51
|
Ruigrok RWH, Crépin T, Kolakofsky D. Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr Opin Microbiol 2011; 14:504-10. [PMID: 21824806 DOI: 10.1016/j.mib.2011.07.011] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/09/2011] [Accepted: 07/05/2011] [Indexed: 11/29/2022]
Abstract
A hallmark of negative-strand RNA viruses (NSVs) is that their genomes never exist as free RNA, but instead are always assembled with many copies of a single nucleoprotein (N) to form highly stable nucleocapsids. Moreover, viral genomes are the only RNAs in infected cells that are assembled with N. The mechanism by which this specific association occurs, for both the segmented (s) and non-segmented (ns) viruses, has recently become clearer due to our expanding knowledge of N protein and nucleocapsid structures.
Collapse
Affiliation(s)
- Rob W H Ruigrok
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 6 rue Jules Horowitz, BP 181, 38042 Grenoble Cedex 9, France.
| | | | | |
Collapse
|
52
|
|
53
|
Abstract
Tacaribe virus (TCRV) belongs to the Arenaviridae family. Its bisegmented negative-stranded RNA genome encodes the nucleoprotein (N), the precursor of the envelope glycoproteins, the polymerase (L), and a RING finger matrix (Z) protein. The 570-amino-acid N protein binds to viral RNA, forming nucleocapsids, which are the template for transcription and replication by the viral polymerase. We have previously shown that the interaction between N and Z is required for assembly of infectious virus-like particles (VLPs) (J. C. Casabona et al., J. Virol. 83:7029-7039, 2009). Here, we examine the functional organization of TCRV N protein. A series of deletions and point mutations were introduced into the N-coding sequence, and the ability of the mutants to sustain heterotypic (N-Z) or homotypic (N-N) interactions was analyzed. We found that N protein displays two functional domains. By using coimmunoprecipitation studies, VLP incorporation assays, and double immunofluorescence staining, the carboxy-terminal region of N was found to be required for N-Z interaction and also necessary for incorporation of N protein into VLPs. Moreover, further analysis of this region showed that the integrity of a putative zinc-finger motif, as well as its amino-flanking sequence (residues 461 to 489), are critical for Z binding and N incorporation into VLPs. In addition, we provide evidence of an essential role of the amino-terminal region of N protein for N-N interaction. In this regard, using reciprocal coimmunoprecipitation analysis, we identified a 28-residue region predicted to form a coiled-coil domain (residues 92 to 119) as a newly recognized molecular determinant of N homotypic interactions.
Collapse
|
54
|
Abstract
Segmented negative-sense viruses of the family Arenaviridae encode a large polymerase (L) protein that contains all of the enzymatic activities required for RNA synthesis. These activities include an RNA-dependent RNA polymerase (RdRP) and an RNA endonuclease that cleaves capped primers from cellular mRNAs to prime transcription. Using purified catalytically active Machupo virus L, we provide a view of the overall architecture of this multifunctional polymerase and reconstitute complex formation with an RNA template in vitro. The L protein contains a central ring domain that is similar in appearance to the RdRP of dsRNA viruses and multiple accessory appendages that may be responsible for 5' cap formation. RNA template recognition by L requires a sequence-specific motif located at positions 2-5 in the 3' terminus of the viral genome. Moreover, L-RNA complex formation depends on single-stranded RNA, indicating that inter-termini dsRNA interactions must be partially broken for complex assembly to occur. Our results provide a model for arenavirus polymerase-template interactions and reveal the structural organization of a negative-strand RNA virus L protein.
Collapse
|
55
|
Katz A, Freiberg AN, Backström V, Schulz AR, Mateos A, Holm L, Pettersson RF, Vaheri A, Flick R, Plyusnin A. Oligomerization of Uukuniemi virus nucleocapsid protein. Virol J 2010; 7:187. [PMID: 20698970 PMCID: PMC2925374 DOI: 10.1186/1743-422x-7-187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/10/2010] [Indexed: 11/26/2022] Open
Abstract
Background Uukuniemi virus (UUKV) belongs to the Phlebovirus genus in the family Bunyaviridae. As a non-pathogenic virus for humans UUKV has served as a safe model bunyavirus in a number of studies addressing fundamental questions such as organization and regulation of viral genes, genome replication, structure and assembly. The present study is focused on the oligomerization of the UUKV nucleocapsid (N) protein, which plays an important role in several steps of virus replication. The aim was to locate the domains involved in the N protein oligomerization and study the process in detail. Results A set of experiments concentrating on the N- and C-termini of the protein was performed, first by completely or partially deleting putative N-N-interaction domains and then by introducing point mutations of amino acid residues. Mutagenesis strategy was based on the computer modeling of secondary and tertiary structure of the N protein. The N protein mutants were studied in chemical cross-linking, immunofluorescence, mammalian two-hybrid, minigenome, and virus-like particle-forming assays. The data showed that the oligomerization ability of UUKV-N protein depends on the presence of intact α-helices on both termini of the N protein molecule and that a specific structure in the N-terminal region plays a crucial role in the N-N interaction(s). This structure is formed by two α-helices, rich in amino acid residues with aromatic (W7, F10, W19, F27, F31) or long aliphatic (I14, I24) side chains. Furthermore, some of the N-terminal mutations (e.g. I14A, I24A, F31A) affected the N protein functionality both in mammalian two-hybrid and minigenome assays. Conclusions UUKV-N protein has ability to form oligomers in chemical cross-linking and mammalian two-hybrid assays. In mutational analysis, some of the introduced single-point mutations abolished the N protein functionality both in mammalian two-hybrid and minigenome assays, suggesting that especially the N-terminal region of the UUKV-N protein is essential for the N-N interaction.
Collapse
Affiliation(s)
- Anna Katz
- Department of Virology, Infection Biology Research Program, Haartman Institute, PO Box 21, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Belyi VA, Levine AJ, Skalka AM. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog 2010; 6:e1001030. [PMID: 20686665 PMCID: PMC2912400 DOI: 10.1371/journal.ppat.1001030] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/02/2010] [Indexed: 01/01/2023] Open
Abstract
Vertebrate genomes contain numerous copies of retroviral sequences, acquired over the course of evolution. Until recently they were thought to be the only type of RNA viruses to be so represented, because integration of a DNA copy of their genome is required for their replication. In this study, an extensive sequence comparison was conducted in which 5,666 viral genes from all known non-retroviral families with single-stranded RNA genomes were matched against the germline genomes of 48 vertebrate species, to determine if such viruses could also contribute to the vertebrate genetic heritage. In 19 of the tested vertebrate species, we discovered as many as 80 high-confidence examples of genomic DNA sequences that appear to be derived, as long ago as 40 million years, from ancestral members of 4 currently circulating virus families with single strand RNA genomes. Surprisingly, almost all of the sequences are related to only two families in the Order Mononegavirales: the Bornaviruses and the Filoviruses, which cause lethal neurological disease and hemorrhagic fevers, respectively. Based on signature landmarks some, and perhaps all, of the endogenous virus-like DNA sequences appear to be LINE element-facilitated integrations derived from viral mRNAs. The integrations represent genes that encode viral nucleocapsid, RNA-dependent-RNA-polymerase, matrix and, possibly, glycoproteins. Integrations are generally limited to one or very few copies of a related viral gene per species, suggesting that once the initial germline integration was obtained (or selected), later integrations failed or provided little advantage to the host. The conservation of relatively long open reading frames for several of the endogenous sequences, the virus-like protein regions represented, and a potential correlation between their presence and a species' resistance to the diseases caused by these pathogens, are consistent with the notion that their products provide some important biological advantage to the species. In addition, the viruses could also benefit, as some resistant species (e.g. bats) may serve as natural reservoirs for their persistence and transmission. Given the stringent limitations imposed in this informatics search, the examples described here should be considered a low estimate of the number of such integration events that have persisted over evolutionary time scales. Clearly, the sources of genetic information in vertebrate genomes are much more diverse than previously suspected.
Collapse
Affiliation(s)
- Vladimir A. Belyi
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey, United States of America
| | - Arnold J. Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, New Jersey, United States of America
| | - Anna Marie Skalka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
57
|
Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation. Proc Natl Acad Sci U S A 2010; 107:11769-74. [PMID: 20547879 DOI: 10.1073/pnas.1001760107] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a negative-sense RNA virus (genus Phlebovirus, family Bunyaviridae) that infects livestock and humans and is endemic to sub-Saharan Africa. Like all negative-sense viruses, the segmented RNA genome of RVFV is encapsidated by a nucleocapsid protein (N). The 1.93-A crystal structure of RVFV N and electron micrographs of ribonucleoprotein (RNP) reveal an encapsidated genome of substantially different organization than in other negative-sense RNA virus families. The RNP polymer, viewed in electron micrographs of both virus RNP and RNP reconstituted from purified N with a defined RNA, has an extended structure without helical symmetry. N-RNA species of approximately 100-kDa apparent molecular weight and heterogeneous composition were obtained by exhaustive ribonuclease treatment of virus RNP, by recombinant expression of N, and by reconstitution from purified N and an RNA oligomer. RNA-free N, obtained by denaturation and refolding, has a novel all-helical fold that is compact and well ordered at both the N and C termini. Unlike N of other negative-sense RNA viruses, RVFV N has no positively charged surface cleft for RNA binding and no protruding termini or loops to stabilize a defined N-RNA oligomer or RNP helix. A potential protein interaction site was identified in a conserved hydrophobic pocket. The nonhelical appearance of phlebovirus RNP, the heterogeneous approximately 100-kDa N-RNA multimer, and the N fold differ substantially from the RNP and N of other negative-sense RNA virus families and provide valuable insights into the structure of the encapsidated phlebovirus genome.
Collapse
|
58
|
Hock M, Kraus I, Schoehn G, Jamin M, Andrei-Selmer C, Garten W, Weissenhorn W. RNA induced polymerization of the Borna disease virus nucleoprotein. Virology 2010; 397:64-72. [DOI: 10.1016/j.virol.2009.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/29/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
|
59
|
Ruigrok RW, Crépin T. Nucleoproteins of negative strand RNA viruses; RNA binding, oligomerisation and binding to polymerase co-factor. Viruses 2010; 2:27-32. [PMID: 21994598 PMCID: PMC3185559 DOI: 10.3390/v2010027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 11/22/2022] Open
Abstract
Commentary on Tawar, R.G.; Duquerroy, S.; Vonrhein, C.; Varela, P.F.; Damier-Piolle, L.; Castagné, N.; MacLellan, K.; Bedouelle, H.; Bricogne, G.; Bhella, D.; Eléouët, J.-F.; Rey, F.A. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science2009, 326, 1279–1283.
Collapse
|
60
|
Tawar RG, Duquerroy S, Vonrhein C, Varela PF, Damier-Piolle L, Castagné N, MacLellan K, Bedouelle H, Bricogne G, Bhella D, Eléouët JF, Rey FA. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science 2009; 326:1279-83. [PMID: 19965480 DOI: 10.1126/science.1177634] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The respiratory syncytial virus (RSV) is an important human pathogen, yet neither a vaccine nor effective therapies are available to treat infection. To help elucidate the replication mechanism of this RNA virus, we determined the three-dimensional (3D) crystal structure at 3.3 A resolution of a decameric, annular ribonucleoprotein complex of the RSV nucleoprotein (N) bound to RNA. This complex mimics one turn of the viral helical nucleocapsid complex, which serves as template for viral RNA synthesis. The RNA wraps around the protein ring, with seven nucleotides contacting each N subunit, alternating rows of four and three stacked bases that are exposed and buried within a protein groove, respectively. Combined with electron microscopy data, this structure provides a detailed model for the RSV nucleocapsid, in which the bases are accessible for readout by the viral polymerase. Furthermore, the nucleoprotein structure highlights possible key sites for drug targeting.
Collapse
Affiliation(s)
- Rajiv G Tawar
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie and CNRS Unité de Recherche Associée (URA) 3015, 25 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
This review describes the two interrelated and interdependent processes of transcription and replication for measles virus. First, we concentrate on the ribonucleoprotein (RNP) complex, which contains the negative sense genomic template and in encapsidated in every virion. Second, we examine the viral proteins involved in these processes, placing particular emphasis on their structure, conserved sequence motifs, their interaction partners and the domains which mediate these associations. Transcription is discussed in terms of sequence motifs in the template, editing, co-transcriptional modifications of the mRNAs and the phase of the gene start sites within the genome. Likewise, replication is considered in terms of promoter strength, copy numbers and the remarkable plasticity of the system. The review emphasises what is not known or known only by analogy rather than by direct experimental evidence in the MV replication cycle and hence where additional research, using reverse genetic systems, is needed to complete our understanding of the processes involved.
Collapse
Affiliation(s)
- B K Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | | |
Collapse
|
62
|
Crystal structure of the Borna disease virus matrix protein (BDV-M) reveals ssRNA binding properties. Proc Natl Acad Sci U S A 2009; 106:3710-5. [PMID: 19237566 DOI: 10.1073/pnas.0808101106] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borna disease virus (BDV) is a neurotropic enveloped RNA virus that causes a noncytolytic, persistent infection of the central nervous system in mammals. BDV belongs to the order Mononegavirales, which also includes the negative-strand RNA viruses (NSVs) Ebola, Marburg, vesicular stomatitis, rabies, mumps, and measles. BDV-M, the matrix protein (M-protein) of BDV, is the smallest M-protein (16.2 kDa) among the NSVs. M-proteins play a critical role in virus assembly and budding, mediating the interaction between the viral capsid, envelope, and glycoprotein spikes, and are as such responsible for the structural stability and individual form of virus particles. Here, we report the 3D structure of BDV-M, a full-length M-protein structure from a nonsegmented RNA NSV. The BDV-M monomer exhibits structural similarity to the N-terminal domain of the Ebola M-protein (VP40), while the surface charge of the tetramer provides clues to the membrane association of BDV-M. Additional electron density in the crystal reveals the presence of bound nucleic acid, interpreted as cytidine-5'-monophosphate. The heterologously expressed BDV-M copurifies with and protects ssRNA oligonucleotides of a median length of 16 nt taken up from the expression host. The results presented here show that BDV-M would be able to bind RNA and lipid membranes simultaneously, expanding the repertoire of M-protein functionalities.
Collapse
|
63
|
Matsunaga H, Tanaka S, Fukumori A, Tomonaga K, Ikuta K, Amino N, Takeda M. Isotype analysis of human anti-Borna disease virus antibodies in Japanese psychiatric and general population. J Clin Virol 2008; 43:317-22. [PMID: 18786855 DOI: 10.1016/j.jcv.2008.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 06/22/2008] [Accepted: 07/25/2008] [Indexed: 12/01/2022]
Abstract
BACKGROUND Borna disease virus (BDV) infection of humans has not been widely accepted due to the low titer of the antibody and lack of reliable diagnostic tools. OBJECTIVES To examine exposure to BDV or a related virus in Japanese psychiatric and general population by detecting the specific IgG, IgM, and IgA. STUDY DESIGN Sera from 304 psychiatric and 378 control subjects were examined for IgG, IgM, and IgA against BDV nucleoprotein (N) and phosphoprotein (P) using highly specific and sensitive radioligand assay. The avidity was also examined. RESULTS The specific IgG, IgM, and IgA against both BDV-N and -P were detected and the seropositivity was not significantly different between patients and controls. The avidity of the specific IgG was low to moderate, and the specific IgM did not disappear for several years. CONCLUSIONS Our results suggested common exposure to BDV or a related virus in the general Japanese population. Low avidity IgG and persistent IgM suggested delayed immune response against BDV or a related virus. The specific IgA indicated mucosal involvement.
Collapse
Affiliation(s)
- Hidenori Matsunaga
- Department of Psychiatry, Osaka General Medical Center, Bandai-higashi 3-1-56, Sumiyoshi-ku, Osaka 558-8558, Japan.
| | | | | | | | | | | | | |
Collapse
|
64
|
|
65
|
Luo M, Green TJ, Zhang X, Tsao J, Qiu S. Conserved characteristics of the rhabdovirus nucleoprotein. Virus Res 2007; 129:246-51. [PMID: 17764775 PMCID: PMC2082134 DOI: 10.1016/j.virusres.2007.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/20/2007] [Accepted: 07/22/2007] [Indexed: 11/22/2022]
Abstract
Rhabdovirus is a negative strand RNA virus that packages a ribonucleoprotein (RNP) complex. The RNP is composed of a genome that is encapsidated completely by the nucleoprotein (N). Structural comparisons of the RNA-nucleoprotein complexes from two members, vesicular stomatitis virus (VSV) and rabies virus (RABV), revealed highly conserved characteristics of folding, RNA binding, and assembly despite their lack of significant homology in amino acid sequence. The RNA binding cavity is located between two conserved domains formed by alpha-helices, but the positively charged residues that coordinate with the phosphate groups are at different sites. The intermolecular interactions among N molecules have a conserved pattern that is rendered, however, by different residues. The curvature of the RABV N-RNA complex in the crystal structure is larger than that of the VSV N-RNA complex. The more relaxed curvature allows the bases in the RNA to stack more tightly, and at the same time, the helices near the C-terminus move into the created space in order to cover the bound RNA. This may explain how the RNP can adopt different conformations from being packed as a superhelix in the virion to a relaxed linear structure once being delivered into the cytoplasm.
Collapse
Affiliation(s)
- Ming Luo
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
66
|
Luo M, Green TJ, Zhang X, Tsao J, Qiu S. Structural comparisons of the nucleoprotein from three negative strand RNA virus families. Virol J 2007; 4:72. [PMID: 17623082 PMCID: PMC2031895 DOI: 10.1186/1743-422x-4-72] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/10/2007] [Indexed: 11/10/2022] Open
Abstract
Structures of the nucleoprotein of three negative strand RNA virus families, borna disease virus, rhabdovirus and influenza A virus, are now available. Structural comparisons showed that the topology of the RNA binding region from the three proteins is very similar. The RNA was shown to fit into a cavity formed by the two distinct domains of the RNA binding region in the rhabdovirus nucleoprotein. Two helices connecting the two domains characterize the center of the cavity. The nucleoproteins contain at least 5 conserved helices in the N-terminal domain and 3 conserved helices in the C-terminal domain. Since all negative strand RNA viruses are required to have the ribonucleoprotein complex as their active genomic templates, it is perceivable that the (5H+3H) structure is a common motif in the nucleoprotein of negative strand RNA viruses.
Collapse
Affiliation(s)
- Ming Luo
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xin Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jun Tsao
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Shihong Qiu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
67
|
Chen CY, Chang CK, Chang YW, Sue SC, Bai HI, Riang L, Hsiao CD, Huang TH. Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA. J Mol Biol 2007; 368:1075-86. [PMID: 17379242 PMCID: PMC7094638 DOI: 10.1016/j.jmb.2007.02.069] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/15/2007] [Accepted: 02/17/2007] [Indexed: 11/22/2022]
Abstract
Coronavirus nucleocapsid proteins are basic proteins that encapsulate viral genomic RNA to form part of the virus structure. The nucleocapsid protein of SARS-CoV is highly antigenic and associated with several host-cell interactions. Our previous studies using nuclear magnetic resonance revealed the domain organization of the SARS-CoV nucleocapsid protein. RNA has been shown to bind to the N-terminal domain (NTD), although recently the C-terminal half of the protein has also been implicated in RNA binding. Here, we report that the C-terminal domain (CTD), spanning residues 248-365 (NP248-365), had stronger nucleic acid-binding activity than the NTD. To determine the molecular basis of this activity, we have also solved the crystal structure of the NP248-365 region. Residues 248-280 form a positively charged groove similar to that found in the infectious bronchitis virus (IBV) nucleocapsid protein. Furthermore, the positively charged surface area is larger in the SARS-CoV construct than in the IBV. Interactions between residues 248-280 and the rest of the molecule also stabilize the formation of an octamer in the asymmetric unit. Packing of the octamers in the crystal forms two parallel, basic helical grooves, which may be oligonucleotide attachment sites, and suggests a mechanism for helical RNA packaging in the virus.
Collapse
Affiliation(s)
- Chun-Yuan Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Ye Q, Krug RM, Tao YJ. The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 2006; 444:1078-82. [PMID: 17151603 DOI: 10.1038/nature05379] [Citation(s) in RCA: 344] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 10/26/2006] [Indexed: 11/09/2022]
Abstract
Influenza A viruses pose a serious threat to world public health, particularly the currently circulating avian H5N1 viruses. The influenza viral nucleoprotein forms the protein scaffold of the helical genomic ribonucleoprotein complexes, and has a critical role in viral RNA replication. Here we report a 3.2 A crystal structure of this nucleoprotein, the overall shape of which resembles a crescent with a head and a body domain, with a protein fold different compared with that of the rhabdovirus nucleoprotein. Oligomerization of the influenza virus nucleoprotein is mediated by a flexible tail loop that is inserted inside a neighbouring molecule. This flexibility in the tail loop enables the nucleoprotein to form loose polymers as well as rigid helices, both of which are important for nucleoprotein functions. Single residue mutations in the tail loop result in the complete loss of nucleoprotein oligomerization. An RNA-binding groove, which is found between the head and body domains at the exterior of the nucleoprotein oligomer, is lined with highly conserved basic residues widely distributed in the primary sequence. The nucleoprotein structure shows that only one of two proposed nuclear localization signals are accessible, and suggests that the body domain of nucleoprotein contains the binding site for the viral polymerase. Our results identify the tail loop binding pocket as a potential target for antiviral development.
Collapse
Affiliation(s)
- Qiaozhen Ye
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, MS140, Houston, Texas 77005, USA
| | | | | |
Collapse
|
69
|
Abstract
Contrary to their host cells, many viruses contain RNA as genetic material and hence encode an RNA-dependent RNA polymerase to replicate their genomes. This review discusses the present status of our knowledge on the structure of these enzymes and the mechanisms of RNA replication. The simplest viruses encode only the catalytic subunit of the replication complex, but other viruses also contribute a variable number of ancillary factors. These and other factors provided by the host cell play roles in the specificity and affinity of template recognition and the assembly of the replication complex. Usually, these host factors are involved in protein synthesis or RNA modification in the host cell, but they play roles in remodeling RNA-RNA, RNA-protein, and protein-protein interactions during virus RNA replication. Furthermore, viruses take advantage of and modify previous cell structural elements, frequently membrane vesicles, for the formation of RNA replication complexes.
Collapse
Affiliation(s)
- Juan Ortín
- Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain.
| | | |
Collapse
|
70
|
Abstract
Borna disease virus (BDV) is an enveloped virus that has a non-segmented, negative-strand RNA genome with the characteristic organization of the mononegaviruses. However, based on its unique genetic and biological features, BDV is considered to be the prototypic member of a new mononegavirus family, the Bornaviridae. BDV causes central nervous system (CNS) disease in a wide variety of mammals. This article discusses the recently developed reverse-genetics systems for BDV, and the implications for the elucidation of the molecular mechanisms underlying BDV-host interactions, including the basis of BDV persistence in the CNS and its associated diseases.
Collapse
Affiliation(s)
- Juan C de la Torre
- Molecular Integrative Neuroscience Department IMM-6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
71
|
Yu IM, Oldham ML, Zhang J, Chen J. Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between corona- and arteriviridae. J Biol Chem 2006; 281:17134-17139. [PMID: 16627473 PMCID: PMC7946579 DOI: 10.1074/jbc.m602107200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/11/2006] [Indexed: 11/29/2022] Open
Abstract
The causative agent of severe acute respiratory syndrome (SARS) is the SARS-associated coronavirus, SARS-CoV. The nucleocapsid (N) protein plays an essential role in SARS-CoV genome packaging and virion assembly. We have previously shown that SARS-CoV N protein forms a dimer in solution through its C-terminal domain. In this study, the crystal structure of the dimerization domain, consisting of residues 270-370, is determined to 1.75A resolution. The structure shows a dimer with extensive interactions between the two subunits, suggesting that the dimeric form of the N protein is the functional unit in vivo. Although lacking significant sequence similarity, the dimerization domain of SARS-CoV N protein has a fold similar to that of the nucleocapsid protein of the porcine reproductive and respiratory syndrome virus. This finding provides structural evidence of the evolutionary link between Coronaviridae and Arteriviridae, suggesting that the N proteins of both viruses have a common origin.
Collapse
Affiliation(s)
- I-Mei Yu
- Department of Biological Sciences and the Cancer Center, Purdue University, West Lafayette, Indiana 47907
| | - Michael L Oldham
- Department of Biological Sciences and the Cancer Center, Purdue University, West Lafayette, Indiana 47907
| | - Jingqiang Zhang
- State Key Laboratory for Biocontrol, Zhongshan University, Guangzhou 510275, China
| | - Jue Chen
- Department of Biological Sciences and the Cancer Center, Purdue University, West Lafayette, Indiana 47907.
| |
Collapse
|
72
|
Albertini AAV, Wernimont AK, Muziol T, Ravelli RBG, Clapier CR, Schoehn G, Weissenhorn W, Ruigrok RWH. Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 2006; 313:360-3. [PMID: 16778023 DOI: 10.1126/science.1125280] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Negative-strand RNA viruses condense their genome into a helical nucleoprotein-RNA complex, the nucleocapsid, which is packed into virions and serves as a template for the RNA-dependent RNA polymerase complex. The crystal structure of a recombinant rabies virus nucleoprotein-RNA complex, organized in an undecameric ring, has been determined at 3.5 angstrom resolution. Polymerization of the nucleoprotein is achieved by domain exchange between protomers, with flexible hinges allowing nucleocapsid formation. The two core domains of the nucleoprotein clamp around the RNA at their interface and shield it from the environment. RNA sequestering by nucleoproteins is likely a common mechanism used by negative-strand RNA viruses to protect their genomes from the innate immune response directed against viral RNA in human host cells at certain stages of an infectious cycle.
Collapse
Affiliation(s)
- Aurélie A V Albertini
- Institut de Virologie Moléculaire et Structurale, FRE 2854 Université Joseph Fourier-CNRS, Boite Postale 181, 38042 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Bourhis JM, Canard B, Longhi S. Structural disorder within the replicative complex of measles virus: functional implications. Virology 2006; 344:94-110. [PMID: 16364741 DOI: 10.1016/j.virol.2005.09.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 09/10/2005] [Indexed: 11/29/2022]
Abstract
Measles virus belongs to the Paramyxoviridae family within the Mononegavirales order. Its non-segmented, single stranded, negative sense RNA genome is encapsidated by the nucleoprotein (N) to form a helical nucleocapsid. This ribonucleoproteic complex is the substrate for both transcription and replication. The RNA-dependent RNA polymerase binds to the nucleocapsid template via its co-factor, the phosphoprotein (P). In this review, we summarize the main experimental data pointing out the abundance of structural disorder within measles virus N and P. We also describe studies indicating that structural disorder is a widespread property in the replicative complex of Paramyxoviridae and, more generally, of Mononegavirales. The functional implications of structural disorder are also discussed. Finally, we propose a model where the flexibility of the disordered N and P domains allows the formation of a tripartite complex (N degrees-P-L) during replication, followed by the delivery of N monomers to the newly synthesized genomic RNA chain.
Collapse
Affiliation(s)
- Jean-Marie Bourhis
- Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS et Universités Aix-Marseille I et II, Campus de Luminy, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
74
|
Fan H, Ooi A, Tan YW, Wang S, Fang S, Liu DX, Lescar J. The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties. Structure 2006; 13:1859-68. [PMID: 16338414 PMCID: PMC7126683 DOI: 10.1016/j.str.2005.08.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 08/09/2005] [Accepted: 08/30/2005] [Indexed: 12/22/2022]
Abstract
The coronavirus nucleocapsid (N) protein packages viral genomic RNA into a ribonucleoprotein complex. Interactions between N proteins and RNA are thus crucial for the assembly of infectious virus particles. The 45 kDa recombinant nucleocapsid N protein of coronavirus infectious bronchitis virus (IBV) is highly sensitive to proteolysis. We obtained a stable fragment of 14.7 kDa spanning its N-terminal residues 29–160 (IBV-N29-160). Like the N-terminal RNA binding domain (SARS-N45-181) of the severe acute respiratory syndrome virus (SARS-CoV) N protein, the crystal structure of the IBV-N29-160 fragment at 1.85 Å resolution reveals a protein core composed of a five-stranded antiparallel β sheet with a positively charged β hairpin extension and a hydrophobic platform that are probably involved in RNA binding. Crosslinking studies demonstrate the formation of dimers, tetramers, and higher multimers of IBV-N. A model for coronavirus shell formation is proposed in which dimerization of the C-terminal domain of IBV-N leads to oligomerization of the IBV-nucleocapsid protein and viral RNA condensation.
Collapse
Affiliation(s)
- Hui Fan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Amy Ooi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yong Wah Tan
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Sifang Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Shouguo Fang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | - Ding Xiang Liu
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
- Ph: (65) 6316 2862; Fax: (65) 6779 1117
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Ph: (65) 6316 2859; Fax: (65) 6791 3856
| |
Collapse
|
75
|
Schneider U. Novel insights into the regulation of the viral polymerase complex of neurotropic Borna disease virus. Virus Res 2005; 111:148-60. [PMID: 15992626 DOI: 10.1016/j.virusres.2005.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Borna disease virus (BDV) genetic information is encoded in a highly condensed non-segmented RNA genome of negative polarity. Replication and transcription of the genome occurs in the nucleus, enabling the virus to employ the cellular splicing machinery to process primary transcripts and to regulate expression of viral gene products. BDV establishes a non-cytolytic, persistent infection that in animals is mainly restricted to neurons of the central nervous system. Based on these unique properties, BDV represents the prototype member of the virus family Bornaviridae in the order Mononegavirales. Analysis of molecular aspects of BDV replication has long been hampered by the lack of a reverse genetics system. Only recently, artificial BDV minigenomes permitted the reconstitution of the viral polymerase complex, allowing finally the recovery of BDV from cDNA. As in other families of the Mononegavirales, the active polymerase complex of BDV is composed of the polymerase (L), the nucleoprotein (N) and the phosphoprotein (P). In addition, the viral X protein was identified as potent negative regulator of polymerase activity. Protein interaction studies combined with minireplicon assays suggested that P is a central regulatory element of BDV replication that directs the assembly of the polymerase complex. Most intriguingly, BDV obtained from cDNA with variable genomic termini suggests a novel strategy for viral replication-control. BDV seems to restrict its propagation efficacy by defined 5' terminal trimming of genomic and antigenomic RNA molecules. This review will summarize these novel findings and will discuss them in the context of BDV neurotropism and persistence.
Collapse
Affiliation(s)
- Urs Schneider
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany.
| |
Collapse
|
76
|
Kaukinen P, Vaheri A, Plyusnin A. Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. Arch Virol 2005; 150:1693-713. [PMID: 15931462 DOI: 10.1007/s00705-005-0555-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 04/12/2005] [Indexed: 01/10/2023]
Abstract
In recent years important progress has been made studying the nucleocapsid (N) protein of hantaviruses. The N protein presents a good example of a multifunctional viral macromolecule. It is a major structural component of a virion that encapsidates viral RNA (vRNA). It also interacts with the virus polymerase (L protein) and one of the glycoproteins. On top of these "house keeping" duties, the N protein performs interactive "ambassadorial" functions interfering with important regulatory pathways in the infected cells.
Collapse
Affiliation(s)
- P Kaukinen
- Department of Virology, Haartman Institute, University of Helsinki, Finland
| | | | | |
Collapse
|
77
|
Kraus I, Bogner E, Lilie H, Eickmann M, Garten W. Oligomerization and assembly of the matrix protein of Borna disease virus. FEBS Lett 2005; 579:2686-92. [PMID: 15862310 DOI: 10.1016/j.febslet.2005.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 03/22/2005] [Accepted: 04/01/2005] [Indexed: 11/28/2022]
Abstract
The matrix protein M of Borna disease virus (BDV) is a constituent of the viral envelope covering the inner leaflet of the lipid bilayer. BDV-M was expressed as recombinant protein in Escherichia coli, purified to homogeneity and structurally analyzed. Recombinant M (i) forms non-covalently bound multimers with a Stoke's radius of 35 Angstroms estimated by size exclusion chromatography, (ii) consists of tetramers detected by analytical ultracentrifugation, and (iii) appears by electron microscopy studies as tetramers with the tendency to assemble into high molecular mass lattice-like complexes. The structural features suggest that BDV-M possesses a dominant driving force for virus particle formation.
Collapse
Affiliation(s)
- Ina Kraus
- Institut für Virologie, Marburg, Germany
| | | | | | | | | |
Collapse
|
78
|
Kaukinen P, Kumar V, Tulimäki K, Engelhardt P, Vaheri A, Plyusnin A. Oligomerization of Hantavirus N protein: C-terminal alpha-helices interact to form a shared hydrophobic space. J Virol 2004; 78:13669-77. [PMID: 15564476 PMCID: PMC533921 DOI: 10.1128/jvi.78.24.13669-13677.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structure of the nucleocapsid protein of bunyaviruses has not been defined. Earlier we have shown that Tula hantavirus N protein oligomerization is dependent on the C-terminal domains. Of them, the helix-loop-helix motif was found to be an essential structure. Computer modeling predicted that oligomerization occurs via helix protrusions, and the shared hydrophobic space formed by amino acids residues 380-IILLF-384 in the first helix and 413-LI-414 in the second helix is responsible for stabilizing the interaction. The model was validated by two approaches. First, analysis of the oligomerization capacity of the N protein mutants performed with the mammalian two-hybrid system showed that both preservation of the helix structure and formation of the shared hydrophobic space are crucial for the interaction. Second, oligomerization was shown to be a prerequisite for the granular pattern of transiently expressed N protein in transfected cells. N protein trimerization was supported by three-dimensional reconstruction of the N protein by electron microscopy after negative staining. Finally, we discuss how N protein trimerization could occur.
Collapse
Affiliation(s)
- Pasi Kaukinen
- Department of Virology, Haartman Institute, P.O. Box 21, FI-00014 University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Siew N, Fischer D. Structural Biology Sheds Light on the Puzzle of Genomic ORFans. J Mol Biol 2004; 342:369-73. [PMID: 15327940 DOI: 10.1016/j.jmb.2004.06.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 06/09/2004] [Accepted: 06/19/2004] [Indexed: 10/26/2022]
Abstract
Genomic ORFans are orphan open reading frames (ORFs) with no significant sequence similarity to other ORFs. ORFans comprise 20-30% of the ORFs of most completely sequenced genomes. Because nothing can be learnt about ORFans via sequence homology, the functions and evolutionary origins of ORFans remain a mystery. Furthermore, because relatively few ORFans have been experimentally characterized, it has been suggested that most ORFans are not likely to correspond to functional, expressed proteins, but rather to spurious ORFs, pseudo-genes or to rapidly evolving proteins with non-essential roles. As a snapshot view of current ORFan structural studies, we searched for ORFans among proteins whose three-dimensional structures have been recently determined. We find that functional and structural studies of ORFans are not as underemphasized as previously suggested. These recently determined structures correspond to ORFans from all Kingdoms of life, and include proteins that have previously been functionally characterized, as well as structural genomics targets of unknown function labeled as "hypothetical proteins". This suggests that many of the ORFans in the databases are likely to correspond to expressed, functional (and even essential) proteins. Furthermore, the recently determined structures include examples of the various types of ORFans, suggesting that the functions and evolutionary origins of ORFans are diverse. Although this survey sheds some light on the ORFan mystery, further experimental studies are required to gain a better understanding of the role and origins of the tens of thousands of ORFans awaiting characterization.
Collapse
Affiliation(s)
- Naomi Siew
- Department of Chemistry, Ben Gurion University Beer-Sheva 84105, Israel
| | | |
Collapse
|
81
|
Dokland T, Walsh M, Mackenzie JM, Khromykh AA, Ee KH, Wang S. West Nile virus core protein; tetramer structure and ribbon formation. Structure 2004; 12:1157-63. [PMID: 15242592 PMCID: PMC7173237 DOI: 10.1016/j.str.2004.04.024] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 04/05/2004] [Accepted: 04/06/2004] [Indexed: 02/07/2023]
Abstract
We have determined the crystal structure of the core (C) protein from the Kunjin subtype of West Nile virus (WNV), closely related to the NY99 strain of WNV, currently a major health threat in the U.S. WNV is a member of the Flaviviridae family of enveloped RNA viruses that contains many important human pathogens. The C protein is associated with the RNA genome and forms the internal core which is surrounded by the envelope in the virion. The C protein structure contains four alpha helices and forms dimers that are organized into tetramers. The tetramers form extended filamentous ribbons resembling the stacked alpha helices seen in HEAT protein structures.
Collapse
Affiliation(s)
- Terje Dokland
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore.
| | | | | | | | | | | |
Collapse
|
82
|
Ortín J. Unraveling the replication machine from negative-stranded RNA viruses. Structure 2003; 11:1194-6. [PMID: 14527386 DOI: 10.1016/j.str.2003.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|