51
|
Kramer J, Chirco KR, Lamba DA. Immunological Considerations for Retinal Stem Cell Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:99-119. [PMID: 31654387 DOI: 10.1007/978-3-030-28471-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is an increasing effort toward generating replacement cells for neuronal application due to the nonregenerative nature of these tissues. While much progress has been made toward developing methodologies to generate these cells, there have been limited improvements in functional restoration. Some of these are linked to the degenerative and often nonreceptive microenvironment that the new cells need to integrate into. In this chapter, we will focus on the status and role of the immune microenvironment of the retina during homeostasis and disease states. We will review changes in both innate and adaptive immunity as well as the role of immune rejection in stem cell replacement therapies. The chapter will end with a discussion of immune-modulatory strategies that have helped to ameliorate these effects and could potentially improve functional outcome for cell replacement therapies for the eye.
Collapse
Affiliation(s)
- Joshua Kramer
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Deepak A Lamba
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA. .,Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
52
|
Abstract
The retina is a very fine and layered neural tissue, which vitally depends on the preservation of cells, structure, connectivity and vasculature to maintain vision. There is an urgent need to find technical and biological solutions to major challenges associated with functional replacement of retinal cells. The major unmet challenges include generating sufficient numbers of specific cell types, achieving functional integration of transplanted cells, especially photoreceptors, and surgical delivery of retinal cells or tissue without triggering immune responses, inflammation and/or remodeling. The advances of regenerative medicine enabled generation of three-dimensional tissues (organoids), partially recreating the anatomical structure, biological complexity and physiology of several tissues, which are important targets for stem cell replacement therapies. Derivation of retinal tissue in a dish creates new opportunities for cell replacement therapies of blindness and addresses the need to preserve retinal architecture to restore vision. Retinal cell therapies aimed at preserving and improving vision have achieved many improvements in the past ten years. Retinal organoid technologies provide a number of solutions to technical and biological challenges associated with functional replacement of retinal cells to achieve long-term vision restoration. Our review summarizes the progress in cell therapies of retina, with focus on human pluripotent stem cell-derived retinal tissue, and critically evaluates the potential of retinal organoid approaches to solve a major unmet clinical need—retinal repair and vision restoration in conditions caused by retinal degeneration and traumatic ocular injuries. We also analyze obstacles in commercialization of retinal organoid technology for clinical application.
Collapse
|
53
|
Gasparini SJ, Llonch S, Borsch O, Ader M. Transplantation of photoreceptors into the degenerative retina: Current state and future perspectives. Prog Retin Eye Res 2018; 69:1-37. [PMID: 30445193 DOI: 10.1016/j.preteyeres.2018.11.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022]
Abstract
The mammalian retina displays no intrinsic regenerative capacities, therefore retinal degenerative diseases such as age-related macular degeneration (AMD) or retinitis pigmentosa (RP) result in a permanent loss of the light-sensing photoreceptor cells. The degeneration of photoreceptors leads to vision impairment and, in later stages, complete blindness. Several therapeutic strategies have been developed to slow down or prevent further retinal degeneration, however a definitive cure i.e. replacement of the lost photoreceptors, has not yet been established. Cell-based treatment approaches, by means of photoreceptor transplantation, have been studied in pre-clinical animal models over the last three decades. The introduction of pluripotent stem cell-derived retinal organoids represents, in principle, an unlimited source for the generation of transplantable human photoreceptors. However, safety, immunological and reproducibility-related issues regarding the use of such cells still need to be solved. Moreover, the recent finding of cytoplasmic material transfer between donor and host photoreceptors demands reinterpretation of several former transplantation studies. At the same time, material transfer between healthy donor and dysfunctional patient photoreceptors also offers a potential alternative strategy for therapeutic intervention. In this review we discuss the history and current state of photoreceptor transplantation, the techniques used to assess rescue of visual function, the prerequisites for effective transplantation as well as the main roadblocks, including safety and immune response to the graft, that need to be overcome for successful clinical translation of photoreceptor transplantation approaches.
Collapse
Affiliation(s)
- Sylvia J Gasparini
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Sílvia Llonch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Oliver Borsch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|
54
|
Jin ZB, Gao ML, Deng WL, Wu KC, Sugita S, Mandai M, Takahashi M. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res 2018; 69:38-56. [PMID: 30419340 DOI: 10.1016/j.preteyeres.2018.11.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/09/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases, such as age-related macular degeneration (AMD), Stargardt's disease, retinitis pigmentosa (RP) and glaucoma. These diseases are all characterized by the degeneration of one or two retinal cell types that cannot regenerate spontaneously in humans. Aberrant retinal pigment epithelial (RPE) cells can be observed through optical coherence tomography (OCT) in AMD patients. In RP patients, the morphological and functional abnormalities of RPE and photoreceptor layers are caused by a genetic abnormality. Stargardt's disease or juvenile macular degeneration, which is characterized by the loss of the RPE and photoreceptors in the macular area, causes central vision loss at an early age. Loss of retinal ganglion cells (RGCs) can be observed in patients with glaucoma. Once the retinal cell degeneration is triggered, no treatments can reverse it. Transplantation-based approaches have been proposed as a universal therapy to target patients with various concomitant diseases. Both the replacement of dead cells and neuroprotection are strategies used to rescue visual function in animal models of retinal degeneration. Diverse retinal cell types derived from pluripotent stem cells, including RPE cells, photoreceptors, RGCs and even retinal organoids with a layered structure, provide unlimited cell sources for transplantation. In addition, mesenchymal stem cells (MSCs) are multifunctional and protect degenerating retinal cells. The aim of this review is to summarize current findings from preclinical and clinical studies. We begin with a brief introduction to retinal degenerative diseases and cell death in diverse diseases, followed by methods for retinal cell generation. Preclinical and clinical studies are discussed, and future concerns about efficacy, safety and immunorejection are also addressed.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China.
| | - Mei-Ling Gao
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Wen-Li Deng
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Kun-Chao Wu
- Laboratory for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory for Ophthalmology, Optometry & Visual Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou, 325027, China
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
55
|
Thomas BB, Zhu D, Lin TC, Kim YC, Seiler MJ, Martinez-Camarillo JC, Lin B, Shad Y, Hinton DR, Humayun MS. A new immunodeficient retinal dystrophic rat model for transplantation studies using human-derived cells. Graefes Arch Clin Exp Ophthalmol 2018; 256:2113-2125. [PMID: 30215097 DOI: 10.1007/s00417-018-4134-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To create new immunodeficient Royal College of Surgeons (RCS) rats by introducing the defective MerTK gene into athymic nude rats. METHODS Female homozygous RCS (RCS-p+/RCS-p+) and male nude rats (Hsd:RH-Foxn1mu, mutation in the foxn1 gene; no T cells) were crossed to produce heterozygous F1 progeny. Double homozygous F2 progeny obtained by crossing the F1 heterozygotes was identified phenotypically (hair loss) and genotypically (RCS-p+ gene determined by PCR). Retinal degenerative status was confirmed by optical coherence tomography (OCT) imaging, electroretinography (ERG), optokinetic (OKN) testing, superior colliculus (SC) electrophysiology, and by histology. The effect of xenografts was assessed by transplantation of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) and human-induced pluripotent stem cell-derived RPE (iPS-RPE) into the eye. Morphological analysis was conducted based on hematoxylin and eosin (H&E) and immunostaining. Age-matched pigmented athymic nude rats were used as control. RESULTS Approximately 6% of the F2 pups (11/172) were homozygous for RCS-p+ gene and Foxn1mu gene. Homozygous males crossed with heterozygous females resulted in 50% homozygous progeny for experimentation. OCT imaging demonstrated significant loss of retinal thickness in homozygous rats. H&E staining showed photoreceptor thickness reduced to 1-3 layers at 12 weeks of age. Progressive loss of visual function was evidenced by OKN testing, ERG, and SC electrophysiology. Transplantation experiments demonstrated survival of human-derived cells and absence of apparent immune rejection. CONCLUSIONS This new rat animal model developed by crossing RCS rats and athymic nude rats is suitable for conducting retinal transplantation experiments involving xenografts.
Collapse
Affiliation(s)
- Biju B Thomas
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA.
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA.
| | - Danhong Zhu
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tai-Chi Lin
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Young Chang Kim
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Magdalene J Seiler
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, CA, USA
- Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA
| | - Juan Carlos Martinez-Camarillo
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| | - Bin Lin
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, CA, USA
- Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA
| | - Yousuf Shad
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - David R Hinton
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark S Humayun
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
56
|
Idelson M, Alper R, Obolensky A, Yachimovich-Cohen N, Rachmilewitz J, Ejzenberg A, Beider E, Banin E, Reubinoff B. Immunological Properties of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Stem Cell Reports 2018; 11:681-695. [PMID: 30122442 PMCID: PMC6135721 DOI: 10.1016/j.stemcr.2018.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 11/30/2022] Open
Abstract
Age-related macular degeneration is caused by dysfunction and loss of retinal pigment epithelium (RPE) cells, and their transplantation may rescue visual functions and delay disease progression. Human embryonic stem cells (hESCs) may be an unlimited source of RPE cells for allotransplantation. We analyzed the immunomodulatory properties of hESC-derived RPE (hESC-RPE) cells, and showed that they inhibited T cell responses. Co-culture experiments showed that RPE cells inhibited interfon-γ secretion and proliferation of activated T cells. Furthermore, hESC-RPE cells enhanced T cell apoptosis and secretion of the anti-inflammatory cytokine interleukin-10 (IL-10). In addition, RPE cells altered the expression of T cell activation markers, CD69 and CD25. RPE cells transplanted into RCS rats without immunosuppression survived, provided retinal rescue, and enhanced IL-10 blood levels. Our data suggest that hESC-RPE cells have immunosuppressive properties. Further studies will determine if these properties are sufficient to alleviate the need for immunosuppression therapy after their clinical allotransplantation. T cells proliferation and IFN-γ secretion are inhibited by hESC-RPE cells T cells apoptosis and secretion of IL-10 are enhanced by hESC-RPE cells RPE cells survive, provide retinal rescue, and enhance IL-10 blood levels in vivo These findings are relevant to immunosuppressive regimens for RPE cell therapies
Collapse
Affiliation(s)
- Masha Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Ruslana Alper
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Alexey Obolensky
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Nurit Yachimovich-Cohen
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Jacob Rachmilewitz
- The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Ayala Ejzenberg
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Ekaterina Beider
- Hematology Division and CBB, Guy Weinshtock Multiple Myeloma Foundation, Chaim Sheba Medical Center Hospital-Tel Hashomer, Ramat Gan 52621, Israel
| | - Eyal Banin
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Medical Center, Jerusalem 91120, Israel; Department of Obstetrics & Gynecology, Hadassah Medical Center, Jerusalem 91120, Israel.
| |
Collapse
|
57
|
Characterization and Transplantation of CD73-Positive Photoreceptors Isolated from Human iPSC-Derived Retinal Organoids. Stem Cell Reports 2018; 11:665-680. [PMID: 30100409 PMCID: PMC6135113 DOI: 10.1016/j.stemcr.2018.07.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/04/2023] Open
Abstract
Photoreceptor degenerative diseases are a major cause of blindness for which cell replacement is one of the most encouraging strategies. For stem cell-based therapy using human induced pluripotent stem cells (hiPSCs), it is crucial to obtain a homogenous photoreceptor cell population. We confirmed that the cell surface antigen CD73 is exclusively expressed in hiPSC-derived photoreceptors by generating a fluorescent cone rod homeobox (Crx) reporter hiPSC line using CRISPR/Cas9 genome editing. We demonstrated that CD73 targeting by magnetic-activated cell sorting (MACS) is an effective strategy to separate a safe population of transplantable photoreceptors. CD73+ photoreceptor precursors can be isolated in large numbers and transplanted into rat eyes, showing capacity to survive and mature in close proximity to host inner retina of a model of photoreceptor degeneration. These data demonstrate that CD73+ photoreceptor precursors hold great promise for a future safe clinical translation. Efficient isolation of hiPSC-derived photoreceptors via CD73-based MACS Differentiation and selection protocols readily transferable to fully GMP conditions Long-term survival of transplanted CD73+ cells in degenerated rat retina
Collapse
|
58
|
Zhu J, Lamba DA. Small Molecule-Based Retinal Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Bio Protoc 2018; 8:e2882. [PMID: 30009216 DOI: 10.21769/bioprotoc.2882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal degeneration leads to loss of light-sensing photoreceptors eventually resulting in vision impairment and impose a heavy burden on both patients and the society. Currently available treatment options are very limited and mainly palliative. Ever since the discovery of human pluripotent stem cell technologies, cell replacement therapy has become a promising therapeutic strategy for these patients and may help restore visual function. Reproducibly generating enriched retinal cells including retinal progenitors and differentiated retinal neurons such as photoreceptors using human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells in a dish is an essential first step for developing stem cell-based therapies. In addition, this will provide a reliable and sufficient supply of human retinal cells for studying the mechanisms of diseases. Here we describe a small molecule-based retinal induction protocol that has been used to generate retinal progenitors and differentiated retinal neurons including photoreceptors from several human ES and iPS cell lines. The retinal cells generated by this protocol can survive and functionally integrate into normal and diseased mouse retinas for several months following subretinal transplantation.
Collapse
Affiliation(s)
- Jie Zhu
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Deepak A Lamba
- Buck Institute for Research on Aging, Novato, CA, USA.,UCSF Department of Ophthalmology, University of California, San Francisco, CA, USA
| |
Collapse
|
59
|
Illustrating the potency of current Good Manufacturing Practice–compliant induced pluripotent stem cell lines as a source of multiple cell lineages using standardized protocols. Cytotherapy 2018; 20:861-872. [DOI: 10.1016/j.jcyt.2018.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/22/2018] [Accepted: 03/30/2018] [Indexed: 11/30/2022]
|
60
|
Tang J, Qin N, Chong Y, Diao Y, Yiliguma, Wang Z, Xue T, Jiang M, Zhang J, Zheng G. Nanowire arrays restore vision in blind mice. Nat Commun 2018; 9:786. [PMID: 29511183 PMCID: PMC5840349 DOI: 10.1038/s41467-018-03212-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
The restoration of light response with complex spatiotemporal features in retinal degenerative diseases towards retinal prosthesis has proven to be a considerable challenge over the past decades. Herein, inspired by the structure and function of photoreceptors in retinas, we develop artificial photoreceptors based on gold nanoparticle-decorated titania nanowire arrays, for restoration of visual responses in the blind mice with degenerated photoreceptors. Green, blue and near UV light responses in the retinal ganglion cells (RGCs) are restored with a spatial resolution better than 100 µm. ON responses in RGCs are blocked by glutamatergic antagonists, suggesting functional preservation of the remaining retinal circuits. Moreover, neurons in the primary visual cortex respond to light after subretinal implant of nanowire arrays. Improvement in pupillary light reflex suggests the behavioral recovery of light sensitivity. Our study will shed light on the development of a new generation of optoelectronic toolkits for subretinal prosthetic devices. The restoration of light response using retinal prosthesis could be a way to restore vision following retinal degenerative disease. Here the authors develop gold-titania nanowire arrays that restore visual response in blind mice.
Collapse
Affiliation(s)
- Jing Tang
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Nan Qin
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Chong
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yupu Diao
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiliguma
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhexuan Wang
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tian Xue
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Min Jiang
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiayi Zhang
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
61
|
Nickerson PEB, Ortin-Martinez A, Wallace VA. Material Exchange in Photoreceptor Transplantation: Updating Our Understanding of Donor/Host Communication and the Future of Cell Engraftment Science. Front Neural Circuits 2018; 12:17. [PMID: 29559897 PMCID: PMC5845679 DOI: 10.3389/fncir.2018.00017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
Considerable research effort has been invested into the transplantation of mammalian photoreceptors into healthy and degenerating mouse eyes. Several platforms of rod and cone fluorescent reporting have been central to refining the isolation, purification and transplantation of photoreceptors. The tracking of engrafted cells, including identifying the position, morphology and degree of donor cell integration post-transplant is highly dependent on the use of fluorescent protein reporters. Improvements in imaging and analysis of transplant recipients have revealed that donor cell fluorescent reporters can transfer into host tissue though a process termed material exchange (ME). This recent discovery has chaperoned a new era of interpretation when reviewing the field’s use of dissociated donor cell preparations, and has prompted scientists to re-examine how we use and interpret the information derived from fluorescence-based tracking tools. In this review, we describe the status of our understanding of ME in photoreceptor transplantation. In addition, we discuss the impact of this discovery on several aspects of historical rod and cone transplantation data, and provide insight into future standards and approaches to advance the field of cell engraftment.
Collapse
Affiliation(s)
- Philip E B Nickerson
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
62
|
Iraha S, Tu HY, Yamasaki S, Kagawa T, Goto M, Takahashi R, Watanabe T, Sugita S, Yonemura S, Sunagawa GA, Matsuyama T, Fujii M, Kuwahara A, Kishino A, Koide N, Eiraku M, Tanihara H, Takahashi M, Mandai M. Establishment of Immunodeficient Retinal Degeneration Model Mice and Functional Maturation of Human ESC-Derived Retinal Sheets after Transplantation. Stem Cell Reports 2018; 10:1059-1074. [PMID: 29503091 PMCID: PMC5918611 DOI: 10.1016/j.stemcr.2018.01.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
Increasing demand for clinical retinal degeneration therapies featuring human ESC/iPSC-derived retinal tissue and cells warrants proof-of-concept studies. Here, we established two mouse models of end-stage retinal degeneration with immunodeficiency, NOG-rd1-2J and NOG-rd10, and characterized disease progress and immunodeficient status. We also transplanted human ESC-derived retinal sheets into NOG-rd1-2J and confirmed their long-term survival and maturation of the structured graft photoreceptor layer, without rejection or tumorigenesis. We recorded light responses from the host ganglion cells using a multi-electrode array system; this result was consistent with whole-mount immunostaining suggestive of host-graft synapse formation at the responding sites. This study demonstrates an application of our mouse models and provides a proof of concept for the clinical use of human ESC-derived retinal sheets. Two mouse models of immunodeficient end-stage retinal degeneration were established Immunodeficient host permitted transplantation of human ESC-derived retinal sheets Transplanted human ESC-derived retinal sheets survived long term and maturated After transplantation, light responses were recorded from the degenerated host retina
Collapse
Affiliation(s)
- Satoshi Iraha
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Application Biology and Regenerative Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hung-Ya Tu
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Suguru Yamasaki
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Takahiro Kagawa
- Central Institute for Experimental Animals, Animal Resources and Technical Research Center, Kawasaki, Kanagawa 210-0821, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals, Animal Resources and Technical Research Center, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals, Animal Resources and Technical Research Center, Kawasaki, Kanagawa 210-0821, Japan
| | - Takehito Watanabe
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Sunao Sugita
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Shigenobu Yonemura
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies., Kobe, Hyogo 650-0047, Japan; Department of Cell Biology, Tokushima University Graduate School of Medical Science, Tokushima 770-8503, Japan
| | - Genshiro A Sunagawa
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Momo Fujii
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Atsushi Kuwahara
- Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Akiyoshi Kishino
- Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Naoshi Koide
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | - Mototsugu Eiraku
- Laboratory for in vitro Histogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Hidenobu Tanihara
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; Application Biology and Regenerative Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan; RIKEN Program for Drug Discovery and Medical Technology Platforms (DMP), Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
63
|
Rathod R, Surendran H, Battu R, Desai J, Pal R. Induced pluripotent stem cells (iPSC)-derived retinal cells in disease modeling and regenerative medicine. J Chem Neuroanat 2018; 95:81-88. [PMID: 29448001 DOI: 10.1016/j.jchemneu.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 12/19/2022]
Abstract
Retinal degenerative disorders are a leading cause of the inherited, irreversible and incurable vision loss. While various rodent model systems have provided crucial information in this direction, lack of disease-relevant tissue availability and species-specific differences have proven to be a major roadblock. Human induced pluripotent stem cells (iPSC) have opened up a whole new avenue of possibilities not just in understanding the disease mechanism but also potential therapeutic approaches towards a cure. In this review, we have summarized recent advances in the methods of deriving retinal cell types from iPSCs which can serve as a renewable source of disease-relevant cell population for basic as well as translational studies. We also provide an overview of the ongoing efforts towards developing a suitable in vitro model for modeling retinal degenerative diseases. This basic understanding in turn has contributed to advances in translational goals such as drug screening and cell-replacement therapies. Furthermore we discuss gene editing approaches for autologous repair of genetic disorders and allogeneic transplantation of stem cell-based retinal derivatives for degenerative disorders with an ultimate goal to restore vision. It is pertinent to note however, that these exciting new developments throw up several challenges that need to be overcome before their full clinical potential can be realized.
Collapse
Affiliation(s)
- Reena Rathod
- Eyestem Research Private Limited, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR), GKVK Campus, Bangalore, 560065, India
| | - Harshini Surendran
- Eyestem Research Private Limited, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR), GKVK Campus, Bangalore, 560065, India
| | - Rajani Battu
- Eyestem Research Private Limited, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR), GKVK Campus, Bangalore, 560065, India; Centre for Eye Genetics and Research, Cytecare Hospital, Bellary Road, Bangalore, 560064, India
| | - Jogin Desai
- Eyestem Research Private Limited, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR), GKVK Campus, Bangalore, 560065, India; Centre for Eye Genetics and Research, Cytecare Hospital, Bellary Road, Bangalore, 560064, India
| | - Rajarshi Pal
- Eyestem Research Private Limited, Centre for Cellular and Molecular Platforms (CCAMP), National Centre for Biological Sciences-Tata Institute of Fundamental Research (NCBS-TIFR), GKVK Campus, Bangalore, 560065, India.
| |
Collapse
|
64
|
Waldron PV, Di Marco F, Kruczek K, Ribeiro J, Graca AB, Hippert C, Aghaizu ND, Kalargyrou AA, Barber AC, Grimaldi G, Duran Y, Blackford SJI, Kloc M, Goh D, Zabala Aldunate E, Sampson RD, Bainbridge JWB, Smith AJ, Gonzalez-Cordero A, Sowden JC, Ali RR, Pearson RA. Transplanted Donor- or Stem Cell-Derived Cone Photoreceptors Can Both Integrate and Undergo Material Transfer in an Environment-Dependent Manner. Stem Cell Reports 2018; 10:406-421. [PMID: 29307580 PMCID: PMC5830910 DOI: 10.1016/j.stemcr.2017.12.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 11/24/2022] Open
Abstract
Human vision relies heavily upon cone photoreceptors, and their loss results in permanent visual impairment. Transplantation of healthy photoreceptors can restore visual function in models of inherited blindness, a process previously understood to arise by donor cell integration within the host retina. However, we and others recently demonstrated that donor rod photoreceptors engage in material transfer with host photoreceptors, leading to the host cells acquiring proteins otherwise expressed only by donor cells. We sought to determine whether stem cell- and donor-derived cones undergo integration and/or material transfer. We find that material transfer accounts for a significant proportion of rescued cells following cone transplantation into non-degenerative hosts. Strikingly, however, substantial numbers of cones integrated into the Nrl-/- and Prph2rd2/rd2, but not Nrl-/-;RPE65R91W/R91W, murine models of retinal degeneration. This confirms the occurrence of photoreceptor integration in certain models of retinal degeneration and demonstrates the importance of the host environment in determining transplantation outcome.
Collapse
Affiliation(s)
- Paul V Waldron
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Fabiana Di Marco
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Kamil Kruczek
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Joana Ribeiro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Anna B Graca
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Claire Hippert
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Nozie D Aghaizu
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Amanda C Barber
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Giulia Grimaldi
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Yanai Duran
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Magdalena Kloc
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Debbie Goh
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Eduardo Zabala Aldunate
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Robert D Sampson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Alexander J Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Jane C Sowden
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rachael A Pearson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
65
|
Llonch S, Carido M, Ader M. Organoid technology for retinal repair. Dev Biol 2017; 433:132-143. [PMID: 29291970 DOI: 10.1016/j.ydbio.2017.09.028] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023]
Abstract
A major cause for vision impairment and blindness in industrialized countries is the loss of the light-sensing retinal tissue in the eye. Photoreceptor damage is one of the main characteristics found in retinal degeneration diseases, such as Retinitis Pigmentosa or age-related macular degeneration. The lack of effective therapies to stop photoreceptor loss together with the absence of significant intrinsic regeneration in the human retina converts such degenerative diseases into permanent conditions that are currently irreversible. Cell replacement by means of photoreceptor transplantation has been proposed as a potential approach to tackle cell loss in the retina. Since the first attempt of photoreceptor transplantation in humans, about twenty years ago, several research groups have focused in the development and improvement of technologies necessary to bring cell transplantation for retinal degeneration diseases to reality. Progress in recent years in the generation of human tissue derived from pluripotent stem cells (PSCs) has significantly improved our tools to study human development and disease in the dish. Particularly the availability of 3D culture systems for the generation of PSC-derived organoids, including the human retina, has dramatically increased access to human material for basic and medical research. In this review, we focus on important milestones towards the generation of transplantable photoreceptor precursors from PSC-derived retinal organoids and discuss recent pre-clinical transplantation studies using organoid-derived photoreceptors in context to related in vivo work using primary photoreceptors as donor material. Additionally, we summarize remaining challenges for developing photoreceptor transplantation towards clinical application.
Collapse
Affiliation(s)
- Sílvia Llonch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Madalena Carido
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases Dresden (DZNE), Arnoldstraße 18, 01307 Dresden, Germany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany.
| |
Collapse
|
66
|
Zhu J, Reynolds J, Garcia T, Cifuentes H, Chew S, Zeng X, Lamba DA. Generation of Transplantable Retinal Photoreceptors from a Current Good Manufacturing Practice-Manufactured Human Induced Pluripotent Stem Cell Line. Stem Cells Transl Med 2017; 7:210-219. [PMID: 29266841 PMCID: PMC5788871 DOI: 10.1002/sctm.17-0205] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
Abstract
Retinal degeneration often results in the loss of light‐sensing photoreceptors, which leads to permanent vision loss. Generating transplantable retinal photoreceptors using human somatic cell‐derived induced pluripotent stem cells (iPSCs) holds promise to treat a variety of retinal degenerative diseases by replacing the damaged or dysfunctional native photoreceptors with healthy and functional ones. Establishment of effective methods to produce retinal cells including photoreceptors in chemically defined conditions using current Good Manufacturing Practice (cGMP)‐manufactured human iPSC lines is critical for advancing cell replacement therapy to the clinic. In this study, we used a human iPSC line (NCL‐1) derived under cGMP‐compliant conditions from CD34+ cord blood cells. The cells were differentiated into retinal cells using a small molecule‐based retinal induction protocol. We show that retinal cells including photoreceptors, retinal pigmented epithelial cells and optic cup‐like retinal organoids can be generated from the NCL‐1 iPSC line. Additionally, we show that following subretinal transplantation into immunodeficient host mouse eyes, retinal cells successfully integrated into the photoreceptor layer and developed into mature photoreceptors. This study provides strong evidence that transplantable photoreceptors can be generated from a cGMP‐manufactured human iPSC line for clinical applications. Stem Cells Translational Medicine2018;7:210–219
Collapse
Affiliation(s)
- Jie Zhu
- Buck Institute for Research on Aging, Novato, California, USA
| | - Joseph Reynolds
- Buck Institute for Research on Aging, Novato, California, USA
| | - Thelma Garcia
- Buck Institute for Research on Aging, Novato, California, USA
| | - Helen Cifuentes
- Buck Institute for Research on Aging, Novato, California, USA
| | - Shereen Chew
- Buck Institute for Research on Aging, Novato, California, USA
| | - Xianmin Zeng
- Buck Institute for Research on Aging, Novato, California, USA.,NxCell Inc, Novato, California, USA
| | | |
Collapse
|
67
|
MacLaren RE. Cone fusion confusion in photoreceptor transplantation. Stem Cell Investig 2017; 4:71. [PMID: 28920064 DOI: 10.21037/sci.2017.08.02] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford & Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK
| |
Collapse
|
68
|
Gonzalez-Cordero A, Kruczek K, Naeem A, Fernando M, Kloc M, Ribeiro J, Goh D, Duran Y, Blackford SJI, Abelleira-Hervas L, Sampson RD, Shum IO, Branch MJ, Gardner PJ, Sowden JC, Bainbridge JWB, Smith AJ, West EL, Pearson RA, Ali RR. Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors. Stem Cell Reports 2017; 9:820-837. [PMID: 28844659 PMCID: PMC5599247 DOI: 10.1016/j.stemcr.2017.07.022] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration. hPSC-derived photoreceptors express markers in a pattern similar to human development 2D/3D differentiation protocol generates sufficient cones for transplantation hPSC-derived cones incorporate into the adult retina following transplantation
Collapse
Affiliation(s)
- Anai Gonzalez-Cordero
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Kamil Kruczek
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Arifa Naeem
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Milan Fernando
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Magdalena Kloc
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Joana Ribeiro
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Debbie Goh
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Yanai Duran
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Samuel J I Blackford
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Laura Abelleira-Hervas
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Robert D Sampson
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Ian O Shum
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Matthew J Branch
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Peter J Gardner
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Jane C Sowden
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - James W B Bainbridge
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Alexander J Smith
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Emma L West
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rachael A Pearson
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Robin R Ali
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK.
| |
Collapse
|
69
|
Seiler MJ. hESC-derived photoreceptors survive and integrate better in immunodeficient retina. Stem Cell Investig 2017; 4:70. [PMID: 28920063 DOI: 10.21037/sci.2017.08.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Magdalene J Seiler
- Department of Physical Medicine & Rehabilitation, Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, USA
| |
Collapse
|
70
|
Boudreau-Pinsonneault C, Cayouette M. Cell lineage tracing in the retina: Could material transfer distort conclusions? Dev Dyn 2017. [PMID: 28643368 DOI: 10.1002/dvdy.24535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies reported the transfer of fluorescent labels between grafted and host cells after transplantation of photoreceptor precursor cells in the mouse retina. While clearly impacting the interpretation of transplantation studies in the retina, the potential impact of material transfer in other experimental paradigms using cell-specific labels remains uncertain. Here, we briefly review the evidence supporting material transfer in transplantation studies and discuss whether it might influence retinal cell lineage tracing experiments in developmental and regeneration studies. We also propose ways to control for the possible confounding occurrence of label exchange in such experiments. Developmental Dynamics 247:10-17, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Camille Boudreau-Pinsonneault
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, QC, Canada.,Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
71
|
Chao JR, Lamba DA, Klesert TR, Torre AL, Hoshino A, Taylor RJ, Jayabalu A, Engel AL, Khuu TH, Wang RK, Neitz M, Neitz J, Reh TA. Transplantation of Human Embryonic Stem Cell-Derived Retinal Cells into the Subretinal Space of a Non-Human Primate. Transl Vis Sci Technol 2017; 6:4. [PMID: 28516002 PMCID: PMC5433804 DOI: 10.1167/tvst.6.3.4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/21/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Previous studies have demonstrated the ability of retinal cells derived from human embryonic stem cells (hESCs) to survive, integrate into the host retina, and mediate light responses in murine mouse models. Our aim is to determine whether these cells can also survive and integrate into the retina of a nonhuman primate, Saimiri sciureus, following transplantation into the subretinal space. METHODS hESCs were differentiated toward retinal neuronal fates using our previously published technique and cultured for 60 to 70 days. Differentiated cells were further treated with 20 μM N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) for a period of 5 days immediately prior to subretinal transplantation. Differentiated cells were labeled with a lentivirus expressing GFP. One million cells (10,000 cells/μL) were injected into the submacular space into a squirrel monkey eye, using an ab externo technique. RESULTS RetCam imaging demonstrated the presence and survival of human donor cells 3 months after transplantation in the S. sciureus eye. Injected cells consolidated in the temporal macula. GFP+ axonal projections were observed to emanate from the central consolidation of cells at 1 month, with some projecting into the optic nerve by 3 months after transplantation. CONCLUSIONS Human ES cell-derived retinal neurons injected into the submacular space of a squirrel monkey survive at least 3 months postinjection without immunosuppression. Some donor cells appeared to integrate into the host inner retina, and numerous donor axonal projections were noted throughout, with some projecting into the optic nerve. TRANSLATIONAL RELEVANCE These data illustrate the feasibility of hESC-derived retinal cell replacement in the nonhuman primate eye.
Collapse
Affiliation(s)
- Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Deepak A Lamba
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| | - Todd R Klesert
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.,Vitreoretinal Associates of Washington, Seattle, WA, USA
| | - Anna La Torre
- Department of Biological Structure, University of Washington, Seattle, WA, USA.,Department of Cell Biology and Human Anatomy, University of California, Davis, CA, USA
| | - Akina Hoshino
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Russell J Taylor
- Department of Biological Structure, University of Washington, Seattle, WA, USA.,University of Wisconsin, Madison, WI, USA
| | - Anu Jayabalu
- Department of Biological Structure, University of Washington, Seattle, WA, USA.,Universal Cells, Inc., Seattle, WA, USA
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Thomas H Khuu
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ruikang K Wang
- Department of Ophthalmology, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| |
Collapse
|