51
|
Kamli MR, Malik MA, Srivastava V, Sabir JSM, Mattar EH, Ahmad A. Biogenic ZnO Nanoparticles Synthesized from Origanum vulgare Abrogates Quorum Sensing and Biofilm Formation in Opportunistic Pathogen Chromobacterium violaceum. Pharmaceutics 2021; 13:1743. [PMID: 34834158 PMCID: PMC8625425 DOI: 10.3390/pharmaceutics13111743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/23/2022] Open
Abstract
This study presents an inexpensive, eco-friendly, and simple green synthesis of ZnO nanoparticles using Origanum vulgare extract. These nanoparticles are non-hazardous, environmentally friendly, and cheaper than other methods of biosynthesis. Ongoing research determines the role of phytochemicals in the fabrication and biosynthesis of ZnO NPs and their role in antibacterial activity and biomedical applications. Characterizations by fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) determine the successful biosynthesis of ZnO NPs. Meanwhile, TEM and X-ray diffraction studies approximated the spherical morphology and crystalline nature of biosynthesized ZnO NPs of nano size in the range of 20-30 nm. The global increase in drug resistance necessitates the search for new drugs with different mechanisms of action. Quorum sensing (QS), a cell-to-cell communication, has gained attention as an emerging drug target. It controls numerous biochemical processes in bacteria, which are essential for their survival and pathogenicity. The potential of nanomedicines has also been tested to synthesize new antibiotics to tackle drug resistance. ZnO NPs were explored for their antibacterial, antiquorum sensing, and antibiofilm activities with a bioreporter strain of Chromobacterium violaceum. Susceptibility testing results indicated the potential antibacterial activity of ZnO NPs with a minimum inhibitory concentration (MIC) of 4 µg/mL and minimum bactericidal concentration (MBC) of 16 µg/mL. Antiquorum-sensing assays revealed that these nanoparticles inhibit quorum sensing with minimum antiquorum sensing activity (MQSIC) of 1 µg/mL, without causing any bacterial growth inhibition. In addition, ZnO NPs inhibit biofilm formation at inhibitory and higher concentrations. RT-qPCR results supported the downregulation of the quorum sensing genes when C. violaceum was treated with ZnO NPs. The outcomes of this study are promising with regard to the biofilm and quorum sensing, emphasizing the potential applications of ZnO NPs against bacterial communication and biofilm formation.
Collapse
Affiliation(s)
- Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maqsood Ahmad Malik
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Vartika Srivastava
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (V.S.); (A.A.)
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ehab H. Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (J.S.M.S.); (E.H.M.)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (V.S.); (A.A.)
- Infection Control Unit, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg 2193, South Africa
| |
Collapse
|
52
|
Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S, Shilpa N, Singh SB, Thriveni MC, Aiyaz M, Angaswamy N, Lakshmidevi N, Adil SF, Hatshan MR, Amruthesh KN. Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics 2021; 13:1662. [PMID: 34683954 PMCID: PMC8540056 DOI: 10.3390/pharmaceutics13101662] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn2+) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes. These biosynthesized nanoparticles possess strong biological activities and are in use for various biological applications in several industries. Initially, the present review discusses the synthesis and recent advances of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their biomedical applications (such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, photocatalytic, wound healing, and drug delivery), followed by their mechanisms of action involved in detail. This review also covers the drug delivery application of plant-mediated zinc oxide nanoparticles, focusing on the drug-loading mechanism, stimuli-responsive controlled release, and therapeutic effect. Finally, the future direction of these synthesized zinc oxide nanoparticles' research and applications are discussed.
Collapse
Affiliation(s)
- Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Nataraj Kalegowda
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| | - Hittanahallikoppal G. Gowtham
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Natarajamurthy Shilpa
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Sudarshana B. Singh
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - M. C. Thriveni
- Central Sericultural Germplasm Resources Centre, Central Silk Board, Ministry of Textiles, Thally Road, TVS Nagar, Hosur 635109, Tamil Nadu, India;
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (H.G.G.); (N.S.); (S.B.S.); (M.A.)
| | - Nataraju Angaswamy
- Department of Biochemistry, Karnataka State Open University, Mukthagangotri, Mysuru 570006, Karnataka, India;
| | - Nanjaiah Lakshmidevi
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India;
| | - Syed F. Adil
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Mohammad R. Hatshan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.H.)
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India; (M.M.); (N.K.)
| |
Collapse
|
53
|
Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel) 2021; 13:4570. [PMID: 34572797 PMCID: PMC8468934 DOI: 10.3390/cancers13184570] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is regarded as one of the most deadly and mirthless diseases and it develops due to the uncontrolled proliferation of cells. To date, varieties of traditional medications and chemotherapies have been utilized to fight tumors. However, their immense drawbacks, such as reduced bioavailability, insufficient supply, and significant adverse effects, make their use limited. Nanotechnology has evolved rapidly in recent years and offers a wide spectrum of applications in the healthcare sectors. Nanoscale materials offer strong potential for curing cancer as they pose low risk and fewer complications. Several metal oxide NPs are being developed to diagnose or treat malignancies, but zinc oxide nanoparticles (ZnO NPs) have remarkably demonstrated their potential in the diagnosis and treatment of various types of cancers due to their biocompatibility, biodegradability, and unique physico-chemical attributes. ZnO NPs showed cancer cell specific toxicity via generation of reactive oxygen species and destruction of mitochondrial membrane potential, which leads to the activation of caspase cascades followed by apoptosis of cancerous cells. ZnO NPs have also been used as an effective carrier for targeted and sustained delivery of various plant bioactive and chemotherapeutic anticancerous drugs into tumor cells. In this review, at first we have discussed the role of ZnO NPs in diagnosis and bio-imaging of cancer cells. Secondly, we have extensively reviewed the capability of ZnO NPs as carriers of anticancerous drugs for targeted drug delivery into tumor cells, with a special focus on surface functionalization, drug-loading mechanism, and stimuli-responsive controlled release of drugs. Finally, we have critically discussed the anticancerous activity of ZnO NPs on different types of cancers along with their mode of actions. Furthermore, this review also highlights the limitations and future prospects of ZnO NPs in cancer theranostic.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Sara Asad Malik
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Maha Khan
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avenida de Galicia 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France;
| |
Collapse
|
54
|
Murugan B, Sagadevan S, Fatimah I, Oh WC, Motalib Hossain MA, Johan MR. Smart stimuli-responsive nanocarriers for the cancer therapy – nanomedicine. NANOTECHNOLOGY REVIEWS 2021; 10:933-953. [DOI: 10.1515/ntrev-2021-0067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Nanomedicine is ongoing current research in the applications of nanotechnology for cancer therapy. Simply from a technology perspective, this field of research has an enormous broadening and success to date. Recently, nanomedicine has also made inroads in the treatment of cancer. Stimuli-responsive nanoparticles are an emerging field of research because its targeting capacity is of great interest in the treatment of cancer. The responsive nanoparticles are efficient in encountering different internal biological stimuli (acidic, pH, redox, and enzyme) and external stimuli (temperature, ultrasounds, magnetic field, and light), which are used as smart nanocarriers for delivery of the chemotherapeutic and imaging agents for cancer therapy. In-depth, the responsive nanocarrier that responds to the biological cues is of pronounced interest due to its capability to provide a controlled release profile at the tumor-specific site. The outlook of this review focuses on the stimuli-responsive nanocarrier drug delivery systems in sequence to address the biological challenges that need to be evaluated to overcome conventional cancer therapy.
Collapse
Affiliation(s)
- Baranya Murugan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed-to-be University , Thanjavur , 613401 , India
- School of Chemical & Biotechnology, SASTRA Deemed-to-be University , Thanjavur , 613401 , India
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya , 50603 , Kuala Lumpur , Malaysia
| | - Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII , Jl. Kaliurang Km 14, Sleman , Yogyakarta , Indonesia
| | - Won-Chun Oh
- Department of Advanced Materials Science and Engineering, Hanseo University , Seosan-si , Chungnam , 356-706 , Republic of Korea
| | - Mohd Abd Motalib Hossain
- Nanotechnology & Catalysis Research Centre, University of Malaya , 50603 , Kuala Lumpur , Malaysia
| | - Mohd Rafie Johan
- Nanotechnology & Catalysis Research Centre, University of Malaya , 50603 , Kuala Lumpur , Malaysia
| |
Collapse
|
55
|
Jan H, Shah M, Andleeb A, Faisal S, Khattak A, Rizwan M, Drouet S, Hano C, Abbasi BH. Plant-Based Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Aqueous Leaf Extract of Aquilegia pubiflora: Their Antiproliferative Activity against HepG2 Cells Inducing Reactive Oxygen Species and Other In Vitro Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4786227. [PMID: 34457112 PMCID: PMC8387193 DOI: 10.1155/2021/4786227] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
The anti-cancer, anti-aging, anti-inflammatory, antioxidant, and anti-diabetic effects of zinc oxide nanoparticles (ZnO-NPs) produced from aqueous leaf extract of Aquilegia pubiflora were evaluated in this study. Several methods were used to characterize ZnO-NPs, including SEM, FTIR, XRD, DLS, PL, Raman, and HPLC. The nanoparticles that had a size of 34.23 nm as well as a strong aqueous dispersion potential were highly pure, spherical or elliptical in form, and had a mean size of 34.23 nm. According to FTIR and HPLC studies, the flavonoids and hydroxycinnamic acid derivatives were successfully capped. Synthesized ZnO-NPs in water have a zeta potential of -18.4 mV, showing that they are stable solutions. The ZnO-NPs proved to be highly toxic for the HepG2 cell line and showed a reduced cell viability of 23.68 ± 2.1% after 24 hours of ZnO-NP treatment. ZnO-NPs also showed excellent inhibitory potential against the enzymes acetylcholinesterase (IC50: 102 μg/mL) and butyrylcholinesterase (IC50: 125 μg/mL) which are involved in Alzheimer's disease. Overall, the enzymes involved in aging, diabetes, and inflammation showed a moderate inhibitory response to ZnO-NPs. Given these findings, these biosynthesized ZnO-NPs could be a good option for the cure of deadly diseases such as cancer, diabetes, Alzheimer's, and other inflammatory diseases due to their strong anticancer potential and efficient antioxidant properties.
Collapse
Affiliation(s)
- Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Anisa Andleeb
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shah Faisal
- Institute of Biotechnology and Microbiology, Bacha Khan University, KPK, Pakistan
| | - Aishma Khattak
- Department of Bioinformatics, Shaheed Benazir University Peshawar, KPK, Pakistan
| | - Muhammad Rizwan
- Centre for Biotechnology and Microbiology, University of Swat, KPK, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, Cedex 2, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, Cedex 2, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
56
|
Curcuma longa Mediated Synthesis of Copper Oxide, Nickel Oxide and Cu-Ni Bimetallic Hybrid Nanoparticles: Characterization and Evaluation for Antimicrobial, Anti-Parasitic and Cytotoxic Potentials. COATINGS 2021. [DOI: 10.3390/coatings11070849] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticles have long been known and their biomedical potent activities have proven that these can provide an alternative to other drugs. In the current study, copper oxide, nickel oxide and copper/nickel hybrid NPs were biosynthesized by using Curcuma longa root extracts as a reducing and capping agent, followed by characterization via UV-spectroscopy, Fourier transformed infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo galvanometric analysis (TGA), and band gap. FTIR spectroscopy shows the availability of various functional groups and biomolecules such as carbohydrate, protein, polysaccharides, etc. The EDX peak confirmed that the elemental nickel and copper were present in large quantity in the analyzed sample. Scanning electron micrographs showed that the synthesized CuO-NPs and NiO-NPs were polyhedral uniform and homogeneous in morphology, while the copper/nickel hybrid NPs were well dispersed, spherical in shape, and uniform in size. TEM micrographs of CuO-NPs had 27.72 nm, NiO had 23.13 nm and, for their hybrid, the size was 17.38 nm, which was confirmed respectively. The CuO and NiO NPs possessed spherical- to multi-headed shapes, while their hybrid showed a complete spherical shape, small size, and polydispersed NPs. The XRD spectra revealed that the average particle size for CuO, NiO, and hybrid were 29.7 nm, 28 nm and 27 nm, respectively. Maximum anti-diabetic inhibition of (52.35 ± 0.76: CuO-NPs, 68.1 ± 0.93: NiO-NPs and 74.23 ± 0.42: Cu + Ni hybrids) for α-amylase and (39.25 ± 0.18 CuO-NPs, 52.35 ± 1.32: NiO-NPs and 62.32 ± 0.48: Cu + Ni hybrids) for α-glucosidase were calculated, respectively, at 400 µg/mL. The maximum antioxidants capacity was observed as 65.1 ± 0.83 μgAAE/mg for Cu-Ni hybrids, 58.39 ± 0.62 μgAAE/mg for NiO-NPs, and 52.2 ± 0.31 μgAAE/mg for CuO-NPs, respectively, at 400 μg/mL. The highest antibacterial activity of biosynthesized NPs was observed against P. aeuroginosa (28 ± 1.22) and P. vulgaris (25 ± 1.73) for Cu + Ni hybrids, respectively. Furthermore, the antibiotics were coated with NPs, and activity was noted. Significant anti-leishmanial activity of 60.5 ± 0.53 and 68.4 ± 0.59 for Cu + Ni hybrids; 53.2 ± 0.48 and 61.2 ± 0.44 for NiO-NPs; 49.1 ± 0.39 and 56.2 ± 0.45 for CuO-NPs at 400 μg/mL were recorded for promastigote and amastigotes, respectively. The biosynthesized NPs also showed significant anti-cancerous potential against HepG2 cell lines. It was concluded from the study that NPs are potential agents to be used as an alternative to antimicrobial agents.
Collapse
|
57
|
Barani M, Masoudi M, Mashreghi M, Makhdoumi A, Eshghi H. Cell-free extract assisted synthesis of ZnO nanoparticles using aquatic bacterial strains: Biological activities and toxicological evaluation. Int J Pharm 2021; 606:120878. [PMID: 34265392 DOI: 10.1016/j.ijpharm.2021.120878] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
The introduction of novel bacterial strains and the development of microbial approaches for nanoparticles biosynthesis could minimize the negative environmental impact and eliminate the concern and challenges of the available approaches. In this study, a biological method based on microbial cell-free extract was used for biosynthesis of ZnO NPs using two new aquatic bacteria, Marinobacter sp. 2C8 and Vibrio sp. VLA. The synthesized ZnO NPs were characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscope (AFM), dynamic light scattering (DLS) and zeta potential. The UV-Visible absorption peak was found to be at 266 and 250 nm for ZnO-2C8 NPs and ZnO-VLA NPs, respectively. FTIR study suggested that the hydroxyl, amine, and carboxyl groups of bacterial proteins are mainly responsible for stabilizing the biosynthesized ZnO NPs. The formation of hexagonal wurtzite structure of ZnO NPs was confirmed by the XRD pattern. The morphology of the nanoparticles was found to be spherical with the average particle size of about 10.23 ± 2.48 nm and 20.26 ± 4.44 nm for ZnO-2C8 NPs and ZnO-VLA NPs, respectively. The values of zeta potential indicate the high stability of the biosynthesized ZnO NP. Zeta potential values indicated the high stability of the biosynthesized ZnO NP and were obtained -20.54 ± 7.15 and -23.87 ± 2.29 mV for ZnO-2C8 NPs and ZnO-VLA NPs, respectively. The biosynthesized ZnO NPs had antibacterial activity against Gram-negative and Gram-positive strains and possessed excellent antibiofilm activity with the maximum inhibition of about 96.55% at 250 µg/mL. The DPPH activity of ZnO-2C8 NPs and ZnO-VLA NPs were found 88.9% and 85.7% for 2500 μg/mL concentration, respectively. The toxicity test revealed the biocompatibility of the biosynthesized ZnO NPs. The results suggested that this approach is a very good route for synthesizing ZnO NPs with potential applications in biotechnology.
Collapse
Affiliation(s)
- Maryam Barani
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mina Masoudi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Industrial Microbiology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Ali Makhdoumi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|
58
|
Green Synthesis, Structural Characterization and Photocatalytic Applications of ZnO Nanoconjugates Using Heliotropium indicum. Catalysts 2021. [DOI: 10.3390/catal11070831] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnO NPs) have been gaining importance due to their unique properties and tremendous applications. This study aimed to fabricate ZnO NPs by using extracts from various parts of the traditional medicinal plant Heliotropium indicum (H. indicum) and evaluate their photocatalytic activity. Further, their potential in photoluminescence and fluorescence resonance energy transfer (FRET) was assessed. The Ultraviolet-Visible spectrum exhibited a hypsochromic shifted absorption band between 350–380 nm. Transmission electron microscopy (TEM) analysis revealed spherical NPs, while X-ray diffraction (XRD) data revealed wurtzite, hexagonal and crystalline nature. The TEM and XRD consistently determined an average particle size range from 19 to 53 nm. The photocatalytic degradation reaches a maximum of 95% for biogenic ZnO NPs by monitoring spectrophotometrically the degradation of methylene blue dye (λmax = 662.8 nm) under solar irradiation. Photoluminescence analysis revealed differentiated spectra with high-intensity emission peaks for biogenic ZnO NPs compared with chemically synthesized ZnO NPs. Eventually, the highest efficiency of FRET (80%) was found in ZnO NPs synthesized from the leaves. This remains the first report highlighting the multifunctional ZnO NPs capabilities mediated by using H. indicum, which could lead to important potential environmental and biomedical applications.
Collapse
|
59
|
Hussain F, Hadi F, Rongliang Q. Effects of zinc oxide nanoparticles on antioxidants, chlorophyll contents, and proline in Persicaria hydropiper L. and its potential for Pb phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34697-34713. [PMID: 33655481 DOI: 10.1007/s11356-021-13132-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Applications of nanoparticles and plants for efficient restoration of heavy metal-polluted water and soil are an emerging approach and need to be explored. Hydroponic study was performed to find the role of zinc oxide nanoparticles (ZnO NPs) in plant growth, antioxidative response, and lead (Pb) accumulation in Persicaria hydropiper. Seedlings were grown in Pb-polluted media amended with 5, 10, 15, and 20 mg L-1 ZnO NPs. Inductively coupled plasma spectroscopy (ICP) was used for Pb analysis in plant tissues. Pb significantly inhibited seedling growth, and ZnO NPs alleviated Pb-induced stress by promoting plant growth, and improved chlorophyll and carotenoid contents. Oxidative stress ameliorated in ZnO NPs exposed seedlings through enhanced production of free proline, phenolics, flavonoids, and activation of antioxidative enzymes. Pb accumulation boosted in ZnO NP treatments, and highly significant increase in Pb accumulation in roots (255.60±4.80 mg kg-1), stem (124.07±2.84 mg kg-1), and leaves (92.00±3.22 mg kg-1) was observed in T3 (15 mg L-1 ZnO NPs) for P. hydropiper. Contrarily, ZnO NPs at 20 mg L-1 dose suppressed plant growth, Pb accumulation, secondary metabolites, and antioxidative enzyme activities. Moreover, positive correlation was found in Pb accumulation with free proline and secondary metabolite contents in plant tissues. These results suggest that ZnO NPs at optimum concentration may augment efficacy of plants to remove heavy metal from polluted water through nanophytoremediation.
Collapse
Affiliation(s)
- Fazal Hussain
- Department of Biotechnology, University of Malakand, KP, Chakdara, 18800, Pakistan
| | - Fazal Hadi
- Department of Biotechnology, University of Malakand, KP, Chakdara, 18800, Pakistan.
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Qiu Rongliang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
60
|
Bio-Catalytic Activity of Novel Mentha arvensis Intervened Biocompatible Magnesium Oxide Nanomaterials. Catalysts 2021. [DOI: 10.3390/catal11070780] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the present study Mentha arvensis medaited Magnesium oxide nanoparticles were synthesized by novel green route followed by advanced characterization via XRD, FTIR, UV, SEM, TEM, DLS and TGA. The mean grain size of 32.4 nm and crystallite fcc morphology were confirmed by X-ray diffractive analysis. Scanning and Transmission electron microscopy analysis revealed the spherical and elliptical morphologies of the biosynthesized nanoparticles. Particle surface charge of −16.1 mV were determined by zeta potential and zeta size of 30–120 nm via dynamic light scattering method. Fourier transform spectroscopic analysis revealed the possible involvement of functional groups in the plant extract in reduction of Mg2+ ions to Mg0. Furthermore, the antioxidant, anti-Alzheimer, anti-cancer, and anti-H. pylori activities were performed. The results revealed that MgO-NPs has significant anti-H. pyloric potential by giving ZOI of 17.19 ± 0.83 mm against Helicobacter felis followed by Helicobacter suis. MgO-NPs inhibited protein kinase enzyme up to 12.44 ± 0.72% at 5 mg/mL and thus showed eminent anticancer activity. Significant free radicals scavenging and hemocompatability was also shown by MgO-NPs. MgO-NPs also displayed good inhibition potential against Hela cell lines with maximum inhibition of 49.49 ± 1.18 at 400 µg/mL. Owing to ecofriendly synthesis, non-toxic and biocompatible nature, Mentha arvensis synthesized MgO-NPs can be used as potent antimicrobial agent in therapeutic applications.
Collapse
|
61
|
Jan H, Usman H, Shah M, Zaman G, Mushtaq S, Drouet S, Hano C, Abbasi BH. Phytochemical analysis and versatile in vitro evaluation of antimicrobial, cytotoxic and enzyme inhibition potential of different extracts of traditionally used Aquilegia pubiflora Wall. Ex Royle. BMC Complement Med Ther 2021; 21:165. [PMID: 34098912 PMCID: PMC8186222 DOI: 10.1186/s12906-021-03333-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Himalayan Columbine (Aquilegia pubiflora Wall. Ex Royle) is a medicinal plant and have been used as traditional treatments for various human diseases including skin burns, jaundice, hepatitis, wound healing, cardiovascular and circulatory diseases. Till now there is no report available on phytochemical investigation of Himalayan Columbine and to the best of our knowledge, through present study we have reported for the first time, the phytochemical analysis and pharmacological potentials of different leaf extracts of Aquilegia pubiflora. METHODS Four types of extracts were prepared using solvent of different polarities (Distilled water APDW, Methanol APM, Ethanol APE and Ethyl acetate APEA), and were evaluated to determine the best candidate for potent bioactivity. Phytochemical constituents in prepared extracts were quantified through HPLC analysis. Subsequently, all four types of leaf extracts were then evaluated for their potential bioactivities including antimicrobial, protein kinase inhibition, anti-inflammatory, anti-diabetic, antioxidant, anti-Alzheimer, anti-aging and cytotoxic effect. RESULTS HPLC analysis demonstrated the presence of dvitexin, isovitexin, orientin, isoorientin, ferulic acid, sinapic acid and chlorogenic acid in varied proportions in all plant extracts. Antimicrobial studies showed that, K. pneumonia was found to be most susceptible to inhibition zones of 11.2 ± 0.47, 13.9 ± 0.33, 12.7 ± 0.41, and 13.5 ± 0.62 measured at 5 mg/mL for APDW, APM, APE and APEA respectively. A. niger was the most susceptible strain in case of APDW with the highest zone of inhibition 14.3 ± 0.32, 13.2 ± 0.41 in case of APM, 13.7 ± 0.39 for APE while 15.4 ± 0.43 zone of inhibition was recorded in case of APEA at 5 mg/mL. The highest antioxidant activity of 92.6 ± 1.8 μgAAE/mg, 89.2 ± 2.4 μgAAE/mg, 277.5 ± 2.9 μM, 289.9 ± 1.74 μM for TAC, TRP, ABTS and FRAP, respectively, was shown by APE. APM, APE and APEA extracts showed a significant % cell inhibition (above 40%) against HepG2 cells. The highest anti-inflammatory of the samples was shown by APE (52.5 ± 1.1) against sPLA2, (41.2 ± 0.8) against 15-LOX, followed by (38.5 ± 1.5) and (32.4 ± 0.8) against COX-1 and COX-2, respectively. CONCLUSIONS Strong antimicrobial, Protein Kinase potency and considerable α-glucosidase, α-amylase, and cytotoxic potential were exhibited by plant samples. Significant anti-Alzheimer, anti-inflammatory, anti-aging, and kinase inhibitory potential of each plant sample thus aware us for further detailed research to determine novel drugs.
Collapse
Affiliation(s)
- Hasnain Jan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Hazrat Usman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muzamil Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Gouhar Zaman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sadaf Mushtaq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans Team, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, 28000, Chartres, France
- Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS/Université d'Orléans, 45067, Orléans, CÉDEX 2, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC EA1207), INRA USC1328, Plant Lignans Team, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, 28000, Chartres, France
- Bioactifs et Cosmétiques, GDR 3711 COSMACTIFS, CNRS/Université d'Orléans, 45067, Orléans, CÉDEX 2, France
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
62
|
Biodegradable Chitosan Films with ZnO Nanoparticles Synthesized Using Food Industry By-Products—Production and Characterization. COATINGS 2021. [DOI: 10.3390/coatings11060646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This work aimed to produce bionanocomposites of chitosan incorporated with zinc oxide nanoparticles (ZnO NPs) synthesized using food industry by-products and to characterize them. Such nanoparticles are highlighted due to their low cost, antimicrobial activity, accessibility, and sustainability synthesis. Four different levels of ZnO NPs (0, 0.5, 1.0, and 2.0% w/w of chitosan) were tested, and the bionanocomposites were characterized in terms of their hydrophobicity, mechanical, optical, and barrier properties. Overall, the incorporation of ZnO NPs changed the composites from brittle to ductile, with enhanced elongation at break and reduced Young Modulus and tensile strength. Thus, ZnO NPs acted as plasticizer, turning the films more flexible, due to the presence of organic compounds on the NPs. This also favored permeability of oxygen and of water vapor, but the good barrier properties were maintained. Optical properties did not change statistically with the ZnO NPs incorporation. Thus, the characterization presented in this paper may contribute to support a decision on the choice of the material’s final application.
Collapse
|
63
|
Gomathi R, Suhana H, Paradesi D. Characterization Study of Cytotoxicity of Green Synthesized ZnO Nanoparticles Loaded with Anti‐Cancer Doxorubicin Drug. ChemistrySelect 2021. [DOI: 10.1002/slct.202100358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rajagopal Gomathi
- Department of Chemistry College of Engineering and Technology SRM Institute of Science and Technology, Chengalpattu District 603203 Tamilnadu India
| | - Harindran Suhana
- Department of Chemistry College of Engineering and Technology SRM Institute of Science and Technology, Chengalpattu District 603203 Tamilnadu India
| | - Deivanayagam Paradesi
- Department of Chemistry College of Engineering and Technology SRM Institute of Science and Technology, Chengalpattu District 603203 Tamilnadu India
| |
Collapse
|
64
|
Khorsandi K, Hosseinzadeh R, Sadat Esfahani H, Keyvani-Ghamsari S, Ur Rahman S. Nanomaterials as drug delivery systems with antibacterial properties: current trends and future priorities. Expert Rev Anti Infect Ther 2021; 19:1299-1323. [PMID: 33755503 DOI: 10.1080/14787210.2021.1908125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction:Despite extensive advances in the production and synthesis of antibiotics, infectious diseases are one of the main problems of the 21st century due to multidrug-resistant (MDR) distributing in organisms. Therefore, researchers in nanotechnology have focused on new strategies to formulate and synthesis the different types of nanoparticles (NPs) with antimicrobial properties.Areas covered:The present review focuses on nanoparticles which are divided into two groups, organic (micelles, liposomes, polymer-based and lipid-based NPs) and inorganic (metals and metal oxides). NPs can penetrate the cell wall then destroy permeability of cell membrane, the structure and function of cell macromolecules by producing of reactive oxygen species (ROS) and eventually kill the bacteria. Moreover, their characteristics and mechanism in various bacteria especially MDR bacteria and finally their biocompatibility and the factors affecting their activity have been discussed.Expert opinion:Nanotechnology has led to higher drug absorption, targeted drug delivery and fewer side effects. NPs can overcome MDR through affecting several targets in the bacteria cell and synergistically increase the effectiveness of current antibiotics. Moreover, organic NPs with regard to their biodegradability and biocompatibility characteristics can be suitable agents for medical applications. However, they are less stable in environment in comparison to inorganic NPs.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Homa Sadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Saeed Ur Rahman
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.,Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
65
|
Faisal S, Jan H, Shah SA, Shah S, Khan A, Akbar MT, Rizwan M, Jan F, Wajidullah, Akhtar N, Khattak A, Syed S. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS OMEGA 2021; 6:9709-9722. [PMID: 33869951 PMCID: PMC8047667 DOI: 10.1021/acsomega.1c00310] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 06/28/2023]
Abstract
In the present work, bioaugmented zinc oxide nanoparticles (ZnO-NPs) were prepared from aqueous fruit extracts of Myristica fragrans. The ZnO-NPs were characterized by different techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and thermogravimetric analysis (TGA). The crystallites exhibited a mean size of 41.23 nm measured via XRD and were highly pure, while SEM and TEM analyses of synthesized NPs confirmed their spherical or elliptical shape. The functional groups responsible for stabilizing and capping of ZnO-NPs were confirmed using FTIR analysis. The ζ-size and ζ-potential of synthesized ZnO-NPs were reported as 66 nm and -22.1 mV, respectively, via the DLS technique can be considered as moderate stable colloidal solution. Synthesized NPs were used to evaluate for their possible antibacterial, antidiabetic, antioxidant, antiparasitic, and larvicidal properties. The NPs were found to be highly active against bacterial strains both coated with antibiotics and alone. Klebsiella pneumoniae was found to be the most sensitive strain against NPs (27 ± 1.73) and against NPs coated with imipinem (26 ± 1.5). ZnO-NPs displayed outstanding inhibitory potential against enzymes protein kinase (12.23 ± 0.42), α-amylase (73.23 ± 0.42), and α-glucosidase (65.21 ± 0.49). Overall, the synthesized NPs have shown significant larvicidal activity (77.3 ± 1.8) against Aedes aegypti, the mosquitoes involved in the transmission of dengue fever. Similarly, tremendous leishmanicidal activity was also observed against both the promastigote (71.50 ± 0.70) and amastigote (61.41 ± 0.71) forms of the parasite. The biosynthesized NPs were found to be excellent antioxidant and biocompatible nanomaterials. Biosynthesized ZnO-NPs were also used as photocatalytic agents, resulting in 88% degradation of methylene blue dye in 140 min. Owing to their eco-friendly synthesis, nontoxicity, and biocompatible nature, ZnO-NPs synthesized from M. fragrans can be exploited as potential candidates for biomedical and environmental applications.
Collapse
Affiliation(s)
- Shah Faisal
- Department
of Biotechnology, Bacha Khan University, Charsadda 24460,KPK, Pakistan
| | - Hasnain Jan
- Department
of Biotechnology, Bacha Khan University, Charsadda 24460,KPK, Pakistan
- Department
of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sajjad Ali Shah
- Department
of Biotechnology, Bacha Khan University, Charsadda 24460,KPK, Pakistan
| | - Sumaira Shah
- Department
of Botany, Bacha Khan University, Charsadda 24460, KPK, Pakistan
| | - Adnan Khan
- Institute
of Chemical Sciences, University of Peshawar, Peshawar 25120, KPK, Pakistan
| | - Muhammad Taj Akbar
- Department
of Microbiology, Abdul Wali Khan University, Mardan 23200, KPK, Pakistan
| | - Muhammad Rizwan
- Center for
Biotechnology and Microbiology, University
of Swat, Mingora 19130,KPK, Pakistan
| | - Faheem Jan
- Programmatic
Management of Drug Resistant T.B. Unit, Ayub Teaching Hospital, Abbotabad 22040, Pakistan
| | - Wajidullah
- Department
of Chemistry, Bacha Khan University, Charsadda 24460, KPK, Pakistan
| | - Noreen Akhtar
- Department
of Microbiology, Khyber Medical University, Peshawar 25100, KPK, Pakistan
| | - Aishma Khattak
- Department
of Bioinformatics, Shaheed Benazir Bhutto
University, Peshawar, KPK, Pakistan
| | - Suliman Syed
- Department
of Biotechnology, Bacha Khan University, Charsadda 24460,KPK, Pakistan
| |
Collapse
|
66
|
Kurian A, Elumalai P. Study on the impacts of chemical and green synthesized (Leucas aspera and oxy-cyclodextrin complex) dietary zinc oxide nanoparticles in Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20344-20361. [PMID: 33405170 PMCID: PMC8099852 DOI: 10.1007/s11356-020-11992-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/07/2020] [Indexed: 06/02/2023]
Abstract
The present study was designed to evaluate the health effects of dietary nanozinc prepared by two methods: conventional chemical method and green method. The parameters evaluated were the extent of bioaccumulation, antioxidant status, histological, immunological changes and DNA damage in Nile tilapia fed nanozinc feed. Zinc oxide nanoparticles were first prepared by green and chemical methods. Before feed preparation, the in vitro antioxidant activity and antibacterial activity of both types of nanoparticle solutions were tested and the results revealed enhanced activities in green synthesized ZnO NP solution. After the acclimatization period, 420 Nile tilapias were distributed randomly into 21 glass tanks with 20 fish per tank in triplicates. Fish were fed control diet without any ZnO NP and (i) GT1-green synthesized ZnO NP diet at 100 mg/kg, (ii) CT1-chemically synthesized ZnO NP diet at 100 mg/kg, (iii) GT2-green synthesized ZnO NP diet at 200 mg/kg, (iv) CT2-chemically synthesized ZnO NP diet at 200 mg/kg, (v) GT3-green synthesized ZnO NP diet at 400 mg/kg and (vi) CT3-chemically synthesized ZnO NP diet at 400 mg/kg for 60 days. After 60 days, gill and liver samples were collected for analysing oxidative stress, histopathological alterations and bioaccumulation of zinc, whereas serum samples were collected for evaluating immune response. The results revealed that the GT3 diet significantly (P < 0.05) enhanced the level of antioxidant enzymes (CAT, SOD, GPx, GR and GSH) than dietary nanozinc prepared by the chemical method. Similarly, the innate immunological parameters were significantly (P < 0.05) augmented in fish fed GT3 diet. Comparative histological study of liver and gill tissues revealed normal architecture in the tissues of fish fed green synthesized NP-enriched feed, whereas the tissues of fish fed chemically synthesized NP feed exhibited histological alterations. Bioaccumulation of zinc was more in the liver followed by the muscle and least in the gills and DNA damage was more evident in fish fed chemically synthesized ZnO NP-enriched feed. In conclusion, the results suggest that the inclusion of 400 mg/kg GT3 diet in fish diet enhanced the level of antioxidant enzymes, boosted immune response and did not cause histological damage to organs, and therefore, GT3 nanofeed can be recommended for fish health improvement.
Collapse
Affiliation(s)
- Amitha Kurian
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, 682 506, India
| | - Preetham Elumalai
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala, 682 506, India.
| |
Collapse
|
67
|
Pouresmaeil V, Haghighi S, Raeisalsadati AS, Neamati A, Homayouni-Tabrizi M. The Anti-Breast Cancer Effects of Green-Synthesized Zinc Oxide Nanoparticles Using Carob Extracts. Anticancer Agents Med Chem 2021; 21:316-326. [PMID: 32698752 DOI: 10.2174/1871520620666200721132522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The use of nanoparticles synthesized by the green method to treat cancer is fairly recent. The aim of this study was to evaluate cytotoxicity, apoptotic and anti-angiogenic effects and the expression of involved genes, of Zinc Oxide Nanoparticles (ZnO-NPs) synthesized with Carob extracts on different human breast cancer cell lines. METHODS ZnO-NPs were synthesized using the extracts of Carob and characterized with various analytical techniques. The MCF-7 and MDA-MB231 cells were treated at different times and concentrations of ZnO-NPs. The cytotoxicity, apoptosis, and anti-angiogenic effects were examined using a series of cellular assays. Expression of apoptotic genes (Bax and Bcl2) and anti-angiogenic genes, Vascular Endothelial Growth Factor (VEGF) and its Receptor (VEGF-R) in cancer cells treated with ZnO-NPs were examined with Reverse Transcriptionquantitative Polymerase Chain Reaction (RT-qPCR). The anti-oxidant activities of ZnO-NPs were evaluated by ABTS and DPPH assay. RESULTS Exposure of cells to ZnO-NPs resulted in a dose-dependent loss of cell viability. The IC50 values at 24, 48, and 72 hours were 125, 62.5, and 31.2μg/ml, respectively (p<0.001). ZnO-NPs treated cells showed, in fluorescent microscopy, that ZnO-NPs are able to upregulate apoptosis and RT-qPCR revealed the upregulation of Bax (p<0.001) and downregulation of Bcl-2 (p<0.05). ZnO-NPs increased VEGF gene expression while decreasing VEGF-R (p<0.001). The anti-oxidant effects of ZnO-NPs were higher than the control group and were dose-dependent (p<0.001). CONCLUSION ZnO-NPs synthetized using Carob extract have the ability to eliminate breast cancer cells and inhibit angiogenesis, therefore, they could be used as an anticancer agent.
Collapse
Affiliation(s)
- Vahid Pouresmaeil
- Department of Biochemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Shaghayegh Haghighi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
68
|
Rambabu K, Bharath G, Banat F, Show PL. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123560. [PMID: 32759001 DOI: 10.1016/j.jhazmat.2020.123560] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 05/02/2023]
Abstract
Production of multi-functional zinc oxide nanoparticles (ZnO-NPs) for wastewater treatment through green-approaches is a desirable alternative for conventional synthesis routes. Biomass waste valorization for nanoparticles synthesis has received increased research attention. The present study reports date pulp waste (DPW) utilization as an effective bio-reductant for green-synthesis of ZnO-NPs. A simple and eco-friendly process with low reaction time and calcination temperature was adopted for DPW mediated ZnO-NPs (DP-ZnO-NPs) synthesis. Microscopic investigations of DP-ZnO-NPs confirmed the non-agglomeration and spherical nature of particles with mean diameter of 30 nm. EDX and XPS analysis defined the chemical composition and product purity of DP-ZnO-NPs. UV and photoluminescence studies exhibited surface plasmonic resonance at 381 nm and fluorescent nature of DP-ZnO-NPs. FTIR studies established a formation mechanism outline for DP-ZnO-NPs. XRD and Raman investigations confirmed the crystalline and hexagonal wurtzite phase of DP-ZnO-NPs. DSC/TG analysis displayed the thermal stability of DP-ZnO-NPs with <10 wt% loss upto 700 °C. Photocatalytic degradation of hazardous methylene blue and eosin yellow dyes using DP-ZnO-NPs, showed rapid decomposition rate with 90 % degradation efficiency. Additionally, DP-ZnO-NPs demonstrated significant antibacterial effects on various pathogenic bacteria in terms of zone-of-inhibition measured by disc-diffusion method. Thus, the as-prepared DP-ZnO-NPs is suitable for industrial wastewater treatment.
Collapse
Affiliation(s)
- K Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - G Bharath
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Pau Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
69
|
Droepenu EK, Asare EA, Wee BS, Wahi RB, Ayertey F, Kyene MO. Biosynthesis, characterization, and antibacterial activity of ZnO nanoaggregates using aqueous extract from Anacardium occidentale leaf: comparative study of different precursors. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-020-00091-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Various parts of Anacardium occidentale plant possess curative qualities like antidiabetic, anti-inflammatory, antibacterial, antifungal, and antioxidant. Aqueous extract of this plant leaf was used in biosynthesizing zinc oxide (ZnO) nanoaggregates using two precursors of zinc salt (zinc acetate dihydrate [Zn(CH3COO)2∙2H2O] and zinc chloride [ZnCl2]). The synthesized ZnO samples were used in a comparative study to investigate the antibacterial activity against selected Gram-positive and Gram-negative microbes [Staphylococcus aureus, Exiguobacterium aquaticum (Gram +ve) and Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii (Gram −ve)]. The synthesized ZnO nanoaggregates from the two precursors were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive x-ray spectroscopy (EDX) techniques.
Results
Micrographs of SEM and TEM confirmed nanoparticles agglomerated into aggregates. While spherical nanoaggregates were identified in samples prepared from Zn(CH3COO)2∙2H2O, flake-like structures were identified in samples synthesized from ZnCl2. Particle size determined by TEM was 107.03 ± 1.54 nm and 206.58 ± 1.86 nm for zinc acetate dihydrate and zinc chloride precursors respectively. ZnO nanoaggregate synthesized using zinc acetate as precursor gave higher antibacterial activity than its counterpart, zinc chloride with K. pneumonia recording the highest inhibition zone of 2.08 ± 0.03 mm (67.53%) whereas S. aureus recorded the least inhibition zone of 1.06 ± 0.14 mm (34.75%) for ZnO nanoaggregate from zinc chloride precursor. Also, antibacterial activity increases with increasing concentration of the extract in general. However, A. baumannii, E. aquaticum, and K. pneumoniae did not follow the continuity trend with regards to the 250 ppm and 500 ppm concentrations.
Conclusion
Biosynthesis of ZnO nanoaggregates using aqueous extract of A. occidentale leaf from zinc acetate dihydrate and zinc chloride as precursors was successful with the formation of nanospheres and nanoflakes. The study suggested that A. occidentale sp. could be an alternative source for the production of ZnO nanoparticles and are efficient antibacterial compounds against both Gram +ve and Gram −ve microbes with its promising effect against infectious bacteria.
Collapse
|
70
|
Vimala K, Kannan S. Phyto-drug conjugated nanomaterials enhance apoptotic activity in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:275-305. [PMID: 33931143 DOI: 10.1016/bs.apcsb.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Cancer continues to be one of the leading causes of death worldwide and is a major obstacle to increased life expectancy. However, survival has not improved significantly with average cancer standard treatment strategies over the past few decades; survival rates have remained low, with tumor metastasis, adverse drug reactions, and drug resistance. Therefore, substitute therapies are essential to treat this dreadful disease. Recently, research has shown that natural compounds in plants, such as phytochemicals, are extensively exploited for their anticarcinogenic potential. Phytochemicals may show their anticancer activity different cancer cell markers may alter molecular pathways, which promote in cellular events such as cell cycle arrest and apoptosis, regulate antioxidant status, cell proliferation, migration, invasion and toxicity. Although their outstanding anticancer activity, however, their pharmacological budding is hindered by their low aqueous solubility, poor bioavailability, and poor penetration into cells, hepatic disposition, narrow therapeutic index, and rapid uptake by normal tissues. In this situation, nanotechnology has developed novel inventions to increase the potential use of phytochemicals in anticancer therapy. Nanoparticles can improve the solubility and stability of phytochemicals, specific tumor cell/tissue targeting, enhanced cellular uptake, reduction of phytochemicals. Therapeutic doses of phytochemicals for a long time. Additional benefits include better blood stability, multifunctional design of nanocarriers and improvement in countermeasures. This review summarizes the advances in the use of nanoparticles for the treatment of cancer, as well as various nano-drug deliveries of phytochemicals against cancer. In particular, we are introducing several applications of nanoparticles in combination with phyto-drug for the treatment of cancer.
Collapse
Affiliation(s)
- Karuppaiya Vimala
- Division of Cancer Nanomedicine, Department of Zoology, School of Life Science, Periyar University, Salem, Tamil Nadu, India
| | - Soundarapandian Kannan
- Division of Cancer Nanomedicine, Department of Zoology, School of Life Science, Periyar University, Salem, Tamil Nadu, India.
| |
Collapse
|
71
|
Aalami AH, Mesgari M, Sahebkar A. Synthesis and Characterization of Green Zinc Oxide Nanoparticles with Antiproliferative Effects through Apoptosis Induction and MicroRNA Modulation in Breast Cancer Cells. Bioinorg Chem Appl 2020; 2020:8817110. [PMID: 33273900 PMCID: PMC7695509 DOI: 10.1155/2020/8817110] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Changes in the expression of microRNAs can affect cancer cells' viability and behavior and the impact on cancer treatment. In this study, the expression of miR-155-5p, miR-203a-3p, and miR-223-3p in the MCF7 cancer cell line was studied when exposed to ZnO nanoparticles synthesized through a green route. Mentioned ZnO-NPs were well characterized by UV-vis spectroscopy, DLS, XRD, FTIR, FE-SEM, EDX, zeta potential, and AFM analyses. Cellular studies were conducted using ZnO-NPs before miRNA investigations including MTT cytotoxicity test against MCF7, MDA-MB-231, and HFF cell lines. Moreover, apoptosis assays were performed using morphological analysis, fluorescent dyes, flow cytometry, and evaluation of caspase-3 and caspase-8 gene expression. Biological properties such as the antioxidant and antimicrobial activity of these novel ZnO-NPs were considered. MTT assays showed that the inhibitory concentration (IC50) of ZnO-NPs after 24 h was 11.16 μg/mL, 60.08 μg/mL, and 26.3 μg/mL on MCF7, MDA-MB-231, and HFF cells, respectively. The qRT-PCR results showed reduced expression of miR-155-5p, miR-203a-3p, and miR-223-3p when the MCF7 cells were treated with the IC50 concentration of ZnO-NPs (11.16 μg/mL). The antioxidant activity results showed EC50 values at 57.19 μg/mL and 31.5 μg/mL in DPPH and ABTS assays, respectively. The antimicrobial activity of ZnO-NPs was determined on Gram-negative and Gram-positive bacterial strains and fungi using MIC and MBC assays. These NPs had a significant effect in reducing the expression of microRNAs in breast cancer cells. Finally, ZnO-NPs exerted antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Mesgari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Halal Research Center of IRI, FDA, Tehran, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
72
|
Sabarinathan D, Vanaraj S, Sathiskumar S, Poorna Chandrika S, Sivarasan G, Arumugam SS, Preethi K, Li H, Chen Q. Characterization and application of rhamnolipid from Pseudomonas plecoglossicida BP03. Lett Appl Microbiol 2020; 72:251-262. [PMID: 33025574 DOI: 10.1111/lam.13403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/06/2023]
Abstract
The production of rhamnolipid (glycolipid) biosurfactant was achieved under optimized conditions from newly isolated bacteria (Pseudomonas plecoglossicida BP03) from rice mill effluent. The isolated biosurfactant was structurally characterized using FTIR and NMR spectroscopic studies. The obtained biosurfactant (1·39 g l-1 ) showed a variety of applications including larvicidal and pupicidal activity against malarial vector (Anopheles sunadicus). It also exhibited antimicrobial activity against human pathogens, and possessed potent anti-biofilm activity against Staphylococcus aureus, Bacillus subtilis and Aeromonas hydrophila. The obtained biosurfactant showed a dose-dependent inhibition of exopolymeric substance (EPS) and growth curve in S. aureus. Furthermore, the cytotoxicity assays revealed that the biosurfactant exhibit a cytotoxic potency against the human fibroblastic sarcoma cells Ht-1080. An in silco analysis was also performed using Schrodinger maestro 9.3 against surface protein (SasG) of S. aureus, and the resultant analysis revealed an interactive docking score of -3·4 kcal mol-1 . The obtained result indicates that the synthesized economically viable biosurfactant ensures excellent applications towards various fields.
Collapse
Affiliation(s)
- D Sabarinathan
- Department of Food Science and Engineering, Jiangsu University, Zhenjiang, China
| | - S Vanaraj
- Department of Food Science and Engineering, Jiangsu University, Zhenjiang, China
| | - S Sathiskumar
- Department of Microbial Biotechnology, Biopharmacy Lab, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - S Poorna Chandrika
- Department of Food Science and Engineering, Jiangsu University, Zhenjiang, China
| | - G Sivarasan
- Department of Applied Medical Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - S S Arumugam
- Department of Food Science and Engineering, Jiangsu University, Zhenjiang, China
| | - K Preethi
- Department of Microbial Biotechnology, Biopharmacy Lab, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - H Li
- Department of Food Science and Engineering, Jiangsu University, Zhenjiang, China
| | - Q Chen
- Department of Food Science and Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
73
|
Biofabrication of Zinc Oxide Nanoparticles from Two Different Zinc Sources and Their Antimicrobial Activity. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
74
|
Zhang D, Ma XL, Gu Y, Huang H, Zhang GW. Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Front Chem 2020; 8:799. [PMID: 33195027 PMCID: PMC7658653 DOI: 10.3389/fchem.2020.00799] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/30/2020] [Indexed: 01/14/2023] Open
Abstract
Nanoparticle synthesis using microorganisms and plants by green synthesis technology is biologically safe, cost-effective, and environment-friendly. Plants and microorganisms have established the power to devour and accumulate inorganic metal ions from their neighboring niche. The biological entities are known to synthesize nanoparticles both extra and intracellularly. The capability of a living system to utilize its intrinsic organic chemistry processes in remodeling inorganic metal ions into nanoparticles has opened up an undiscovered area of biochemical analysis. Nanotechnology in conjunction with biology gives rise to an advanced area of nanobiotechnology that involves living entities of both prokaryotic and eukaryotic origin, such as algae, cyanobacteria, actinomycetes, bacteria, viruses, yeasts, fungi, and plants. Every biological system varies in its capabilities to supply metallic nanoparticles. However, not all biological organisms can produce nanoparticles due to their enzymatic activities and intrinsic metabolic processes. Therefore, biological entities or their extracts are used for the green synthesis of metallic nanoparticles through bio-reduction of metallic particles leading to the synthesis of nanoparticles. These biosynthesized metallic nanoparticles have a range of unlimited pharmaceutical applications including delivery of drugs or genes, detection of pathogens or proteins, and tissue engineering. The effective delivery of drugs and tissue engineering through the use of nanotechnology exhibited vital contributions in translational research related to the pharmaceutical products and their applications. Collectively, this review covers the green synthesis of nanoparticles by using various biological systems as well as their applications.
Collapse
Affiliation(s)
| | | | | | | | - Guang-wei Zhang
- Department of Cardiology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
75
|
Mahdi ZS, Talebnia Roshan F, Nikzad M, Ezoji H. Biosynthesis of zinc oxide nanoparticles using bacteria: a study on the characterization and application for electrochemical determination of bisphenol A. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1835962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zahra Sadat Mahdi
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Farid Talebnia Roshan
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Maryam Nikzad
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Hoda Ezoji
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
76
|
Effect of conducting polymer on photoluminescence quenching of green synthesized ZnO thin film and its photocatalytic properties. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
77
|
Chinnaiyan SK, Soloman AM, Perumal RK, Gopinath A, Balaraman M. 5 Fluorouracil-loaded biosynthesised gold nanoparticles for the in vitro treatment of human pancreatic cancer cell. IET Nanobiotechnol 2020; 13:824-828. [PMID: 31625522 DOI: 10.1049/iet-nbt.2019.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, green synthesis of gold nanoparticles (AuNPs) was performed by a sunlight irradiation method using the Borassus flabellifer fruit extract as a reducing agent. 5-Fluorouracil (5-FU)-loaded GG capped AuNPs (5FU-G-AuNPs) was prepared. The nanoparticles was further characterised by UV-visible spectra, particle size analysis, zeta potential, SAED, HRTEM, and XRD. The MTT assay results showed the suitability 5-FU-G-AuNPs. In this study, 5-FU-G-AuNPs exhibited potential cytotoxic and apoptotic effects on (MiaPaCa-2) cell line.
Collapse
Affiliation(s)
| | - Agnes Mary Soloman
- CSIR-Central Leather Research Institute, Chennai 600 020, Tamil Nadu, India
| | | | - Arun Gopinath
- CSIR-Central Leather Research Institute, Chennai 600 020, Tamil Nadu, India
| | - Madhan Balaraman
- CSIR-Central Leather Research Institute, Chennai 600 020, Tamil Nadu, India.
| |
Collapse
|
78
|
Tripathi CB, Parashar P, Arya M, Singh M, Kanoujia J, Kaithwas G, Saraf SA. Biotin anchored nanostructured lipid carriers for targeted delivery of doxorubicin in management of mammary gland carcinoma through regulation of apoptotic modulator. J Liposome Res 2020; 30:21-36. [PMID: 30741049 DOI: 10.1080/08982104.2019.1579839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/01/2023]
Abstract
Mammary gland tumour has the highest incidence rate and mortality in women, worldwide. The present study envisaged a molecularly targeted nanostructured lipid carrier (NLCs) for doxorubicin (Dox) delivery capable of inducing cellular apoptosis in mammary gland tumour. NLCs were prepared utilizing Perilla frutescens oil (54-69% ω3-fatty acid) as liquid lipid to enhance entrapment of Dox through molecular ion pairing. Biotin decorated NLCs (b-Dox-NLCs) were evaluated in vitro and in vivo. The b-Dox-NLCs showed particle size of 105.2 ± 3.5 nm, zeta potential -35 ± 2 mV, entrapment 99.15 ± 1.71%, drug content 19.67 ± 2.6 mg.g-1, biotin content 5.85 ± 0.64 µg.g-1 and drug release 98.67 ± 2.43% (facilitated by acidic microenvironment) respectively. MTT assay and Flow cytometric analysis revealed higher anti-proliferative capability of b-Dox-NLCs to force apoptosis in MCF-7 cell line vis-à-vis marketed Dox, evidenced by reactive oxygen species level and mitochondrial membrane potential mediated apoptosis. Enhanced antitumor targeting, therapeutic safety and efficacy was exhibited by b-Dox-NLCs, as investigated through tumour volume, animal survival, weight variation, cardiotoxicity and biodistribution studies in 7,12-Dimethylbenz[a]anthracene induced mammary gland tumour. Immunoblotting assay demonstrated b-Dox-NLCs downregulated anti-apoptotic proteins, i.e. bcl-2, MMP-9 while upregulated pro-apoptotic proteins, i.e. caspase-9, p16 and BAX. The experimental results suggest that biotinylated ω3-fatty acid augmented NLCs loaded with Dox are capable of inducing programmed cell death in mammary tumour and can be utilized as safe and effective delivery system with enhanced potential for mammary gland carcinoma therapy.
Collapse
Affiliation(s)
- Chandra B Tripathi
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Poonam Parashar
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Malti Arya
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Mahendra Singh
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Jovita Kanoujia
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| |
Collapse
|
79
|
Jan H, Khan MA, Usman H, Shah M, Ansir R, Faisal S, Ullah N, Rahman L. The Aquilegia pubiflora (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications. RSC Adv 2020; 10:19219-19231. [PMID: 35515478 PMCID: PMC9054089 DOI: 10.1039/d0ra01971b] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/01/2020] [Indexed: 11/21/2022] Open
Abstract
Herein, we report an eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications. In the study, cerium oxide nanoparticles (CeO2-NPs) were synthesized using a simple aqueous extract of Aquilegia pubiflora as an effective reducing and capping agent. The biosynthesized nanoparticles were characterized via UV-vis spectroscopy, X-ray powder diffraction (XRD), high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The NPs were highly stable, exhibited high purity, and had a spherical morphology and mean size of 28 nm. FTIR and HPLC studies confirmed the successful capping of bioactive compounds on the nanoparticles. The well-characterized NPs were evaluated for a number of biomedical applications, and their antimicrobial (antifungal, antibacterial, and antileishmanial), protein kinase inhibition, anticancer, antioxidant, anti-diabetic and biocompatibility properties were studied. Our results showed that the Aquilegia pubiflora mediated CeO2-NPs were highly active against fungal strains, compared to the tested bacterial strains, with Aspergillus niger resulting in the largest zone of inhibition (15.1 ± 0.27 mm). The particles also exhibited dose dependent leishmanicidal activity with significant LC50 values toward both the amastigote (114 μg mL−1) and promastigote (97 μg mL−1) forms of the parasite Leishmania tropica (KWH23). The NPs were found to be moderately active against the HepG2 cell line, showing 26.78% ± 1.16% inhibition at 200 μg mL−1. Last but not least, their highly biocompatible nature was observed with respect to freshly isolated human red blood cells (hRBCs), making the greenly synthesized CeO2-NPs a novel candidates for multidimensional medical applications. Graphical illustration of eco-friendly, facile, one-pot, green synthesis of nanoceria for multiple biomedical applications.![]()
Collapse
Affiliation(s)
- Hasnain Jan
- Department of Biotechnology
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
- Department of Biotechnology
| | - Muhammad Aslam Khan
- Department of Biotechnology
- International Islamic University
- Islamabad
- Pakistan
| | - Hazrat Usman
- Department of Biotechnology
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Muzamil Shah
- Department of Biotechnology
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Rotaba Ansir
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad
- Pakistan
| | - Shah Faisal
- Department of Biotechnology
- Bacha Khan University
- Pakistan
| | - Niamat Ullah
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad
- Pakistan
| | - Lubna Rahman
- Department of Biotechnology
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| |
Collapse
|
80
|
Suriyaprabha R, Balu KS, Karthik S, Prabhu M, Rajendran V, Aicher WK, Maaza M. A sensitive refining of in vitro and in vivo toxicological behavior of green synthesized ZnO nanoparticles from the shells of Jatropha curcas for multifunctional biomaterials development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109621. [PMID: 31520953 DOI: 10.1016/j.ecoenv.2019.109621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/14/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
ZnO nanoparticles (NPs) possess a wide range of biological functions in pharmaceutical and cosmetic applications due to their excellent antimicrobial, optical and UV protective properties. This study first reports the toxicological assessment of ZnO NPs green synthesized from Jatropha curcas shells for multifunctional biomedical applications. The hot water extract of J.curcas shells is utilized as a chelating agent for the reduction of zinc acetate and then, the prepared ZnO NPs are broadly characterized using X-ray spectroscopic and electron microscopic observations. The prepared ZnO NPs acquire high purity (100%) wurtzite crystal with hexagonal structure with the average particle size of 53 nm. In vitro and in vivo toxicity evaluation against human tumor cell lines and zebrafish embryos have ascertained the purpose of ZnO NPs in clinical research. Toxic effects of ZnO NPs were observed by a dose-dependent reduction of bacterial growth at ≥1 μg ml-1, by teratogenicity and genotoxicity in zebrafish embryos (from 3 to 90 μg ml-1) and by a significant nanoparticle uptake (0.5 ng μl-1) by a fish serum. In contrast, ZnO NPs fail to reduce the proliferation of human bladder tumor cells (UC6) and cell viability of A549 cells in vitro up to 500 μg ml-1. All these observations limit the unobstructed application of ZnO NPs at higher concentrations. Thus, abundantly used metal oxide nanoparticles like ZnO NPs examined in our present study in different animal models under in vitro and in vivo conditions will be the significant screening strategy to determine the nanotoxicity.
Collapse
Affiliation(s)
- R Suriyaprabha
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology Tiruchengode, 637215, Tamil Nadu, India
| | - K S Balu
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology Tiruchengode, 637215, Tamil Nadu, India
| | - S Karthik
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology Tiruchengode, 637215, Tamil Nadu, India
| | - M Prabhu
- Department of Biomedical Engineering, Mahendra Institute of Technology Mahendhirapuri, 637503, Tamil Nadu, India
| | - V Rajendran
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology Tiruchengode, 637215, Tamil Nadu, India; Centre for Research, Dr. N. G. P. Arts and Science College, Coimbatore, 641048, Tamil Nadu, India.
| | - Wilhelm K Aicher
- Department of Urology, University of Tübingen Hospital, Waldhörnlestr. 22, 72072, Tübingen, Germany
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS National Research Foundation, 1 Old Faure Road, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| |
Collapse
|
81
|
Doğan SŞ, Kocabaş A. Green synthesis of ZnO nanoparticles with Veronica multifida and their antibiofilm activity. Hum Exp Toxicol 2019; 39:319-327. [DOI: 10.1177/0960327119888270] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study, Veronica multifida leaf extract and zinc acetate dihydrate were utilized to synthesize zinc oxide (ZnO) nanoparticles (NPs) eco-friendly and cost-effectively under different physical conditions. Soxhlet extractor was used for the preparation of aqueous plant extract. UV-Vis (ultraviolet–visible) spectrophotometer, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscope (TEM) were used to characterize the ZnO NPs. UV-Vis spectrophotometer in the range of 200–800 nm was used to get information about the formation of ZnO NPs at different pH and temperatures. FTIR spectrum revealed the presence of functional groups in ZnO NPs. XRD, scanning electron microscope, and TEM analyses confirmed the crystal structure and average size of ZnO NPs. The antimicrobial activities of ZnO NPs were tested on microorganisms, that is, Escherichia coli ATCC 43895 , Staphylococcus aureus ATCC 29213 , Bacillus subtilis, Bacillus licheniformis, Pseudomonas aeruginosa, and Salmonella typhimurium. Moreover, antibiofilm activity of ZnO NPs was performed against P. aeruginosa and S. aureus ATCC 29213. ZnO NPs have shown effective antimicrobial and antibiofilm activities against tested microorganisms. The results elucidated that eco-friendly and cost-effectively produced ZnO NPs could be used as coating materials and in a wide range of industrial applications, such as pharmaceutical industries and cosmetics.
Collapse
Affiliation(s)
- S Şahin Doğan
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - A Kocabaş
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
82
|
A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorg Chem 2019; 94:103423. [PMID: 31776035 DOI: 10.1016/j.bioorg.2019.103423] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/18/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
Inflammation plays a very important role in the pathogenesis of various diseases like atherosclerosis, rheumatoid arthritis, asthma, and cancer. Lack of anti-inflammatory drugs and vectors provokes the need for developing new molecules for the management of inflammatory disorders. Nanotechnology has emerged as a wonderful research area in the past decade owing to its enhanced properties than bulk counterparts. This paper discusses the green synthesis of zinc oxide nanoparticle (ZnO NPs) and various characterization tools employed to comprehend the physiochemical properties of nanoparticles. ZnO NPs interaction with cells and its pharmacokinetic behavior inside the cells has also been discussed. The anti-inflammatory activity of ZnO NPs has been elucidated with the mechanism-based approach. A concise literature review has been included which summarizes the size, shape of ZnO NPs and the inflammatory model used for analyzing the anti-inflammatory activity of ZnO NPs. ZnO NPs potential offering towards anti-inflammatory activity like stable nature, selective targeting has been discussed briefly. The present study highlights the potential of ZnO NPs as an anti-inflammatory drug molecule or a vector for drug delivery.
Collapse
|
83
|
Manickam M, Pichaimani P, Arumugam H, Muthukaruppan A. Synthesis of Nontoxic Pyrazolidine-Based Benzoxazine-Coated Cotton Fabric for Oil–Water Separation. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manoj Manickam
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Neelambur, Coimbatore 641 062, India
| | - Prabunathan Pichaimani
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Neelambur, Coimbatore 641 062, India
| | - Hariharan Arumugam
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Neelambur, Coimbatore 641 062, India
| | - Alagar Muthukaruppan
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Neelambur, Coimbatore 641 062, India
| |
Collapse
|
84
|
George D, Maheswari PU, Sheriffa Begum KMM, Arthanareeswaran G. Biomass-Derived Dialdehyde Cellulose Cross-linked Chitosan-Based Nanocomposite Hydrogel with Phytosynthesized Zinc Oxide Nanoparticles for Enhanced Curcumin Delivery and Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10880-10890. [PMID: 31508956 DOI: 10.1021/acs.jafc.9b01933] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A sustainable biomass-based nanocomposite hydrogel was formulated, characterized, and applied for curcumin delivery. Phytosynthesized zinc oxide nanoparticles (ZnO NPs) employing musk melon (Cucumis melo) seed extract was embedded in the hydrogel matrices and cross-linked using Dialdehyde cellulose prepared from sugarcane (Saccharum officinarum) bagasse (SCB). Nanoparticle incorporation enhanced the hydrogel's swelling degree to 4048% at pH 4.0. Also, an improved tensile strength of 14.1 ± 0.32 MPa was exhibited by the nanocomposite hydrogel compared to 9.79 ± 0.76 MPa for the pure chitosan cellulose hydrogel. A curcumin loading efficiency of 89.68% with around 30% increased loading was exhibited for the nanocomposite hydrogel. A Fickian diffusion-controlled curcumin release mechanism with maximum release at pH 7.4 was obtained. The synergistic effect on the antimicrobial activity was exhibited against Staphylococcus aureus and Trichophyton rubrum. The in vitro cytotoxicity studies employing L929 cells and A431 cells demonstrated good biocompatibility and enhanced anticancer activity of the curcumin-loaded green nanocomposite hydrogel compared to pure curcumin.
Collapse
Affiliation(s)
- Dhanya George
- Department of Chemical Engineering , National Institute of Technology , Tiruchirapalli 620015 , Tamilnadu , India
| | - Palanisamy Uma Maheswari
- Department of Chemical Engineering , National Institute of Technology , Tiruchirapalli 620015 , Tamilnadu , India
| | | | - Gangasalam Arthanareeswaran
- Department of Chemical Engineering , National Institute of Technology , Tiruchirapalli 620015 , Tamilnadu , India
| |
Collapse
|
85
|
Hussein J, Attia MF, El Bana M, El-Daly SM, Mohamed N, El-Khayat Z, El-Naggar ME. Solid state synthesis of docosahexaenoic acid-loaded zinc oxide nanoparticles as a potential antidiabetic agent in rats. Int J Biol Macromol 2019; 140:1305-1314. [PMID: 31449866 DOI: 10.1016/j.ijbiomac.2019.08.201] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Our goal in this study is to improve the efficiency of docosahexaenoic acid (DHA) toward the enhancement of insulin signaling pathway in vivo via loading with zinc oxide nanoparticles (ZnO NPs). To this end, two consecutive steps were undertaken, preparation of ZnO NPs by one-step solid-state reaction in dry conditions and calcinated followed by loading DHA. Both developed nanoparticles, with and without DHA were then characterized by TEM, SEM, EDX, and Zetasizer. For comparison between free and loaded DHA, four groups of rats were prepared to receive different treatments. Group I; healthy rats (reference), group II; diabetes (streptozotocin-induced), group III and group IV are diabetes orally administered with free DHA and DHA-loaded ZnO NPs (10 mg/kg bw/day), respectively. Blood samples were collected and analyzed where the results demonstrated that fasting blood sugar and insulin resistance were significantly increased in diabetic group along with upgrading in oxidative stress parameters emphasizing the oxidative properties of streptozotocin. HPLC analysis of cell membrane fatty acids resulted in the reduction of omega-6 and 9 and elevation of omega-3 after free DHA and DHA-loaded ZnO NPs streptozotocin treatments. DHA-loaded ZnO NPs had high performance in enhancing insulin signaling pathway as expressed in changes of phosphatidylinositol 3-kinase (PI3K) levels.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed F Attia
- Textile Research Division, National Research Centre, 33 El Bohouth st.-Dokki-Giza, Egypt; Department of Chemistry, Clemson University, Clemson, SC, United States.
| | - Mona El Bana
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Nadia Mohamed
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Zakeria El-Khayat
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Mehrez E El-Naggar
- Textile Research Division, National Research Centre, 33 El Bohouth st.-Dokki-Giza, Egypt.
| |
Collapse
|
86
|
Alves MM, Andrade SM, Grenho L, Fernandes MH, Santos C, Montemor MF. Influence of apple phytochemicals in ZnO nanoparticles formation, photoluminescence and biocompatibility for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:76-87. [DOI: 10.1016/j.msec.2019.03.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022]
|
87
|
Meticulous Taxifolin Releasing Performance by the Zinc Oxide Nanoparticles: As a Short Road to Drug delivery System for Cancer Therapeutics. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01642-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
88
|
Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. NANO CONVERGENCE 2019; 6:23. [PMID: 31304563 PMCID: PMC6626766 DOI: 10.1186/s40580-019-0193-2] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/17/2019] [Indexed: 05/06/2023]
Abstract
Nanotechnology has the potential to circumvent several drawbacks of conventional therapeutic formulations. In fact, significant strides have been made towards the application of engineered nanomaterials for the treatment of cancer with high specificity, sensitivity and efficacy. Tailor-made nanomaterials functionalized with specific ligands can target cancer cells in a predictable manner and deliver encapsulated payloads effectively. Moreover, nanomaterials can also be designed for increased drug loading, improved half-life in the body, controlled release, and selective distribution by modifying their composition, size, morphology, and surface chemistry. To date, polymeric nanomaterials, metallic nanoparticles, carbon-based materials, liposomes, and dendrimers have been developed as smart drug delivery systems for cancer treatment, demonstrating enhanced pharmacokinetic and pharmacodynamic profiles over conventional formulations due to their nanoscale size and unique physicochemical characteristics. The data present in the literature suggest that nanotechnology will provide next-generation platforms for cancer management and anticancer therapy. Therefore, in this critical review, we summarize a range of nanomaterials which are currently being employed for anticancer therapies and discuss the fundamental role of their physicochemical properties in cancer management. We further elaborate on the topical progress made to date toward nanomaterial engineering for cancer therapy, including current strategies for drug targeting and release for efficient cancer administration. We also discuss issues of nanotoxicity, which is an often-neglected feature of nanotechnology. Finally, we attempt to summarize the current challenges in nanotherapeutics and provide an outlook on the future of this important field.
Collapse
Affiliation(s)
- P N Navya
- Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India.
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamil Nadu, 638401, India.
| | - Anubhav Kaphle
- Melbourne Integrative Genomics, School of BioSciences/School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - S P Srinivas
- School of Optometry, Indiana University, Bloomington, Indiana, 47405, USA
| | - Suresh Kumar Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts (UMass) Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Hemant Kumar Daima
- Nano-Bio Interfacial Research Laboratory (NBIRL), Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, 572103, India.
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, VIC, 3001, Australia.
- Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
89
|
The synergistic impact of quinacrine on cell cycle and anti-invasiveness behaviors of doxorubicin in MDA-MB-231 breast cancer cells. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
90
|
Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, Chan YS, Danquah MK. Phytosynthesized metal oxide nanoparticles for pharmaceutical applications. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:755-771. [PMID: 31098696 DOI: 10.1007/s00210-019-01666-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
Abstract
Developments in nanotechnology field, specifically, metal oxide nanoparticles have attracted the attention of researchers due to their unique sensing, electronic, drug delivery, catalysis, optoelectronics, cosmetics, and space applications. Physicochemical methods are used to fabricate nanosized metal oxides; however, drawbacks such as high cost and toxic chemical involvement prevail. Recent researches focus on synthesizing metal oxide nanoparticles through green chemistry which helps in avoiding the involvement of toxic chemicals in the synthesis process. Bacteria, fungi, and plants are the biological sources that are utilized for the green nanoparticle synthesis. Due to drawbacks such as tedious maintenance and the time needed for the nanoparticle formation, plant extracts are widely used in nanoparticle production. In addition, plants are available all over the world and phytosynthesized nanoparticles show comparatively less toxicity towards mammalian cells. Secondary metabolites including flavonoids, terpenoids, and saponins are present in plant extracts, and these are highly responsible for nanoparticle formation and reduction of toxicity. Hence, this article gives an overview of recent developments in the phytosynthesis of metal oxide nanoparticles and their toxic analysis in various cells and animal models. Also, their possible mechanism in normal and cancer cells, pharmaceutical applications, and their efficiency in disease treatment are also discussed.
Collapse
Affiliation(s)
- Swetha Andra
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Satheesh Kumar Balu
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Jaison Jeevanandham
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Murugesan Muthalagu
- Department of Textile Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Manisha Vidyavathy
- Department of Ceramic Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Yen San Chan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | | |
Collapse
|
91
|
Ahmad KS, Bibi Jaffri S. Carpogenic ZnO nanoparticles: amplified nanophotocatalytic and antimicrobial action. IET Nanobiotechnol 2019; 13:150-159. [PMID: 31051445 PMCID: PMC8676184 DOI: 10.1049/iet-nbt.2018.5006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2023] Open
Abstract
This investigation has for the first time utilised environmental resource Prunus cerasifera seed extract phytochemicals for the green synthesis of carpogenic ZnO nanoparticles (NPs). Spherical morphology and size range of 56.57-107.70 nm at variable calcination temperatures without the use of any external reducing agent was obtained. The synthesised NPs exhibited hexagonal wurtzite geometry with an average crystal size 5.62 nm and a band gap of 3.4 eV. Carpogenic NPs were investigated for optical, compositional, morphological, and phytochemical make up via ultraviolet spectroscopy (UV-Vis), Fourier transform infrared analysis, X-ray powder diffraction, scanning electron microscopy, and gas chromatography and mass spectrometry. Carpogenic NPs degraded methyl red up to 83% with pseudo-first-order degradation kinetics (R2 = 0.88) in 18 min signifying their remediation role in environment in conformity with all principles of green chemistry. Photocatalytic assays were performed in direct solar irradiance. Nine pathogens of biomedical and agricultural significance having multi-drug resistance were inhibited in vitro via the Kirby-Bauer disc diffusion assay. The enhanced photocatalytic and antimicrobial inhibition not only makes carpogenic ZnO NPs a future photo-degradative candidate for environmental remediation but also a nanofertiliser, nanofungicide, and nanobactericide synthesised via bioinspired, biomimetic, green, and unprecedented route.
Collapse
Affiliation(s)
- Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan.
| | - Shaan Bibi Jaffri
- Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, 46000 Rawalpindi, Pakistan
| |
Collapse
|
92
|
Mirza AU, Kareem A, Nami SA, Bhat SA, Mohammad A, Nishat N. Malus pumila and Juglen regia plant species mediated zinc oxide nanoparticles: Synthesis, spectral characterization, antioxidant and antibacterial studies. Microb Pathog 2019; 129:233-241. [DOI: 10.1016/j.micpath.2019.02.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 11/16/2022]
|
93
|
Shamsiya A, Damodaran B. A Click Strategy for the Synthesis of Fluorescent Pyrimidinone‐Triazole Hybrids with CDK2 Selectivity in HeLa and A549 Cell Lines. ChemistrySelect 2019. [DOI: 10.1002/slct.201803748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aranhikkal Shamsiya
- Department of ChemistryUniversity of Calicut, Malappuram- 673635 Kerala India
| | - Bahulayan Damodaran
- Department of ChemistryUniversity of Calicut, Malappuram- 673635 Kerala India
| |
Collapse
|
94
|
Sharmila G, Thirumarimurugan M, Muthukumaran C. Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: Characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
95
|
Synthesis of zinc oxide nanoparticles (ZnO NPs) using pure bioflavonoid rutin and their biomedical applications: antibacterial, antioxidant and cytotoxic activities. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-018-03717-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
96
|
Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications. INTERFACE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1016/b978-0-12-813586-0.00006-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
97
|
Kahsay MH, Tadesse A, RamaDevi D, Belachew N, Basavaiah K. Green synthesis of zinc oxide nanostructures and investigation of their photocatalytic and bactericidal applications. RSC Adv 2019; 9:36967-36981. [PMID: 35539084 PMCID: PMC9075592 DOI: 10.1039/c9ra07630a] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023] Open
Abstract
We report a facile one-pot green synthesis of zinc oxide (ZnO) nanostructures using aqueous leaf extract of Dolichos Lablab L. as the reducing and capping agent. The optical properties, structure and morphology of the as-synthesized ZnO nanostructures have been characterized by UV-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) supported with energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). TEM analysis revealed that the as-synthesized ZnO nanostructures have an average particle diameter of 29 nm. XRD patterns confirmed the formation of phase-pure ZnO nanostructures with a hexagonal wurtzite structure. The synthesized ZnO nanostructures were used as a catalyst in the photodegradation of methylene blue (MB), rhodamine B (RhB) and orange II (OII) under visible and near-UV irradiation. The results showed the highest efficiency of photodegradation of ZnO nanostructures for MB (80%), RhB (95%) and OII (66%) at pH values of 11, 9 and 5, respectively, in a 210 min time interval. In addition, the antimicrobial activity of the ZnO nanostructures using the agar well diffusion method against Bacillus pumilus and Sphingomonas paucimobilis showed the highest zones of inhibition of 18 mm and 20 mm, respectively. Hence, ZnO nanostructures have the potential to be used as a photocatalyst and bactericidal component. We report a facile one-pot green synthesis of zinc oxide (ZnO) nanostructures using aqueous leaf extract of Dolichos Lablab L. as the reducing and capping agent.![]()
Collapse
Affiliation(s)
| | - Aschalew Tadesse
- Department of Applied Chemistry
- Adama Science and Technology University
- Adama
- Ethiopia
| | | | - Neway Belachew
- Department of Chemistry
- Debre Berhan University
- Debre Berhan
- Ethiopia
| | - K. Basavaiah
- Department of Inorganic & Analytical Chemistry
- Andhra University
- Visakhapatnam
- India
| |
Collapse
|
98
|
Antimicrobial activity of zinc oxide nanoparticles synthesized from Aloe vera peel extract. SN APPLIED SCIENCES 2018. [DOI: 10.1007/s42452-018-0144-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
99
|
Singh P, Garg A, Pandit S, Mokkapati VRSS, Mijakovic I. Antimicrobial Effects of Biogenic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1009. [PMID: 30563095 PMCID: PMC6315689 DOI: 10.3390/nano8121009] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022]
Abstract
Infectious diseases pose one of the greatest health challenges in the medical world. Though numerous antimicrobial drugs are commercially available, they often lack effectiveness against recently developed multidrug resistant (MDR) microorganisms. This results in high antibiotic dose administration and a need to develop new antibiotics, which in turn requires time, money, and labor investments. Recently, biogenic metallic nanoparticles have proven their effectiveness against MDR microorganisms, individually and in synergy with the current/conventional antibiotics. Importantly, biogenic nanoparticles are easy to produce, facile, biocompatible, and environmentally friendly in nature. In addition, biogenic nanoparticles are surrounded by capping layers, which provide them with biocompatibility and long-term stability. Moreover, these capping layers provide an active surface for interaction with biological components, facilitated by free active surface functional groups. These groups are available for modification, such as conjugation with antimicrobial drugs, genes, and peptides, in order to enhance their efficacy and delivery. This review summarizes the conventional antibiotic treatments and highlights the benefits of using nanoparticles in combating infectious diseases.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Abhroop Garg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Santosh Pandit
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Chalmers, Sweden.
| | - V R S S Mokkapati
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Chalmers, Sweden.
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Chalmers, Sweden.
| |
Collapse
|
100
|
Rajeshkumar S, Kumar SV, Ramaiah A, Agarwal H, Lakshmi T, Roopan SM. Biosynthesis of zinc oxide nanoparticles usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme Microb Technol 2018; 117:91-95. [DOI: 10.1016/j.enzmictec.2018.06.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 05/09/2018] [Accepted: 06/24/2018] [Indexed: 10/28/2022]
|