51
|
F5-peptide enhances the efficacy of the non-hormonal male contraceptive adjudin. Contraception 2019; 99:350-356. [PMID: 30763581 DOI: 10.1016/j.contraception.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/07/2019] [Accepted: 01/19/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The bioavailability of the non-hormonal male contraceptive adjudin is low in rats due to the blood-testis barrier (BTB). This study was designed to examine if F5-peptide, an endogenously produced reversible BTB modifier, could enhance the bioavailability of adjudin to affect spermatogenesis and provide a contraceptive effect in rats while reducing systemic toxicity. STUDY DESIGN We overexpressed F5-peptide in adult male rats (n=10 rats; with 3 or 4 rats for each of the three different experiments noted in the three regimens) by intratesticular injection of a mammalian expression vector pCI-neo (pCI-neo/F5-peptide) vs. empty vector alone (pCI-neo/Ctrl) to be followed by treatment with adjudin by oral gavage at a dose of 10 or 20 mg/kg. The status of spermatogenesis was assessed by histological analysis and dual-labeled immunofluorescence analysis on Day 16. To assess fertility, we allowed treated males (n=3-4 rats) to mate with mature female rats (n=3-4) individually, and assessed the number of pups on Days 23, 36 and 82 to assess fertility and reversibility. RESULTS All 4 treated rats overexpressed with F5-peptide and low-dose adjudin were infertile by Day 36, and half of these rats were fertile by Day 82, illustrating reversibility. However, overexpression of F5-peptide alone (or low-dose adjudin alone) had no effects on fertility in n=3 rats. These findings were consistent with the histology data that illustrated the BTB modifier F5-peptide promoted the action of adjudin to induce germ cell exfoliation, mediated by changes in cytoskeletal organization of F-actin and microtubules across the epithelium, thereby reducing the systemic toxicity of adjudin. CONCLUSION In this proof-of-concept study, it was shown that overexpression of the F5-peptide prior to administration of adjudin to rats at a low (and ineffective dose by itself) was found to induce reversible male infertility. IMPLICATIONS Overexpression of F5-peptide, an endogenously produced biomolecule in the testis known to induce BTB remodeling, enhanced the contraceptive effect of adjudin in rats, supporting proof of concept studies of BTB disrupters in men.
Collapse
|
52
|
Regulation of Blood-Testis Barrier (BTB) Dynamics, Role of Actin-, and Microtubule-Based Cytoskeletons. Methods Mol Biol 2019; 1748:229-243. [PMID: 29453575 DOI: 10.1007/978-1-4939-7698-0_16] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure in the testis that supports meiosis and postmeiotic spermatid development since a delay in the establishment of a functional Sertoli cell barrier during postnatal development in rats or mice by 17-20 day postpartum (dpp) would lead to a delay of the first wave of meiosis. Furthermore, irreversible disruption of the BTB by toxicants also induces infertility in rodents. Herein, we summarize recent findings that BTB dynamics (i.e., disassembly, reassembly, and stabilization) are supported by the concerted efforts of the actin- and microtubule (MT)-based cytoskeletons. We focus on the role of two actin nucleation protein complexes, namely, the Arp2/3 (actin-related protein 2/3) complex and formin 1 (or the formin 1/spire 1 complex) known to induce actin nucleation, respectively, by conferring plasticity to actin cytoskeleton. We also focus on the MT plus (+)-end tracking protein (+TIP) EB1 (end-binding protein 1) which is known to confer MT stabilization. Furthermore, we discuss in particular how the interactions of these proteins modulate BTB dynamics during spermatogenesis. These findings also yield a novel hypothetical concept regarding the molecular mechanism that modulates BTB function.
Collapse
|
53
|
Bayoumy N, El-Shabrawi M, Nada H. Association of ICAM-1 gene variant rs5498 (1462A>G) with non-obstructive azoospermia. HUM FERTIL 2019; 23:234-238. [PMID: 30704307 DOI: 10.1080/14647273.2019.1566646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The blood testicular barrier (BTB) is a barrier protecting the testes from damage. It also plays an important role in spermatogenesis. The intracellular adhesion molecule-1 (ICAM-1) is a member of the immunoglobulin cell adhesion molecule family and is a constituent component of the BTB. This study was carried out to investigate the association between the single nucleotide polymorphism (SNP) rs5498 in the ICAM-1 gene and non-obstructive azoospermia. A total of 100 male patients with non-obstructive azoospermia and 100 fertile males (healthy control) were included in this study. Genotyping of ICAM-1 gene rs5498 was performed using polymerase chain reaction-restriction enzyme fragment length polymorphism (PCR-RFLP). Both AG and GG genotypes were significantly more prevalent among the infertile men compared to the control group (p < 0.001). The odds ratio (OR) for the polymorphic allele (G) was 2.4 with 95% confidence interval from 1.38 to 3.19 (p < 0.001). The study shows that ICAM-1 rs5498 (1462A>G) SNP is positively associated with an increased risk for obstructive azoospermia, with the genotype AG heterozygotes showing a significantly higher frequency among infertile men.
Collapse
Affiliation(s)
- Nervana Bayoumy
- Department of Physiology, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mohamed El-Shabrawi
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hesham Nada
- Department of Andrology and Dermatology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
54
|
Mao BP, Li L, Yan M, Lian Q, Ge R, Cheng CY. Environmental toxicants and cell polarity in the testis. Reprod Toxicol 2018; 81:253-258. [DOI: 10.1016/j.reprotox.2018.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
|
55
|
Wen Q, Mruk D, Tang EI, Wong CK, Lui WY, Lee WM, Xiao X, Silvestrini B, Cheng CY. Cell polarity and cytoskeletons-Lesson from the testis. Semin Cell Dev Biol 2018; 81:21-32. [PMID: 28965865 PMCID: PMC5889362 DOI: 10.1016/j.semcdb.2017.09.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Cell polarity in the adult mammalian testis refers to the polarized alignment of developing spermatids during spermiogenesis and the polarized organization of organelles (e.g., phagosomes, endocytic vesicles, Sertoli cell nuclei, Golgi apparatus) in Sertoli cells and germ cells to support spermatogenesis. Without these distinctive features of cell polarity in the seminiferous epithelium, it is not possible to support the daily production of millions of sperm in the limited space provided by the seminiferous tubules in either rodent or human males through the adulthood. In short, cell polarity provides a novel mean to align spermatids and the supporting organelles (e.g., phagosomes, Golgi apparatus, endocytic vesicles) in a highly organized fashion spatially in the seminiferous epithelium during the epithelial cycle of spermatogenesis. This is analogous to different assembling units in a manufacturing plant such that as developing spermatids move along the "assembly line" conferred by Sertoli cells, different structural/functional components can be added to (or removed from) the developing spermatids during spermiogenesis, so that functional spermatozoa are produced at the end of the assembly line. Herein, we briefly review findings regarding the regulation of cell polarity in the testis with specific emphasis on developing spermatids, supported by an intriguing network of regulatory proteins along a local functional axis. Emerging evidence has suggested that cell cytoskeletons provide the tracks which in turn confer the unique assembly lines in the seminiferous epithelium. We also provide some thought-provoking concepts based on which functional experiments can be designed in future studies.
Collapse
Affiliation(s)
- Qing Wen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Ave, New York, New York 10065
| | - Dolores Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Ave, New York, New York 10065
| | - Elizabeth I. Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Ave, New York, New York 10065
| | - Chris K.C. Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Wing-yee Lui
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Will M. Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | | | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, 1230 York Ave, New York, New York 10065
| |
Collapse
|
56
|
Hollenbach J, Jung K, Noelke J, Gasse H, Pfarrer C, Koy M, Brehm R. Loss of connexin43 in murine Sertoli cells and its effect on blood-testis barrier formation and dynamics. PLoS One 2018; 13:e0198100. [PMID: 29856785 PMCID: PMC5983412 DOI: 10.1371/journal.pone.0198100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Connexin43 (Cx43) is the predominant testicular gap junction protein and in cases of impaired spermatogenesis, Cx43 expression has been shown to be altered in several mammals. Amongst other functions, Cx43 is supposed to regulate junction formation of the blood-testis barrier (BTB). The aim of the present study was to investigate the expression pattern of different tight junction (TJ) proteins of the murine BTB using SC-specific Cx43 knockout mice (SCCx43KO). Adult homozygous male SCCx43KO mice (SCCx43KO-/-) predominantly show an arrest of spermatogenesis and SC-only tubules that might have been caused by an altered BTB assembly, composition or regulation. TJ molecules claudin-3, -5 and -11 were examined in adult wild type (WT) and SCCx43KO-/- mice using immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR). In this context, investigation of single tubules with residual spermatogenesis in SCCx43KO-/- mice was particularly interesting to identify a potential Cx43-independent influence of germ cells (GC) on BTB composition and dynamics. In tubules without residual spermatogenesis, a diffuse cytoplasmic distribution pattern for claudin-11 protein could be demonstrated in mutant mice. Nevertheless, claudin-11 seems to form functional TJ. Claudin-3 and -5 could not be detected immunohistochemically in the seminiferous epithelium of those tubules. Correspondingly, claudin-3 and -5 mRNA expression was decreased, providing evidence of generally impaired BTB dynamics in adult KO mice. Observations of tubules with residual spermatogenesis suggested a Cx43-independent regulation of TJ proteins by GC populations. To determine initial BTB formation in peripubertal SCCx43KO-/- mice, immunohistochemical staining and qRT-PCR of claudin-11 were carried out in adolescent SCCx43KO-/- and WT mice. Additionally, BTB integrity was functionally analysed using a hypertonic glucose fixative. These analyses revealed that SCCx43KO-/- mice formed an intact BTB during puberty in the same time period as WT mice, which however seemed to be accelerated.
Collapse
Affiliation(s)
- Julia Hollenbach
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Joanna Noelke
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hagen Gasse
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christiane Pfarrer
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mirja Koy
- Institute for Immunology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Brehm
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
57
|
Fietz D. Transporter for sulfated steroid hormones in the testis - expression pattern, biological significance and implications for fertility in men and rodents. J Steroid Biochem Mol Biol 2018; 179:8-19. [PMID: 29017936 DOI: 10.1016/j.jsbmb.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
In various tissues, steroid hormones may be sulfated, glucuronidated or otherwise modified. For a long time, these hydrophilic molecules have been considered to be merely inactive metabolites for excretion via bile or urine. Nevertheless, different organs such as the placenta and breast tissue produce large amounts of sulfated steroids. After the discovery of the enzyme steroid sulfatase, which is able to re-activate sulfated steroids, these precursor molecules entered the focus of interest again as a local supply for steroid hormone synthesis with a prolonged half-life compared to their unconjugated counterparts. The first descriptions of this so-called sulfatase pathway in the placenta and breast tissue (with special regards to hormone-dependent breast cancer) were quickly followed by studies of steroid sulfate production and function in the testis. These hydrophilic molecules may not permeate the cell membrane by diffusion in the way that unbound steroids can, but need to be transported through the plasma membrane by transport systems. In the testis, a functional sulfatase pathway requires the expression of specific uptake carrier and efflux transporters in testicular cells, i.e. Sertoli, Leydig and germ cells. Main focus has to be placed on Sertoli cells, as these cells build up the blood-testis barrier. In this review, an overview of carrier expression pattern in the human as well as rodent testis is provided with special interest towards implications on fertility.
Collapse
Affiliation(s)
- D Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
58
|
Li SYT, Yan M, Chen H, Jesus T, Lee WM, Xiao X, Cheng CY. mTORC1/rpS6 regulates blood-testis barrier dynamics and spermatogenetic function in the testis in vivo. Am J Physiol Endocrinol Metab 2018; 314:E174-E190. [PMID: 29089336 PMCID: PMC5866417 DOI: 10.1152/ajpendo.00263.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/02/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022]
Abstract
The blood-testis barrier (BTB), conferred by Sertoli cells in the mammalian testis, is an important ultrastructure that supports spermatogenesis. Studies using animal models have shown that a disruption of the BTB leads to meiotic arrest, causing defects in spermatogenesis and male infertility. To better understand the regulation of BTB dynamics, we report findings herein to understand the role of ribosomal protein S6 (rpS6), a downstream signaling protein of mammalian target of rapamycin complex 1 (mTORC1), in promoting BTB disruption in the testis in vivo, making the barrier "leaky." Overexpression of wild-type rpS6 (rpS6-WT, the full-length cDNA cloned into the mammalian expression vector pCI-neo) and a constitutively active quadruple phosphomimetic mutant cloned into pCI-neo (p-rpS6-MT) vs. control (empty pCI-neo vector) was achieved by transfecting adult rat testes with the corresponding plasmid DNA using a Polyplus in vivo-jetPEI transfection reagent. On the basis of an in vivo functional BTB integrity assay, p-rpS6-MT was found to induce BTB disruption better than rpS6-WT did (and no effects in empty vector control), leading to defects in spermatogenesis, including loss of spermatid polarity and failure in the transport of cells (e.g., spermatids) and organelles (e.g., phagosomes), to be followed by germ exfoliation. More important, rpS6-WT and p-rpS6-MT exert their disruptive effects through changes in the organization of actin- and microtubule (MT)-based cytoskeletons, which are mediated by changes in the spatiotemporal expression of actin- and MT-based binding and regulatory proteins. In short, mTORC1/rpS6 signaling complex is a regulator of spermatogenesis and BTB by modulating the organization of the actin- and MT-based cytoskeletons.
Collapse
Affiliation(s)
- Stephen Y T Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Ming Yan
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University , Nanjing , China
| | - Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Tito Jesus
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences , Hangzhou , China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council , New York, New York
| |
Collapse
|
59
|
Garolla A, Šabović I, Tescari S, De Toni L, Menegazzo M, Cosci I, De Filippis V, Giarola M, Foresta C. Impaired sperm function in infertile men relies on the membrane sterol pattern. Andrology 2018; 6:325-334. [PMID: 29378089 DOI: 10.1111/andr.12468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 10/23/2017] [Accepted: 12/15/2017] [Indexed: 01/20/2023]
Abstract
Membrane cholesterol removal appears a key step for the gain of fertility potential during sperm maturation. However, the membrane sterol pattern in sperm cells from infertile patients, with impaired sperm parameters, has been poorly investigated. To elucidate a causative link between sperm membrane composition in male fertility, here we have investigated the levels of cholesterol and its oxidized derivatives 7β-hydroxycholesterol and 7-keto-cholesterol in sixteen infertile patients with oligo-asthenozoospermia and 16 normozoospermic (N) fertile subjects. Furthermore, ten of 16 N fertile subjects agreed to receive a defined testicular thermal challenge by adhering to a programme of sauna sessions for 1 month. Semen samples were obtained from each of the participants, and sperm parameters were assessed according to the World Health Organization criteria. Sperm levels of cholesterol, 7β-hydroxycholesterol and 7-keto-cholesterol were quantified by ultra-pressure liquid chromatography mass spectrometry. The results showed that oligo-asthenozoospermia patients had a huge amount of cholesterol content compared with fertile subjects (12.40 ± 6.05 μg/106 cells vs. 0.45 ± 0.28 μg/106 cells, p < 0.001, N and oligo-asthenozoospermia, respectively). Also, oxidized derivatives were significantly higher in oligo-asthenozoospermia patients (7β-hydroxycholesterol: 1.96 ± 1.03 ng/106 cells vs. 0.075 ± 0.05 ng/106 cells, p < 0.001 and 7-keto-cholesterol: 1.11 ± 0.72 ng/106 cells vs. 0.005 ± 0.003 ng/106 cells, p < 0.001). Moreover, sauna exposure, in parallel with a progressive worsening of sperm motility parameters, was associated with a reversible increase in sperm cholesterol after the third and fourth week of treatment, whilst 7β-hydroxycholesterol and 7-keto-cholesterol levels showed an earlier enhancement starting from the second week. Our data show for the first time in humans a strong difference in the cholesterol and its oxidized derivatives of infertile and fertile subjects. These findings suggest a strict biochemical link relating testis function, sperm membrane status and male fertility potential.
Collapse
Affiliation(s)
- A Garolla
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - I Šabović
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy.,Department of Clinical and Experimental Oncology, IOV-IRCCS, Padova, Italy
| | - S Tescari
- Department of Pharmaceuticals and Pharmacological Sciences, Laboratory of Protein Chemistry, School of Medicine, University of Padova, Padova, Italy
| | - L De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - M Menegazzo
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - I Cosci
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - V De Filippis
- Department of Pharmaceuticals and Pharmacological Sciences, Laboratory of Protein Chemistry, School of Medicine, University of Padova, Padova, Italy
| | - M Giarola
- Center for Technological Platforms, University of Verona, Verona, Italy
| | - C Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|
60
|
Shi JF, Li YK, Ren K, Xie YJ, Yin WD, Mo ZC. Characterization of cholesterol metabolism in Sertoli cells and spermatogenesis (Review). Mol Med Rep 2018; 17:705-713. [PMID: 29115523 PMCID: PMC5780145 DOI: 10.3892/mmr.2017.8000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/31/2017] [Indexed: 01/21/2023] Open
Abstract
The Sertoli cell, which is the supporting cell of spermatogenesis, has an important role in the endocrine and paracrine control of spermatogenesis. Functionally, it provides the cells of the seminiferous epithelium with nutrition, conveys mature spermatids to the lumen of seminiferous tubules, secretes androgen‑binding protein and interacts with endocrine Leydig cells. In addition, the levels of cholesterol, as well as its intermediates, vary greatly between nongonadal tissues and the male reproductive system. Throughout spermatogenesis, a dynamic and constant alteration in the membrane lipid composition of Sertoli cells occurs. In several mammalian species, testis meiosis‑activating sterol and desmosterol, as well as other cholesterol precursors, accumulate in the testes and spermatozoa. In addition, certain cholesterogenic genes exhibit stage‑specific expression patterns during spermatogenesis, including the cytochrome P450 enzyme lanosterol 14α‑demethylase. Inconsistency in the patterns of gene expression during spermatogenesis indicates a cell‑type specific and complex temporary modulation of lipids and cholesterol, which also implicates the dynamic interactions between Sertoli cells and germ cells. Furthermore, in the female reproductive tract and during epididymal transit, which is a prerequisite for valid fertilization, the modulation of cholesterol occurring in spermatozoal membranes further indicates the functional importance of sterol compounds in spermatogenesis. However, the exact role of cholesterol metabolism in Sertoli cells in sperm production is unknown. The present review article describes the progress made in the research regarding the characteristics of the Sertoli cell, particularly the regulation of its cholesterol metabolism during spermatogenesis.
Collapse
Affiliation(s)
- Jin-Feng Shi
- Institute of Cardiovascular Disease, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Key Laboratory for Arteriosclerology of Hunan Province, Hengyang, Hunan 421001, P.R. China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan 421001, P.R. China
| | - Yu-Kun Li
- Department of Histology and Embryology, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Kun Ren
- Institute of Cardiovascular Disease, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Key Laboratory for Arteriosclerology of Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Yuan-Jie Xie
- Department of Histology and Embryology, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei-Dong Yin
- Institute of Cardiovascular Disease, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Key Laboratory for Arteriosclerology of Hunan Province, Hengyang, Hunan 421001, P.R. China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan 421001, P.R. China
| | - Zhong-Cheng Mo
- Department of Histology and Embryology, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
61
|
Chen H, Lui WY, Mruk DD, Xiao X, Ge R, Lian Q, Lee WM, Silvestrini B, Cheng CY. Monitoring the Integrity of the Blood-Testis Barrier (BTB): An In Vivo Assay. Methods Mol Biol 2018; 1748:245-252. [PMID: 29453576 DOI: 10.1007/978-1-4939-7698-0_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The blood-testis barrier is a unique ultrastructure in the mammalian testis, located near the basement membrane of the seminiferous tubule that segregates the seminiferous epithelium into the basal and the adluminal (apical) compartment. Besides restricting paracellular and transcellular passage of biomolecules (e.g., paracrine factors, hormones), water, electrolytes, and other substances including toxicants and/or drugs to enter the adluminal compartment of the epithelium, the BTB is an important ultrastructure that supports spermatogenesis. As such, a sensitive and reliable assay to monitor its integrity in vivo is helpful for studying testis biology. This assay is based on the ability of an intact BTB to exclude the diffusion of a small molecule such as sulfo-NHS-LC-biotin (C20H29N4NaO9S2, Mr. 556.59, a water-soluble and membrane-impermeable biotinylation reagent) from the basal to the apical compartment of the seminiferous epithelium. Herein, we summarize the detailed procedures on performing the assay and to obtain semiquantitative data to assess the extent of BTB damage when compared to positive controls, such as treatment of rats with cadmium chloride (CdCl2) which is known to compromise the BTB integrity.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Wing-Yee Lui
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China
| | - Renshan Ge
- Institute of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingquan Lian
- Institute of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.
| |
Collapse
|
62
|
Hernandez A. Thyroid Hormone Role and Economy in the Developing Testis. VITAMINS AND HORMONES 2018; 106:473-500. [DOI: 10.1016/bs.vh.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
63
|
Pelletier RM, Akpovi CD, Chen L, Vitale ML. Cholesterol metabolism and Cx43, Cx46, and Cx50 gap junction protein expression and localization in normal and diabetic and obese ob/ob and db/db mouse testes. Am J Physiol Endocrinol Metab 2018; 314:E21-E38. [PMID: 28851737 PMCID: PMC5866387 DOI: 10.1152/ajpendo.00215.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/07/2017] [Accepted: 08/24/2017] [Indexed: 11/22/2022]
Abstract
Decreased fertility and birth rates arise from metabolic disorders. This study assesses cholesterol metabolism and Cx46, Cx50, and Cx43 expression in interstitium- and seminiferous tubule-enriched fractions of leptin-deficient ( ob/ob) and leptin receptor-deficient ( db/db) mice, two type 2 diabetes and obesity models associated with infertility. Testosterone levels decreased and glucose and free and esterified cholesterol (FC and EC) levels increased in serum, whereas FC and EC levels decreased in the interstitium, in ob/ob and db/db mice. In tubules, a decrease in EC caused FC-to-EC ratios to increase in db/db mice. In tubules, only acyl coenzyme A:cholesterol acyl transferase type 1 and 2 protein levels significantly decreased in ob/ob, but not db/db, mice compared with wild-type mice, and imbalances in the cholesterol transporters Niemann-Pick C1 (NPC1), ATP-binding cassette A1 (ABCA1), scavenger receptor class B member I (SR-BI), and cluster of differentiation 36 (CD36) were observed in ob/ob and db/db mice. In tubules, 14-kDa Cx46 prevailed during development, 48- to 49- and 68- to 71-kDa Cx46 prevailed during adulthood, and total Cx46 changed little. Compared with wild-type mice, 14-kDa Cx46 increased, whereas 48- to 49- and 68- to 71-kDa Cx46 decreased, in tubules, whereas the opposite occurred in the interstitium, in db/db and ob/ob mice. Total and 51-kDa Cx50 increased in db/db and ob/ob interstitium and tubules. Cx43 levels decreased in ob/ob interstitium and tubules, whereas Cx43 decreased in db/db interstitium but increased in db/db tubules. Apoptosis levels measured by ELISA and numbers of apostain-labeled apoptotic cells significantly increased in db/db, but not ob/ob, tubules. Testicular db/db capillaries were Cx50-positive but weakly Cx43-positive with a thickened lamina, suggesting altered permeability. Our findings indicate that the db mutation-induced impairment of meiosis may arise from imbalances in cholesterol metabolism and upregulated Cx43 expression and phosphorylation in tubules.
Collapse
Affiliation(s)
- R-Marc Pelletier
- Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec , Canada
| | - Casimir D Akpovi
- Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec , Canada
| | - Li Chen
- Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec , Canada
| | - María Leiza Vitale
- Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec , Canada
| |
Collapse
|
64
|
Ramos-Treviño J, Bassol-Mayagoitia S, Ruiz-Flores P, Espino-Silva PK, Saucedo-Cárdenas O, Villa-Cedillo SA, Nava-Hernández MP. In Vitro Evaluation of Damage by Heavy Metals in Tight and Gap Junctions of Sertoli Cells. DNA Cell Biol 2017; 36:829-836. [PMID: 28829631 DOI: 10.1089/dna.2017.3839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Sertoli cell plays a vital role during the spermatogenesis process and has been identified as one of the main targets of the toxic action of heavy metals on the seminiferous epithelium. In the present work, the effect of lead (Pb), Arsenic (As), and Cadmium (Cd) in primary cultures of Sertoli cells was analyzed by measuring the expression of the genes Cldn11, Ocln, and Gja1 that participate in the tight and gap junctions, which are responsible for maintaining the blood-testis barrier. Sertoli cells were isolated from the testes of Wistar rats. Sertoli cell cultures were exposed separately and at the same concentrations of three heavy metals for 48 h. Subsequently, gene expression was measured by real-time polymerase chain reaction. In the morphological analysis of the cultures, after 24 h, the cultures exposed to Cd showed greatest detachment of the monolayer, followed by those exposed to As and Pb. As for gene expression patterns, As induced a decrease in the expression of the Cldn11 gene at 24 and 48 h (p < 0.01) and in that of Ocln at 24 (p < 0.001) and 48 h (p < 0.01), whereas Cd induced overexpression of the Gja1 gene from day 1 of exposure (p < 0.001) and subexpression of the Ocln gene (p < 0.05) at 24 h. Because each of these three metals generated different expression patterns in the three genes, we can postulate that the mechanisms of damage that they induce are different; therefore, the effect that they exert on the Sertoli cell occurs through different pathways, generating changes in structural proteins, altering Sertoli cell morphology, and compromising its function in the regulation of the spermatogenesis process.
Collapse
Affiliation(s)
- Juan Ramos-Treviño
- 1 Departamento de Biología de la Reproducción, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila , Torreón, Mexico
| | - Susana Bassol-Mayagoitia
- 1 Departamento de Biología de la Reproducción, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila , Torreón, Mexico
| | - Pablo Ruiz-Flores
- 2 Departmento de Genética y Medicina Molécular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila , Torreón, Mexico
| | - Perla Karina Espino-Silva
- 2 Departmento de Genética y Medicina Molécular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila , Torreón, Mexico
| | - Odila Saucedo-Cárdenas
- 3 Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León , Monterrey, México .,4 Departamento de Genética Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social , Monterrey, México
| | - Sheila Adela Villa-Cedillo
- 3 Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León , Monterrey, México
| | - Martha P Nava-Hernández
- 1 Departamento de Biología de la Reproducción, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila , Torreón, Mexico
| |
Collapse
|
65
|
Chen H, Mruk DD, Lee WM, Cheng CY. Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane-derived noncollagenous 1 domain peptide. FASEB J 2017; 31:3587-3607. [PMID: 28487282 DOI: 10.1096/fj.201700052r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/11/2017] [Indexed: 11/11/2022]
Abstract
Spermatogenesis takes place in the epithelium of the seminiferous tubules of the testes, producing millions of spermatozoa per day in an adult male in rodents and humans. Thus, multiple cellular events that are regulated by an array of signaling molecules and pathways are tightly coordinated to support spermatogenesis. Here, we report findings of a local regulatory axis between the basement membrane (BM), the blood-testis barrier (BTB), and the apical ectoplasmic specialization (apical ES; a testis-specific, actin-rich adherens junction at the Sertoli cell-spermatid interface) to coordinate cellular events across the seminiferous epithelium during the epithelial cycle. In short, a biologically active fragment, noncollagenous 1 (NC1) domain that is derived from collagen chains in the BM, was found to modulate cell junction dynamics at the BTB and apical ES. NC1 domain from the collagen α3(IV) chain was cloned into a mammalian expression vector, pCI-neo, with and without a collagen signal peptide. We also prepared a specific Ab against the purified recombinant NC1 domain peptide. These reagents were used to examine whether overexpression of NC1 domain with high transfection efficacy would perturb spermatogenesis, in particular, spermatid adhesion (i.e., inducing apical ES degeneration) and BTB function (i.e., basal ES and tight junction disruption, making the barrier leaky), in the testis in vivo We report our findings that NC1 domain derived from collagen α3(IV) chain-a major structural component of the BM-was capable of inducing BTB remodeling, making the BTB leaky in studies in vivo Furthermore, NC1 domain peptide was transported across the epithelium via a microtubule-dependent mechanism and is capable of inducing apical ES degeneration, which leads to germ cell exfoliation from the seminiferous epithelium. Of more importance, we show that NC1 domain peptide exerted its regulatory effect by disorganizing actin microfilaments and microtubules in Sertoli cells so that they failed to support cell adhesion and transport of germ cells and organelles (e.g., residual bodies, phagosomes) across the seminiferous epithelium. This local regulatory axis between the BM, BTB, and the apical ES thus coordinates cellular events that take place across the seminiferous epithelium during the epithelial cycle of spermatogenesis.-Chen, H., Mruk, D. D., Lee, W. M., Cheng, C. Y. Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane-derived noncollagenous 1 domain peptide.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; .,School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
66
|
Wen Q, Tang EI, Gao Y, Jesus TT, Chu DS, Lee WM, Wong CKC, Liu YX, Xiao X, Silvestrini B, Cheng CY. Signaling pathways regulating blood-tissue barriers - Lesson from the testis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:141-153. [PMID: 28450047 DOI: 10.1016/j.bbamem.2017.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022]
Abstract
Signaling pathways that regulate blood-tissue barriers are important for studying the biology of various blood-tissue barriers. This information, if deciphered and better understood, will provide better therapeutic management of diseases particularly in organs that are sealed by the corresponding blood-tissue barriers from systemic circulation, such as the brain and the testis. These barriers block the access of antibiotics and/or chemotherapeutical agents across the corresponding barriers. Studies in the last decade using the blood-testis barrier (BTB) in rats have demonstrated the presence of several signaling pathways that are crucial to modulate BTB function. Herein, we critically evaluate these findings and provide hypothetical models regarding the underlying mechanisms by which these signaling molecules/pathways modulate BTB dynamics. This information should be carefully evaluated to examine their applicability in other tissue barriers which shall benefit future functional studies in the field. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Qing Wen
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Elizabeth I Tang
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Ying Gao
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Tito T Jesus
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Darren S Chu
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, China
| | | | - C Yan Cheng
- The Mary M. Woldford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
67
|
Gao Y, Chen H, Xiao X, Lui WY, Lee WM, Mruk DD, Cheng CY. Perfluorooctanesulfonate (PFOS)-induced Sertoli cell injury through a disruption of F-actin and microtubule organization is mediated by Akt1/2. Sci Rep 2017; 7:1110. [PMID: 28439067 PMCID: PMC5430865 DOI: 10.1038/s41598-017-01016-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
PFOS (perfluorooctanesulfonate, or perfluorooctane sulfonic acid) is an anthropogenic fluorosurfactant widely used in consumer products. While its use in Europe, Canada and the U.S. has been banned due to its human toxicity, it continues to be used in China and other developing countries as a global pollutant. Herein, using an in vitro model of Sertoli cell blood-testis barrier (BTB), PFOS was found to induce Sertoli cell injury by perturbing actin cytoskeleton through changes in the spatial expression of actin regulatory proteins. Specifically, PFOS caused mis-localization of Arp3 (actin-related protein 3, a branched actin polymerization protein) and palladin (an actin bundling protein). These disruptive changes thus led to a dis-organization of F-actin across Sertoli cell cytosol, causing truncation of actin microfilament, thereby failing to support the Sertoli cell morphology and adhesion protein complexes (e.g., occludin-ZO-1, CAR-ZO-1, and N-cadherin-ß-catenin), through a down-regulation of p-Akt1-S473 and p-Akt2-S474. The use of SC79, an Akt1/2 activator, was found to block the PFOS-induced Sertoli cell injury by rescuing the PFOS-induced F-actin dis-organization. These findings thus illustrate PFOS exerts its disruptive effects on Sertoli cell function downstream through Akt1/2. As such, PFOS-induced male reproductive dysfunction can possibly be managed through an intervention on Akt1/2 expression.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York, 10065, USA
| | - Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York, 10065, USA
| | - Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York, 10065, USA. .,Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China.
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Will M Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York, 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York, 10065, USA.
| |
Collapse
|
68
|
Testis Transcriptome Modulation in Klinefelter Patients with Hypospermatogenesis. Sci Rep 2017; 7:45729. [PMID: 28361989 PMCID: PMC5374630 DOI: 10.1038/srep45729] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
The main genetic cause of male infertility is represented by the Klinefelter Syndrome (KS), a condition accounting for 3% of all cases of infertility and up to15% of cases of azoospermia. KS is generally characterized by azoospermia; approximately 10% of cases have severe oligozoospermia. Among these, the 30-40% of patients show hypospermatogenesis. The mechanisms leading to adult testis dysfunctions are not completely understood. A microarray transcriptome analysis was performed on testis biopsies obtained from three KS patients with hypospermatogenesis and three control subjects. KS testis showed a differential up- and down-regulation of 303 and 747 transcripts, respectively, as compared to controls. The majority of down-regulated transcripts were involved in spermiogenesis failure and testis morphological defects, whereas up-regulated genes were responsible for testis apoptotic processes. Functional analysis of the transcriptionally altered genes indicated a deregulation in cell death, germ cell function and morphology as well as blood-testis-barrier maintenance and Leydig cells activity. These data support a complex scenario in which spermatogenic impairment is the result of functional and morphological alterations in both germinal and somatic components of KS testis. These findings could represent the basis for evaluating new markers of KS spermatogenesis and potential targets of therapeutic intervention to preserve residual spermatogenesis.
Collapse
|
69
|
McCabe MJ, Foo CF, Dinger ME, Smooker PM, Stanton PG. Claudin-11 and occludin are major contributors to Sertoli cell tight junction function, in vitro. Asian J Androl 2017; 18:620-6. [PMID: 26585695 PMCID: PMC4955190 DOI: 10.4103/1008-682x.163189] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Sertoli cell tight junction (TJ) is the key component of the blood-testis barrier, where it sequesters developing germ cells undergoing spermatogenesis within the seminiferous tubules. Hormonally regulated claudin-11 is a critical transmembrane protein involved in barrier function and its murine knockout results in infertility. We aimed to assess quantitatively the significance of the contribution of claudin-11 to TJ function, in vitro, using siRNA-mediated gene silencing. We also conducted an analysis of the contribution of occludin, another intrinsic transmembrane protein of the TJ. Silencing of claudin-11 and/or occludin was conducted using siRNA in an immature rat Sertoli cell culture model. Transepithelial electrical resistance was used to assess quantitatively TJ function throughout the culture. Two days after siRNA treatment, cells were fixed for immunocytochemical localization of junction proteins or lyzed for RT-PCR assessment of mRNA expression. Silencing of claudin-11, occludin, or both resulted in significant decreases in TJ function of 55% (P < 0.01), 51% (P < 0.01), and 62% (P < 0.01), respectively. Data were concomitant with significant decreases in mRNA expression and marked reductions in the localization of targeted proteins to the Sertoli cell TJ. We provide quantitative evidence that claudin-11 contributes significantly (P < 0.01) to Sertoli cell TJ function in vitro. Interestingly, occludin, which is hormonally regulated but not implicated in infertility until late adulthood, is also a significant (P < 0.01) contributor to barrier function. Our data are consistent with in vivo studies that clearly demonstrate a role for these proteins in maintaining normal TJ barrier structure and function.
Collapse
Affiliation(s)
- Mark J McCabe
- Male Fertility Regulation Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168; School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3088; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010; St Vincent's Clinical School, UNSW, Sydney, New South Wales 2052, Australia
| | - Caroline Fh Foo
- Male Fertility Regulation Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Marcel E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010; St Vincent's Clinical School, UNSW, Sydney, New South Wales 2052, Australia
| | - Peter M Smooker
- School of Applied Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria 3088, Australia
| | - Peter G Stanton
- Male Fertility Regulation Laboratory, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia
| |
Collapse
|
70
|
Gao Y, Mruk D, Chen H, Lui WY, Lee WM, Cheng CY. Regulation of the blood-testis barrier by a local axis in the testis: role of laminin α2 in the basement membrane. FASEB J 2017; 31:584-597. [PMID: 27815338 PMCID: PMC5240664 DOI: 10.1096/fj.201600870r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
Laminin α2 is one of the constituent components of the basement membrane (BM) in adult rat testes. Earlier studies that used a mouse genetic model have shown that a deletion of laminin α2 impedes male fertility by disrupting ectoplasmic specialization (ES; a testis-specific, actin-rich anchoring junction) function along the length of Sertoli cell in the testis. This includes ES at the Sertoli cell-elongating/elongated spermatid interface, which is known as apical ES and possibly the Sertoli-Sertoli cell interface, known as basal ES, at the blood-testis barrier (BTB). Studies have also illustrated that there is a local regulatory axis that functionally links cellular events of spermiation that occur near the luminal edge of tubule lumen at the apical ES and the basal ES/BTB remodeling near the BM at opposite ends of the seminiferous epithelium during the epithelial cycle, known as the apical ES-BTB-BM axis. However, the precise role of BM in this axis remains unknown. Here, we show that laminin α2 in the BM serves as the crucial regulator in this axis as laminin α2, likely its 80-kDa fragment from the C terminus, was found to be transported across the seminiferous epithelium at stages VIII-IX of the epithelial cycle, from the BM to the luminal edge of the tubule, possibly being used to modulate apical ES restructuring at these stages. Of more importance, a knockdown of laminin α2 in Sertoli cells was shown to induce the Sertoli cell tight junction permeability barrier disruption via changes in localization of adhesion proteins at the tight junction and basal ES at the Sertoli cell BTB. These changes were found to be mediated by a disruption of F-actin organization that was induced by changes in the spatiotemporal expression of actin binding/regulatory proteins. Furthermore, laminin α2 knockdown also perturbed microtubule (MT) organization by considerable down-regulation of MT polymerization via changes in the spatiotemporal expression of EB1 (end-binding protein 1), a +TIP (MT plus-end tracking protein). In short, laminin α2 in the BM seems to play a crucial role in the BTB-BM axis by modulating BTB dynamics during spermatogenesis.-Gao, Y., Mruk, D., Chen, H., Lui, W.-Y., Lee, W. M., Cheng, C. Y. Regulation of the blood-testis barrier by a local axis in the testis: role of laminin α2 in the basement membrane.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Dolores Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA;
| |
Collapse
|
71
|
Abstract
Drebrin is a family of actin-binding proteins with two known members called drebrin A and E. Apart from the ability to stabilize F-actin microfilaments via their actin-binding domains near the N-terminus, drebrin also regulates multiple cellular functions due to its unique ability to recruit multiple binding partners to a specific cellular domain, such as the seminiferous epithelium during the epithelial cycle of spermatogenesis. Recent studies have illustrated the role of drebrin E in the testis during spermatogenesis in particular via its ability to recruit branched actin polymerization protein known as actin-related protein 3 (Arp3), illustrating its involvement in modifying the organization of actin microfilaments at the ectoplasmic specialization (ES) which includes the testis-specific anchoring junction at the Sertoli-spermatid (apical ES) interface and at the Sertoli cell-cell (basal ES) interface. These data are carefully evaluated in light of other recent findings herein regarding the role of drebrin in actin filament organization at the ES. We also provide the hypothetical model regarding its involvement in germ cell transport during the epithelial cycle in the seminiferous epithelium to support spermatogenesis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - Michelle W M Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
72
|
Chen H, Cheng CY. Planar cell polarity (PCP) proteins and spermatogenesis. Semin Cell Dev Biol 2016; 59:99-109. [PMID: 27108805 PMCID: PMC5071175 DOI: 10.1016/j.semcdb.2016.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 11/24/2022]
Abstract
In adult mammalian testes, spermatogenesis is comprised of several discrete cellular events that work in tandem to support the transformation and differentiation of diploid spermatogonia to haploid spermatids in the seminiferous epithelium during the seminiferous epithelial cycle. These include: self-renewal of spermatogonial stem cells via mitosis and their transformation into differentiated spermatogonia, meiosis I/II, spermiogenesis and the release of sperms at spermiation. Studies have shown that these cellular events are under precise and coordinated controls of multiple proteins and signaling pathways. These events are also regulated by polarity proteins that are known to confer classical apico-basal (A/B) polarity in other epithelia. Furthermore, spermatid development is likely supported by planar cell polarity (PCP) proteins since polarized spermatids are aligned across the plane of seminiferous epithelium in an orderly fashion, analogous to hair cells in the cochlea of the inner ear. Thus, the maximal number of spermatids can be packed and supported by a fixed population of differentiated Sertoli cells in the limited space of the seminiferous epithelium in adult testes. In this review, we briefly summarize recent findings regarding the role of PCP proteins in the testis. This information should be helpful in future studies to better understand the role of PCP proteins in spermatogenesis.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, United States.
| |
Collapse
|
73
|
Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43. Sci Rep 2016; 6:29667. [PMID: 27436542 PMCID: PMC4951654 DOI: 10.1038/srep29667] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.
Collapse
|
74
|
Gao Y, Lui WY, Lee WM, Cheng CY. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep 2016; 6:28589. [PMID: 27358069 PMCID: PMC4928075 DOI: 10.1038/srep28589] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022] Open
Abstract
Crumbs homolog 3 (or Crumbs3, CRB3) is a polarity protein expressed by Sertoli and germ cells at the basal compartment in the seminiferous epithelium. CRB3 also expressed at the blood-testis barrier (BTB), co-localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins N-cadherin/β-catenin at stages IV-VII only. The binding partners of CRB3 in the testis were the branched actin polymerization protein Arp3, and the barbed end-capping and bundling protein Eps8, illustrating its possible role in actin organization. CRB3 knockdown (KD) by RNAi in Sertoli cells with an established tight junction (TJ)-permeability barrier perturbed the TJ-barrier via changes in the distribution of TJ- and basal ES-proteins at the cell-cell interface. These changes were the result of CRB3 KD-induced re-organization of actin microfilaments, in which actin microfilaments were truncated, and extensively branched, thereby destabilizing F-actin-based adhesion protein complexes at the BTB. Using Polyplus in vivo-jetPEI as a transfection medium with high efficiency for CRB3 KD in the testis, the CRB3 KD testes displayed defects in spermatid and phagosome transport, and also spermatid polarity due to a disruption of F-actin organization. In summary, CRB3 is an actin microfilament regulator, playing a pivotal role in organizing actin filament bundles at the ES.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, New York, USA
| | - Wing-Yee Lui
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, 10065, New York, USA
| |
Collapse
|
75
|
Li N, Lee WM, Cheng CY. Overexpression of plastin 3 in Sertoli cells disrupts actin microfilament bundle homeostasis and perturbs the tight junction barrier. SPERMATOGENESIS 2016; 6:e1206353. [PMID: 27559491 DOI: 10.1080/21565562.2016.1206353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 02/08/2023]
Abstract
Throughout the epithelial cycle of spermatogenesis, actin microfilaments arranged as bundles near the Sertoli cell plasma membrane at the Sertoli cell-cell interface that constitute the blood-testis barrier (BTB) undergo extensive re-organization by converting between bundled and unbundled/branched configuration to give plasticity to the F-actin network. This is crucial to accommodate the transport of preleptotene spermatocytes across the BTB. Herein, we sought to examine changes in the actin microfilament organization at the Sertoli cell BTB using an in vitro model since Sertoli cells cultured in vitro is known to establish a functional tight junction (TJ)-permeability barrier that mimics the BTB in vivo. Plastin 3, a known actin microfilament cross-linker and bundling protein, when overexpressed in Sertoli cells using a mammalian expression vector pCI-neo was found to perturb the Sertoli cell TJ-barrier function even though its overexpression increased the overall actin bundling activity in these cells. Furthermore, plastin 3 overexpression also perturbed the localization and distribution of BTB-associated proteins, such as occludin-ZO1 and N-cadherin-β-catenin, this thus destabilized the barrier function. Collectively, these data illustrate that a delicate balance of actin microfilaments between organized in bundles vs. an unbundled/branched configuration is crucial to confer the homeostasis of the BTB and its integrity.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research , New York, NY, USA
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong , Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research , New York, NY, USA
| |
Collapse
|
76
|
Abstract
The purpose of this review is to describe the endocrine and local testicular factors that contribute to the regulation of the blood-testis barrier (BTB), using information gained from in vivo and in vitro models of BTB formation during/after puberty, and from the maintenance of BTB function during adulthood. In vivo the BTB, in part comprised of tight junctions between adjacent somatic Sertoli cells, compartmentalizes meiotic spermatocytes and post-meiotic spermatids away from the vasculature, and therefore prevents autoantibody production by the immune system against these immunogenic germ cells. This adluminal compartment also features a unique biochemical milieu required for the completion of germ cell development. During the normal process of spermatogenesis, earlier germ cells continually cross into the adluminal compartment, but the regulatory mechanisms and changes in junctional proteins that allow this translocation step without causing a 'leak' remain poorly understood. Recent data describing the roles of FSH and androgen on the regulation of Sertoli cell tight junctions and tight junction proteins will be discussed, followed by an examination of the role of paracrine factors, including members of the TGFβ superfamily (TGFβ3, activin A) and retinoid signalling, as potential mediators of junction assembly and disassembly during the translocation process.
Collapse
Affiliation(s)
- Peter G Stanton
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Dept. of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
77
|
Gao Y, Xiao X, Lui WY, Lee WM, Mruk D, Cheng CY. Cell polarity proteins and spermatogenesis. Semin Cell Dev Biol 2016; 59:62-70. [PMID: 27292315 DOI: 10.1016/j.semcdb.2016.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/09/2023]
Abstract
When the cross-section of a seminiferous tubule from an adult rat testes is examined microscopically, Sertoli cells and germ cells in the seminiferous epithelium are notably polarized cells. For instance, Sertoli cell nuclei are found near the basement membrane. On the other hand, tight junction (TJ), basal ectoplasmic specialization (basal ES, a testis-specific actin-rich anchoring junction), gap junction (GJ) and desmosome that constitute the blood-testis barrier (BTB) are also located near the basement membrane. The BTB, in turn, divides the epithelium into the basal and the adluminal (apical) compartments. Within the epithelium, undifferentiated spermatogonia and preleptotene spermatocytes restrictively reside in the basal compartment whereas spermatocytes and post-meiotic spermatids reside in the adluminal compartment. Furthermore, the heads of elongating/elongated spermatids point toward the basement membrane with their elongating tails toward the tubule lumen. However, the involvement of polarity proteins in this unique cellular organization, in particular the underlying molecular mechanism(s) by which polarity proteins confer cellular polarity in the seminiferous epithelium is virtually unknown until recent years. Herein, we discuss latest findings regarding the role of different polarity protein complexes or modules and how these protein complexes are working in concert to modulate Sertoli cell and spermatid polarity. These findings also illustrate polarity proteins exert their effects through the actin-based cytoskeleton mediated by actin binding and regulatory proteins, which in turn modulate adhesion protein complexes at the cell-cell interface since TJ, basal ES and GJ utilize F-actin for attachment. We also propose a hypothetical model which illustrates the antagonistic effects of these polarity proteins. This in turn provides a unique mechanism to modulate junction remodeling in the testis to support germ cell transport across the epithelium in particular the BTB during the epithelial cycle of spermatogenesis.
Collapse
Affiliation(s)
- Ying Gao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States
| | - Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States; Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Will M Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Dolores Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave., New York, NY 10065, United States.
| |
Collapse
|
78
|
Changes in Inflammatory Cytokines Accompany Deregulation of Claudin-11, Resulting in Inter-Sertoli Tight Junctions in Varicocele Rat Testes. J Urol 2016; 196:1303-12. [PMID: 27164517 DOI: 10.1016/j.juro.2016.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 11/22/2022]
Abstract
PURPOSE To elucidate the changes that occur in the blood-testis barrier during varicocele we examined changes in Cldn11 (claudin-11), an element of the blood-testis barrier, as well as steroidogenesis and proinflammatory cytokines in a model of varicocele rat testes. MATERIALS AND METHODS Male rats with experimentally induced varicocele were sacrificed 4 weeks after operation. Testicular histology and blood testosterone concentrations were examined. The expression of tight junctions, steroidogenic enzymes, apoptosis and immune cell markers, and proinflammatory cytokines in the testes were evaluated by reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemistry. RESULTS Weight and Johnsen scores of varicocele testes were lower than those of normal testes. mRNA expression of Bad and Bax increased whereas Bcl-xl and Bcl2 mRNA decreased in varicocele testes compared to controls. Although blood testosterone did not change, Leydig cell 3βHsd immunoreactivity, testicular 3βHsd6 and 17βHsd3 mRNA were significantly decreased in varicocele testes. Cldn11 mRNA and protein levels in varicocele testes were higher than in normal testes together with altered expression of Ocln, Zo1 and N-cadherin mRNA. Cldn11 immunoreactivity appeared as wavy strands at the periphery of the seminiferous epithelium in normal testes but was frequently found in the Sertoli cell cytoplasm in varicocele testes. In varicocele testes Tnfα, Il1α, Il6, Cd45, Cd3g and Cd3d mRNA was increased. CONCLUSIONS An increase in proinflammatory cytokines might be responsible for deregulation of Cldn11 in the Sertoli cells in varicocele testes, leading to alterations in the permeability of the blood-testis barrier and immunological barriers to normal spermatogenesis.
Collapse
|
79
|
Pariante P, Dotolo R, Venditti M, Ferrara D, Donizetti A, Aniello F, Minucci S. First Evidence of DAAM1 Localization During the Post-Natal Development of Rat Testis and in Mammalian Sperm. J Cell Physiol 2016; 231:2172-84. [PMID: 26831620 DOI: 10.1002/jcp.25330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/01/2016] [Indexed: 01/16/2023]
Abstract
Dishevelled-associated activator of morphogenesis 1 (DAAM1) is a formin-family protein involved in nucleation of unbranched actin filaments and in cytoskeletal organization through Wnt-Dishevelled PCP pathway, which participates in essential biological processes, such as cell polarity, movement, and adhesion during morphogenesis and organogenesis. While its role has been investigated during development and in somatic cells, its potential association with the germinal compartment and reproduction is still unexplored. In this work, we assessed the possible association of DAAM1 with the morphogenesis of rat testis. We studied its expression and profiled its localization versus actin and tubulin, during the first wave of spermatogenesis and in the adult gonad (from 7 to 60 dpp). We show that, in mitotic phases, DAAM1 shares its localization with actin in Sertoli cells, gonocytes, and spermatogonia. Later, during meiosis, both proteins are found in spermatocytes, while only actin is detectable at the forming blood-testis barrier. DAAM1, then, follows the development of the acrosome system throughout spermiogenesis, and it is finally retained inside the cytoplasmic droplet in mature gametes, as corroborated by additional immunolocalization data on both rat and human sperm. Unlike the DAAM1, actin keeps its localization in Sertoli cells, and tubulin is associated with their protruding cytoplasm during the process. Our data support, for the first time, the hypothesis of a role for DAAM1 in cytoskeletal organization during Mammalian testis morphogenesis and gamete progression, while also hinting at its possible investigation as a morphological marker of germ cell and sperm physiology. J. Cell. Physiol. 231: 2172-2184, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paolo Pariante
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| | - Raffaele Dotolo
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| | - Diana Ferrara
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| | - Aldo Donizetti
- Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italy
| | - Francesco Aniello
- Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| |
Collapse
|
80
|
Rode K, Sieme H, Otzen H, Schwennen C, Lüpke M, Richterich P, Schrimpf R, Distl O, Brehm R. Effects of Repeated Testicular Biopsies in Adult Warmblood Stallions and Their Diagnostic Potential. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
81
|
McCabe MJ, Tarulli GA, Laven-Law G, Matthiesson KL, Meachem SJ, McLachlan RI, Dinger ME, Stanton PG. Gonadotropin suppression in men leads to a reduction in claudin-11 at the Sertoli cell tight junction. Hum Reprod 2016; 31:875-86. [PMID: 26908839 DOI: 10.1093/humrep/dew009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/11/2016] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Are Sertoli cell tight junctions (TJs) disrupted in men undergoing hormonal contraception? SUMMARY ANSWER Localization of the key Sertoli cell TJ protein, claudin-11, was markedly disrupted by 8 weeks of gonadotropin suppression, the degree of which was related to the extent of adluminal germ cell suppression. WHAT IS KNOWN ALREADY Sertoli cell TJs are vital components of the blood-testis barrier (BTB) that sequester developing adluminal meiotic germ cells and spermatids from the vascular compartment. Claudin-11 knockout mice are infertile; additionally claudin-11 is spatially disrupted in chronically gonadotropin-suppressed rats coincident with a loss of BTB function, and claudin-11 is disorganized in various human testicular disorders. These data support the Sertoli cell TJ as a potential site of hormonal contraceptive action. STUDY DESIGN, SIZE, DURATION BTB proteins were assessed by immunohistochemistry (n = 16 samples) and mRNA (n = 18 samples) expression levels in available archived testis tissue from a previous study of 22 men who had undergone 8 weeks of gonadotropin suppression and for whom meiotic and post-meiotic germ cell numbers were available. The gonadotropin suppression regimens were (i) testosterone enanthate (TE) plus the GnRH antagonist, acyline (A); (ii) TE + the progestin, levonorgestrel, (LNG); (iii) TE + LNG + A or (iv) TE + LNG + the 5α-reductase inhibitor, dutasteride (D). A control group consisted of seven additional men, with three archived samples available for this study. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Immunohistochemical localization of claudin-11 (TJ) and other junctional type markers [ZO-1 (cytoplasmic plaque), β-catenin (adherens junction), connexin-43 (gap junction), vinculin (ectoplasmic specialization) and β-actin (cytoskeleton)] and quantitative PCR was conducted using matched frozen testis tissue. MAIN RESULTS AND THE ROLE OF CHANCE Claudin-11 formed a continuous staining pattern at the BTB in control men. Regardless of gonadotropin suppression treatment, claudin-11 localization was markedly disrupted and was broadly associated with the extent of meiotic/post-meiotic germ cell suppression; claudin-11 staining was (i) punctate (i.e. 'spotty' appearance) at the basal aspect of tubules when the average numbers of adluminal germ cells were <15% of control, (ii) presented as short fragments with cytoplasmic extensions when numbers were 15-25% of control or (iii) remained continuous when numbers were >40% of control. Changes in localization of connexin-43 and vinculin were also observed (smaller effects than for claudin-11) but ZO-1, β-catenin and β-actin did not differ, compared with control. LIMITATIONS, REASONS FOR CAUTION Claudin-11 was the only Sertoli cell TJ protein investigated, but it is considered to be the most pivotal of constituent proteins given its known implication in infertility and BTB function. We were limited to testis samples which had been gonadotropin-suppressed for 8 weeks, shorter than the 74-day spermatogenic wave, which may account for the heterogeneity in claudin-11 and germ cell response observed among the men. Longer suppression (12-24 weeks) is known to suppress germ cells further and claudin-11 disruption may be more uniform, although we could not access such samples. WIDER IMPLICATIONS OF THE FINDINGS These findings are important for our understanding of the sites of action of male hormonal contraception, because they suggest that BTB function could be ablated following long-term hormone suppression treatment. STUDY FUNDING/COMPETING INTERESTS National Health and Medical Research Council (Australia) Program Grants 241000 and 494802; Research Fellowship 1022327 (to R.I.M.) and the Victorian Government's Operational Infrastructure Support Program. None of the authors have any conflicts to disclose. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- M J McCabe
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia Applied Biology/Biotechnology, Royal Melbourne Institute of Technology University, Bundoora, VIC 3088, Australia Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia St Vincent's Clinical School, UNSW Australia, Sydney, NSW 2052, Australia
| | - G A Tarulli
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - G Laven-Law
- Dame Roma Mitchell Cancer Research Laboratories, Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - K L Matthiesson
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - S J Meachem
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia
| | - R I McLachlan
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - M E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia St Vincent's Clinical School, UNSW Australia, Sydney, NSW 2052, Australia
| | - P G Stanton
- Hudson Institute of Medical Research, Monash Medical Centre, Clayton, VIC 3168, Australia Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
82
|
França LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 2016; 4:189-212. [PMID: 26846984 DOI: 10.1111/andr.12165] [Citation(s) in RCA: 277] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
It has been one and a half centuries since Enrico Sertoli published the seminal discovery of the testicular 'nurse cell', not only a key cell in the testis, but indeed one of the most amazing cells in the vertebrate body. In this review, we begin by examining the three phases of morphological research that have occurred in the study of Sertoli cells, because microscopic anatomy was essentially the only scientific discipline available for about the first 75 years after the discovery. Biochemistry and molecular biology then changed all of biological sciences, including our understanding of the functions of Sertoli cells. Immunology and stem cell biology were not even topics of science in 1865, but they have now become major issues in our appreciation of Sertoli cell's role in spermatogenesis. We end with the universal importance and plasticity of function by comparing Sertoli cells in fish, amphibians, and mammals. In these various classes of vertebrates, Sertoli cells have quite different modes of proliferation and epithelial maintenance, cystic vs. tubular formation, yet accomplish essentially the same function but in strikingly different ways.
Collapse
Affiliation(s)
- L R França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - R A Hess
- Reproductive Biology and Toxicology, Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - J M Dufour
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - M C Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Griswold
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
83
|
Kidder GM, Cyr DG. Roles of connexins in testis development and spermatogenesis. Semin Cell Dev Biol 2016; 50:22-30. [PMID: 26780117 DOI: 10.1016/j.semcdb.2015.12.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
Abstract
The development and differentiation of cells involved in spermatogenesis requires highly regulated and coordinated interactions between cells. Intercellular communication, particularly via connexin43 (Cx43) gap junctions, plays a critical role in the development of germ cells during fetal development and during spermatogenesis in the adult. Loss of Cx43 in the fetus results in a decreased number of germ cells, while the loss of Cx43 in the adult Sertoli cells results in complete inhibition of spermatogenesis. Connexins 26, 32, 33, 36, 45, 46 and 50 have also been localized to specific compartments of the testis in various mammals. Loss of Cx46 is associated with an increase in germ cell apoptosis and loss of the integrity of the blood-testis barrier, while loss of other connexins appears to have more subtle effects within the seminiferous tubule. Outside the seminiferous tubule, the interstitial Leydig cells express connexins 36 and 45 along with Cx43; deletion of the latter connexin did not reveal it to be crucial for steroidogenesis or for the development and differentiation of Leydig cells. In contrast, loss of Cx43 from Sertoli cells results in Leydig cell hyperplasia, suggesting important cross-talk between Sertoli and Leydig cells. In the epididymis connexins 26, 30.3, Cx31.1, 32, and 43 have been identified and differentiation of the epithelium is associated with dramatic changes in their expression. Decreased expression of Cx43 results in decreased sperm motility, a function acquired by spermatozoa during epididymal transit. Clearly, intercellular gap junctional communication within the testis and epididymis represents a critical aspect of male reproductive function and fertility. The implications of this mode of intercellular communication for male fertility remains a poorly understood but important facet of male reproduction.
Collapse
Affiliation(s)
- Gerald M Kidder
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - Daniel G Cyr
- INRS-Institut Armand-Frappier, University of Québec, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
84
|
Chen H, Mruk DD, Xia W, Bonanomi M, Silvestrini B, Cheng CY. Effective Delivery of Male Contraceptives Behind the Blood-Testis Barrier (BTB) - Lesson from Adjudin. Curr Med Chem 2016; 23:701-13. [PMID: 26758796 PMCID: PMC4845722 DOI: 10.2174/0929867323666160112122724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/18/2014] [Accepted: 01/11/2016] [Indexed: 12/15/2022]
Abstract
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium of the seminiferous tubule, the functional unit of the testis, where spermatogenesis takes place, into the basal and the adluminal (apical) compartments. Functionally, the BTB provides a unique microenvironment for meiosis I/II and post-meiotic spermatid development which take place exclusively in the apical compartment, away from the host immune system, and it contributes to the immune privilege status of testis. However, the BTB also poses major obstacles in developing male contraceptives (e.g., adjudin) that exert their effects on germ cells in the apical compartment, such as by disrupting spermatid adhesion to the Sertoli cell, causing germ cell exfoliation from the testis. Besides the tight junction (TJ) between adjacent Sertoli cells at the BTB that restricts the entry of contraceptives from the microvessels in the interstitium to the adluminal compartment, drug transporters, such as P-glycoprotein and multidrug resistance-associated protein 1 (MRP1), are also present that actively pump drugs out of the testis, limiting drug bioavailability. Recent advances in drug formulations, such as drug particle micronization (<50 μm) and co-grinding of drug particles with ß-cyclodextrin have improved bioavailability of contraceptives via considerable increase in solubility. Herein, we discuss development in drug formulations using adjudin as an example. We also put emphasis on the possible use of nanotechnology to deliver adjudin to the apical compartment with multidrug magnetic mesoporous silica nanoparticles. These advances in technology will significantly enhance our ability to develop effective non-hormonal male contraceptives for men.
Collapse
Affiliation(s)
| | | | | | | | | | - Chuen-Yan Cheng
- Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York 10065, USA..
| |
Collapse
|
85
|
Maqdasy S, El Hajjaji FZ, Baptissart M, Viennois E, Oumeddour A, Brugnon F, Trousson A, Tauveron I, Volle D, Lobaccaro JMA, Baron S. Identification of the Functions of Liver X Receptor-β in Sertoli Cells Using a Targeted Expression-Rescue Model. Endocrinology 2015; 156:4545-57. [PMID: 26402841 DOI: 10.1210/en.2015-1382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Liver X receptors (LXRs) are key regulators of lipid homeostasis and are involved in multiple testicular functions. The Lxrα(-/-);Lxrβ(-/-) mice have illuminated the roles of both isoforms in maintenance of the epithelium in the seminiferous tubules, spermatogenesis, and T production. The requirement for LXRβ in Sertoli cells have been emphasized by early abnormal cholesteryl ester accumulation in the Lxrβ(-/-) and Lxrα(-/-);Lxrβ(-/-) mice. Other phenotypes, such as germ cell loss and hypogonadism, occur later in life in the Lxrα(-/-);Lxrβ(-/-) mice. Thus, LXRβ expression in Sertoli cells seems to be essential for normal testicular physiology. To decipher the roles of LXRβ within the Sertoli cells, we generated Lxrα(-/-);Lxrβ(-/-):AMH-Lxrβ transgenic mice, which reexpress Lxrβ in Sertoli cells in the context of Lxrα(-/-);Lxrβ(-/-) mice. In addition to lipid homeostasis, LXRβ is necessary for maintaining the blood-testis barrier and the integrity of the germ cell epithelium. LXRβ is also implicated in the paracrine action of Sertoli cells on Leydig cells to modulate T synthesis. The Lxrα(-/-);Lxrβ(-/-) and Lxrα(-/-);Lxrβ(-/-):AMH-Lxrβ mice exhibit lipid accumulation in germ cells after the Abcg8 down-regulation, suggesting an intricate LXRβ-dependent cooperation between the Sertoli cells and germ cells to ensure spermiogenesis. Further analysis revealed also peritubular smooth muscle defects (abnormal lipid accumulation and disorganized smooth muscle actin) and spermatozoa stagnation in the seminiferous tubules. Together the present work elucidates specific roles of LXRβ in Sertoli cell physiology in vivo beyond lipid homeostasis.
Collapse
Affiliation(s)
- Salwan Maqdasy
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Fatim-Zohra El Hajjaji
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Marine Baptissart
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Emilie Viennois
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Abdelkader Oumeddour
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Florence Brugnon
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Amalia Trousson
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Igor Tauveron
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - David Volle
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Jean-Marc A Lobaccaro
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| | - Silvère Baron
- Department of Génétique Reproduction et Développement (GReD) (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Université Blaise Pascal, Centre de Recherche en Nutrition Humaine d'Auvergne (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., D.V., J.-M.A.L., S.B.), and Department of Assistance Médicale à la Procréation (F.B.), CECOS, Centre Hospitalier Universitaire Clermont Ferrand, Centre Hospitalier Universitaire Estaing, F-63000 Clermont-Ferrand, France; Centre National de la Recherche Scientifique (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.) and INSERM (S.M., F.-Z.E.H., M.B., A.O., F.B., A.T., I.T., D.V., J.-M.A.L., S.B.), Unité Mixte de Recherche 6293, GReD, F-63177 Aubiere, France; Center for Diagnostics and Therapeutics (E.V.), Georgia State University, Atlanta, Georgia 30302-4010; Veterans Affairs Medical Center (E.V.), Decatur, Georgia 30033; Service d'Endocrinologie, Diabétologie, et Maladies Métaboliques (S.M., I.T.), Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France; and Service de Médecine Nucléaire (S.M.), Centre Jean Perrin, F-63011 Clermont-Ferrand, France
| |
Collapse
|
86
|
Li N, Tang EI, Cheng CY. Regulation of blood-testis barrier by actin binding proteins and protein kinases. Reproduction 2015; 151:R29-41. [PMID: 26628556 DOI: 10.1530/rep-15-0463] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure in the testis, since the onset of meiosis and spermiogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular, at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin-binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases.
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | - Elizabeth I Tang
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive ResearchCenter for Biomedical Research, Population Council, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
87
|
Gerber J, Heinrich J, Brehm R. Blood-testis barrier and Sertoli cell function: lessons from SCCx43KO mice. Reproduction 2015; 151:R15-27. [PMID: 26556893 DOI: 10.1530/rep-15-0366] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/10/2015] [Indexed: 01/23/2023]
Abstract
The gap junction protein connexin43 (CX43) plays a vital role in mammalian spermatogenesis by allowing for direct cytoplasmic communication between neighbouring testicular cells. In addition, different publications suggest that CX43 in Sertoli cells (SC) might be important for blood-testis barrier (BTB) formation and BTB homeostasis. Thus, through the use of the Cre-LoxP recombination system, a transgenic mouse line was developed in which only SC are deficient of the gap junction protein, alpha 1 (Gja1) gene. Gja1 codes for the protein CX43. This transgenic mouse line has been commonly defined as the SC specific CX43 knockout (SCCx43KO) mouse line. Within the seminiferous tubule, SC aid in spermatogenesis by nurturing germ cells and help them to proliferate and mature. Owing to the absence of CX43 within the SC, homozygous KO mice are infertile, have reduced testis size, and mainly exhibit spermatogenesis arrest at the level of spermatogonia, seminiferous tubules containing only SC (SC-only syndrome) and intratubular SC-clusters. Although the SC specific KO of CX43 does not seem to have an adverse effect on BTB integrity, CX43 influences BTB composition as the expression pattern of different BTB proteins (like OCCLUDIN, β-CATENIN, N-CADHERIN, and CLAUDIN11) is altered in mutant males. The supposed roles of CX43 in dynamic BTB regulation, BTB assembly and/or disassembly and its possible interaction with other junctional proteins composing this unique barrier are discussed. Data collectively indicate that CX43 might represent an important regulator of dynamic BTB formation, composition and function.
Collapse
Affiliation(s)
- Jonathan Gerber
- Institute of AnatomyUniversity of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Julia Heinrich
- Institute of AnatomyUniversity of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Ralph Brehm
- Institute of AnatomyUniversity of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
88
|
Son Y, Heo K, Bae MJ, Lee CG, Cho WS, Kim SD, Yang K, Shin IS, Lee MY, Kim JS. Injury to the blood-testis barrier after low-dose-rate chronic radiation exposure in mice. RADIATION PROTECTION DOSIMETRY 2015; 167:316-320. [PMID: 25948832 DOI: 10.1093/rpd/ncv270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Exposure to ionising radiation induces male infertility, accompanied by increasing permeability of the blood-testis barrier. However, the effect on male fertility by low-dose-rate chronic radiation has not been investigated. In this study, the effects of low-dose-rate chronic radiation on male mice were investigated by measuring the levels of tight-junction-associated proteins (ZO-1 and occludin-1), Niemann-Pick disease type 2 protein (NPC-2) and antisperm antibody (AsAb) in serum. BALB/c mice were exposed to low-dose-rate radiation (3.49 mGy h(-1)) for total exposures of 0.02 (6 h), 0.17 (2 d) and 1.7 Gy (21 d). Based on histological examination, the diameter and epithelial depth of seminiferous tubules were significantly decreased in 1.7-Gy-irradiated mice. Compared with those of the non-irradiated group, 1.7-Gy-irradiated mice showed significantly decreased ZO-1, occludin-1 and NPC-2 protein levels, accompanied with increased serum AsAb levels. These results suggest potential blood-testis barrier injury and immune infertility in male mice exposed to low-dose-rate chronic radiation.
Collapse
Affiliation(s)
- Y Son
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Jwadong-gil 40, Gijang-gun, Busan 619-953, South Korea
| | - K Heo
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Jwadong-gil 40, Gijang-gun, Busan 619-953, South Korea
| | - M J Bae
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Jwadong-gil 40, Gijang-gun, Busan 619-953, South Korea
| | - C G Lee
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Jwadong-gil 40, Gijang-gun, Busan 619-953, South Korea
| | - W S Cho
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Jwadong-gil 40, Gijang-gun, Busan 619-953, South Korea
| | - S D Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Jwadong-gil 40, Gijang-gun, Busan 619-953, South Korea
| | - K Yang
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Jwadong-gil 40, Gijang-gun, Busan 619-953, South Korea
| | - I S Shin
- College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - M Y Lee
- College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - J S Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Jwadong-gil 40, Gijang-gun, Busan 619-953, South Korea College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
89
|
Mono-(2-ethylhexyl) phthalate (MEHP) affects intercellular junctions of Sertoli cell: A potential role of oxidative stress. Reprod Toxicol 2015; 58:203-12. [PMID: 26498383 DOI: 10.1016/j.reprotox.2015.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022]
Abstract
We analyzed the potential role of oxidative stress induced by mono (2-ethylhexyl) phthalate (MEHP) in adherent cell junction protein expression of prepubertal rat Sertoli cells (SC) in vitro. Five-day SC cultures were treated with MEHP (200μM) for 24h and compared to cells in basal conditions. Western blot and immunofluorescent (IF) analyses showed that MEHP induced increase of N-cadherin and catenin expression, modifying its distribution. Concomitantly, Cx-43 expression decreased significantly and delocalization of the IF signal for tight junction proteins (occludin, claudin-11 and ZO-1) occurred. Indicative of oxidative stress, MEHP induced in SC an increase of lipoperoxides, a decrease in glutathione (GSH) levels and a concomitant increase in Glutathione S-Transferases (GST) activity. Antioxidant N-acetyl-cysteine (1mM) treatment prevented GSH decrease and N-cadherin and α-catenin up-regulation induced by MEHP. Our data suggest that oxidative stress signaling is a mechanism involved in adherent cell junctions disruption induced by MEHP in SC cultures.
Collapse
|
90
|
Cao XN, Yan C, Liu DY, Peng JP, Chen JJ, Zhou Y, Long CL, He DW, Lin T, Shen LJ, Wei GH. Fine particulate matter leads to reproductive impairment in male rats by overexpressing phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Toxicol Lett 2015; 237:181-90. [DOI: 10.1016/j.toxlet.2015.06.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 06/08/2015] [Accepted: 06/13/2015] [Indexed: 01/05/2023]
|
91
|
Oishi N, Kondo T, Nakazawa T, Mochizuki K, Tanioka F, Oyama T, Yamamoto T, Iizuka J, Tanabe K, Shibata N, Kirito K, Katoh R. High prevalence of the MYD88 mutation in testicular lymphoma: Immunohistochemical and genetic analyses. Pathol Int 2015; 65:528-35. [PMID: 26388135 DOI: 10.1111/pin.12336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/02/2015] [Indexed: 01/07/2023]
Abstract
The activating mutation of MYD88 has been identified in diffuse large B-cell lymphoma (DLBCL). We investigated the mutational status and both the gene amplification and protein expression of MYD88 in 23 cases of testicular DLBCL. To detect the MYD88 mutations, we employed the allele-specific PCR and Sanger sequencing. MYD88 gene amplification and protein expression were analyzed by quantitative PCR and by immunohistochemistry, respectively. There were 17 cases of primary testicular DLBCL: 94% (16/17) exhibited a non-Germinal center B-cell (non-GCB) subtype, 82% (14/17) showed the MYD88 L265P, and 65% (11/17) had intense expression of MYD88. When compared with normal lymph nodes, the MYD88 is significantly amplified in primary testicular DLBCL. However, the amplification status showed no correlation with its mutational status or protein expression. Moreover, neither the MYD88 mutational status nor the expression pattern affected overall survival. Six cases were secondary testicular DLBCL with an 83% (5/6) and an 80% (4/5) incidence of the non-GCB subtype and of the MYD88 L265P, respectively. In conclusion, we demonstrated a high prevalence of the non-GCB subtype and the common MYD88 L265P in both primary and secondary testicular DLBCL. Our data suggest that the MYD88 mutation is a fairly consistent genetic feature in testicular DLBCL.
Collapse
Affiliation(s)
- Naoki Oishi
- Department of Pathology, University of Yamanashi, Chuo, Japan
| | - Tetsuo Kondo
- Department of Pathology, University of Yamanashi, Chuo, Japan
| | - Tadao Nakazawa
- Department of Pathology, University of Yamanashi, Chuo, Japan
| | - Kunio Mochizuki
- Department of Pathology, University of Yamanashi, Chuo, Japan
| | | | - Toshio Oyama
- Department of Diagnostic Pathology, Yamanashi Prefectural Central Hospital, Kofu, Japan
| | - Tomoko Yamamoto
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junpei Iizuka
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Keita Kirito
- Department of Hematology and Oncology, University of Yamanashi, Chuo, Japan
| | - Ryohei Katoh
- Department of Pathology, University of Yamanashi, Chuo, Japan
| |
Collapse
|
92
|
Pelletier RM, Akpovi CD, Chen L, Kumar NM, Vitale ML. Complementary expression and phosphorylation of Cx46 and Cx50 during development and following gene deletion in mouse and in normal and orchitic mink testes. Am J Physiol Regul Integr Comp Physiol 2015; 309:R255-76. [PMID: 26017495 PMCID: PMC4525330 DOI: 10.1152/ajpregu.00152.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/23/2015] [Indexed: 01/11/2023]
Abstract
Gap junction-mediated communication helps synchronize interconnected Sertoli cell activities. Besides, coordination of germ cell and Sertoli cell activities depends on gap junction-mediated Sertoli cell-germ cell communication. This report assesses mechanisms underlying the regulation of connexin 46 (Cx46) and Cx50 in mouse testis and those accompanying a "natural" seasonal and a pathological arrest of spermatogenesis, resulting from autoimmune orchitis (AIO) in mink. Furthermore, the impact of deleting Cx46 or Cx50 on the expression, phosphorylation of junction proteins, and spermatogenesis is evaluated. Cx46 mRNA and protein expression increased, whereas Cx50 decreased with adulthood in normal mice and mink. Cx46 mRNA and protein expression increased, whereas Cx50 decreased with adulthood in normal mice and mink. During the mink active spermatogenic phase, Cx50 became phosphorylated and localized to the site of the blood-testis barrier. By contrast, Cx46 was dephosphorylated and associated with annular junctions, suggesting phosphorylation/dephosphorylation of Cx46 and Cx50 involvement in the barrier dynamics. Cx46-positive annular junctions in contact with lipid droplets were found. Cx46 and Cx50 expression and localization were altered in mink with AIO. The deletion of Cx46 or Cx50 impacted on other connexin expression and phosphorylation and differently affected tight and adhering junction protein expression. The level of apoptosis, determined by ELISA, and a number of Apostain-labeled spermatocytes and spermatids/tubules were higher in mice lacking Cx46 (Cx46-/-) than wild-type and Cx50-/- mice, arguing for life-sustaining Cx46 gap junction-mediated exchanges in late-stage germ cells secluded from the blood by the barrier. The data show that expression and phosphorylation of Cx46 and Cx50 are complementary in seminiferous tubules.
Collapse
Affiliation(s)
- R-Marc Pelletier
- Department of Pathology and Cell Biology, Université de Montréal, Québec, Canada; and
| | - Casimir D Akpovi
- Department of Pathology and Cell Biology, Université de Montréal, Québec, Canada; and
| | - Li Chen
- Department of Pathology and Cell Biology, Université de Montréal, Québec, Canada; and
| | - Nalin M Kumar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - María L Vitale
- Department of Pathology and Cell Biology, Université de Montréal, Québec, Canada; and
| |
Collapse
|
93
|
Li N, Mruk DD, Wong CKC, Han D, Lee WM, Cheng CY. Formin 1 Regulates Ectoplasmic Specialization in the Rat Testis Through Its Actin Nucleation and Bundling Activity. Endocrinology 2015; 156:2969-83. [PMID: 25901598 PMCID: PMC4511136 DOI: 10.1210/en.2015-1161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During spermatogenesis, developing spermatids and preleptotene spermatocytes are transported across the adluminal compartment and the blood-testis barrier (BTB), respectively, so that spermatids line up near the luminal edge to prepare for spermiation, whereas preleptotene spermatocytes enter the adluminal compartment to differentiate into late spermatocytes to prepare for meiosis I/II. These cellular events involve actin microfilament reorganization at the testis-specific, actin-rich Sertoli-spermatid and Sertoli-Sertoli cell junction called apical and basal ectoplasmic specialization (ES). Formin 1, an actin nucleation protein known to promote actin microfilament elongation and bundling, was expressed at the apical ES but limited to stage VII of the epithelial cycle, whereas its expression at the basal ES/BTB stretched from stage III to stage VI, diminished in stage VII, and was undetectable in stage VIII tubules. Using an in vitro model of studying Sertoli cell BTB function by RNA interference and biochemical assays to monitor actin bundling and polymerization activity, a knockdown of formin 1 in Sertoli cells by approximately 70% impeded the tight junction-permeability function. This disruptive effect on the tight junction barrier was mediated by a loss of actin microfilament bundling and actin polymerization capability mediated by changes in the localization of branched actin-inducing protein Arp3 (actin-related protein 3), and actin bundling proteins Eps8 (epidermal growth factor receptor pathway substrate 8) and palladin, thereby disrupting cell adhesion. Formin 1 knockdown in vivo was found to impede spermatid adhesion, transport, and polarity, causing defects in spermiation in which elongated spermatids remained embedded into the epithelium in stage IX tubules, mediated by changes in the spatiotemporal expression of Arp3, Eps8, and palladin. In summary, formin 1 is a regulator of ES dynamics.
Collapse
Affiliation(s)
- Nan Li
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - Dolores D Mruk
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - Chris K C Wong
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - Daishu Han
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - Will M Lee
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | - C Yan Cheng
- Center for Biomedical Research (N.L., D.D.M., C.Y.C.), Population Council, New York, New York 10065; Department of Biology (C.K.C.W.), Hong Kong Baptist University, Hong Kong, China; Department of Cell Biology (D.H.), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| |
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW The present review examines the role of actin binding proteins (ABPs) on blood-testis barrier (BTB), an androgen-dependent ultrastructure in the testis, in particular their involvement on BTB remodeling during spermatogenesis. RECENT FINDINGS The BTB divides the seminiferous epithelium into the basal and the adluminal compartments. The BTB is constituted by coexisting actin-based tight junction, basal ectoplasmic specialization, and gap junction, and also intermediate filament-based desmosome between Sertoli cells near the basement membrane. Junctions at the BTB undergo continuous remodeling to facilitate the transport of preleptotene spermatocytes residing in the basal compartment across the immunological barrier during spermatogenesis. Thus, meiosis I/II and postmeiotic spermatid development take place in the adluminal compartment behind the BTB. BTB remodeling also regulates exchanges of biomolecules between the two compartments. As tight junction, basal ectoplasmic specialization, and gap junction use F-actin for attachment, actin microfilaments rapidly convert between their bundled and unbundled/branched configuration to confer BTB plasticity. The events of actin reorganization are regulated by two major classes of ABPs that convert actin microfilaments between their bundled and branched/unbundled configuration. SUMMARY We provide a model on how ABPs regulate BTB remodeling, shedding new light on unexplained male infertility, such as environmental toxicant-induced reproductive dysfunction since the testis, in particular the BTB, is sensitive to environmental toxicants, such as cadmium, bisphenol A, phthalates, and PFOS (perfluorooctanesulfonic acid or perfluorooctane sulfonate).
Collapse
Affiliation(s)
- Nan Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | | | | |
Collapse
|
95
|
Mok KW, Chen H, Lee WM, Cheng CY. rpS6 regulates blood-testis barrier dynamics through Arp3-mediated actin microfilament organization in rat sertoli cells. An in vitro study. Endocrinology 2015; 156:1900-13. [PMID: 25714812 PMCID: PMC4398761 DOI: 10.1210/en.2014-1791] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the seminiferous epithelium of rat testes, preleptotene spermatocytes residing in the basal compartment are transported across the blood-testis barrier (BTB) to enter the adluminal compartment at stage VIII of the epithelial cycle. This process involves redistribution of tight junction (TJ) proteins via reorganization of actin cytoskeleton in Sertoli cells that serves as attachment site for adhesion protein complexes. Ribosomal protein S6 (rpS6), a downstream molecule of mTORC1 (mammalian target of rapamycin complex 1), participates in this process via a yet-to-be defined mechanism. Here, we constructed an rpS6 quadruple phosphomimetic mutant by converting Ser residues at 235, 236, 240, and 244 to Glu via site-directed mutagenesis, making this mutant constitutively active. When this rpS6 mutant was overexpressed in Sertoli cells cultured in vitro with an established TJ barrier mimicking the BTB in vivo, it perturbed the TJ permeability by down-regulating and redistributing TJ proteins at the cell-cell interface. These changes are mediated by a reorganization of actin microfilaments, which was triggered by a redistribution of activated actin-related protein 3 (Arp3) as well as changes in Arp3-neuronal Wiskott-Aldrich Syndrome protein (N-WASP) interaction. This in turn induced reorganization of actin microfilaments, converting them from a "bundled" to an "unbundled/branched" configuration, concomitant with a reduced actin bundling activity, thereby destabilizing the TJ-barrier function. These changes were mediated by Akt (transforming oncogene of v-akt), because an Akt knockdown by RNA interference was able to mimic the phenotypes of rpS6 mutant overexpression at the Sertoli cell BTB. In summary, this study illustrates a mechanism by which mTORC1 signal complex regulates BTB function through rpS6 downstream by modulating actin organization via the Arp2/3 complex, which may be applicable to other tissue barriers.
Collapse
Affiliation(s)
- Ka-Wai Mok
- The Mary M. Wohlford Laboratory for Male Contraceptive Research (K.-W.M., H.C., C.Y.C.), Center for Biomedical Research, Population Council, New York, New York 10065; and School of Biological Sciences (W.M.L.), University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
96
|
Xiao X, Mruk DD, Wong CKC, Cheng CY. Germ cell transport across the seminiferous epithelium during spermatogenesis. Physiology (Bethesda) 2015; 29:286-98. [PMID: 24985332 DOI: 10.1152/physiol.00001.2014] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transport of germ cells across the seminiferous epithelium is crucial to spermatogenesis. Its disruption causes infertility. Signaling molecules, such as focal adhesion kinase, c-Yes, c-Src, and intercellular adhesion molecules 1 and 2, are involved in these events by regulating actin-based cytoskeleton via their action on actin-regulating proteins, endocytic vesicle-mediated protein trafficking, and adhesion protein complexes. We critically evaluate these findings and provide a hypothetical framework that regulates these events.
Collapse
Affiliation(s)
- Xiang Xiao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York; and
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York; and
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York; and
| |
Collapse
|
97
|
D'Aurora M, Ferlin A, Di Nicola M, Garolla A, De Toni L, Franchi S, Palka G, Foresta C, Stuppia L, Gatta V. Deregulation of sertoli and leydig cells function in patients with Klinefelter syndrome as evidenced by testis transcriptome analysis. BMC Genomics 2015; 16:156. [PMID: 25879484 PMCID: PMC4362638 DOI: 10.1186/s12864-015-1356-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/19/2015] [Indexed: 01/01/2023] Open
Abstract
Background Klinefelter Syndrome (KS) is the most common abnormality of sex chromosomes (47,XXY) and represents the first genetic cause of male infertility. Mechanisms leading to KS testis degeneration are still not completely defined but considered to be mainly the result of germ cells loss. In order to unravel the molecular basis of global testis dysfunction in KS patients, we performed a transcriptome analysis on testis biopsies obtained from 6 azoospermic non-mosaic KS patients and 3 control subjects. Results The analysis found that, compared to controls, KS patients showed the differential up- and down-expression of 656 and 247 transcripts. The large majority of the deregulated transcripts were expressed by Sertoli cells (SCs) and Leydig cells (LCs). Functional analysis of the deregulated transcripts indicated changes of genes involved in cell death, inflammatory response, lipid metabolism, steroidogenesis, blood-testis-barrier formation and maintenance, as well as spermatogenesis failure. Conclusions Taken together, present data highlight the modulation of hundreds of genes in the somatic components of KS patient testis. The increased LCs steroidogenic function together with the impairment of inflammatory pathways and BTB structure, result in increased apoptosis. These findings may represent a critical roadmap for therapeutic intervention and prevention of KS-related testis failure. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1356-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco D'Aurora
- Department of Psychological, Humanities and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Via Dei Vestini 31, 66100, Chieti-Pescara, Italy. .,Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.), Via Dei Vestini 31, 66100, Chieti, Italy.
| | - Alberto Ferlin
- Department of Medicine, Section of Endocrinology and Centre for Human Reproduction Pathology, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| | - Marta Di Nicola
- Department of Sperimental and Clinical Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Via dei Vestini 31, 66100, Chieti-Pescara, Italy.
| | - Andrea Garolla
- Department of Medicine, Section of Endocrinology and Centre for Human Reproduction Pathology, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| | - Luca De Toni
- Department of Medicine, Section of Endocrinology and Centre for Human Reproduction Pathology, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| | - Sara Franchi
- Department of Psychological, Humanities and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Via Dei Vestini 31, 66100, Chieti-Pescara, Italy. .,Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.), Via Dei Vestini 31, 66100, Chieti, Italy.
| | - Giandomenico Palka
- Department of Oral Health and Biotechnological Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Via dei Vestini 31, 66100, Chieti-Pescara, Italy.
| | - Carlo Foresta
- Department of Medicine, Section of Endocrinology and Centre for Human Reproduction Pathology, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| | - Liborio Stuppia
- Department of Psychological, Humanities and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Via Dei Vestini 31, 66100, Chieti-Pescara, Italy. .,Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.), Via Dei Vestini 31, 66100, Chieti, Italy.
| | - Valentina Gatta
- Department of Psychological, Humanities and Territorial Sciences, School of Medicine and Health Sciences, "G.d'Annunzio" University, Via Dei Vestini 31, 66100, Chieti-Pescara, Italy. .,Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.), Via Dei Vestini 31, 66100, Chieti, Italy.
| |
Collapse
|
98
|
McMillan M, Andronicos N, Davey R, Stockwell S, Hinch G, Schmoelzl S. Claudin-8 expression in Sertoli cells and putative spermatogonial stem cells in the bovine testis. Reprod Fertil Dev 2015; 26:633-44. [PMID: 23673210 DOI: 10.1071/rd12259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 04/16/2013] [Indexed: 12/25/2022] Open
Abstract
Adhesion molecules are expressed by both adult and embryonic stem cells, with different classes of adhesion molecules involved in cell-membrane and intercellular contacts. In this study the expression of the adhesion molecule claudin-8 (CLDN8), a tight-junction protein, was investigated as a potential marker for undifferentiated spermatogonia in the bovine testis. We found that CLDN8 was expressed by both spermatogonia and a subset of Sertoli cells in the bovine testis. We also showed co-expression of GFRα1 in testis cells with CLDN8 and with Dolichos biflorus agglutinin-fluorescein isothiocyanate (DBA-FITC) staining. We observed co-enrichment of spermatogonia and CLDN8-expressing Sertoli cells in DBA-FITC-assisted magnetic-activated cell sorting (MACS), an observation supported by results from fluorescence-activated cell sorting analysis, which showed CLDN8-expressing cells were over-represented in the MACS-positive cell fraction, leading to the hypothesis that CLDN8 may play a role in the spermatogonial stem-cell niche.
Collapse
Affiliation(s)
- Mary McMillan
- CSIRO Food Futures National Research Flagship, North Ryde, NSW 2113, Australia
| | - Nicholas Andronicos
- CSIRO Animal, Food and Health Sciences, F. D. McMaster Laboratory, Armidale, NSW 2350, Australia
| | - Rhonda Davey
- CSIRO Food Futures National Research Flagship, North Ryde, NSW 2113, Australia
| | - Sally Stockwell
- CSIRO Food Futures National Research Flagship, North Ryde, NSW 2113, Australia
| | - Geoff Hinch
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Sabine Schmoelzl
- CSIRO Food Futures National Research Flagship, North Ryde, NSW 2113, Australia
| |
Collapse
|
99
|
Qian X, Mruk DD, Cheng YH, Cheng CY. RAI14 (retinoic acid induced protein 14) is an F-actin regulator: Lesson from the testis. SPERMATOGENESIS 2014; 3:e24824. [PMID: 23885305 PMCID: PMC3710223 DOI: 10.4161/spmg.24824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 12/20/2022]
Abstract
RAI14 (retinoic acid induced protein 14) is an actin-binding protein first identified in the liver. In the testis, RAI14 is expressed by both Sertoli and germ cells in the seminiferous epithelium. Besides binding to actin in the testis, RAI14 is also a binding protein for palladin, an actin cross-linking and bundling protein. A recent report has shown that RAI14 displays stage-specific and spatiotemporal expression at the ES [ectoplasmic specialization, a testis-specific filamentous (F)-actin-rich adherens junction] in the seminiferous epithelium of adult rat testes during the epithelial cycle of spermatogenesis, illustrating its likely involvement in F-actin organization at the ES. Functional studies in which RAI14 was knocked down by RNAi in Sertoli cells in vitro and also in testicular cells in vivo have illustrated its role in conferring the integrity of actin filament bundles at the ES, perturbing the Sertoli cell tight junction (TJ)-pemeability barrier function in vitro, and also spermatid polarity and adhesion in vivo, thereby regulating spermatid transport at spermiation. Herein, we critically evaluate these earlier findings and also provide a likely hypothetic model based on the functional role of RAI14 at the ES, and how RAI14 is working with palladin and other actin regulatory proteins in the testis to regulate the transport of (1) spermatids and (2) preleptotene spermatocytes across the seminiferous epithelium and the blood-testis barrier (BTB), respectively, during spermatogenesis. This model should serve as a framework upon which functional experiments can be designed to better understand the biology of RAI14 and other actin-binding and regulatory proteins in the testis.
Collapse
Affiliation(s)
- Xiaojing Qian
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York NY USA ; Department of Anatomy, Histology and Embryology; School of Basic Medicine; Peking Union Medical College; Beijing, China
| | | | | | | |
Collapse
|
100
|
Wong EWP, Cheng CY. NC1 domain of collagen α3(IV) derived from the basement membrane regulates Sertoli cell blood-testis barrier dynamics. SPERMATOGENESIS 2014; 3:e25465. [PMID: 23885308 PMCID: PMC3710226 DOI: 10.4161/spmg.25465] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/19/2022]
Abstract
The blood-testis barrier (BTB) is an important ultrastructure for spermatogenesis. Delay in BTB formation in neonatal rats or its irreversible damage in adult rats leads to meiotic arrest and failure of spermatogonial differentiation beyond type A. While hormones, such as testosterone and FSH, are crucial to BTB function, little is known if there is a local regulatory mechanism in the seminiferous epithelium that modulates BTB function. Herein, we report that collagen α3(IV) chain, a component of the basement membrane in the rat testis, could generate a noncollagenous (NC1) domain peptide [Colα3(IV) NC1] via limited proteolysis by matrix metalloproteinase-9 (MMP-9), and that the expression of MMP-9 was upregulated by TNFα. While recombinant Colα3(IV) NC1 protein produced in E. coli failed to perturb Sertoli cell tight junction (TJ)-permeability barrier function, possibly due to the lack of glycosylation, Colα3(IV) NC1 recombinant protein produced in mammalian cells and purified to apparent homogeneity by affinity chromatography was found to reversibly perturb the Sertoli cell TJ-barrier function. Interestingly, Colα3(IV) NC1 recombinant protein did not perturb the steady-state levels of several TJ- (e.g., occludin, CAR, JAM-A, ZO-1) and basal ectoplasmic specialization- (e.g., N-cadherin, α-catenin, β-catenin) proteins at the BTB but induced changes in protein localization and/or distribution at the Sertoli cell-cell interface in which these proteins moved from the cell surface into the cell cytosol, thereby destabilizing the TJ function. These findings illustrate the presence of a local regulatory axis known as the BTB-basement membrane axis that regulates BTB restructuring during spermatogenesis.
Collapse
Affiliation(s)
- Elissa W P Wong
- The Mary M. Wohlford Laboratory for Male Contraceptive Research; Center for Biomedical Research; Population Council; New York, NY USA
| | | |
Collapse
|