidoreductase-1. In a mouse model of SAH, Nrf2 knockout significantly reversed the antioxidant effects of SalB against SAH. Additionally, SalB activated sirtuin 1 (SIRT1) expression, whereas SIRT1-specific inhibitor sirtinol pretreatment significantly suppressed SalB-induced SIRT1 activation and Nrf2 expression. Sirtinol pretreatment also reversed the antioxidant and neuroprotective effects of SalB. In primary cultured cortical neurons, SalB suppressed oxidative damage, alleviated neuronal degeneration, and improved cell viability. These beneficial effects were associated with activation of the SIRT1 and Nrf2 signaling pathway and were reversed by sirtinol treatment. Taken together, these in vivo and in vitro findings suggest that SalB provides protection against SAH-triggered oxidative damage by upregulating the Nrf2 antioxidant signaling pathway, which may be modulated by SIRT1 activation.
Collapse
Affiliation(s)
- Xiangsheng Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China; Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haibin Dai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Changzheng Hospital, School of Medicine, Second Military Medical University, Shanghai, China
| | - Shengyin Lv
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Chunhua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
78
|
Vellimana AK, Diwan D, Clarke J, Gidday JM, Zipfel GJ. SIRT1 Activation: A Potential Strategy for Harnessing Endogenous Protection Against Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Neurosurgery 2018; 65:1-5. [PMID: 31076789 DOI: 10.1093/neuros/nyy201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Julian Clarke
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Jeffrey M Gidday
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| |
Collapse
|
79
|
Schartner E, Sabbir MG, Saleh A, Silva RV, Roy Chowdhury S, Smith DR, Fernyhough P. High glucose concentration suppresses a SIRT2 regulated pathway that enhances neurite outgrowth in cultured adult sensory neurons. Exp Neurol 2018; 309:134-147. [PMID: 30102915 DOI: 10.1016/j.expneurol.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
In peripheral nerve under hyperglycemic conditions high flux of d-glucose through the polyol pathway drives an aberrant redox state contributing to neurodegeneration in diabetic sensorimotor polyneuropathy (DSPN). Sirtuins, including SIRT2, detect the redox state via the NAD+/NADH ratio to regulate mitochondrial function via, in part, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). In adult dorsal root ganglia (DRG) sensory neurons mitochondrial dysfunction has been proposed as an etiological factor in dying-back neuropathy in diabetes. We tested the hypothesis that a high concentration of d-glucose depleted SIRT2 expression via enhancement of polyol pathway activity. We posited that this would lead to impaired mitochondrial function and suppression of neurite outgrowth in cultured sensory neurons. The use of dominant negative mutants or neurons from SIRT2 knockout (KO) mice to block SIRT2 signaling revealed that neurons derived from control or type 1 diabetic rodents required SIRT2 for optimal neurite outgrowth. Over-expression of WT-SIRT2 elevated neurite outgrowth in normal and diabetic cultures. SIRT2 protein isoforms 2.1 and 2.2 were reduced by 20-30% in DRG of type 1 diabetic mice (p < .05). After 72 h exposure to high d-glucose (25 mM vs 5 mM) cultured sensory neurons showed a significant 2-fold (p < .05) decrease in SIRT2 expression, P-AMPK, levels of respiratory Complexes II/III and respiratory capacity. DRG neurons expressed aldose reductase and the aforementioned deficits were prevented by treatment with aldose reductase inhibitors (lidorestat or sorbinil) or sorbitol dehydrogenase inhibitor (SDI-158). In cultures derived from type 1 diabetic rats treatment with SDI-158 elevated expression of SIRT2, P-AMPK/PGC-1α and neurite outgrowth (p < .05). SIRT2 KO neurons exhibited deficits in the LKB-1/AMPK/PGC-1α pathway and mitochondrial function. In cultured neurons the SIRT2 pathway enhances axonal outgrowth and this signaling axis encompassing activation of AMPK/PGC-1α is impaired in DSPN, in part, due to enhanced polyol pathway activity caused by hyperglycemia.
Collapse
Affiliation(s)
- Emily Schartner
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Mohammad Golam Sabbir
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Ali Saleh
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Rafaela Vieira Silva
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada; Faculty of Pharmacy, Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Subir Roy Chowdhury
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada; Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
80
|
Cheray M, Joseph B. Epigenetics Control Microglia Plasticity. Front Cell Neurosci 2018; 12:243. [PMID: 30123114 PMCID: PMC6085560 DOI: 10.3389/fncel.2018.00243] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/18/2018] [Indexed: 01/31/2023] Open
Abstract
Microglia, resident immune cells of the central nervous system, fulfill multiple functions in the brain throughout life. These microglial functions range from participation in innate and adaptive immune responses, involvement in the development of the brain and its homeostasis maintenance, to contribution to degenerative, traumatic, and proliferative diseases; and take place in the developing, the aging, the healthy, or the diseased brain. Thus, an impressive level of cellular plasticity, appears as a requirement for the pleiotropic biological functions of microglia. Epigenetic changes, including histone modifications or DNA methylation as well as microRNA expression, are important modifiers of gene expression, and have been involved in cell phenotype regulation and reprogramming and are therefore part of the mechanisms regulating cellular plasticity. Here, we review and discuss the epigenetic mechanisms, which are emerging as contributors to this microglial cellular plasticity and thereby can constitute interesting targets to modulate microglia associated brain diseases, including developmental diseases, neurodegenerative diseases as well as cancer.
Collapse
Affiliation(s)
- Mathilde Cheray
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
81
|
Sarubbo F, Moranta D, Pani G. Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. Neurosci Biobehav Rev 2018; 90:456-470. [DOI: 10.1016/j.neubiorev.2018.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/05/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
|
82
|
Tian F, Yuan C, Yue H. MiR-138/SIRT1 axis is implicated in impaired learning and memory abilities of cerebral ischemia/reperfusion injured rats. Exp Cell Res 2018; 367:232-240. [DOI: 10.1016/j.yexcr.2018.03.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/22/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
|
83
|
Zhang L, Chen Z, Gong W, Zou Y, Xu F, Chen L, Huang H. Paeonol Ameliorates Diabetic Renal Fibrosis Through Promoting the Activation of the Nrf2/ARE Pathway via Up-Regulating Sirt1. Front Pharmacol 2018; 9:512. [PMID: 29867511 PMCID: PMC5968333 DOI: 10.3389/fphar.2018.00512] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/27/2018] [Indexed: 01/05/2023] Open
Abstract
Diabetic nephropathy (DN) is rapidly becoming the leading cause of end-stage renal disease worldwide and a major cause of morbidity and mortality in patients of diabetes. The main pathological change of DN is renal fibrosis. Paeonol (PA), a single phenolic compound extracted from the root bark of Cortex Moutan, has been demonstrated to have many potential pharmacological activities. However, the effects of PA on DN have not been fully elucidated. In this study, high glucose (HG)-treated glomerular mesangial cells (GMCs) and streptozotocin (STZ)-induced diabetic mice were analyzed in exploring the potential mechanisms of PA on DN. Results in vitro showed that: (1) PA inhibited HG-induced fibronectin (FN) and ICAM-1 overexpressions; (2) PA exerted renoprotective effect through activating the Nrf2/ARE pathway; (3) Sirt1 mediated the effects of PA on the activation of Nrf2/ARE pathway. What is more, in accordance with the in vitro results, significant elevated levels of Sirt1, Nrf2 and downstream proteins related to Nrf2 were observed in the kidneys of PA treatment group compared with model group. Taken together, our study shows that PA delays the progression of diabetic renal fibrosis, and the underlying mechanism is probably associated with regulating the Nrf2 pathway. The effect of PA on Nrf2 is at least partially dependent on Sirt1 activation.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiquan Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenyan Gong
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yezi Zou
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Futian Xu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihao Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Heqing Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
84
|
Lee JH, Choi YJ, Park SH, Nam MJ. Potential role of nucleoside diphosphate kinase in myricetin-induced selective apoptosis in colon cancer HCT-15 cells. Food Chem Toxicol 2018; 116:315-322. [PMID: 29698783 DOI: 10.1016/j.fct.2018.04.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 12/19/2022]
Abstract
The flavonoid myricetin (MYR) is derived from vegetables and fruits. It has been shown to exert anti-cancer effects in various cell lines; however, the exact mechanism underlying these effects is yet to be elucidated. In this study, we evaluated the anti-cancer effects induced by MYR treatment in colon cancer HCT-15 cells. To detect cell proliferation, we conducted MTT assay and real time-cell electronic sensing (RT-CES). We next performed comet assay and Annexin V and PI staining to detect cellular apoptotic features. After that, we conducted two-dimensional electrophoresis (2-DE) analysis to identify apoptotic proteins. The results of this analysis revealed that eight spots were differentially expressed. Among the spots, we selected nucleoside diphosphate kinase (NDPK) for further investigation, as it has been shown to regulate cancer cell apoptosis and metastasis. After that, we conducted realtime-PCR and western blot to detect the expression of NDPK mRNA and protein and wound-healing assay to detect cell migration and invasion. Finally, we performed NDPK siRNA transfection study and the results showed that NDPK knockdown inhibited apoptosis. Based on these collective results, we suggest that MYR induces apoptosis in human colon cancer HCT-15 cells selectively by increasing the expression of NDPK and other caspase-regulated apoptosis proteins.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Department of Biological Sciences, Gachon University, Seongnam, South Korea
| | - Yong Jun Choi
- Department of Biological Sciences, Gachon University, Seongnam, South Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, South Korea.
| | - Myeong Jin Nam
- Department of Biological Sciences, Gachon University, Seongnam, South Korea.
| |
Collapse
|
85
|
Sarubbo F, Esteban S, Miralles A, Moranta D. Effects of Resveratrol and other Polyphenols on Sirt1: Relevance to Brain Function During Aging. Curr Neuropharmacol 2018; 16:126-136. [PMID: 28676015 PMCID: PMC5883375 DOI: 10.2174/1570159x15666170703113212] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/15/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Classically the oxidative stress and more recently inflammatory processes have been identified as the major causes of brain aging. Oxidative stress and inflammation affect each other, but there is more information about the effects of oxidative stress on aging than regarding the contribution of inflammation on it. METHODS In the intense research for methods to delay or mitigate the effects of aging, are interesting polyphenols, natural molecules synthesized by plants (e.g. resveratrol). Their antioxidant and anti-inflammatory properties make them useful molecules in the prevention of aging. RESULTS The antiaging effects of polyphenols could be due to several related mechanisms, among which are the prevention of oxidative stress, SIRT1 activation and inflammaging modulation, via regulation of some signaling pathways, such as NF-κB. CONCLUSION In this review, we describe the positive effects of polyphenols on the prevention of the changes that occur during aging in the brain and their consequences on cognition, emphasizing the possible modulation of inflammaging by polyphenols through a SIRT1-mediated mechanism.
Collapse
Affiliation(s)
- F. Sarubbo
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - S. Esteban
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - A. Miralles
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - D. Moranta
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| |
Collapse
|
86
|
Rajabi N, Galleano I, Madsen AS, Olsen CA. Targeting Sirtuins: Substrate Specificity and Inhibitor Design. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 154:25-69. [PMID: 29413177 DOI: 10.1016/bs.pmbts.2017.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysine residues across the proteome are modified by posttranslational modifications (PTMs) that significantly enhance the structural and functional diversity of proteins. For lysine, the most abundant PTM is ɛ-N-acetyllysine (Kac), which plays numerous roles in regulation of important cellular functions, such as gene expression (epigenetic effects) and metabolism. A family of enzymes, namely histone deacetylases (HDACs), removes these PTMs. A subset of these enzymes, the sirtuins (SIRTs), represent class III HDAC and, unlike the rest of the family, these hydrolases are NAD+-dependent. Although initially described as deacetylases, alternative deacylase functions for sirtuins have been reported, which expands the potential cellular roles of this class of enzymes. Currently, sirtuins are investigated as therapeutic targets for the treatment of diseases that span from cancers to neurodegenerative disorders. In the present book chapter, we review and discuss the current literature on novel ɛ-N-acyllysine PTMs, targeted by sirtuins, as well as mechanism-based sirtuin inhibitors inspired by their substrates.
Collapse
Affiliation(s)
- Nima Rajabi
- Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Iacopo Galleano
- Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
87
|
Yang T, Li Q, Zhang F. Regulation of gene expression in ischemic preconditioning in the brain. CONDITIONING MEDICINE 2017; 1:47-56. [PMID: 30035270 PMCID: PMC6051752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stroke is the third leading cause of death and the leading cause of long-term disability, with very few effective treatments and limited progress in the effort to search for novel therapeutic approaches. The phenomenon that a sublethal ischemic insult induces protection against a subsequent severe ischemia, termed ischemic preconditioning (IPC), represents an endogenous protective approach against ischemic brain injury, and may direct a breakthrough to future therapeutic strategies. It is broadly accepted that new protein synthesis is required for IPC-mediated long-term neuroprotection; however, their relative regulatory mechanisms are poorly understood. In the present review, we summarize genomic-based studies on alterations in gene expression and protein synthesis, particularly categorizing potential pathways regulated by IPC. We also review the role of epigenetics, an inheritable genetic regulatory mechanism without changes in DNA sequence, in IPC-mediated neuroprotection.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Qianqian Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA
| |
Collapse
|
88
|
Hongyan L, Zhenyang S, Chunyan W, Qingqing P. Lipopolysaccharide aggravated DOI-induced Tourette syndrome: elaboration for recurrence of Tourette syndrome. Metab Brain Dis 2017; 32:1929-1934. [PMID: 28795258 DOI: 10.1007/s11011-017-0084-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/01/2017] [Indexed: 11/29/2022]
Abstract
Tourette syndrome (TS) is a neurological disorder characterized by highest familial recurrence rate among neuropsychiatric diseases with complicated inheritance. Recurrence of Tourette syndrome was frequently observed in clinical. Unexpectedly, the mechanism of recurrence of Tourette syndrome was failure to elucidate. Here, we first shown that lipopolysaccharide(LPS) may played an important role in the recurrence of Tourette syndrome. The TS model in rats was induced by DOI (the selective 5-HT2A/2C agonist 1-(2, 5-dimethoxy-4-iodophenyl) -2- aminopropane). The rats were randomly divided into 4 groups:(1)Control;(2) Control + LPS; (2)TS; (3)TS + LPS. The results demonstrated that the LPS treatment significantly increased stereotypic score and autonomic activity. LPS treatment also significantly increased inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in serum and striatum. Also, highly expressed TLR4, MyD88, P-NF-κBp65, P-IκBα in TS rats were increased respectively by LPS treatment as indicted in western blot analysis and immunohistochemistry analysis. Thus, it was supposed that lipopolysaccharide(LPS) may played an important role in the recurrence of Tourette syndrome and its mechanism was related to TLR/NF-κB pathway.
Collapse
Affiliation(s)
- Long Hongyan
- Central Laboratory, Nanjing Municipal Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China.
| | - Si Zhenyang
- Department of pediatrics, Nanjing Municipal Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing, 210001, China
| | - Wang Chunyan
- Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Pan Qingqing
- Nanjing University of Chinese Medicine, Nanjing, 210046, China
| |
Collapse
|
89
|
Li H, Wang R. Blocking SIRT1 inhibits cell proliferation and promotes aging through the PI3K/AKT pathway. Life Sci 2017; 190:84-90. [DOI: 10.1016/j.lfs.2017.09.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
|
90
|
Wang CY, Sun ZN, Wang MX, Zhang C. SIRT1 mediates salidroside-elicited protective effects against MPP + -induced apoptosis and oxidative stress in SH-SY5Y cells: involvement in suppressing MAPK pathways. Cell Biol Int 2017; 42:84-94. [PMID: 28851138 DOI: 10.1002/cbin.10864] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/26/2017] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease, leading to tremor, rigidity, bradykinesia, and gait impairment. Salidroside has been reported to exhibit antioxidative and neuroprotective properties in PD. However, the underlying neuroprotective mechanisms effects of salidroside are poorly understood. Recently, a growing body of evidences suggest that silent information regulator 1 (SIRT1) plays important roles in the pathophysiology of PD. Hence, the present study investigated the roles of SIRT1 in neuroprotective effect of salidroside against N-methyl-4-phenylpyridinium (MPP+ )-induced SH-SY5Y cell injury. Our findings revealed that salidroside attenuates MPP+ -induced neurotoxicity as evidenced by the increase in cell viability, and the decreases in the caspase-3 activity and apoptosis ratio. Simultaneously, salidroside pretreatment remarkably increased SIRT1 activity, SIRT1 mRNA and protein levels in MPP+ -treated SH-SY5Y cell. However, sirtinol, a SIRT1 activation inhibitor, significantly blocked the inhibitory effects of salidroside on MPP+ -induced cytotoxicity and apoptosis. In addition, salidroside abolished MPP+ -induced the production of reactive oxygen species (ROS), the up-regulation of NADPH oxidase 2 (NOX2) expression, the down-regulations of superoxide dismutase (SOD) activity and glutathione (GSH) level in SH-SY5Y cells, while these effects were also blocked by sirtinol. Finally, we found that the inhibition of salidroside on MPP+ -induced phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) were also reversed by sirtinol in SH-SY5Y cells. Taken together, these results indicated that SIRT1 contributes to the neuroprotection of salidroside against MPP+ -induced apoptosis and oxidative stress, in part through suppressing of mitogen-activated protein kinase (MAPK) pathways.
Collapse
Affiliation(s)
- Chun-Yang Wang
- Department of Science and Technology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhao-Nan Sun
- Department of General surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ming-Xin Wang
- Department of Otolaryngological, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
91
|
Yan D, Jin C, Cao Y, Wang L, Lu X, Yang J, Wu S, Cai Y. Effects of Aluminium on Long-Term Memory in Rats and on SIRT1 Mediating the Transcription of CREB-Dependent Gene in Hippocampus. Basic Clin Pharmacol Toxicol 2017; 121:342-352. [PMID: 28429887 DOI: 10.1111/bcpt.12798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/08/2017] [Indexed: 12/22/2022]
Abstract
Epidemiological investigations have shown that aluminium (Al) is an important neurotoxicant which can be absorbed by organisms via various routes. Previous studies have confirmed that exposure to Al could cause neurodegenerative diseases, decline CREB phosphorylation and then down-regulate the transcription and protein expression of its target genes including BDNF. However, recent studies revealed that CREB activation alone was far from enough to activate the expression of long-term memory (LTM)-related genes; there might be other regulatory factors involved in this process. Several studies showed that TORC1 might be involved in regulating the transcription of downstream target genes as well. Also, TORC1 could be mediated by SIRT1 during the formation of LTM. However, the role of CREB regulating system in Al-induced LTM impairment was still not utterly elucidated till now. This study was designed to establish the rat model of subchronic Al exposure to observe the neuroethology, regulatory factor levels and molecular biological alterations in hippocampal cells. The results showed that, with the increasing AlCl3 dose, blood Al content increased gradually; morphology of the hippocampus and neuronal ultrastructure were aberrant; in the Morris water maze test, the escape latency and distance travelled became longer, swimming traces turned more complicated in the place navigation test; intracellular Ca2+ , cAMP levels declined significantly in AlCl3 -treated rats, followed by abated nuclear translocation of TORC1 and decreased SIRT1, TORC1 and pCREB levels. These results indicate that SIRT1 and TORC1 might play an important mediating role in Al-induced LTM impairment.
Collapse
Affiliation(s)
- Dongying Yan
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
- Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Yang Cao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Lulu Wang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
92
|
Fang X, Han Q, Li S, Zhao Y, Luo A. Chikusetsu saponin IVa attenuates isoflurane-induced neurotoxicity and cognitive deficits via SIRT1/ERK1/2 in developmental rats. Am J Transl Res 2017; 9:4288-4299. [PMID: 28979702 PMCID: PMC5622271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Inhalation anesthetics isoflurane may increase the risk of neurotoxicity and cognitive deficiency at postnatal and childhood. Chikusetsu saponin IVa (chIV) is a plant extract compound, which could possessed extensive pharmacological actions of central nervous system, cardia-cerebrovascular system, immunologic system and treatment and prevention of tumor. In our study, we investigated the neuroprotective effect of chIV on isoflurane-induced hippocampal neurotoxicity and cognitive function impairment in neonatal rats. ChIV or saline intraperitoneal injected into seven-day old rats 30 min prior to isoflurane exposure. We found that, anesthesia with 1.8% isoflurane for 6 h significantly decreased the expression of SIRT1 in hippocampus. ChIV increased SIRT1, p-ERK1/2, PSD95 level in hippocampus, decreased hippocampal neuron apoptosis and lactate dehydrogenase (LDH) release after isoflurane exposure. Furthermore, chIV improved adolescent spatial memory of rats after their neonatal exposure to isoflurane by Morris Water Maze (MWM) test. In addition, SIRT1 inhibitor sirtinol decreased the expression of SIRT1 and its downstream of p-ERK1/2. Taken together, our date suggested that chIV could ameliorate isoflurane-induced neurotoxicity and cognitive impairment. The neuroprotective effect of chIV might be associated with up-regulation of SIRT1/ERK1/2. Moreover, chIV appeared to be a potential therapeutic target for isoflurane induced developmental neurotoxicity as well as subsequent cognitive impairment.
Collapse
Affiliation(s)
- Xi Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Qiang Han
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| |
Collapse
|
93
|
Velagapudi R, El-Bakoush A, Lepiarz I, Ogunrinade F, Olajide OA. AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Mol Cell Biochem 2017; 435:149-162. [PMID: 28551846 PMCID: PMC5632349 DOI: 10.1007/s11010-017-3064-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 05/05/2017] [Indexed: 12/26/2022]
Abstract
Thymoquinone is a known inhibitor of neuroinflammation. However, the mechanism(s) involved in its action remain largely unknown. In this study, we investigated the roles of cellular reactive oxygen species (ROS), 5' AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) in the anti-neuroinflammatory activity of thymoquinone. We investigated effects of the compound on ROS generation in LPS-activated microglia using the fluorescent 2',7'-dichlorofluorescin diacetate (DCFDA)-cellular ROS detection. Immunoblotting was used to detect protein levels of p40phox, gp91phox, AMPK, LKB1 and SIRT1. Additionally, ELISA and immunofluorescence were used to detect nuclear accumulation of SIRT1. NAD+/NADH assay was also performed. The roles of AMPK and SIRT1 in anti-inflammatory activity of thymoquinone were investigated using RNAi and pharmacological inhibition. Our results show that thymoquinone reduced cellular ROS generation, possibly through inhibition of p40phox and gp91phox protein. Treatment of BV2 microglia with thymoquinone also resulted in elevation in the levels of LKB1 and phospho-AMPK proteins. We further observed that thymoquinone reduced cytoplasmic levels and increased nuclear accumulation of SIRT1 protein and increased levels of NAD+. Results also show that the anti-inflammatory activity of thymoquinone was abolished when the expressions of AMPK and SIRT1 were suppressed by RNAi or pharmacological antagonists. Pharmacological antagonism of AMPK reversed thymoquinone-induced increase in SIRT1. Taken together, we propose that thymoquinone inhibits cellular ROS generation in LPS-activated BV2 microglia. It is also suggested that activation of both AMPK and NAD+/SIRT1 may contribute to the anti-inflammatory, but not antioxidant activity of the compound in BV2 microglia.
Collapse
Affiliation(s)
- Ravikanth Velagapudi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK.,Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Abdelmeneim El-Bakoush
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Izabela Lepiarz
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Folashade Ogunrinade
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, HD1 3DH, UK.
| |
Collapse
|
94
|
Liu SY, Li D, Zeng HY, Kan LY, Zou W, Zhang P, Gu HF, Tang XQ. Hydrogen Sulfide Inhibits Chronic Unpredictable Mild Stress-Induced Depressive-Like Behavior by Upregulation of Sirt-1: Involvement in Suppression of Hippocampal Endoplasmic Reticulum Stress. Int J Neuropsychopharmacol 2017; 20:867-876. [PMID: 28482013 PMCID: PMC5737807 DOI: 10.1093/ijnp/pyx030] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/03/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a crucial signaling molecule with a wide range of physiological functions. Previously, we confirmed that stress-induced depression is accompanied with disturbance of H2S generation in hippocampus. The present work attempted to investigate the inhibitory effect of H2S on chronic unpredictable mild stress-induced depressive-like behaviors and the underlying mechanism. METHODS We established the rat model of chronic unpredictable mild stress to simulate depression. Open field test, forced swim test, and tail suspension test were used to assess depressive-like behaviors. The expression of Sirt-1 and three marked proteins related to endoplasmic reticulum stress (GRP-78, CHOP, and cleaved caspase-12) were detected by western blot. RESULTS We found that chronic unpredictable mild stress-exposed rats exhibit depression-like behavior responses, including significantly increased immobility time in the forced swim test and tail suspension test, and decreased climbing time and swimming time in the forced swim test. In parallel, chronic unpredictable mild stress-exposed rats showed elevated levels of hippocampal endoplasmic reticulum stress and reduced levels of Sirt-1. However, NaHS (a donor of H2S) not only alleviated chronic unpredictable mild stress-induced depressive-like behaviors and hippocampal endoplasmic reticulum stress, but it also increased the expression of hippocampal Sirt-1 in chronic unpredictable mild stress-exposed rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the protective effects of H2S against chronic unpredictable mild stress-induced depression-like behaviors and hippocampal endoplasmic reticulum stress. CONCLUSION These results demonstrated that H2S has an antidepressant potential, and the underlying mechanism is involved in the inhibition of hippocampal endoplasmic reticulum stress by upregulation of Sirt-1 in hippocampus. These findings identify H2S as a novel therapeutic target for depression.
Collapse
Affiliation(s)
- Shu-Yun Liu
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Dan Li
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Hai-Ying Zeng
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Li-Yuan Kan
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Wei Zou
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Ping Zhang
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Hong-Feng Gu
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang)
| | - Xiao-Qing Tang
- Department of Neurology, Affiliated Center Hospital of Shenzhen Longhua New District, Guangdong Medical University, Shenzhen, Guangdong, P. R. China (Ms Liu and Ms Li); Institute of Neuroscience, Medical College, University of South China, Hengyang, Hunan, P. R. China (Ms Zeng, Ms Kan, Mr Zou, Mr Zhang, and Drs Gu and Tang); Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan, P. R. China (Mr Zou); Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, PR China (Dr Tang).,Correspondence: Xiao-Qing Tang, MD, PhD, Department of Physiology, Institute of Neuroscience, Medical College, University of South China, 28 West Changsheng Road, Hengyang 421001, Hunan Province, P. R. China ()
| |
Collapse
|
95
|
Li D, Liu N, Zhao HH, Zhang X, Kawano H, Liu L, Zhao L, Li HP. Interactions between Sirt1 and MAPKs regulate astrocyte activation induced by brain injury in vitro and in vivo. J Neuroinflammation 2017; 14:67. [PMID: 28356158 PMCID: PMC5372348 DOI: 10.1186/s12974-017-0841-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
Background Astrocyte activation is a hallmark of traumatic brain injury resulting in neurological dysfunction or death for an overproduction of inflammatory cytokines and glial scar formation. Both the silent mating type information (Sirt1) expression and mitogen-activated protein kinase (MAPK) signal pathway activation represent a promising therapeutic target for several models of neurodegenerative diseases. We investigated the potential effects of Sirt1 upregulation and MAPK pathway pharmacological inhibition on astrocyte activation in vitro and in vivo. Moreover, we attempted to confirm the underlying interactions between Sirt1 and MAPK pathways in astrocyte activation after brain injury. Methods The present study employs an interleukin-1β (IL-1β) stimulated primary cortical astrocyte model in vitro and a nigrostriatal pathway injury model in vivo to mimic the astrocyte activation induced by traumatic brain injury. The activation of GFAP, Sirt1, and MAPK pathways were detected by Western blot; astrocyte morphological hypertrophy was assessed using immunofluorescence staining; in order to explore the neuroprotective effect of regulation Sirt1 expression and MAPK pathway activation, the motor and neurological function tests were assessed after injury. Results GFAP level and morphological hypertrophy of astrocytes are elevated after injury in vitro or in vivo. Furthermore, the expressions of phosphorylated extracellular regulated protein kinases (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated p38 activation (p-p38) are upregulated, but the Sirt1 expression is downregulated. Overexpression of Sirt1 significantly increases the p-ERK expression and reduces the p-JNK and p-p38 expressions. Inhibition of ERK, JNK, or p38 activation respectively with their inhibitors significantly elevated the Sirt1 expression and attenuated the astrocyte activation. Both the overproduction of Sirt1 and inhibition of ERK, JNK, or p38 activation can alleviate the astrocyte activation, thereby improving the neurobehavioral function according to the modified neurological severity scores (mNSS) and balance latency test. Conclusions Thus, Sirt1 plays a protective role against astrocyte activation, which may be associated with the regulation of the MAPK pathway activation induced by brain injury in vitro and in vivo.
Collapse
Affiliation(s)
- Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Nan Liu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hai-Hua Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hitoshi Kawano
- Department of Health and Dietetics, Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, 170-8445, Japan
| | - Lu Liu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liang Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Hong-Peng Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
96
|
Fann DYW, Ng GYQ, Poh L, Arumugam TV. Positive effects of intermittent fasting in ischemic stroke. Exp Gerontol 2017; 89:93-102. [PMID: 28115234 DOI: 10.1016/j.exger.2017.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/26/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Intermittent fasting (IF) is a dietary protocol where energy restriction is induced by alternate periods of ad libitum feeding and fasting. Prophylactic intermittent fasting has been shown to extend lifespan and attenuate the progress and severity of age-related diseases such as cardiovascular (e.g. stroke and myocardial infarction), neurodegenerative (e.g. Alzheimer's disease and Parkinson's disease) and cancerous diseases in animal models. Stroke is the second leading cause of death, and lifestyle risk factors such as obesity and physical inactivity have been associated with elevated risks of stroke in humans. Recent studies have shown that prophylactic IF may mitigate tissue damage and neurological deficit following ischemic stroke by a mechanism(s) involving suppression of excitotoxicity, oxidative stress, inflammation and cell death pathways in animal stroke models. This review summarizes data supporting the potential hormesis mechanisms of prophylactic IF in animal models, and with a focus on findings from animal studies of prophylactic IF in stroke in our laboratory.
Collapse
Affiliation(s)
- David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
97
|
Castagna A, Cotroneo AM, Ruotolo G, Gareri P. The CITIRIVAD Study: CITIcoline plus RIVAstigmine in Elderly Patients Affected with Dementia Study. Clin Drug Investig 2017; 36:1059-1065. [PMID: 27587069 DOI: 10.1007/s40261-016-0454-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Acetylcholinesterase inhibitors (AchEIs), such as rivastigmine, coadministered with cholinergic precursors, such as citicoline, could be effective in Alzheimer's disease (AD) and in mixed dementia (MD), because they are able to increase the intrasynaptic levels of acetylcholine more than the single drugs given alone. OBJECTIVE The aim of the present study was to show the effectiveness of oral citicoline plus rivastigmine in patients with AD and MD. METHODS The CITIRIVAD study was a retrospective case-control study on 174 consecutive outpatients aged ≥65 years, affected with AD or MD, mean age 81.3 ± 4.5 years. Of the 174 patients, 92 had been treated with rivastigmine + citicoline 1000 mg/day given orally (group A); 82 patients had been treated with rivastigmine (group B). In both groups rivastigmine patch had been used for at least six months at the highest tolerated dosage. Group A comprised 62 patients affected with AD and 30 patients with MD. Group B comprised 53 patients affected with AD and 29 with MD. Cognitive functions had been assessed by Mini Mental State Examination (MMSE), daily life functions by activities of daily living (ADL) and instrumental activities (IADL), behavioral symptoms by neuropsychiatric inventory (NPI), comorbidities by the Cumulative Illness Rating Scale and mood by geriatric depression scale (GDS)-short form tests, which had been administered at baseline, 3 and 9 months. RESULTS AND CONCLUSIONS Data show the effectiveness of combined administration versus the AchEI alone, mainly in slowing disease progression and consequently in disease management, both in AD and in MD. No differences regarding the combined treatment were found between the two groups. Treatment with citicoline plus rivastigmine was safe and well tolerated.
Collapse
Affiliation(s)
- Alberto Castagna
- Center for Cognitive Disorders and Dementia, Catanzaro Lido and Soverato-Chiaravalle-ASP Catanzaro, 88100, Catanzaro, Italy
| | | | - Giovanni Ruotolo
- Geriatric Unit, Azienda Ospedaliera "Pugliese-Ciaccio", Catanzaro, Italy
| | - Pietro Gareri
- Center for Cognitive Disorders and Dementia, Catanzaro Lido and Soverato-Chiaravalle-ASP Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
98
|
Rhapontin ameliorates colonic epithelial dysfunction in experimental colitis through SIRT1 signaling. Int Immunopharmacol 2017; 42:185-194. [PMID: 27930969 DOI: 10.1016/j.intimp.2016.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/19/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
|
99
|
Fielder E, von Zglinicki T, Jurk D. The DNA Damage Response in Neurons: Die by Apoptosis or Survive in a Senescence-Like State? J Alzheimers Dis 2017; 60:S107-S131. [PMID: 28436392 DOI: 10.3233/jad-161221] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons are exposed to high levels of DNA damage from both physiological and pathological sources. Neurons are post-mitotic and their loss cannot be easily recovered from; to cope with DNA damage a complex pathway called the DNA damage response (DDR) has evolved. This recognizes the damage, and through kinases such as ataxia-telangiectasia mutated (ATM) recruits and activates downstream factors that mediate either apoptosis or survival. This choice between these opposing outcomes integrates many inputs primarily through a number of key cross-road proteins, including ATM, p53, and p21. Evidence of re-entry into the cell-cycle by neurons can be seen in aging and diseases such as Alzheimer's disease. This aberrant cell-cycle re-entry is lethal and can lead to the apoptotic death of the neuron. Many downstream factors of the DDR promote cell-cycle arrest in response to damage and appear to protect neurons from apoptotic death. However, neurons surviving with a persistently activated DDR show all the features known from cell senescence; including metabolic dysregulation, mitochondrial dysfunction, and the hyper-production of pro-oxidant, pro-inflammatory and matrix-remodeling factors. These cells, termed senescence-like neurons, can negatively influence the extracellular environment and may promote induction of the same phenotype in surrounding cells, as well as driving aging and age-related diseases. Recently developed interventions targeting the DDR and/or the senescent phenotype in a range of non-neuronal tissues are being reviewed as they might become of therapeutic interest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Edward Fielder
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Thomas von Zglinicki
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Diana Jurk
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
100
|
Gareri P, Castagna A, Cotroneo AM, Putignano D, Conforti R, Santamaria F, Marino S, Putignano S. The Citicholinage Study: Citicoline Plus Cholinesterase Inhibitors in Aged Patients Affected with Alzheimer's Disease Study. J Alzheimers Dis 2017; 56:557-565. [PMID: 28035929 DOI: 10.3233/jad-160808] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Citicoline can have beneficial effects both in degenerative and in vascular cognitive decline in a variety of ways (apoptosis inhibition, neuroplasticity potentiation, phospholipid, and acetylcholine (ACh) synthesis). Acetylcholinesterase inhibitors (AChEIs) have been used for treatment of Alzheimer's disease (AD). When co-administered with cholinergic precursors, they are able to increase the intrasynaptic levels of ACh more than when the single drugs given alone. OBJECTIVE The aim of the present study was to show the effectiveness of oral citicoline plus AChEIs in patients affected with AD. METHODS This was a retrospective multi-centric case-control study, involving seven Centers for Cognitive Impairment and Dementia in Italy, on 448 consecutive patients aged 65 years old or older affected with AD. 197 patients were treated with an AChEI while 251 were treated with an AchEI + citicoline 1000 mg/day given orally. Cognitive functions were assessed by MMSE, daily life functions by ADL and IADL, behavioral symptoms by NPI, comorbidities by CIRS, and mood by GDS-short form. Tests were administered at baseline (T0), after 3 (T1), and 9 months (T2). The primary outcomes were effects of combined administration versus AChEIs given alone on cognitive functions assessed by MMSE. The secondary outcomes were possible side effects or adverse events of combination therapy versus AChEIs alone. RESULTS Patients treated with citicoline plus an AChEI showed a statistically significant increase in MMSE between T0 and T1 (16.88±3.38 versus 17.62±3.64; p = 0.000) and between T1 and T2 (17.62±3.64 versus 17.89±3.54; p = 0.000). CONCLUSION The present study encourages the role of combined administration in disease management by slowing disease progression.
Collapse
Affiliation(s)
- Pietro Gareri
- Center for Cognitive Disorders and Dementia - Distretto Socio-Sanitario Catanzaro Lido - ASP Catanzaro, Catanzaro, Italy
| | - Alberto Castagna
- Center for Cognitive Disorders and Dementia - Distretto Socio-Sanitario Catanzaro Lido - ASP Catanzaro, Catanzaro, Italy
| | - Antonino Maria Cotroneo
- Director Department of Elderly Health Care - Birago di Vische Hospital and Botticelli Territorial Geriatrics - ASL TO 2, Turin, Italy
| | | | - Raffaele Conforti
- Scientific Responsible Nursing Home San Giuseppe - Monte Compatri, Rome, Italy
| | | | - Saverio Marino
- Operative Unit Elderly Care, District 53 Castellammare di Stabia ASL NA3 Sud, Italy
| | - Salvatore Putignano
- Operative Unit Elderly Care, District 30, ASL Napoli Centro - Associazione Geriatri Extraospedalieri (AGE) President, Naples, Italy
| |
Collapse
|