51
|
Landfear SM. Protean permeases: Diverse roles for membrane transport proteins in kinetoplastid protozoa. Mol Biochem Parasitol 2018; 227:39-46. [PMID: 30590069 DOI: 10.1016/j.molbiopara.2018.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 11/26/2022]
Abstract
Kinetoplastid parasites such as Trypanosoma brucei, Trypanosoma cruzi, and Leishmania species rely upon their insect and vertebrate hosts to provide a plethora of nutrients throughout their life cycles. Nutrients and ions critical for parasite survival are taken up across the parasite plasma membrane by transporters and channels, polytopic membrane proteins that provide substrate-specific pores across the hydrophobic barrier. However, transporters and channels serve a wide range of biological functions beyond uptake of nutrients. This article highlights the diversity of activities that these integral membrane proteins serve and underscores the emerging complexity of their functions.
Collapse
Affiliation(s)
- Scott M Landfear
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
52
|
Singh B, Singh SS, Sundar S. Hepcidin mediated iron homoeostasis as immune regulator in visceral leishmaniasis patients. Parasite Immunol 2018; 41:e12601. [PMID: 30402883 DOI: 10.1111/pim.12601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
Abstract
AIM Iron is key ingredient for immunosurveillance and host-pathogen interaction. Intracellular pathogen steals the iron from the host, but how parasite orchestrates iron acquisition and affects immune responses remains controversial. We aimed to study the iron homoeostasis in visceral leishmaniasis (VL) and its influence on immune machinery. METHODS AND RESULTS This study was performed on purified monocytes and T cells, peripheral blood mononuclear cells and splenic aspirates for transcriptional analyses of iron homoeostasis (hepcidin, DMT1, transferrin receptor, ferroportin) and immune modulations (IFN-γ, HLA-DR, IL-10, iNOS, IL-6). Serum/plasma was used for determination of iron, total/transferrin iron-binding capacity and anti-leishmania antibody titres in cases. We report that VL-induced perturbation in iron homoeostasis may cause immune dysfunctions. VL cases had decreased iron uptake by transferrin-dependent and transferrin-independent routes while elevated hepcidin, degraded sole iron exporter ferroportin. Therefore, it appears that perturbation in iron homoeostasis has essential role in HLA-DR mediated antigen presentation and innate armoury by downregulating iNOS as well as altering IFN-γ, IL-6 and IL-10 profiles. CONCLUSION The iron homoeostasis by hepcidin can serve as one of the crucial determinants for regulating immune cell signalling; therefore, targeting iron metabolism, specifically hepcidin alone or in combination with agonists, can serve to clear infection.
Collapse
Affiliation(s)
- Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Siddharth Sankar Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
53
|
Alonso A, Larraga V, Alcolea PJ. The contribution of DNA microarray technology to gene expression profiling in Leishmania spp.: A retrospective view. Acta Trop 2018; 187:129-139. [PMID: 29746872 DOI: 10.1016/j.actatropica.2018.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 01/15/2023]
Abstract
The first completed genome project of any living organism, excluding viruses, was of the gammaproteobacteria Haemophilus influenzae in 1995. Until the last decade, genome sequencing was very tedious because genome survey sequences (GSS) and/or expressed sequence tags (ESTs) belonging to plasmid, cosmid, and artificial chromosome genome libraries had to be sequenced and assembled in silico. No genome is completely assembled because gaps and unassembled contigs are always remaining. However, most represent an organism's whole genome from a practical point of view. The first genome sequencing projects of trypanosomatid parasites Leishmania major, Trypanosoma cruzi, and T. brucei were completed in 2005 following those strategies. The functional genomics era developed on the basis of microarray technology and has been continuously evolving. In the case of the genus Leishmania, substantial information about differentiation in the digenetic life cycle of the parasite has been obtained. More recently, next generation sequencing has revolutionized genome sequencing and functional genomics, leading to more sensitive and accurate results by using much fewer resources. Though this new technology is more advantageous, it does not invalidate microarray results. In fact, promising vaccine candidates and drug targets have been found by means of microarray-based screening and preliminary proof-of-concept tests.
Collapse
|
54
|
Abstract
Glucose transport plays important roles for in vitro growth of insect-stage promastigotes and especially for viability of intramacrophage mammalian host-stage amastigotes of Leishmania mexicana. However, the roles of the three distinct glucose transporters, GT1, GT2, and GT3, in parasite viability inside macrophages and virulence in mice have not been fully explored. Parasite lines expressing GT1 or GT2 alone were strongly impaired in growth inside macrophages, but lines expressing GT3 alone infected macrophages and caused lesions in mice as robustly as wild-type parasites. Notably, GT3 localizes to the endoplasmic reticulum of intracellular amastigotes, suggesting a potential role for salvage of glucose from that organelle for viability of infectious amastigotes. This study establishes the unique role of GT3 for parasite survival inside host macrophages and for robust virulence in infected animals. Glucose transporters are important for viability and infectivity of the disease-causing amastigote stages of Leishmania mexicana. The Δgt1-3 null mutant, in which the 3 clustered glucose transporter genes, GT1, GT2, and GT3, have been deleted, is strongly impaired in growth inside macrophages in vitro. We have now demonstrated that this null mutant is also impaired in virulence in the BALB/c murine model of infection and forms lesions considerably more slowly than wild-type parasites. Previously, we established that amplification of the PIFTC3 gene, which encodes an intraflagellar transport protein, both facilitated and accompanied the isolation of the original Δgt1-3 null mutant generated in extracellular insect-stage promastigotes. We have now isolated Δgt1-3 null mutants without coamplification of PIFTC3. These amplicon-negative null mutants are further impaired in growth as promastigotes, compared to the previously described null mutants containing the PIFTC3 amplification. In contrast, the GT3 glucose transporter plays an especially important role in promoting amastigote viability. A line that expresses only the single glucose transporter GT3 grows as well inside macrophages and induces lesions in animals as robustly as do wild-type amastigotes, but lines expressing only the GT1 or GT2 transporters replicate poorly in macrophages. Strikingly, GT3 is restricted largely to the endoplasmic reticulum in intracellular amastigotes. This observation raises the possibility that GT3 may play an important role as an intracellular glucose transporter in the infectious stage of the parasite life cycle. IMPORTANCE Glucose transport plays important roles for in vitro growth of insect-stage promastigotes and especially for viability of intramacrophage mammalian host-stage amastigotes of Leishmania mexicana. However, the roles of the three distinct glucose transporters, GT1, GT2, and GT3, in parasite viability inside macrophages and virulence in mice have not been fully explored. Parasite lines expressing GT1 or GT2 alone were strongly impaired in growth inside macrophages, but lines expressing GT3 alone infected macrophages and caused lesions in mice as robustly as wild-type parasites. Notably, GT3 localizes to the endoplasmic reticulum of intracellular amastigotes, suggesting a potential role for salvage of glucose from that organelle for viability of infectious amastigotes. This study establishes the unique role of GT3 for parasite survival inside host macrophages and for robust virulence in infected animals.
Collapse
|
55
|
Romero AH, López SE, Rodríguez N, Oviedo H. Antileishmanial activity, structure-activity relationship of series of 2-(trifluoromethyl)benzo[b][1,8]naphthyridin-4(1H)-ones. Arch Pharm (Weinheim) 2018; 351:e1800094. [PMID: 29926967 DOI: 10.1002/ardp.201800094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/18/2018] [Accepted: 05/27/2018] [Indexed: 02/28/2024]
Abstract
Trifluoromethyl-substituted quinolones and their analogues have emerged as an interesting platform in the last 6 years to design antiparasite agents. Many of their derivatives have been demonstrated to display excellent efficacy against flagellate parasites such as Plasmodium spp. In order to identify new analogues of trifluoromethyl-substituted quinolones to treat the American cutaneous leishmaniasis, we evaluated the antiproliferative activity of a series of 2-(trifluoromethyl)benzo[b]-[1,8]naphthyridin-4(1H)-ones on the Leishmania braziliensis and Leishmania mexicana parasites. The mentioned derivatives have never been evaluated against any parasite strain. In general, an in vitro evaluation on L.(L)mexicana and L.(V)braziliensis showed that L.(L)mexicana was more sensitive to the action of the compounds than L.(V)braziliensis, either in the promastigote or in the amastigote form. Five compounds exhibited moderate efficacy against L.(L)mexicana promastigotes, with IC50 values ranging from 9.65 to 14.76 µM. From the mentioned molecules, three compounds, 1e, 1f, and 1h, showed a discrete response against axenic and intracellular amastigotes, with LD50 values between 19 and 24 µM. Moreover, an in vitro evaluation was performed on an antimony-resistant amastigote strain and a human isolate amastigote strain. These three compounds showed discrete toxicity on peritoneal macrophages; however, their relatively good antiamastigote response compared to the drug glucantime promoted our trifluoromethyl-substituted benzo[b][1,8]naphthyridin-4(1H)-ones as a potential platform to design potent antileishmanial agents.
Collapse
Affiliation(s)
- Angel H Romero
- Laboratorio de Ingeniería Genética, Instituto de Biomedicina, Facultad de Medicina, Universidad Central de Venezuela, San Luis, Caracas, Venezuela
| | - Simon E López
- Department of Chemistry, University of Florida, Gainesville, Florida
| | - Noris Rodríguez
- Laboratorio de Ingeniería Genética, Instituto de Biomedicina, Facultad de Medicina, Universidad Central de Venezuela, San Luis, Caracas, Venezuela
| | - Henry Oviedo
- Laboratorio de Ingeniería Genética, Instituto de Biomedicina, Facultad de Medicina, Universidad Central de Venezuela, San Luis, Caracas, Venezuela
| |
Collapse
|
56
|
Liburkin-Dan T, Schlisselberg D, Fischer-Weinberger R, Pescher P, Inbar E, Ephros M, Rentsch D, Späth GF, Zilberstein D. Stage-specific expression of the proline-alanine transporter in the human pathogen Leishmania. Mol Biochem Parasitol 2018; 222:1-5. [PMID: 29655799 DOI: 10.1016/j.molbiopara.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 11/26/2022]
Abstract
Leishmania are obligatory intracellular parasites that cycle between the sand fly midgut (extracellular promastigotes) and mammalian macrophage phagolysosomes (intracellular amastigotes). They have developed mechanisms of adaptation to the distinct environments of host and vector that favor utilization of both proline and alanine. LdAAP24 is the L. donovani proline-alanine transporter. It is a member of Leishmania system A that translocates neutral amino acids. Since system A is promastigote-specific, we aimed to assess whether LdAAP24 is also expressed exclusively in promastigotes. Herein, we established that upon exposing L. donovani promastigotes to amastigote differentiation signal (pH 5.5 and 37 °C), parasites rapidly and completely degrade LdAAP24 protein in both axenic and in spleen-derived amastigotes. In contrast, LdAAP24 mRNA remained unchanged throughout differentiation. Addition of either MG132 or Bafilomycin A1 partially inhibited LdAAP24 protein degradation, indicating a role for both lysosome- and proteasome-mediated degradation. This work provides the first evidence for post-translational regulation of stage-specific expression of LdAAP24.
Collapse
Affiliation(s)
- T Liburkin-Dan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Haifa, Israel
| | - D Schlisselberg
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Haifa, Israel
| | - R Fischer-Weinberger
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Haifa, Israel
| | - P Pescher
- Institut Pasteur, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, 75015 Paris, France
| | - E Inbar
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Haifa, Israel
| | - M Ephros
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Haifa, Israel
| | - D Rentsch
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - G F Späth
- Institut Pasteur, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, 75015 Paris, France
| | - D Zilberstein
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Haifa, Israel.
| |
Collapse
|
57
|
Das NK, Sandhya S, G. VV, Kumar R, Singh AK, Bal SK, Kumari S, Mukhopadhyay CK. Leishmania donovaniinhibits ferroportin translation by modulating FBXL5-IRP2 axis for its growth within host macrophages. Cell Microbiol 2018; 20:e12834. [DOI: 10.1111/cmi.12834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/24/2018] [Accepted: 02/15/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Nupur Kanti Das
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
| | - Sandhya Sandhya
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
| | - Vishnu Vivek G.
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
| | - Rajiv Kumar
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
| | - Amit Kumar Singh
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
| | - Saswat Kumar Bal
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
| | - Sanju Kumari
- Special Centre for Molecular Medicine; Jawaharlal Nehru University; New Delhi India
| | | |
Collapse
|
58
|
Sharma M, Shaikh N, Yadav S, Singh S, Garg P. A systematic reconstruction and constraint-based analysis of Leishmania donovani metabolic network: identification of potential antileishmanial drug targets. MOLECULAR BIOSYSTEMS 2018; 13:955-969. [PMID: 28367572 DOI: 10.1039/c6mb00823b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visceral leishmaniasis, a lethal parasitic disease, is caused by the protozoan parasite Leishmania donovani. The absence of an effective vaccine, drug toxicity and parasite resistance necessitates the identification of novel drug targets. Reconstruction of genome-scale metabolic models and their simulation has been established as an important tool for systems-level understanding of a microorganism's metabolism. In this work, amalgamating the tools and techniques of computational systems biology with rigorous manual curation, a constraint-based metabolic model for Leishmania donovani BPK282A1 has been developed. New functional annotations for 18 formerly hypothetical or erroneously annotated genes (encountered during iterative refinement of the model) have been proposed. Further, to formulate an accurate biomass objective function, experimental determination of previously uncharacterized biomass constituents was performed. The developed model is a highly compartmentalized metabolic model, comprising 1159 reactions, 1135 metabolites and 604 genes. The model exhibited around 76% accuracy for the prediction of experimental phenotypes of gene knockout studies and drug inhibition assays. Employing in silico gene knockout studies, we identified 28 essential genes with negligible sequence identity to the human proteins. Moreover, by dissecting the functional interdependencies of metabolic pathways, 70 synthetic lethal pairs were identified. Finally, in order to delineate stage-specific metabolism, gene-expression data of the amastigote stage residing in human macrophages were integrated into the model. By comparing the flux distribution, we illustrated the stage-specific differences in metabolism and environmental conditions that are in good agreement with the experimental findings. The developed model can serve as a highly enriched knowledgebase of legacy data and an important tool for generating experimentally verifiable hypotheses.
Collapse
Affiliation(s)
- Mahesh Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab-160062, India.
| | | | | | | | | |
Collapse
|
59
|
Reduced pathogenicity of fructose-1,6-bisphosphatase deficient Leishmania donovani and its use as an attenuated strain to induce protective immunogenicity. Vaccine 2018; 36:1190-1202. [PMID: 29395522 DOI: 10.1016/j.vaccine.2018.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/25/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023]
Abstract
Currently, there is no approved vaccine for visceral leishmaniasis (VL) caused by L. donovani. The ability to manipulate Leishmania genome by eliminating or introducing genes necessary for parasites' survival considered as the powerful strategy to generate the live attenuated vaccine. In the present study fructose-1,6-bisphosphatase (LdFBPase) gene deleted L. donovani (Δfbpase) was generated using homologous gene replacement strategy. Though LdFBPase gene deletion (Δfbpase) does not affect the growth of parasite in the promastigote form but axenic amastigotes display a marked reduction in their capacity to multiply in vitro inside macrophages and in vivo in Balb/c mice. Though Δfbpase L. donovani parasite persisted in BALB/c mice up to 12 weeks but was unable to cause infection, we tested its ability to protect against a virulent L. donovani challenge. Notably, intraperitoneal immunisation with live Δfbpase parasites displayed the reduction of parasites load in mice spleen and liver post challenge. Moreover, immunised BALB/c mice showed a reversal of T cell anergy and high levels of NO production that result in the killing of the parasite. A significant, correlation was found between parasite clearance and elevated IFNγ, IL12, and IFNγ/IL10 ratio compared to IL10 and TGFβ in immunised and challenged mice. Results suggested the generation of protective Th1 type immune response which induced significant parasite clearance at 12-week, as well as 16 weeks post, challenged immunised mice, signifying sustained immunity. Therefore, we propose that Δfbpase L. donovani parasites can be a live attenuated vaccine candidate for VL and a good model to understand the correlatives of protection in visceral leishmaniasis.
Collapse
|
60
|
Muxel SM, Aoki JI, Fernandes JCR, Laranjeira-Silva MF, Zampieri RA, Acuña SM, Müller KE, Vanderlinde RH, Floeter-Winter LM. Arginine and Polyamines Fate in Leishmania Infection. Front Microbiol 2018; 8:2682. [PMID: 29379478 PMCID: PMC5775291 DOI: 10.3389/fmicb.2017.02682] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/22/2017] [Indexed: 01/22/2023] Open
Abstract
Leishmania is a protozoan parasite that alternates its life cycle between the sand fly and the mammalian host macrophages, involving several environmental changes. The parasite responds to these changes by promoting a rapid metabolic adaptation through cellular signaling modifications that lead to transcriptional and post-transcriptional gene expression regulation and morphological modifications. Molecular approaches such as gene expression regulation, next-generation sequencing (NGS), microRNA (miRNA) expression profiling, in cell Western blot analyses and enzymatic activity profiling, have been used to characterize the infection of murine BALB/c and C57BL/6 macrophages, as well as the human monocytic cell-lineage THP-1, with Leishmania amazonensis wild type (La-WT) or arginase knockout (La-arg-). These models are being used to elucidate physiological roles of arginine and polyamines pathways and the importance of arginase for the establishment of the infection. In this review, we will describe the main aspects of Leishmania-host interaction, focusing on the arginine and polyamines pathways and pointing to possible targets to be used for prognosis and/or in the control of the infection. The parasite enzymes, arginase and nitric oxide synthase-like, have essential roles in the parasite survival and in the maintenance of infection. On the other hand, in mammalian macrophages, defense mechanisms are activated inducing alterations in the mRNA, miRNA and enzymatic profiles that lead to the control of infection. Furthermore, the genetic background of both parasite and host are also important to define the fate of infection.
Collapse
Affiliation(s)
- Sandra M Muxel
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana I Aoki
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliane C R Fernandes
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo A Zampieri
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Stephanie M Acuña
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Karl E Müller
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rubia H Vanderlinde
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lucile M Floeter-Winter
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
61
|
Aoki JI, Muxel SM, Zampieri RA, Laranjeira-Silva MF, Müller KE, Nerland AH, Floeter-Winter LM. RNA-seq transcriptional profiling of Leishmania amazonensis reveals an arginase-dependent gene expression regulation. PLoS Negl Trop Dis 2017; 11:e0006026. [PMID: 29077741 PMCID: PMC5678721 DOI: 10.1371/journal.pntd.0006026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/08/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Background Leishmania is a protozoan parasite that alternates its life cycle between the sand-fly vector and the mammalian host. This alternation involves environmental changes and leads the parasite to dynamic modifications in morphology, metabolism, cellular signaling and regulation of gene expression to allow for a rapid adaptation to new conditions. The L-arginine pathway in L. amazonensis is important during the parasite life cycle and interferes in the establishment and maintenance of the infection in mammalian macrophages. Host arginase is an immune-regulatory enzyme that can reduce the production of nitric oxide by activated macrophages, directing the availability of L-arginine to the polyamine pathway, resulting in parasite replication. In this work, we performed transcriptional profiling to identify differentially expressed genes in L. amazonensis wild-type (La-WT) versus L. amazonensis arginase knockout (La-arg-) promastigotes and axenic amastigotes. Methodology/Principal findings A total of 8253 transcripts were identified in La-WT and La-arg- promastigotes and axenic amastigotes, about 60% of them codifying hypothetical proteins and 443 novel transcripts, which did not match any previously annotated genes. Our RNA-seq data revealed that 85% of genes were constitutively expressed. The comparison of transcriptome and metabolome data showed lower levels of arginase and higher levels of glutamate-5-kinase in La-WT axenic amastigotes compared to promastigotes. The absence of arginase activity in promastigotes increased the levels of pyrroline 5-carboxylate reductase, but decreased the levels of arginosuccinate synthase, pyrroline 5-carboxylate dehydrogenase, acetylornithine deacetylase and spermidine synthase transcripts levels. These observations can explain previous metabolomic data pointing to the increase of L-arginine, citrulline and L-glutamate and reduction of aspartate, proline, ornithine and putrescine. Altogether, these results indicate that arginase activity is important in Leishmania gene expression modulation during differentiation and adaptation to environmental changes. Here, we confirmed this hypothesis with the identification of differential gene expression of the enzymes involved in biosynthesis of amino acids, arginine and proline metabolism and arginine biosynthesis. Conclusions/Significance All data provided information about the transcriptomic profiling and the expression levels of La-WT and La-arg- promastigotes and axenic amastigotes. These findings revealed the importance of arginase in parasite survival and differentiation, and indicated the existence of a coordinated response in the absence of arginase activity related to arginine and polyamine pathways. Leishmania are auxotrophic for many essential nutrients, including amino acids. In this way, the parasite needs to uptake the amino acids from the environment. The uptake of amino acids is mediated by amino acid transporters that are unique for Leishmania. As part of polyamine pathway, the arginase converts L-arginine to ornithine and furthermore to putrescine, products which are essential for parasite growth. On the other hand, the absence of arginase activity could alter the metabolism of the parasite to surpass the external signals during the life cycle and the fate of infection. The transcriptional profiling of La-WT and La-arg- promastigotes and axenic amastigotes revealed 8253 transcripts, 60% encoding hypothetical proteins and 443 novel transcripts. In addition, our data revealed that 85% of the genes were constitutively expressed. Among the 15% (1268 genes) of the differentially expressed genes, we identified genes up- and down-regulated comparing the transcript abundance from different life cycle stages of the parasite and in the presence or absence of arginase. We also combined the transcriptional with metabolic profile that revealed a proportional correlation between enzyme and metabolites in the polyamine pathway. The differentiation of promastigotes to amastigotes alters the expression of enzymes from polyamines biosynthesis, which modulates ornithine, L-glutamate, proline and putrescine levels. In addition, the absence of arginase activity increased the levels of L-arginine, citrulline and L-glutamate and decreased the levels of aspartate, proline, ornithine and putrescine in promastigotes by differential modulation of genes involved in its metabolism. Altogether these data provided additional insights into how Leishmania is able to modulate its biological functions in the presence or absence of arginase activity to survive during environmental changes.
Collapse
Affiliation(s)
- Juliana Ide Aoki
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail: (JIA); (LMFW)
| | - Sandra Marcia Muxel
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Karl Erik Müller
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Lucile Maria Floeter-Winter
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail: (JIA); (LMFW)
| |
Collapse
|
62
|
Revealing the mystery of metabolic adaptations using a genome scale model of Leishmania infantum. Sci Rep 2017; 7:10262. [PMID: 28860532 PMCID: PMC5579285 DOI: 10.1038/s41598-017-10743-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/14/2017] [Indexed: 11/08/2022] Open
Abstract
Human macrophage phagolysosome and sandfly midgut provide antagonistic ecological niches for Leishmania parasites to survive and proliferate. Parasites optimize their metabolism to utilize the available inadequate resources by adapting to those environments. Lately, a number of metabolomics studies have revived the interest to understand metabolic strategies utilized by the Leishmania parasite for optimal survival within its hosts. For the first time, we propose a reconstructed genome-scale metabolic model for Leishmania infantum JPCM5, the analyses of which not only captures observations reported by metabolomics studies in other Leishmania species but also divulges novel features of the L. infantum metabolome. Our results indicate that Leishmania metabolism is organized in such a way that the parasite can select appropriate alternatives to compensate for limited external substrates. A dynamic non-essential amino acid motif exists within the network that promotes a restricted redistribution of resources to yield required essential metabolites. Further, subcellular compartments regulate this metabolic re-routing by reinforcing the physiological coupling of specific reactions. This unique metabolic organization is robust against accidental errors and provides a wide array of choices for the parasite to achieve optimal survival.
Collapse
|
63
|
Mandal A, Das S, Kumar A, Roy S, Verma S, Ghosh AK, Singh R, Abhishek K, Saini S, Sardar AH, Purkait B, Kumar A, Mandal C, Das P. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis. Front Immunol 2017; 8:839. [PMID: 28798743 PMCID: PMC5526900 DOI: 10.3389/fimmu.2017.00839] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/03/2017] [Indexed: 11/24/2022] Open
Abstract
The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL), depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM) with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS) expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important therapeutic and prophylactic strategy to treat VL.
Collapse
Affiliation(s)
- Abhishek Mandal
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Ajay Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Saptarshi Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sudha Verma
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Ayan Kumar Ghosh
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Ruby Singh
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Kumar Abhishek
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Savita Saini
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Abul Hasan Sardar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Bidyut Purkait
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Ashish Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (ICMR), Patna, India
| |
Collapse
|
64
|
Azizi H, Romão TP, Santos Charret K, Padmanabhan PK, de Melo Neto OP, Müller-McNicoll M, Papadopoulou B. RNA secondary structure and nucleotide composition of the conserved hallmark sequence of Leishmania SIDER2 retroposons are essential for endonucleolytic cleavage and mRNA degradation. PLoS One 2017; 12:e0180678. [PMID: 28704426 PMCID: PMC5509151 DOI: 10.1371/journal.pone.0180678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 11/19/2022] Open
Abstract
We have reported previously that Short Interspersed Degenerate Retroposons of the SIDER2 subfamily, largely located within 3'UTRs of Leishmania transcripts, promote rapid turnover of mRNAs through endonucleolytic cleavage within the highly conserved second tandem 79-nt hallmark sequence (79-nt SII). Here, we used site-directed mutagenesis and in silico RNA structural studies to delineate the cis-acting requirements within 79-nt SII for cleavage and mRNA degradation. The putative cleavage site(s) and other nucleotides predicted to alter the RNA secondary structure of 79-nt SII were either deleted or mutated and their effect on mRNA turnover was monitored using a gene reporter system. We found that short deletions of 8-nt spanning the two predicted cleavage sites block degradation of SIDER2-containing transcripts, leading to mRNA accumulation. Furthermore, single or double substitutions of the dinucleotides targeted for cleavage as well as mutations altering the predicted RNA secondary structure encompassing both cleavage sites also prevent mRNA degradation, confirming that these dinucleotides are the bona fide cleavage sites. In line with these results, we show that stage-regulated SIDER2 inactivation correlates with the absence of endonucleolytic cleavage. Overall, these data demonstrate that both cleavage sites within the conserved 79-nt SII as well as RNA folding in this region are essential for SIDER2-mediated mRNA decay, and further support that SIDER2-harboring transcripts are targeted for degradation by endonucleolytic cleavage.
Collapse
Affiliation(s)
- Hiva Azizi
- Research Center in Infectious Diseases, CHU de Quebec Research Center-University Laval, Quebec, QC. Canada
- Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC. Canada
| | - Tatiany P. Romão
- Departamento de Microbiologia, Centro de Pesquisas Aggeu Magalhães-FIOCRUZ, Recife, PE, Brazil
| | | | - Prasad K. Padmanabhan
- Research Center in Infectious Diseases, CHU de Quebec Research Center-University Laval, Quebec, QC. Canada
- Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC. Canada
| | - Osvaldo P. de Melo Neto
- Departamento de Microbiologia, Centro de Pesquisas Aggeu Magalhães-FIOCRUZ, Recife, PE, Brazil
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence ‘Macromolecular Complexes’, Goethe-University Frankfurt, Institute of Cell Biology and Neuroscience, Frankfurt /Main, Germany
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHU de Quebec Research Center-University Laval, Quebec, QC. Canada
- Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC. Canada
- * E-mail:
| |
Collapse
|
65
|
Verma JK, Rastogi R, Mukhopadhyay A. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494. PLoS Pathog 2017. [PMID: 28650977 PMCID: PMC5501680 DOI: 10.1371/journal.ppat.1006459] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several intracellular pathogens arrest the phagosome maturation in the host cells to avoid transport to lysosomes. In contrast, the Leishmania containing parasitophorous vacuole (PV) is shown to recruit lysosomal markers and thus Leishmania is postulated to be residing in the phagolysosomes in macrophages. Here, we report that Leishmania donovani specifically upregulates the expression of Rab5a by degrading c-Jun via their metalloprotease gp63 to downregulate the expression of miR-494 in THP-1 differentiated human macrophages. Our results also show that miR-494 negatively regulates the expression of Rab5a in cells. Subsequently, L. donovani recruits and retains Rab5a and EEA1 on PV to reside in early endosomes and inhibits transport to lysosomes in human macrophages. Similarly, we have also observed that Leishmania PV also recruits Rab5a by upregulating its expression in human PBMC differentiated macrophages. However, the parasite modulates the endosome by recruiting Lamp1 and inactive pro-CathepsinD on PV via the overexpression of Rab5a in infected cells. Furthermore, siRNA knockdown of Rab5a or overexpression of miR-494 in human macrophages significantly inhibits the survival of the parasites. These results provide the first mechanistic insights of parasite-mediated remodeling of endo-lysosomal trafficking to reside in a specialized early endocytic compartment.
Collapse
|
66
|
Lyda TA, Wagner EL, Bourg AX, Peng C, Tomaraei GN, Dean D, Kennedy MS, Marcotte WR. A Leishmania secretion system for the expression of major ampullate spidroin mimics. PLoS One 2017; 12:e0178201. [PMID: 28542539 PMCID: PMC5441639 DOI: 10.1371/journal.pone.0178201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
Spider major ampullate silk fibers have been shown to display a unique combination of relatively high fracture strength and toughness compared to other fibers and show potential for tissue engineering scaffolds. While it is not possible to mass produce native spider silks, the potential ability to produce fibers from recombinant spider silk fibers could allow for an increased innovation rate within tissue engineering and regenerative medicine. In this pilot study, we improved upon a prior fabrication route by both changing the expression host and additives to the fiber pulling precursor solution to improve the performance of fibers. The new expression host for producing spidroin protein mimics, protozoan parasite Leishmania tarentolae, has numerous advantages including a relatively low cost of culture, rapid growth rate and a tractable secretion pathway. Tensile testing of hand pulled fibers produced from these spidroin-like proteins demonstrated that additives could significantly modify the fiber's mechanical and/or antimicrobial properties. Cross-linking the proteins with glutaraldehyde before fiber pulling resulted in a relative increase in tensile strength and decrease in ductility. The addition of ampicillin into the spinning solution resulted in the fibers being able to inhibit bacterial growth.
Collapse
Affiliation(s)
- Todd A. Lyda
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Elizabeth L. Wagner
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Andre X. Bourg
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Congyue Peng
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Golnaz Najaf Tomaraei
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| | - Marian S. Kennedy
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - William R. Marcotte
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
67
|
Leishmania donovani chaperonin 10 regulates parasite internalization and intracellular survival in human macrophages. Med Microbiol Immunol 2017; 206:235-257. [PMID: 28283754 DOI: 10.1007/s00430-017-0500-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Protozoa of the genus Leishmania infect macrophages in their mammalian hosts causing a spectrum of diseases known as the leishmaniases. The search for leishmania effectors that support macrophage infection is a focus of significant interest. One such candidate is leishmania chaperonin 10 (CPN10) which is secreted in exosomes and may have immunosuppressive properties. Here, we report for the first time that leishmania CPN10 localizes to the cytosol of infected macrophages. Next, we generated two genetically modified strains of Leishmania donovani (Ld): one strain overexpressing CPN10 (CPN10+++) and the second, a CPN10 single allele knockdown (CPN10+/-), as the null mutant was lethal. When compared with the wild-type (WT) parental strain, CPN10+/- Ld showed higher infection rates and parasite loads in human macrophages after 24 h of infection. Conversely, CPN10+++ Ld was associated with lower initial infection rates. This unexpected apparent gain-of-function for the knockdown could have been explained either by enhanced parasite internalization or by enhanced intracellular survival. Paradoxically, we found that CPN10+/- leishmania were more readily internalized than WT Ld, but also displayed significantly impaired intracellular survival. This suggests that leishmania CPN10 negatively regulates the rate of parasite uptake by macrophages while being required for intracellular survival. Finally, quantitative proteomics identified an array of leishmania proteins whose expression was positively regulated by CPN10. In contrast, many macrophage proteins involved in innate immunity were negatively regulated by CPN10. Taken together, these findings identify leishmania CPN10 as a novel effector with broad based effects on macrophage cell regulation and parasite survival.
Collapse
|
68
|
Romero AH, Medina R, Alcala A, García-Marchan Y, Núñez-Duran J, Leañez J, Mijoba A, Ciangherotti C, Serrano-Martín X, López SE. Design, synthesis, structure-activity relationship and mechanism of action studies of a series of 4-chloro-1-phthalazinyl hydrazones as a potent agent against Leishmania braziliensis. Eur J Med Chem 2017; 127:606-620. [DOI: 10.1016/j.ejmech.2017.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/29/2022]
|
69
|
Negrão F, Abánades DR, Jaeeger CF, Rocha DFO, Belaz KRA, Giorgio S, Eberlin MN, Angolini CFF. Lipidomic alterations of in vitro macrophage infection by L. infantum and L. amazonensis. ACTA ACUST UNITED AC 2017; 13:2401-2406. [DOI: 10.1039/c7mb00381a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lipidomics ofLeishmaniahas been demonstrated and related to its adaptation mechanisms during host-cells infection and its different clinical manifestations.
Collapse
Affiliation(s)
- Fernanda Negrão
- ThoMSon Mass Spectrometry Laboratory
- Institute of Chemistry
- University of Campinas
- UNICAMP 13083-970 Campinas – SP
- Brazil
| | - Daniel R. Abánades
- Laboratory of Leishmaniasis
- Department of Animal Biology
- Institute of Biology
- University of Campinas
- UNICAMP 13083-970 Campinas – SP
| | - Caroline F. Jaeeger
- ThoMSon Mass Spectrometry Laboratory
- Institute of Chemistry
- University of Campinas
- UNICAMP 13083-970 Campinas – SP
- Brazil
| | - Daniele F. O. Rocha
- ThoMSon Mass Spectrometry Laboratory
- Institute of Chemistry
- University of Campinas
- UNICAMP 13083-970 Campinas – SP
- Brazil
| | - Katia R. A. Belaz
- ThoMSon Mass Spectrometry Laboratory
- Institute of Chemistry
- University of Campinas
- UNICAMP 13083-970 Campinas – SP
- Brazil
| | - Selma Giorgio
- Laboratory of Leishmaniasis
- Department of Animal Biology
- Institute of Biology
- University of Campinas
- UNICAMP 13083-970 Campinas – SP
| | - Marcos N. Eberlin
- ThoMSon Mass Spectrometry Laboratory
- Institute of Chemistry
- University of Campinas
- UNICAMP 13083-970 Campinas – SP
- Brazil
| | - Célio F. F. Angolini
- ThoMSon Mass Spectrometry Laboratory
- Institute of Chemistry
- University of Campinas
- UNICAMP 13083-970 Campinas – SP
- Brazil
| |
Collapse
|
70
|
Zaidi A, Singh KP, Ali V. Leishmania and its quest for iron: An update and overview. Mol Biochem Parasitol 2016; 211:15-25. [PMID: 27988301 DOI: 10.1016/j.molbiopara.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/21/2016] [Accepted: 12/11/2016] [Indexed: 12/12/2022]
Abstract
Parasites of genus Leishmania are the causative agents of complex neglected diseases called leishmaniasis and continue to be a significant health concern globally. Iron is a vital nutritional requirement for virtually all organisms, including pathogenic trypanosomatid parasites, and plays a crucial role in many facets of cellular metabolism as a cofactor of several enzymes. Iron acquisition is essential for the survival of parasites. Yet parasites are also vulnerable to the toxicity of iron and reactive oxygen species. The aim of this review is to provide an update on the current knowledge about iron acquisition and usage by Leishmania species. We have also discussed about host strategy to modulate iron availability and the strategies deployed by Leishmania parasites to overcome iron withholding defences and thus favour parasite growth within host macrophages. Since iron plays central roles in the host's response and parasite metabolism, a comprehensive understanding of the iron metabolism is beneficial to identify potential viable therapeutic opportunities against leishmaniasis.
Collapse
Affiliation(s)
- Amir Zaidi
- Laboratory of Molecular Biochemistry and Cell Biology, Dept. of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Krishn Pratap Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Dept. of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Dept. of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Agamkuan, Patna, India.
| |
Collapse
|
71
|
Faria J, Loureiro I, Santarém N, Cecílio P, Macedo-Ribeiro S, Tavares J, Cordeiro-da-Silva A. Disclosing the essentiality of ribose-5-phosphate isomerase B in Trypanosomatids. Sci Rep 2016; 6:26937. [PMID: 27230471 PMCID: PMC4882579 DOI: 10.1038/srep26937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/10/2016] [Indexed: 01/31/2023] Open
Abstract
Ribose-5-phosphate isomerase (RPI) belongs to the non-oxidative branch of the pentose phosphate pathway, catalysing the inter-conversion of D-ribose-5-phosphate and D-ribulose-5-phosphate. Trypanosomatids encode a type B RPI, whereas humans have a structurally unrelated type A, making RPIB worthy of exploration as a potential drug target. Null mutant generation in Leishmania infantum was only possible when an episomal copy of RPIB gene was provided, and the latter was retained both in vitro and in vivo in the absence of drug pressure. This suggests the gene is essential for parasite survival. Importantly, the inability to remove the second allele of RPIB gene in sKO mutants complemented with an episomal copy of RPIB carrying a mutation that abolishes isomerase activity suggests the essentiality is due to its metabolic function. In vitro, sKO promastigotes exhibited no defect in growth, metacyclogenesis or macrophage infection, however, an impairment in intracellular amastigotes' replication was observed. Additionally, mice infected with sKO mutants rescued by RPIB complementation had a reduced parasite burden in the liver. Likewise, Trypanosoma brucei is resistant to complete RPIB gene removal and mice infected with sKO mutants showed prolonged survival upon infection. Taken together our results genetically validate RPIB as a potential drug target in trypanosomatids.
Collapse
Affiliation(s)
- Joana Faria
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Inês Loureiro
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nuno Santarém
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro Cecílio
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Protein Crystallography Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
| | - Joana Tavares
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal
| |
Collapse
|
72
|
Goldman-Pinkovich A, Balno C, Strasser R, Zeituni-Molad M, Bendelak K, Rentsch D, Ephros M, Wiese M, Jardim A, Myler PJ, Zilberstein D. An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion. PLoS Pathog 2016; 12:e1005494. [PMID: 27043018 PMCID: PMC4846328 DOI: 10.1371/journal.ppat.1005494] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/15/2016] [Indexed: 11/18/2022] Open
Abstract
Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade. Protozoa of the genus Leishmania are the causative agents of leishmaniasis in humans. These parasites cycle between promastigotes in the sand fly mid-gut and amastigotes in phagolysosome of mammalian macrophages. During infection, host cells up-regulate nitric oxide while/or parasites induce expression of host arginase, both of which use arginine as a substrate. These elevated activities deplete macrophage arginine pools, a situation that invading Leishmania must overcome since it is an essential amino acid. Leishmania donovani imports exogenous arginine via a mono-specific amino acid transporter (AAP3) and utilizes it primarily through the polyamine pathway to provide precursors for trypanothione biosynthesis as well as hypusination of eukaryotic translation Initiation Factor 5A. Here we report the discovery of a pathway whereby Leishmania sense the lack of environmental arginine and respond with rapid up-regulation in the expression and activity of AAP3, as well as several other transporters. Significantly, this arginine deprivation response is also activated in parasites during macrophage infection. Phosphoproteomic analyses of L. donovani promastigotes have implicated a mitogen-activated protein kinase 2 (MPK2)-mediated signaling cascade in this response, and L. mexicana mutants lacking MPK2 are unable to respond to arginine deprivation. The arginine-sensing pathway might play an important role in Leishmania virulence and hence serve as target for drug development.
Collapse
Affiliation(s)
| | - Caitlin Balno
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Haifa, Israel
| | - Rona Strasser
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Michal Zeituni-Molad
- Carmel Medical Center and Faculty of Medicine, Technion,—Israel institute of Technology, Haifa, Israel
| | - Keren Bendelak
- The Smoler Proteomic Center, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Moshe Ephros
- Carmel Medical Center and Faculty of Medicine, Technion,—Israel institute of Technology, Haifa, Israel
| | - Martin Wiese
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Armando Jardim
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Peter J. Myler
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Departments of Global Health and Biomedical Informatics & Medical Education, University of Washington, Seattle, Washington, United States of America
| | - Dan Zilberstein
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa, Haifa, Israel
- * E-mail:
| |
Collapse
|
73
|
Zíková A, Hampl V, Paris Z, Týč J, Lukeš J. Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions. Mol Biochem Parasitol 2016; 209:46-57. [PMID: 26906976 DOI: 10.1016/j.molbiopara.2016.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/08/2023]
Abstract
In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated.
Collapse
Affiliation(s)
- Alena Zíková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic.
| | - Vladimír Hampl
- Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; University of South Bohemia, Faculty of Science, České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
74
|
Vikeved E, Backlund A, Alsmark C. The Dynamics of Lateral Gene Transfer in Genus Leishmania - A Route for Adaptation and Species Diversification. PLoS Negl Trop Dis 2016; 10:e0004326. [PMID: 26730948 PMCID: PMC4711719 DOI: 10.1371/journal.pntd.0004326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/04/2015] [Indexed: 11/18/2022] Open
Abstract
Background The genome of Leishmania major harbours a comparably high proportion of genes of prokaryote origin, acquired by lateral gene transfer (LGT). Some of these are present in closely related trypanosomatids, while some are detected in Leishmania only. We have evaluated the impact and destiny of LGT in genus Leishmania. Methodology/Principal Findings To study the dynamics and fate of LGTs we have performed phylogenetic, as well as nucleotide and amino acid composition analyses within orthologous groups of LGTs detected in Leishmania. A set of universal trypanosomatid LGTs was added as a reference group. Both groups of LGTs have, to some extent, ameliorated to resemble the recipient genomes. However, while virtually all of the universal trypanosomatid LGTs are distributed and conserved in the entire genus Leishmania, the LGTs uniquely present in genus Leishmania are more prone to gene loss and display faster rates of evolution. Furthermore, a PCR based approach has been employed to ascertain the presence of a set of twenty LGTs uniquely present in genus Leishmania, and three universal trypanosomatid LGTs, in ten additional strains of Leishmania. Evolutionary rates and predicted expression levels of these LGTs have also been estimated. Ten of the twenty LGTs are distributed and conserved in all species investigated, while the remainder have been subjected to modifications, or undergone pseudogenization, degradation or loss in one or more species. Conclusions/Significance LGTs unique to the genus Leishmania have been acquired after the divergence of Leishmania from the other trypanosomatids, and are evolving faster than their recipient genomes. This implies that LGT in genus Leishmania is a continuous and dynamic process contributing to species differentiation and speciation. This study also highlights the importance of carefully evaluating these dynamic genes, e.g. as LGTs have been suggested as potential drug targets. Leishmania parasites cause leishmaniasis, a neglected tropical disease, estimated to threaten 350 million people in 88 countries worldwide according to the WHO. The genome of Leishmania major harbours a number of genes, which have been proposed as acquired by lateral gene transfer (LGT) from a broad variety of prokaryote donors. Such genes may prove beneficial for the parasites, e.g. by promoting survival of the parasite in new environments. We have studied orthologs to LGTs previously detected uniquely in L. major as well as LGTs shared also by other trypanosomatids. The universal trypanosomatid LGTs are more conserved within genus Leishmania, as compared to LGTs that are exclusively present in genus Leishmania. One possible explanation to this observation is that these have resided in their host genomes for a longer time period. This explanation strengthens the hypothesis that the LGTs unique to genus Leishmaina were acquired after the divergence from the trypanosomes, rather than before the divergence, and then subsequently lost from the trypanosome lineage. An in-depth analysis of a subset of the LGTs, which are present only in genus Leishmania showed that LGT within genus Leishmania is a dynamic process. LGTs, providing beneficial capabilities to the parasite, are demonstrated to become conserved throughout generic diversification, hence contributing to species differentiation, while LGTs of limited use are degraded and lost.
Collapse
Affiliation(s)
- Elisabet Vikeved
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Anders Backlund
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Cecilia Alsmark
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
- * E-mail:
| |
Collapse
|
75
|
Liévin-Le Moal V, Loiseau PM. Leishmania hijacking of the macrophage intracellular compartments. FEBS J 2015; 283:598-607. [PMID: 26588037 DOI: 10.1111/febs.13601] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/08/2015] [Accepted: 11/13/2015] [Indexed: 12/15/2022]
Abstract
Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses.
Collapse
Affiliation(s)
- Vanessa Liévin-Le Moal
- Anti-Parasitic Chemotherapy, Faculté de Pharmacie, CNRS, UMR 8076 BioCIS, Châtenay-Malabry, France.,Université Paris-Sud, Orsay, France.,Faculté de Pharmacie, Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LabEx LERMIT), Châtenay-Malabry, France
| | - Philippe M Loiseau
- Anti-Parasitic Chemotherapy, Faculté de Pharmacie, CNRS, UMR 8076 BioCIS, Châtenay-Malabry, France.,Université Paris-Sud, Orsay, France.,Faculté de Pharmacie, Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LabEx LERMIT), Châtenay-Malabry, France
| |
Collapse
|
76
|
Jamdhade MD, Pawar H, Chavan S, Sathe G, Umasankar PK, Mahale KN, Dixit T, Madugundu AK, Prasad TSK, Gowda H, Pandey A, Patole MS. Comprehensive proteomics analysis of glycosomes from Leishmania donovani. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:157-70. [PMID: 25748437 DOI: 10.1089/omi.2014.0163] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Leishmania donovani is a kinetoplastid protozoan that causes a severe and fatal disease kala-azar, or visceral leishmaniasis. L. donovani infects human host after the phlebotomine sandfly takes a blood meal and resides within the phagolysosome of infected macrophages. Previous studies on host-parasite interactions have not focused on Leishmania organelles and the role that they play in the survival of this parasite within macrophages. Leishmania possess glycosomes that are unique and specialized subcellular microbody organelles. Glycosomes are known to harbor most peroxisomal enzymes and, in addition, they also possess nine glycolytic enzymes. In the present study, we have carried out proteomic profiling using high resolution mass spectrometry of a sucrose density gradient-enriched glycosomal fraction isolated from L. donovani promastigotes. This study resulted in the identification of 4022 unique peptides, leading to the identification of 1355 unique proteins from a preparation enriched in L. donovani glycosomes. Based on protein annotation, 566 (41.8%) were identified as hypothetical proteins with no known function. A majority of the identified proteins are involved in metabolic processes such as carbohydrate, lipid, and nucleic acid metabolism. Our present proteomic analysis is the most comprehensive study to date to map the proteome of L. donovani glycosomes.
Collapse
|
77
|
Size does matter: 18 amino acids at the N-terminal tip of an amino acid transporter in Leishmania determine substrate specificity. Sci Rep 2015; 5:16289. [PMID: 26549185 PMCID: PMC4637868 DOI: 10.1038/srep16289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/29/2015] [Indexed: 11/17/2022] Open
Abstract
Long N-terminal tails of amino acid transporters are known to act as sensors of the internal pool of amino acids and as positive regulators of substrate flux rate. In this study we establish that N-termini of amino acid transporters can also determine substrate specificity. We show that due to alternative trans splicing, the human pathogen Leishmania naturally expresses two variants of the proline/alanine transporter, one 18 amino acid shorter than the other. We demonstrate that the longer variant (LdAAP24) translocates both proline and alanine, whereas the shorter variant (∆18LdAAP24) translocates just proline. Remarkably, co-expressing the hydrophilic N-terminal peptide of the long variant with ∆18LdAAP24 was found to recover alanine transport. This restoration of alanine transport could be mediated by a truncated N-terminal tail, though truncations exceeding half of the tail length were no longer functional. Taken together, the data indicate that the first 18 amino acids of the negatively charged N-terminal LdAAP24 tail are required for alanine transport and may facilitate the electrostatic interactions of the entire negatively charged N-terminal tail with the positively charged internal loops in the transmembrane domain, as this mechanism has been shown to underlie regulation of substrate flux rate for other transporters.
Collapse
|
78
|
Westrop GD, Williams RAM, Wang L, Zhang T, Watson DG, Silva AM, Coombs GH. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism. PLoS One 2015; 10:e0136891. [PMID: 26368322 PMCID: PMC4569581 DOI: 10.1371/journal.pone.0136891] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 01/09/2023] Open
Abstract
Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts.
Collapse
Affiliation(s)
- Gareth D. Westrop
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Roderick A. M. Williams
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, United Kingdom
| | - Lijie Wang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Ana Marta Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
79
|
Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective. PLoS One 2015; 10:e0137976. [PMID: 26367006 PMCID: PMC4569355 DOI: 10.1371/journal.pone.0137976] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 08/24/2015] [Indexed: 01/02/2023] Open
Abstract
Leishmania infantum, causative agent of visceral leishmaniasis in humans, illustrates a complex lifecycle pertaining to two extreme environments, namely, the gut of the sandfly vector and human macrophages. Leishmania is capable of dynamically adapting and tactically switching between these critically hostile situations. The possible metabolic routes ventured by the parasite to achieve this exceptional adaptation to its varying environments are still poorly understood. In this study, we present an extensively reconstructed energy metabolism network of Leishmania infantum as an attempt to identify certain strategic metabolic routes preferred by the parasite to optimize its survival in such dynamic environments. The reconstructed network consists of 142 genes encoding for enzymes performing 237 reactions distributed across five distinct model compartments. We annotated the subcellular locations of different enzymes and their reactions on the basis of strong literature evidence and sequence-based detection of cellular localization signal within a protein sequence. To explore the diverse features of parasite metabolism the metabolic network was implemented and analyzed as a constraint-based model. Using a systems-based approach, we also put forth an extensive set of lethal reaction knockouts; some of which were validated using published data on Leishmania species. Performing a robustness analysis, the model was rigorously validated and tested for the secretion of overflow metabolites specific to Leishmania under varying extracellular oxygen uptake rate. Further, the fate of important non-essential amino acids in L. infantum metabolism was investigated. Stage-specific scenarios of L. infantum energy metabolism were incorporated in the model and key metabolic differences were outlined. Analysis of the model revealed the essentiality of glucose uptake, succinate fermentation, glutamate biosynthesis and an active TCA cycle as driving forces for parasite energy metabolism and its optimal growth. Finally, through our in silico knockout analysis, we could identify possible therapeutic targets that provide experimentally testable hypotheses.
Collapse
|
80
|
Millar JA, Valdés R, Kacharia FR, Landfear SM, Cambronne ED, Raghavan R. Coxiella burnetii and Leishmania mexicana residing within similar parasitophorous vacuoles elicit disparate host responses. Front Microbiol 2015; 6:794. [PMID: 26300862 PMCID: PMC4528172 DOI: 10.3389/fmicb.2015.00794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/21/2015] [Indexed: 12/24/2022] Open
Abstract
Coxiella burnetii is a bacterium that thrives in an acidic parasitophorous vacuole (PV) derived from lysosomes. Leishmania mexicana, a eukaryote, has also independently evolved to live in a morphologically similar PV. As Coxiella and Leishmania are highly divergent organisms that cause different diseases, we reasoned that their respective infections would likely elicit distinct host responses despite producing phenotypically similar parasite-containing vacuoles. The objective of this study was to investigate, at the molecular level, the macrophage response to each pathogen. Infection of THP-1 (human monocyte/macrophage) cells with Coxiella and Leishmania elicited disparate host responses. At 5 days post-infection, when compared to uninfected cells, 1057 genes were differentially expressed (746 genes up-regulated and 311 genes down-regulated) in C. burnetii infected cells, whereas 698 genes (534 genes up-regulated and 164 genes down-regulated) were differentially expressed in L. mexicana infected cells. Interestingly, of the 1755 differentially expressed genes identified in this study, only 126 genes (~7%) are common to both infections. We also discovered that 1090 genes produced mRNA isoforms at significantly different levels under the two infection conditions, suggesting that alternate proteins encoded by the same gene might have important roles in host response to each infection. Additionally, we detected 257 micro RNAs (miRNAs) that were expressed in THP-1 cells, and identified miRNAs that were specifically expressed during Coxiella or Leishmania infections. Collectively, this study identified host mRNAs and miRNAs that were influenced by Coxiella and/or Leishmania infections, and our data indicate that although their PVs are morphologically similar, Coxiella and Leishmania have evolved different strategies that perturb distinct host processes to create and thrive within their respective intracellular niches.
Collapse
Affiliation(s)
- Jess A Millar
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR USA
| | - Raquel Valdés
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
| | - Fenil R Kacharia
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR USA
| | - Scott M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
| | - Eric D Cambronne
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
| | - Rahul Raghavan
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR USA
| |
Collapse
|
81
|
Mathur R, Das RP, Ranjan A, Shaha C. Elevated ergosterol protects Leishmania parasites against antimony-generated stress. FASEB J 2015; 29:4201-13. [PMID: 26116701 DOI: 10.1096/fj.15-272757] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/15/2015] [Indexed: 11/11/2022]
Abstract
Parasite lipids can serve as signaling molecules, important membrane components, energy suppliers, and pathogenesis factors critical for survival. Functional roles of lipid changes in response to drug-generated stress in parasite survival remains unclear. To investigate this, Leishmania donovani parasites, the causative agents of kala-azar, were exposed to the antileishmanial agent potassium antimony tartrate (PAT) (half-maximal inhibitory concentration ∼ 284 µg/ml). Analysis of cell extracts using gas chromatography-mass spectrometry showed significant increases in very long-chain fatty acids (VLCFAs) prior to an increase in ergosterol in PAT-treated parasites as compared with vehicle-treated controls. Ergosterol biosynthesis inhibition during PAT treatment decreased cell viability. VLCFA inhibition with specific inhibitors completely abrogated ergosterol upsurge followed by a reduction in cell viability. Following PAT-induced VLCFA increase, an upsurge in reactive oxygen species (ROS) occurred and inhibition of this ROS with antioxidants abrogated ergosterol increase. Genetically engineered parasites expressing low constitutive ergosterol levels showed more susceptibility to PAT as compared with wild-type control cells but ergosterol supplementation during PAT treatment increased cell viability. In conclusion, we propose that during antimony treatment, the susceptibility of parasites is determined by the levels of cellular ergosterol that are regulated by oxidative stress generated by VLCFAs.
Collapse
Affiliation(s)
- Radhika Mathur
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology, New Delhi, India
| | - Rajeev Patrick Das
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology, New Delhi, India
| | - Archana Ranjan
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology, New Delhi, India
| | - Chandrima Shaha
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
82
|
Daviel C, Carter PM, Nation CS, Pizarro JC, Guidry J, Aiyar A, Kelly BL. LACK, a RACK1 ortholog, facilitates cytochrome c oxidase subunit expression to promote Leishmania major fitness. Mol Microbiol 2015; 96:95-109. [PMID: 25582232 PMCID: PMC6055511 DOI: 10.1111/mmi.12924] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2015] [Indexed: 12/22/2022]
Abstract
Leishmania are kinetoplastid parasites that cause the sandfly-transmitted disease leishmaniasis. To maintain fitness throughout their infectious life cycle, Leishmania must undergo rapid metabolic adaptations to the dramatically distinct environments encountered during transition between sandfly and vertebrate hosts. We performed proteomic and immunoblot analyses of attenuated L. major strains deficient for LACK, the Leishmania ortholog of the mammalian receptor for activated c kinase (RACK1), that is important for parasite thermotolerance and virulence. This approach identified cytochrome c oxidase (LmCOX) subunit IV as a LACK-dependent fitness protein. Consistent with decreased levels of LmCOX subunit IV at mammalian temperature, and in amastigotes, LmCOX activity and mitochondrial function were also impaired in LACK-deficient L. major under these conditions. Importantly, overexpression of LmCOX subunit IV in LACK-deficient L. major restored thermotolerance and macrophage infectivity. Interestingly, overexpression of LmCOX subunit IV enhanced LmCOX subunit VI expression at mammalian temperature. Collectively, our data suggest LACK promotes Leishmania adaptation to the mammalian host environment by sustaining LmCOX subunit IV expression and hence energy metabolism in response to stress stimuli such as heat. These findings extend the repertoire of RACK1 protein utility to include a role in mitochondrial function.
Collapse
Affiliation(s)
- Cardenas Daviel
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Pamela M. Carter
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Catherine S. Nation
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Juan C. Pizarro
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jessie Guidry
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ashok Aiyar
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ben L. Kelly
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
83
|
Abstract
Leishmania spp. are parasitic protozoa endemic in tropical and subtropical regions and the causative agent of leishmaniasis, a collection of syndromes whose clinical manifestations vary according to host and pathogen factors. Leishmania spp. are inoculated into the mammalian host by the bite of an infected sand fly, whereupon they are taken up by phagocytosis, convert into the replicative amastigote stage within macrophages, reproduce, spread to new macrophages and cause disease manifestations. A curative response against leishmaniasis depends in the classical activation of macrophages and the IL-12-dependent onset of an adaptive type 1 response characterized by the production of IFN-γ. Emerging evidence suggests that neutrophils, dendritic cells and other immune cells can serve as either temporary or stable hosts for Leishmania spp. Furthermore, it is becoming apparent that the initial interactions of the parasite with resident or early recruited immune cells can shape both the macrophage response and the type of adaptive immune response being induced. In this review, we compile a growing number of studies demonstrating how the earliest interactions of Leishmania spp. with eosinophils and mast cells influence the macrophage response to infection and the development of the adaptive immune response, hence, determining the ultimate outcome of infection.
Collapse
|
84
|
Lambertz U, Oviedo Ovando ME, Vasconcelos EJR, Unrau PJ, Myler PJ, Reiner NE. Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA Packaging. BMC Genomics 2015; 16:151. [PMID: 25764986 PMCID: PMC4352550 DOI: 10.1186/s12864-015-1260-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/09/2023] Open
Abstract
Background Leishmania use exosomes to communicate with their mammalian hosts and these secreted vesicles appear to contribute to pathogenesis by delivering protein virulence factors to macrophages. In other eukaryotes, exosomes were found to carry RNA cargo, such as mRNAs and small non-coding RNAs, capable of altering recipient cell phenotype. Whether leishmania exosomes also contain RNAs which they are able to deliver to bystander cells is not known. Here, we show that leishmania exosomes indeed contain RNAs and compare and contrast the RNA content of exosomes released by Leishmania donovani and Leishmania braziliensis. Results We purified RNA from exosomes collected from axenic amastigote culture supernatant and found that when compared with total leishmania RNA, exosomes mainly contained short RNA sequences. Exosomes with intact membranes were capable of protecting their RNA cargo from degradation by RNase. Moreover, exosome RNA cargo was delivered to host cell cytoplasm in vitro. Sequencing of exosomal RNA indicated that the majority of cargo sequences were derived from non-coding RNA species such as rRNA and tRNA. In depth analysis revealed the presence of tRNA-derived small RNAs, a novel RNA type with suspected regulatory functions. Northern blotting confirmed the specific and selective enrichment of tRNA-derived small RNAs in exosomes. We also identified a number of novel transcripts, which appeared to be specifically enriched in exosomes compared to total cell RNA. In addition, we observed the presence of sequences mapping to siRNA-coding regions in L. braziliensis , but not in L. donovani exosomes. Conclusions These results show that leishmania exosomes are selectively and specifically enriched in small RNAs derived almost exclusively from non-coding RNAs. These exosomes are competent to deliver their cargo of novel, potential small regulatory RNAs to macrophages where they may influence parasite-host cell interactions. The remarkably high degree of congruence in exosomal RNA content between L. donovani and L. braziliensis, argues for the presence of a conserved mechanism for exosomal RNA packaging in leishmania. These findings open up a new avenue of research on non-canonical, small RNA pathways in this trypanosomatid, which may elucidate pathogenesis and identify novel therapeutic approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1260-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrike Lambertz
- Departments of Medicine, Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| | - Mariana E Oviedo Ovando
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | | | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | - Peter J Myler
- Seattle Biomedical Research Institute, Seattle, WA, USA. .,Departments of Global Health and Biomedical Informatics & Medical Education, University of Washington, Washington, WA, USA.
| | - Neil E Reiner
- Departments of Medicine, Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
85
|
Leishmania infantum modulates host macrophage mitochondrial metabolism by hijacking the SIRT1-AMPK axis. PLoS Pathog 2015; 11:e1004684. [PMID: 25738568 PMCID: PMC4349736 DOI: 10.1371/journal.ppat.1004684] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/15/2015] [Indexed: 12/21/2022] Open
Abstract
Metabolic manipulation of host cells by intracellular pathogens is currently recognized to play an important role in the pathology of infection. Nevertheless, little information is available regarding mitochondrial energy metabolism in Leishmania infected macrophages. Here, we demonstrate that during L. infantum infection, macrophages switch from an early glycolytic metabolism to an oxidative phosphorylation, and this metabolic deviation requires SIRT1 and LKB1/AMPK. SIRT1 or LBK1 deficient macrophages infected with L. infantum failed to activate AMPK and up-regulate its targets such as Slc2a4 and Ppargc1a, which are essential for parasite growth. As a result, impairment of metabolic switch caused by SIRT1 or AMPK deficiency reduces parasite load in vitro and in vivo. Overall, our work demonstrates the importance of SIRT1 and AMPK energetic sensors for parasite intracellular survival and proliferation, highlighting the modulation of these proteins as potential therapeutic targets for the treatment of leishmaniasis.
Collapse
|
86
|
Proteomic-based approach to gain insight into reprogramming of THP-1 cells exposed to Leishmania donovani over an early temporal window. Infect Immun 2015; 83:1853-68. [PMID: 25690103 DOI: 10.1128/iai.02833-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/13/2015] [Indexed: 12/20/2022] Open
Abstract
Leishmania donovani, a protozoan parasite, is the causative agent of visceral leishmaniasis. It lives and multiplies within the harsh environment of macrophages. In order to investigate how intracellular parasite manipulate the host cell environment, we undertook a quantitative proteomic study of human monocyte-derived macrophages (THP-1) following infection with L. donovani. We used the isobaric tags for relative and absolute quantification (iTRAQ) method and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to compare expression profiles of noninfected and L. donovani-infected THP-1 cells. We detected modifications of protein expression in key metabolic pathways, including glycolysis and fatty acid oxidation, suggesting a global reprogramming of cell metabolism by the parasite. An increased abundance of proteins involved in gene transcription, RNA splicing (heterogeneous nuclear ribonucleoproteins [hnRNPs]), histones, and DNA repair and replication was observed at 24 h postinfection. Proteins involved in cell survival and signal transduction were more abundant at 24 h postinfection. Several of the differentially expressed proteins had not been previously implicated in response to the parasite, while the others support the previously identified proteins. Selected proteomics results were validated by real-time PCR and immunoblot analyses. Similar changes were observed in L. donovani-infected human monocyte-derived primary macrophages. The effect of RNA interference (RNAi)-mediated gene knockdown of proteins validated the relevance of the host quantitative proteomic screen. Our findings indicate that the host cell proteome is modulated after L. donovani infection, provide evidence for global reprogramming of cell metabolism, and demonstrate the complex relations between the host and parasite at the molecular level.
Collapse
|
87
|
AMP-acetyl CoA synthetase from Leishmania donovani: identification and functional analysis of 'PX4GK' motif. Int J Biol Macromol 2015; 75:364-72. [PMID: 25660655 DOI: 10.1016/j.ijbiomac.2015.01.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/23/2015] [Accepted: 01/25/2015] [Indexed: 11/23/2022]
Abstract
An adenosine monophosphate forming acetyl CoA synthetase (AceCS) which is the key enzyme involved in the conversion of acetate to acetyl CoA has been identified from Leishmania donovani for the first time. Sequence analysis of L. donovani AceCS (LdAceCS) revealed the presence of a 'PX4GK' motif which is highly conserved throughout organisms with higher sequence identity (96%) to lower sequence identity (38%). A ∼ 77 kDa heterologous protein with C-terminal 6X His-tag was expressed in Escherichia coli. Expression of LdAceCS in promastigotes was confirmed by western blot and RT-PCR analysis. Immunolocalization studies revealed that it is a cytosolic protein. We also report the kinetic characterization of recombinant LdAceCS with acetate, adenosine 5'-triphosphate, coenzyme A and propionate as substrates. Site directed mutagenesis of residues in conserved PX4GK motif of LdAceCS was performed to gain insight into its potential role in substrate binding, catalysis and its role in maintaining structural integrity of the protein. P646A, G651A and K652R exhibited more than 90% loss in activity signifying its indispensible role in the enzyme activity. Substitution of other residues in this motif resulted in altered substrate specificity and catalysis. However, none of them had any role in modulation of the secondary structure of the protein except G651A mutant.
Collapse
|
88
|
Lamour SD, Veselkov KA, Posma JM, Giraud E, Rogers ME, Croft S, Marchesi JR, Holmes E, Seifert K, Saric J. Metabolic, Immune, and Gut Microbial Signals Mount a Systems Response to Leishmania major Infection. J Proteome Res 2014; 14:318-29. [DOI: 10.1021/pr5008202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sabrina D. Lamour
- Division
of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Kirill A. Veselkov
- Division
of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Joram M. Posma
- Division
of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Emilie Giraud
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Matthew E. Rogers
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Simon Croft
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Julian R. Marchesi
- Cardiff
School of Biosciences, Division of Microbiology, Cardiff University, Museum Avenue, Cardiff, CF10 3AT, United Kingdom
- Centre
for Digestive and Gut Health, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Elaine Holmes
- Division
of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Karin Seifert
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Jasmina Saric
- Division
of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
89
|
Birhan YS, Bekhit AA, Hymete A. Synthesis and antileishmanial evaluation of some 2,3-disubstituted-4(3H)-quinazolinone derivatives. Org Med Chem Lett 2014; 4:10. [PMID: 26548988 PMCID: PMC4970432 DOI: 10.1186/s13588-014-0010-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/03/2014] [Indexed: 11/22/2022] Open
Abstract
Background Leishmaniasis is a neglected tropical parasitic diseases affecting millions of people around the globe. Quinazolines are a group of compounds with diverse pharmacological activities. Owing to their promising antileishmanial activities, some 3-aryl-2-(substitutedstyryl)-4(3H)-quinazolinones were synthesized in good yields (65.2% to 86.4%). Results The target compounds were synthesized by using cyclization, condensation, and hydrolysis reactions. The structures of the synthesized compounds were determined using elemental microanalysis, infrared (IR), and proton nuclear magnetic resonance (1H NMR). The in vitro antileishmanial activities of the synthesized compounds were evaluated using Leishmania donovani strain. All the synthesized compounds displayed appreciable antileishmanial activities (IC50 values, 0.0128 to 3.1085 μg/ml) as compared to the standard drug miltefosine (IC50 = 3.1911 μg/ml). (E)-2-(4-chlorostyryl)-3-p-tolyl-4(3H)-quinazolinone (7) is the compound with the most promising antileishmanial activities (IC50 = 0.0128 μg/ml) which is approximately 4 and 250 times more active than the standard drugs amphotericin B deoxycholate (IC50 = 0.0460 μg/ml) and miltefosine (IC50 = 3.1911 μg/ml), respectively. Conclusions The results obtained from this investigation indicate that the synthesized and biologically evaluated quinazoline compounds showed promising antileishmanial activities and are good scaffolds for the synthesis of different antileishmanial agents. Electronic supplementary material The online version of this article (doi:10.1186/s13588-014-0010-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, Natural and Computational Science College, Debre Markos University, Debre Markos, Ethiopia.
| | - Adnan Ahmed Bekhit
- Department of Pharmaceutical Chemistry, Alexandria University, Alexandria, 21215, Egypt.
| | - Ariaya Hymete
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
90
|
Castro RAO, Silva-Barcellos NM, Licio CSA, Souza JB, Souza-Testasicca MC, Ferreira FM, Batista MA, Silveira-Lemos D, Moura SL, Frézard F, Rezende SA. Association of liposome-encapsulated trivalent antimonial with ascorbic acid: an effective and safe strategy in the treatment of experimental visceral leishmaniasis. PLoS One 2014; 9:e104055. [PMID: 25105501 PMCID: PMC4126701 DOI: 10.1371/journal.pone.0104055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/05/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is a chronic debilitating disease endemic in tropical and subtropical areas, caused by protozoan parasites of the genus Leishmania. Annually, it is estimated the occurrence of 0.2 to 0.4 million new cases of the disease worldwide. Considering the lack of an effective vaccine the afflicted population must rely on both, an accurate diagnosis and successful treatment to combat the disease. Here we propose to evaluate the efficacy of trivalent antimonial encapsulated in conventional liposomes, in association with ascorbic acid, by monitoring its toxicity and efficacy in BALB/c mice infected with Leishmania infantum. METHODOLOGY/PRINCIPAL FINDINGS Infected mice were subjected to single-dose treatments consisting in the administration of either free or liposome-encapsulated trivalent antimony (SbIII), in association or not with ascorbic acid. Parasite burden was assessed in the liver, spleen and bone marrow using the serial limiting dilution technique. After treatment, tissue alterations were examined by histopathology of liver, heart and kidney and confirmed by serum levels of classic biomarkers. The phenotypic profile of splenocytes was also investigated by flow cytometry. Treatment with liposome-encapsulated SbIII significantly reduced the parasite burden in the liver, spleen and bone marrow. Co-administration of ascorbic acid, with either free SbIII or its liposomal form, did not interfere with its leishmanicidal activity and promoted reduced toxicity particularly to the kidney and liver tissues. CONCLUSIONS/SIGNIFICANCE Among the evaluated posological regimens treatment of L. infantum-infected mice with liposomal SbIII, in association with ascorbic acid, represented the best alternative as judged by its high leishmanicidal activity and absence of detectable toxic effects. Of particular importance, reduction of parasite burden in the bone marrow attested to the ability of SbIII-carrying liposomes to efficiently reach this body compartment.
Collapse
Affiliation(s)
- Renata A. O. Castro
- Programa de Pós-Graduação em Ciências Farmacêuticas – Cipharma, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Neila M. Silva-Barcellos
- Programa de Pós-Graduação em Ciências Farmacêuticas – Cipharma, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Carolina S. A. Licio
- Programa de Pós-Graduação em Ciências Farmacêuticas – Cipharma, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Janine B. Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas – Cipharma, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Míriam C. Souza-Testasicca
- Coordenadoria da Área de Ciências Biológicas, Instituto Federal de Minas Gerais - Campus Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Flávia M. Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas – Cipharma, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Mauricio A. Batista
- Programa de Pós-Graduação em Ciências Biológicas – NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Denise Silveira-Lemos
- Programa de Pós-Graduação em Ciências Biológicas – NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Sandra L. Moura
- Programa de Pós-Graduação em Ciências Biológicas – NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Simone A. Rezende
- Programa de Pós-Graduação em Ciências Farmacêuticas – Cipharma, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
- * E-mail:
| |
Collapse
|
91
|
Moreno MA, Alonso A, Alcolea PJ, Abramov A, de Lacoba MG, Abendroth J, Zhang S, Edwards T, Lorimer D, Myler PJ, Larraga V. Tyrosine aminotransferase from Leishmania infantum: A new drug target candidate. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:347-54. [PMID: 25516846 PMCID: PMC4266777 DOI: 10.1016/j.ijpddr.2014.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The tyrosine aminotransferase from Leishmania infantum has a cytoplasmic distribution and is able to use the oxoacid ketomethiobutyrate, as a co-substrate. L. infantum tyrosine aminotransferase is over-expressed in infective and nitric oxide resistant parasites. The structural differences with the mammalian TAT, together with cellular distribution, expression pattern and activity, support that LiTAT is a drug target candidate. The structure-based model of the pharmacophore of LiTAT with specific substrate ketomethiobutyrate has been generated.
Leishmania infantum is the etiological agent of zoonotic visceral leishmaniasis in the Mediterranean basin. The disease is fatal without treatment, which has been based on antimonial pentavalents for more than 60 years. Due to resistances, relapses and toxicity to current treatment, the development of new drugs is required. The structure of the L. infantum tyrosine aminotransferase (LiTAT) has been recently solved showing important differences with the mammalian orthologue. The characterization of LiTAT is reported herein. This enzyme is cytoplasmic and is over-expressed in the more infective stages and nitric oxide resistant parasites. Unlike the mammalian TAT, LiTAT is able to use ketomethiobutyrate as co-substrate. The pharmacophore model of LiTAT with this specific co-substrate is described herein. This may allow the identification of new inhibitors present in the databases. All the data obtained support that LiTAT is a good target candidate for the development of new anti-leishmanial drugs.
Collapse
Affiliation(s)
- Miguel Angel Moreno
- Departamento de Microbiología Molecular y Servicio de Bioinformática y Bioestadística, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Ana Alonso
- Departamento de Microbiología Molecular y Servicio de Bioinformática y Bioestadística, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Pedro Jose Alcolea
- Departamento de Microbiología Molecular y Servicio de Bioinformática y Bioestadística, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Ariel Abramov
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA ; Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Mario García de Lacoba
- Departamento de Microbiología Molecular y Servicio de Bioinformática y Bioestadística, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA ; Emerald Bio Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Sunny Zhang
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA ; Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - Thomas Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA ; Emerald Bio Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Don Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA ; Emerald Bio Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Peter John Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA ; Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA ; Department of Global Health, University of Washington, Seattle, WA 98125, USA ; Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, WA 98125, USA
| | - Vicente Larraga
- Departamento de Microbiología Molecular y Servicio de Bioinformática y Bioestadística, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
92
|
Manna PP, Hira SK, Basu A, Bandyopadhyay S. Cellular therapy by allogeneic macrophages against visceral leishmaniasis: role of TNF-α. Cell Immunol 2014; 290:152-63. [PMID: 24996013 DOI: 10.1016/j.cellimm.2014.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
Tumor necrosis factor α (TNF-α) is an essential player in infection with Leishmania, controlling inflammatory lesion and parasite killing. We recently have shown the leishmanicidal activity of transmembrane form of TNF (mTNF) derived from allogeneic natural killer (NK) cells in experimental visceral leishmaniasis. Allogeneic macrophages and human monocytes derived mTNF has significantly higher antileishmanial activity compared to allogeneic NK cells. Unlike NK cells, syngeneic macrophages also possess antileishmanial activity, although degree of activity is significantly less compared to allogeneic macrophages. Cellular therapy by intravenous transfer of allogeneic macrophages enhances leishmanicidal effect against the established infection in susceptible animal by reducing the splenic parasite burden to 28.3 ± 4.71 × 10(5) compared to 256.00 ± 17.36 × 10(5) in control group. In vivo treatment with anti-mouse TNF-α reduces the therapeutic efficacy of the allogeneic macrophages by increasing the parasite load in spleen of infected mice. These results demonstrated that allogeneic and xenogeneic macrophages induce cytokine mediated protective mechanism against infected macrophages via TNF-α in vitro and, possibly in vivo. The macrophage mediated protective role in absence of T cell help demonstrate an unique property of the mononuclear phagocytes in controlling infection and inflammation in visceral leishmaniasis, despite being acts as a host cell for the same parasite.
Collapse
Affiliation(s)
| | - Sumit Kumar Hira
- Immunobiology Laboratory, Banaras Hindu University, Varanasi 221005, India
| | - Anirban Basu
- National Brain Research Centre, Gurgaon, Haryana 122051, India
| | | |
Collapse
|
93
|
Moreno MA, Abramov A, Abendroth J, Alonso A, Zhang S, Alcolea PJ, Edwards T, Lorimer D, Myler PJ, Larraga V. Structure of tyrosine aminotransferase from Leishmania infantum. Acta Crystallogr F Struct Biol Commun 2014; 70:583-7. [PMID: 24817714 PMCID: PMC4014323 DOI: 10.1107/s2053230x14007845] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/08/2014] [Indexed: 11/12/2022] Open
Abstract
The trypanosomatid parasite Leishmania infantum is the causative agent of visceral leishmaniasis (VL), which is usually fatal unless treated. VL has an incidence of 0.5 million cases every year and is an important opportunistic co-infection in HIV/AIDS. Tyrosine aminotransferase (TAT) has an important role in the metabolism of trypanosomatids, catalyzing the first step in the degradation pathway of aromatic amino acids, which are ultimately converted into their corresponding L-2-oxoacids. Unlike the enzyme in Trypanosoma cruzi and mammals, L. infantum TAT (LiTAT) is not able to transaminate ketoglutarate. Here, the structure of LiTAT at 2.35 Å resolution is reported, and it is confirmed that the presence of two Leishmania-specific residues (Gln55 and Asn58) explains, at least in part, this specific reactivity. The difference in substrate specificity between leishmanial and mammalian TAT and the importance of this enzyme in parasite metabolism suggest that it may be a useful target in the development of new drugs against leishmaniasis.
Collapse
Affiliation(s)
- M. A. Moreno
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - A. Abramov
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - J. Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Emerald Bio Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - A. Alonso
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - S. Zhang
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
| | - P. J. Alcolea
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - T. Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Emerald Bio Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - D. Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Emerald Bio Inc., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - P. J. Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Seattle, WA 98109, USA
- Department of Global Health and Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98125, USA
| | - V. Larraga
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
94
|
Parameswaran S, Saudagar P, Dubey VK, Patra S. Discovery of novel anti-leishmanial agents targeting LdLip3 lipase. J Mol Graph Model 2014; 49:68-79. [DOI: 10.1016/j.jmgm.2014.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 10/27/2022]
|
95
|
Anti-leishmanial activity of the antimicrobial peptide DRS 01 observed in Leishmania infantum (syn. Leishmania chagasi) cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:483-90. [DOI: 10.1016/j.nano.2013.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/08/2013] [Accepted: 09/16/2013] [Indexed: 11/24/2022]
|
96
|
Singh K, Veluru NK, Trivedi V, Gupta CM, Sahasrabuddhe AA. An actin-like protein is involved in regulation of mitochondrial and flagellar functions as well as in intramacrophage survival of Leishmania donovani. Mol Microbiol 2014; 91:562-78. [PMID: 24354789 DOI: 10.1111/mmi.12477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2013] [Indexed: 11/30/2022]
Abstract
Actin-related proteins are ubiquitous actin-like proteins that show high similarity with actin in terms of their amino acid sequence and three-dimensional structure. However, in lower eukaryotes, such as trypanosomatids, their functions have not yet been explored. Here, we show that a novel actin-related protein (ORF LmjF.13.0950) is localized mainly in the Leishmania mitochondrion. We further reveal that depletion of the intracellular levels of this protein leads to an appreciable decrease in the mitochondrial membrane potential as well as in the ATP production, which appears to be accompanied with impairment in the flagellum assembly and motility. Additionally, we report that the mutants so generated fail to survive inside the mouse peritoneal macrophages. These abnormalities are, however, reversed by the episomal gene complementation. Our results, for the first time indicate that apart from their classical roles in the cytoplasm and nucleus, actin-related proteins may also regulate the mitochondrial function, and in case of Leishmania donovani they may also serve as the essential factor for their survival in the host cells.
Collapse
Affiliation(s)
- Kuldeep Singh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, PIN-226031, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
97
|
Garfoot AL, Zemska O, Rappleye CA. Histoplasma capsulatum depends on de novo vitamin biosynthesis for intraphagosomal proliferation. Infect Immun 2014; 82:393-404. [PMID: 24191299 PMCID: PMC3911860 DOI: 10.1128/iai.00824-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/29/2013] [Indexed: 01/07/2023] Open
Abstract
During infection of the mammalian host, Histoplasma capsulatum yeasts survive and reside within macrophages of the immune system. Whereas some intracellular pathogens escape into the host cytosol, Histoplasma yeasts remain within the macrophage phagosome. This intracellular Histoplasma-containing compartment imposes nutritional challenges for yeast growth and replication. We identified and annotated vitamin synthesis pathways encoded in the Histoplasma genome and confirmed by growth in minimal medium that Histoplasma yeasts can synthesize all essential vitamins with the exception of thiamine. Riboflavin, pantothenate, and biotin auxotrophs of Histoplasma were generated to probe whether these vitamins are available to intracellular yeasts. Disruption of the RIB2 gene (riboflavin biosynthesis) prevented growth and proliferation of yeasts in macrophages and severely attenuated Histoplasma virulence in a murine model of respiratory histoplasmosis. Rib2-deficient yeasts were not cleared from lung tissue but persisted, consistent with functional survival mechanisms but inability to replicate in vivo. In addition, depletion of Pan6 (pantothenate biosynthesis) but not Bio2 function (biotin synthesis) also impaired Histoplasma virulence. These results indicate that the Histoplasma-containing phagosome is limiting for riboflavin and pantothenate and that Histoplasma virulence requires de novo synthesis of these cofactor precursors. Since mammalian hosts do not rely on vitamin synthesis but instead acquire essential vitamins through diet, vitamin synthesis pathways represent druggable targets for therapeutics.
Collapse
Affiliation(s)
- Andrew L Garfoot
- Department of Microbiology, Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
98
|
Tsigankov P, Gherardini PF, Helmer-Citterich M, Späth GF, Zilberstein D. Phosphoproteomic Analysis of Differentiating Leishmania Parasites Reveals a Unique Stage-Specific Phosphorylation Motif. J Proteome Res 2013; 12:3405-12. [DOI: 10.1021/pr4002492] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Pier Federico Gherardini
- Center for Molecular Bioinformatics,
Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Manuela Helmer-Citterich
- Center for Molecular Bioinformatics,
Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gerald F. Späth
- Institut Pasteur, CNRS URA2581, Unité de Parasitology moléculaire
et Signalisation, 75015 Paris, France
| | - Dan Zilberstein
- Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
99
|
A versatile proline/alanine transporter in the unicellular pathogen Leishmania donovani regulates amino acid homoeostasis and osmotic stress responses. Biochem J 2013; 449:555-66. [PMID: 22994895 DOI: 10.1042/bj20121262] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Unlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane. This transporter fulfils multiple functions: it is the sole supplier for the intracellular pool of proline and contributes to the alanine pool; it is essential for cell volume regulation after osmotic stress; and it regulates the transport and homoeostasis of glutamate and arginine, none of which are its substrates. Notably, we provide evidence that proline and alanine exhibit different roles in the parasitic response to hypotonic shock; alanine affects swelling, whereas proline influences the rate of volume recovery. On the basis of our data we suggest that LdAAP24 plays a key role in parasite adaptation to its varying environments in host and vector, a phenomenon essential for successful parasitism.
Collapse
|
100
|
Alsmark C, Foster PG, Sicheritz-Ponten T, Nakjang S, Martin Embley T, Hirt RP. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biol 2013; 14:R19. [PMID: 23442822 PMCID: PMC4053834 DOI: 10.1186/gb-2013-14-2-r19] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/25/2013] [Indexed: 02/08/2023] Open
Abstract
Background The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. Results We used a phylogenomic approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers, dramatically affecting the enzymes of core pathways, particularly amino acid and sugar metabolism, but also providing new genes of potential adaptive significance in the life of parasites. A broad range of prokaryotic donors is involved in such transfers, but there is clear and significant enrichment for bacterial groups that share the same habitats, including the human microbiota, as the parasites investigated. Conclusions Our data show that ecology and lifestyle strongly influence gene origins and opportunities for gene transfer and reveal that, although the outlines of the core eukaryotic metabolism are conserved among lineages, the genes making up those pathways can have very different origins in different eukaryotes. Thus, from the perspective of the effects of lateral gene transfer on individual gene ancestries in different lineages, eukaryotic metabolism appears to be chimeric.
Collapse
|