51
|
Song H, Allison SJ, Brabec V, Bridgewater HE, Kasparkova J, Kostrhunova H, Novohradsky V, Phillips RM, Pracharova J, Rogers NJ, Shepherd SL, Scott P. Glycoconjugated Metallohelices have Improved Nuclear Delivery and Suppress Tumour Growth In Vivo. Angew Chem Int Ed Engl 2020; 59:14677-14685. [PMID: 32489012 PMCID: PMC7497174 DOI: 10.1002/anie.202006814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Monosaccharides are added to the hydrophilic face of a self-assembled asymmetric FeII metallohelix, using CuAAC chemistry. The sixteen resulting architectures are water-stable and optically pure, and exhibit improved antiproliferative selectivity against colon cancer cells (HCT116 p53+/+ ) with respect to the non-cancerous ARPE-19 cell line. While the most selective compound is a glucose-appended enantiomer, its cellular entry is not mainly glucose transporter-mediated. Glucose conjugation nevertheless increases nuclear delivery ca 2.5-fold, and a non-destructive interaction with DNA is indicated. Addition of the glucose units affects the binding orientation of the metallohelix to naked DNA, but does not substantially alter the overall affinity. In a mouse model, the glucose conjugated compound was far better tolerated, and tumour growth delays for the parent compound (2.6 d) were improved to 4.3 d; performance as good as cisplatin but with the advantage of no weight loss in the subjects.
Collapse
Affiliation(s)
- Hualong Song
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Simon J. Allison
- School of Applied SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Viktor Brabec
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | | | - Jana Kasparkova
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | - Hana Kostrhunova
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | - Vojtech Novohradsky
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | - Roger M. Phillips
- School of Applied SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Jitka Pracharova
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
- Department of BiophysicsCentre of the Region Hana for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 2778371OlomoucCzech Republic
| | | | | | - Peter Scott
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
52
|
Wang H, Liu Z, An C, Li H, Hu F, Dong S. Self-Assembling Glycopeptide Conjugate as a Versatile Platform for Mimicking Complex Polysaccharides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001264. [PMID: 32832369 PMCID: PMC7435236 DOI: 10.1002/advs.202001264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Polysaccharides are a class of carbohydrates that play pivotal roles in living systems such as being chemical messengers in many vital biological pathways. However, the complexity and heterogeneity of these natural structures have posed daunting challenges on their production, characterization, evaluation, and applications. While there have been various types of synthetic skeletons that could mimic some biological aspects of polysaccharides, a safer and more easily accessed system is still desired to avoid the unnatural components and difficulties in modifying the structures. In this work, conveniently accessible self-assembling glycopeptide conjugates are developed, where the natural O-glycosidic linkages and phosphoryl modifications assist the self-assembly and concurrently reduce the risk of toxicity. The generated nanoparticles in aqueous solution offer a multivalent display of structurally controllable carbohydrates as mimics of polysaccharides, among which a mannosylated version exhibits immunostimulatory effects in both cellular assays and vaccination of mice. The obtained results demonstrate the potential of this glycopeptide conjugate-derived platform in exploiting the intriguing properties of carbohydrates in a more structurally maneuverable fashion.
Collapse
Affiliation(s)
- Hanxuan Wang
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Zhichao Liu
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Chuanjing An
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Haoting Li
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| | - Fanlei Hu
- Department of Rheumatology and ImmunologyPeking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135)Beijing100044China
| | - Suwei Dong
- State Key Laboratory of Natural and Biomimetic Drugsand Department of Chemical BiologySchool of Pharmaceutical SciencesPeking UniversityBeijing100191China
| |
Collapse
|
53
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
54
|
Microwave irradiation-assisted high-efficiency N-glycan release using oriented immobilization of PNGase F on magnetic particles. J Chromatogr A 2020; 1619:460934. [PMID: 32029268 DOI: 10.1016/j.chroma.2020.460934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
Peptide-N-glycosidase F (PNGase F) is the most frequently used enzyme to release N-glycan from glycoproteins in glycomics; however, the releasing process using PNGase F is tedious and can range in duration from hours to overnight. Recently, efforts have been made to accelerate this enzymatic reaction, and they include the use of microwave irradiation, ultrahigh pressure, enzyme immobilization, and other techniques. Here, we developed a novel method combining the oriented immobilization of PNGase F on magnetic particles and microwave-assisted enzymatic digestion techniques to achieve highly efficient release of N-glycans. The oriented immobilization of PNGase F on magnetic particles utilizes the affinity of its co-expressed His-tag towards iminodiacetic acid-Nickel modified magnetic particles. Compared with non-oriented immobilization, the oriented immobilization of PNGase F exhibits several advantages including tolerance to high temperature (52 °C) and the ability to retain strong activity after more than five reuses. When used in combination with microwave irradiation, efficient N-glycan removal from ribonuclease B was achieved within 5 min. The proposed strategy was also used to release glycan from fetuin and human serum and has proven to provide a promising deglycosylation method for the characterization of protein glycosylation.
Collapse
|
55
|
The Impact of Engineered Silver Nanomaterials on the Immune System. NANOMATERIALS 2020; 10:nano10050967. [PMID: 32443602 PMCID: PMC7712063 DOI: 10.3390/nano10050967] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Over the last decades there has been a tremendous volume of research efforts focused on engineering silver-based (nano)materials. The interest in silver has been mostly driven by the element capacity to kill pathogenic bacteria. In this context, the main area of application has been medical devices that are at significant risk of becoming colonized by bacteria and subsequently infected. However, silver nanomaterials have been incorporated in a number of other commercial products which may or may not benefit from antibacterial protection. The rapid expansion of such products raises important questions about a possible adverse influence on human health. This review focuses on examining currently available literature and summarizing the current state of knowledge of the impact of silver (nano)materials on the immune system. The review also looks at various surface modification strategies used to generate silver-based nanomaterials and the immunomodulatory potential of these materials. It also highlights the immune response triggered by various silver-coated implantable devices and provides guidance and perspective towards engineering silver nanomaterials for modulating immunological consequences.
Collapse
|
56
|
Pustulan Activates Chicken Bone Marrow-Derived Dendritic Cells In Vitro and Promotes Ex Vivo CD4 + T Cell Recall Response to Infectious Bronchitis Virus. Vaccines (Basel) 2020; 8:vaccines8020226. [PMID: 32429204 PMCID: PMC7349971 DOI: 10.3390/vaccines8020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Infectious bronchitis virus (IBV) is a highly contagious avian coronavirus. IBV causes substantial worldwide economic losses in the poultry industry. Vaccination with live-attenuated viral vaccines, therefore, are of critical importance. Live-attenuated viral vaccines, however, exhibit the potential for reversion to virulence and recombination with virulent field strains. Therefore, alternatives such as subunit vaccines are needed together with the identification of suitable adjuvants, as subunit vaccines are less immunogenic than live-attenuated vaccines. Several glycan-based adjuvants directly targeting mammalian C-type lectin receptors were assessed in vitro using chicken bone marrow-derived dendritic cells (BM-DCs). The β-1-6-glucan, pustulan, induced an up-regulation of MHC class II (MHCII) cell surface expression, potentiated a strong proinflammatory cytokine response, and increased endocytosis in a cation-dependent manner. Ex vivo co-culture of peripheral blood monocytes from IBV-immunised chickens, and BM-DCs pulsed with pustulan-adjuvanted recombinant IBV N protein (rN), induced a strong recall response. Pustulan-adjuvanted rN induced a significantly higher CD4+ blast percentage compared to either rN, pustulan or media. However, the CD8+ and TCRγδ+ blast percentage were significantly lower with pustulan-adjuvanted rN compared to pustulan or media. Thus, pustulan enhanced the efficacy of MHCII antigen presentation, but apparently not the cross-presentation on MHCI. In conclusion, we found an immunopotentiating effect of pustulan in vitro using chicken BM-DCs. Thus, future in vivo studies might show pustulan as a promising glycan-based adjuvant for use in the poultry industry to contain the spread of coronaviridiae as well as of other avian viral pathogens.
Collapse
|
57
|
Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Semin Cancer Biol 2020; 80:87-106. [PMID: 32068087 DOI: 10.1016/j.semcancer.2020.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Plant lectins, a natural source of glycans with a therapeutic potential may lead to the discovery of new targeted therapies. Glycans extracted from plant lectins are known to act as ligands for C-type lectin receptors (CLRs) that are primarily present on immune cells. Plant-derived glycosylated lectins offer diversity in their N-linked oligosaccharide structures that can serve as a unique source of homogenous and heterogenous glycans. Among the plant lectins-derived glycan motifs, Man9GlcNAc2Asn exhibits high-affinity interactions with CLRs that may resemble glycan motifs of pathogens. Thus, such glycan domains when presented along with antigens complexed with a nanocarrier of choice may bewilder the immune cells and direct antigen cross-presentation - a cytotoxic T lymphocyte immune response mediated by CD8+ T cells. Glycan structure analysis has attracted considerable interest as glycans are looked upon as better therapeutic alternatives than monoclonal antibodies due to their cost-effectiveness, reduced toxicity and side effects, and high specificity. Furthermore, this approach will be useful to understand whether the multivalent glycan presentation on the surface of nanocarriers can overcome the low-affinity lectin-ligand interaction and thereby modulation of CLR-dependent immune response. Besides this, understanding how the heterogeneity of glycan structure impacts the antigen cross-presentation is pivotal to develop alternative targeted therapies. In the present review, we discuss the findings on structural analysis of glycans from natural lectins performed using GlycanBuilder2 - a software tool based on a thorough literature review of natural lectins. Additionally, we discuss how multiple parameters like the orientation of glycan ligands, ligand density, simultaneous targeting of multiple CLRs and design of antigen delivery nanocarriers may influence the CLR targeting efficacy. Integrating this information will eventually set the ground for new generation immunotherapeutic vaccine design for the treatment of various human malignancies.
Collapse
|
58
|
Joubert IA, Kovacs D, Scheiblhofer S, Winter P, Korotchenko E, Strandt H, Weiss R. Mast cells and γδ T cells are largely dispensable for adaptive immune responses after laser-mediated epicutaneous immunization. Vaccine 2020; 38:1015-1024. [DOI: 10.1016/j.vaccine.2019.11.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
|
59
|
Rapoport EM, Moiseeva EV, Aronov DA, Khaidukov SV, Pazynina GV, Tsygankova SV, Ryzhov IM, Belyanchikov IM, Tyrtysh TV, McCullough KC, Bovin NV. Glycan-binding profile of DC-like cells. Glycoconj J 2019; 37:129-138. [DOI: 10.1007/s10719-019-09897-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/11/2023]
|
60
|
Shastry DG, Karande P. Microarrays for the screening and identification of carbohydrate-binding peptides. Analyst 2019; 144:7378-7389. [PMID: 31670365 DOI: 10.1039/c9an01465a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of carbohydrate-binding ligands is crucial for expanding knowledge on the glycocode and for achieving systematic carbohydrate targeting. Amongst such ligands, carbohydrate-binding peptides (CBPs) are attractive for use in bioanalytical and biomedical systems due to their biochemical and physicochemical properties; moreover, given the biological significance of lectin-carbohydrate interactions, these ligands offer an opportunity to study peptide sequence and binding characteristics to inform on natural target/ligand interactions. Here, a high-throughput microarray screening technique is described for the identification and study of CBPs, with a focus on polysialic acid (PSA), a polysaccharide found on neural stem cells. The chemical and biological uniqueness of PSA suggests that an ability to exclusively target this glycan may promote a number of diagnostic and therapeutic applications. PSA-binding peptides from phage display screening and from epitope mapping of an scFv for oligosialic acid were screened in an optimized microarray format with three ligand density conditions. Hypothesis-driven mutations were additionally applied to select peptides to modulate peptide affinity and selectivity to PSA. Peptide compositional and positional analyses revealed the significance of various residues for PSA binding and suggested the importance of basic residue positioning for PSA recognition. Furthermore, selectivity studies performed directly on microarrays with chondroitin sulfate A (CS-A) demonstrated the value of screening for both affinity and selectivity in the development of CBPs. Thus, the integrated approach described, with attention to design strategy, screening, and peptide characterization, successfully identified novel PSA-binding ligands and offers a platform for the identification and study of additional polysaccharide-binding peptides.
Collapse
Affiliation(s)
- Divya G Shastry
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | | |
Collapse
|
61
|
Larsen FT, Bed'Hom B, Guldbrandtsen B, Dalgaard TS. Identification and tissue-expression profiling of novel chicken c-type lectin-like domain containing proteins as potential targets for carbohydrate-based vaccine strategies. Mol Immunol 2019; 114:216-225. [PMID: 31386978 DOI: 10.1016/j.molimm.2019.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
C-type lectin-like domain containing proteins (CTLDcps) mainly bind carbohydrate-based ligands, but also other ligands. CTLDcps are involved in several biological processes including cell adhesion, cell-cell interactions, and pathogen recognition. Pathogen recognition by myeloid cells, e.g. dendritic cells (DCs), can be facilitated through cell surface expressed CTLDcps. Cell surface expressed CTLDcps have been exploited in vaccine designs for specific targeting of human and mouse DCs using antibodies. In recent years, however, DC targeting using carbohydrate-based vaccines has gained interest due to low production cost, limited immunogenicity, and possibility of multivalent adjustment. In chicken, however, only a few CTLDcps have been identified. Identifying and annotating additional chicken CTLDcps (chCTLDcps) is needed to exploit carbohydrate-mediated DC targeting in chicken. Therefore, we searched the chicken GRCg6a assembly for novel chCTLDcps. We identified 28 chCTLDcps of which 10 had previously been described and also experimentally validated. RNA-seq and RT-qPCR confirmed mRNA expression of the remaining 18 identified chCTLDcps. A group of highly related chCTLDcps, moreover, was shown to be avian-specific and comprise novel members mapped to the proposed chicken natural killer gene complex. Two chCTLDcps, chCLEC17AL-A and chCLEC17AL-B, were found to share a recent common ancestor with CLEC17A. Putative mannose or fucose-binding sequence motifs, EPN and WND, were found in the CTLD of chCLEC17AL-A. Both contained intracellular internalisation and signalling sequence motifs. In conclusion, several chCTLDcps were identified and their expression confirmed. Both chCLEC17AL-A and -B showed promise as potential targets in carbohydrate-based chicken vaccine strategies. Determination of DC-specific expression of chCLEC17AL-A and -B, thus, might prove useful in chicken vaccinology.
Collapse
Affiliation(s)
- Frederik T Larsen
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Bertrand Bed'Hom
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Bernt Guldbrandtsen
- Department of Molecular Biology and Genetics, Blichers Allé 20, 8830, Tjele, Denmark
| | - Tina S Dalgaard
- Department of Animal Science, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark.
| |
Collapse
|
62
|
Choi ES, Song J, Kang YY, Mok H. Mannose-Modified Serum Exosomes for the Elevated Uptake to Murine Dendritic Cells and Lymphatic Accumulation. Macromol Biosci 2019; 19:e1900042. [PMID: 31141293 DOI: 10.1002/mabi.201900042] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/26/2019] [Indexed: 12/19/2022]
Abstract
The surface of bovine serum-derived exosomes (EXOs) are modified with α-d-mannose for facile interaction with mannose receptors on dendritic cells (DCs) and for efficient delivery of immune stimulators to the DCs. The surface of the EXOs is modified with polyethylene glycol (PEG) without particle aggregation (≈50 nm) via the incorporation of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) into the lipid layer of the EXO, compared to chemical conjugation by N-hydroxysuccinimide activated PEG (NHS-PEG). PEG modification onto the exosomal surface significantly decreases the non-specific cellular uptake of the EXOs into the DCs. However, the EXOs with mannose-conjugated PEG-DSPE (EXO-PEG-man) exhibit excellent intracellular uptake into the DCs and boost the immune response by the incorporation of adjuvant, monophosphoryl lipid A (MPLA) within the EXO. After an intradermal injection, a higher retention of EXO-PEG-man is observed in the lymph nodes, which could be used for the efficient delivery of immune stimulators and antigens to the lymph nodes in vivo.
Collapse
Affiliation(s)
- Eun Seo Choi
- Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jihyeon Song
- Konkuk University, Seoul, 143-701, Republic of Korea
| | | | - Hyejung Mok
- Konkuk University, Seoul, 143-701, Republic of Korea
| |
Collapse
|
63
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
64
|
Gallego I, Rioboo A, Reina JJ, Díaz B, Canales Á, Cañada FJ, Guerra‐Varela J, Sánchez L, Montenegro J. Glycosylated Cell‐Penetrating Peptides (GCPPs). Chembiochem 2019; 20:1400-1409. [DOI: 10.1002/cbic.201800720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/22/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Iván Gallego
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - Alicia Rioboo
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - José J. Reina
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| | - Bernardo Díaz
- Centro de Investigaciones Biológicas (CIB) del CSIC C/Ramiro de Maetzu 9, CP 28040 Madrid Spain
- Departamento de Biología Estructural y QuímicaFac. Ciencias Químicas Univ. Complutense de Madrid Avd/ Complutense s/n, CP Madrid Spain
| | - Ángeles Canales
- Departamento de Biología Estructural y QuímicaFac. Ciencias Químicas Univ. Complutense de Madrid Avd/ Complutense s/n, CP Madrid Spain
| | - F. Javier Cañada
- Centro de Investigaciones Biológicas (CIB) del CSIC C/Ramiro de Maetzu 9, CP 28040 Madrid Spain
| | - Jorge Guerra‐Varela
- Departamento de Zooloxía, Xenética e Antropoloxía FísicaFacultade de Veterinaria Universidade de Santiago de Compostela 27002 Lugo Spain
| | - Laura Sánchez
- Departamento de Zooloxía, Xenética e Antropoloxía FísicaFacultade de Veterinaria Universidade de Santiago de Compostela 27002 Lugo Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Campus Vida 15782 Santiago de Compostela Spain
| |
Collapse
|
65
|
Kumar A, Gannedi V, Rather SA, Vishwakarma RA, Ahmed QN. Introducing Oxo-Phenylacetyl (OPAc) as a Protecting Group for Carbohydrates. J Org Chem 2019; 84:4131-4148. [PMID: 30888192 DOI: 10.1021/acs.joc.9b00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of oxo-phenylacetyl (OPAc)-protected saccharides, with divergent base sensitivity profiles against benzoyl (Bz) and acetyl (Ac) were synthesized, and KHSO5/AcCl in methanol was identified as an easy, mild, selective, and efficient deprotecting reagent for their removal in the perspective of carbohydrate synthesis. Timely monitoring of AcCl reagent was supportive in both sequential and simultaneous deprotecting of OPAc, Bz, and Ac. The salient feature of our method is the orthogonal stability against different groups, its ease to generate different valuable acceptors using designed monosaccharides, and use of OPAc as a glycosyl donar.
Collapse
Affiliation(s)
- Atul Kumar
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Veeranjaneyulu Gannedi
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Suhail A Rather
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division , Indian Institute of Integrative Medicine (IIIM) , Jammu 180001 , India.,Academy of Scientific and Innovative Research (AcSIR-IIIM) , Jammu 180001 , India
| |
Collapse
|
66
|
Efficacy of novel recombinant fowlpox vaccine against recent Mexican H7N3 highly pathogenic avian influenza virus. Vaccine 2019; 37:2232-2243. [PMID: 30885512 DOI: 10.1016/j.vaccine.2019.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 11/21/2022]
Abstract
Since 2012, H7N3 highly pathogenic avian influenza (HPAI) has produced negative economic and animal welfare impacts on poultry in central Mexico. In the present study, chickens were vaccinated with two different recombinant fowlpox virus vaccines (rFPV-H7/3002 with 2015 H7 hemagglutinin [HA] gene insert, and rFPV-H7/2155 with 2002 H7 HA gene insert), and were then challenged three weeks later with H7N3 HPAI virus (A/chicken/Jalisco/CPA-37905/2015). The rFPV-H7/3002 vaccine conferred 100% protection against mortality and morbidity, and significantly reduced virus shed titers from the respiratory and gastrointestinal tracts. In contrast, 100% of sham and rFPV-H7/2155 vaccinated birds shed virus at higher titers and died within 4 days. Pre- (15/20) and post- (20/20) challenge serum of birds vaccinated with rFPV-H7/3002 had antibodies detectable by hemagglutination inhibition (HI) assay using challenge virus antigen. However, only a few birds (3/20) in the rFPV-H7/2155 vaccinated group had antibodies that reacted against the challenge strain but all birds had antibodies that reacted against the homologous vaccine antigen (A/turkey/Virginia/SEP-66/2002) (20/20). One possible explanation for differences in vaccines efficacy is the antigenic drift between circulating viruses and vaccines. Molecular analysis demonstrated that the Mexican H7N3 strains have continued to rapidly evolve since 2012. In addition, we identified in silico three potential new N-glycosylation sites on the globular head of the H7 HA of A/chicken/Jalisco/CPA-37905/2015 challenge virus, which were absent in 2012 H7N3 outbreak virus. Our results suggested that mutations in the HA antigenic sites including increased glycosylation sites, accumulated in the new circulating Mexican H7 HPAIV strains, altered the recognition of neutralizing antibodies from the older vaccine strain rFPV-H7/2155. Therefore, the protective efficacy of novel rFPV-H7/3002 against recent outbreak Mexican H7N3 HPAIV confirms the importance of frequent updating of vaccines seed strains for long-term effective control of H7 HPAI virus.
Collapse
|
67
|
Kingston NJ, Kurtovic L, Walsh R, Joe C, Lovrecz G, Locarnini S, Beeson JG, Netter HJ. Hepatitis B virus-like particles expressing Plasmodium falciparum epitopes induce complement-fixing antibodies against the circumsporozoite protein. Vaccine 2019; 37:1674-1684. [PMID: 30773400 DOI: 10.1016/j.vaccine.2019.01.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
The repetitive structure of compact virus-like particles (VLPs) provides high density displays of antigenic sequences, which trigger key parts of the immune system. The hepatitis B virus (HBV) and human papilloma virus (HPV) vaccines exploit the assembly competence of structural proteins, which are the effective immunogenic components of the prophylactic HBV and HPV vaccines, respectively. To optimize vaccine designs and to promote immune responses against protective epitopes, the "Asp-Ala-Asp-Pro" (NANP)-repeat from the Plasmodium falciparum circumsporozoite protein (CSP) was expressed within the exposed, main antigenic site of the small HBV envelope protein (HBsAgS); this differs from the RTS,S vaccine, in which CSP epitopes are fused to the N-terminus of HBsAgS. The chimeric HBsAgS proteins are assembly competent, produce VLPs, and provide a high antigenic density of the NANP repeat sequence. Chimeric VLPs with four or nine NANP-repeats (NANP4 and NANP9, respectively) were expressed in mammalian cells, the HBsAgS- and CSP-specific antigenicity of the VLPs was determined, and the immunogenicity of the VLPs assessed in relation to the induction of anti-HBsAgS and anti-CSP antibody responses. The chimeric VLPs induced high anti-CSP titres in BALB/c mice independent of the number of the NANP repeats. However, the number of NANP repeats influenced the activity of vaccine-induced antibodies measured by complement fixation to CSP, one of the proposed effector mechanisms for Plasmodium neutralization in vivo. Sera from mice immunized with VLPs containing nine NANP repeats performed better in the complement fixation assay than the group with four NANP repeats. The effect of the epitope-specific density on the antibody quality may instruct VLP platform designs to optimize immunological outcomes and vaccine efficacy.
Collapse
Affiliation(s)
- Natalie J Kingston
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Liriye Kurtovic
- Burnet Institute, Commercial Road, Melbourne, Victoria 3004, Australia; Department of Immunology and Pathology, Monash University, Melbourne, Victoria 2004, Australia
| | - Renae Walsh
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia
| | - Carina Joe
- Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia; Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3169, Australia
| | - George Lovrecz
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3169, Australia
| | - Stephen Locarnini
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia
| | - James G Beeson
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; Burnet Institute, Commercial Road, Melbourne, Victoria 3004, Australia; Department of Immunology and Pathology, Monash University, Melbourne, Victoria 2004, Australia; Department of Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hans J Netter
- Victorian Infectious Diseases Reference Laboratory (VIDRL), Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia; Royal Melbourne Institute of Technology (RMIT) University, School of Science, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
68
|
Heß R, Storcksdieck Genannt Bonsmann M, Lapuente D, Maaske A, Kirschning C, Ruland J, Lepenies B, Hannaman D, Tenbusch M, Überla K. Glycosylation of HIV Env Impacts IgG Subtype Responses to Vaccination. Viruses 2019; 11:v11020153. [PMID: 30781796 PMCID: PMC6410111 DOI: 10.3390/v11020153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 12/22/2022] Open
Abstract
The envelope protein (Env) is the only surface protein of the human immunodeficiency virus (HIV) and as such the exclusive target for protective antibody responses. Experimental evidences from mouse models suggest a modulating property of Env to steer antibody class switching towards the less effective antibody subclass IgG1 accompanied with strong TH2 helper responses. By simple physical linkage we were able to imprint this bias, exemplified by a low IgG2a/IgG1 ratio of antigen-specific antibodies, onto an unrelated antigen, namely the HIV capsid protein p24. Here, our results indicate the glycan moiety of Env as the responsible immune modulating activity. Firstly, in Card9−/− mice lacking specific C-Type lectin responsiveness, DNA immunization significantly increased the IgG2a/IgG1 ratio for the Env-specific antibodies while the antibody response against the F-protein of the respiratory syncytial virus (RSV) serving as control antigen remained unchanged. Secondly, sequential shortening of the Env encoding sequence revealed the C2V3 domain as responsible for the strong IgG1 responses and TH2 cytokine production. Removing all potential N-glycosylation sites from the C2V3 domain by site-specific mutagenesis reversed the vaccine-induced immune response towards a Th1-dominated T-cell response and a balanced IgG2a/IgG1 ratio. Accordingly, the stretch of oligomannose glycans in the C2V3 domain of Env might mediate a specific uptake and/or signaling modus in antigen presenting cells by involving interaction with an as yet unknown C-type lectin receptor. Our results contribute to a deeper understanding of the impact of Env glycosylation on HIV antigen-specific immune responses, which will further support HIV vaccine development.
Collapse
Affiliation(s)
- Rebecca Heß
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | | | - Dennis Lapuente
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany.
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany; Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Andre Maaske
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany.
| | - Carsten Kirschning
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany.
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany.
| | - Bernd Lepenies
- Immunology Unit & Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine (TiHo) Hannover, 30559 Hannover, Germany.
| | - Drew Hannaman
- Ichor Medical Systems, Inc., San Diego, CA 92121, USA.
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany; Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany; Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
69
|
Williams KL. The Biologics Revolution and Endotoxin Test Concerns. ENDOTOXIN DETECTION AND CONTROL IN PHARMA, LIMULUS, AND MAMMALIAN SYSTEMS 2019. [PMCID: PMC7123716 DOI: 10.1007/978-3-030-17148-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The advent of “at will” production of biologics in lieu of harvesting animal proteins (i.e. insulin) or human cadaver proteins (i.e. growth hormone) has revolutionized the treatment of disease. While the fruits of the biotechnology revolution are widely acknowledged, the realization of the differences in the means of production and changes in the manner of control of potential impurities and contaminants in regard to the new versus the old are less widely appreciated. This chapter is an overview of the biologics revolution in terms of the rigors of manufacturing required to produce them, their mechanism of action, and caveats of endotoxin control. It is a continulation of the previous chapter that established a basic background knowledge of adaptive immune principles necessary to understand the mode of action of both disease causation and biologics therapeutic treatment via immune modulation.
Collapse
|
70
|
Clemente-Napimoga JT, Silva MASM, Peres SNC, Lopes AHP, Lossio CF, Oliveira MV, Osterne VJS, Nascimento KS, Abdalla HB, Teixeira JM, Cavada BS, Napimoga MH. Dioclea violacea lectin ameliorates inflammation in the temporomandibular joint of rats by suppressing intercellular adhesion molecule-1 expression. Biochimie 2018; 158:34-42. [PMID: 30557594 DOI: 10.1016/j.biochi.2018.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
Inflammation of temporomandibular joint (TMJ) tissues are the most common cause of pain conditions associated with temporomandibular disorders (TMDs). After a tissue and/or neural damage, the inflammatory response is characterized by plasma extravasation and leukocytes infiltration in the TMJ tissues, which in turn, release inflammatory cytokines cascades responsible for inflammatory pain. Lectins are glycoproteins widely distributed in nature that may exhibit anti-inflammatory properties. This study demonstrated by molecular docking and MM/PBSA that the lectin from Dioclea violacea (DVL) interacts favorably with α-methyl-D-mannoside, N-acetyl-D-glucosamine, and core1-sialyl-Lewis X which are associated with leukocytes migration during an inflammatory response. Wistar rats pretreated with intravenously injection of DVL demonstrated a significant inhibition of plasma extravasation induced by carrageenan (a non-neurogenic inflammatory inductor) and mustard oil (a neurogenic inflammatory inductor) in the TMJ periarticular tissues (p < 0.05; ANOVA, Tukey's test). In addition, DVL significantly reduced carrageenan-induced leukocyte migration in the TMJ periarticular tissues mediated by down-regulation of ICAM-1 expression. These results suggest a potential anti-inflammatory effect of DVL in inflammatory conditions of TMJ.
Collapse
Affiliation(s)
- Juliana T Clemente-Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Área de Fisiologia, Campinas, Brazil
| | - Maria A S M Silva
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Área de Fisiologia, Campinas, Brazil
| | - Sylvia N C Peres
- Laboratory of Biopathology and Molecular Biology, University of Uberaba, Uberaba, Brazil
| | - Alexandre H P Lopes
- Department of Pharmacology, Medical School of Ribeirão Preto - University of São Paulo, Ribeirão Preto, Brazil
| | - Claudia F Lossio
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Messias V Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Vinicius J S Osterne
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Kyria S Nascimento
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Henrique B Abdalla
- Laboratory of Orofacial Pain, Department of Physiology, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Juliana M Teixeira
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Área de Fisiologia, Campinas, Brazil
| | - Benildo S Cavada
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil.
| | - Marcelo H Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Área de Imunologia, Campinas, Brazil.
| |
Collapse
|
71
|
Brzezicka KA, Serna S, Reichardt NC. Fluorescent Neoglycoprotein Gold Nanoclusters: Synthesis and Applications in Plant Lectin Sensing and Cell Imaging. NANOSCALE RESEARCH LETTERS 2018; 13:360. [PMID: 30421263 PMCID: PMC6232188 DOI: 10.1186/s11671-018-2772-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
Carbohydrate-protein interactions mediate fundamental biological processes, such as fertilization, cell signaling, or host-pathogen communication. However, because of the enormous complexity of glycan recognition events, new tools enabling their analysis or applications emerge in recent years. Here, we describe the first preparation of neoglycoprotein functionalized fluorescent gold nanoclusters, containing a biantennary N-glycan G0 as targeting molecule, ovalbumin as carrier/model antigen, and a fluorescent gold core as imaging probe (G0-OVA-AuNCs). Subsequently, we demonstrate the utility of generated G0-OVA-AuNCs for specific sensing of plant lectins and in vitro imaging of dendritic cells.
Collapse
Affiliation(s)
- Katarzyna Alicja Brzezicka
- Glycotechnology Laboratory, CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
- Departments of Molecular Medicine and Microbiology and Immunology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Sonia Serna
- Glycotechnology Laboratory, CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Niels Christian Reichardt
- Glycotechnology Laboratory, CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
- CIBER-BBN, Paseo Miramon 182, 20014 San Sebastian, Spain
| |
Collapse
|
72
|
Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell Immunol 2018; 333:46-57. [DOI: 10.1016/j.cellimm.2018.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 01/20/2023]
|
73
|
Martínez-Alarcón D, Blanco-Labra A, García-Gasca T. Expression of Lectins in Heterologous Systems. Int J Mol Sci 2018; 19:E616. [PMID: 29466298 PMCID: PMC5855838 DOI: 10.3390/ijms19020616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/24/2017] [Accepted: 12/27/2017] [Indexed: 01/24/2023] Open
Abstract
Lectins are proteins that have the ability to recognize and bind in a reversible and specific way to free carbohydrates or glycoconjugates of cell membranes. For these reasons, they have been extensively used in a wide range of industrial and pharmacological applications. Currently, there is great interest in their production on a large scale. Unfortunately, conventional techniques do not provide the appropriate platform for this purpose and therefore, the heterologous production of lectins in different organisms has become the preferred method in many cases. Such systems have the advantage of providing better yields as well as more homogeneous and better-defined properties for the resultant products. However, an inappropriate choice of the expression system can cause important structural alterations that have repercussions on their biological activity since the specificity may lay in their post-translational processing, which depends largely on the producing organism. The present review aims to examine the most representative studies in the area, exposing the four most frequently used systems (bacteria, yeasts, plants and animal cells), with the intention of providing the necessary information to determine the strategy to follow in each case as well as their respective advantages and disadvantages.
Collapse
Affiliation(s)
- Dania Martínez-Alarcón
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, Mexico.
| | - Alejandro Blanco-Labra
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, Mexico.
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias s/n, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico.
| |
Collapse
|
74
|
Mayer S, Moeller R, Monteiro JT, Ellrott K, Josenhans C, Lepenies B. C-Type Lectin Receptor (CLR)-Fc Fusion Proteins As Tools to Screen for Novel CLR/Bacteria Interactions: An Exemplary Study on Preselected Campylobacter jejuni Isolates. Front Immunol 2018; 9:213. [PMID: 29487596 PMCID: PMC5816833 DOI: 10.3389/fimmu.2018.00213] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
C-type lectin receptors (CLRs) are carbohydrate-binding receptors that recognize their ligands often in a Ca2+-dependent manner. Upon ligand binding, myeloid CLRs in innate immunity trigger or inhibit a variety of signaling pathways, thus initiating or modulating effector functions such as cytokine production, phagocytosis, and antigen presentation. CLRs bind to various pathogens, including viruses, fungi, parasites, and bacteria. The bacterium Campylobacter jejuni (C. jejuni) is a very frequent Gram-negative zoonotic pathogen of humans, causing severe intestinal symptoms. Interestingly, C. jejuni expresses several glycosylated surface structures, for example, the capsular polysaccharide (CPS), lipooligosaccharide (LOS), and envelope proteins. This “Methods” paper describes applications of CLR–Fc fusion proteins to screen for yet unknown CLR/bacteria interactions using C. jejuni as an example. ELISA-based detection of CLR/bacteria interactions allows a first prescreening that is further confirmed by flow cytometry-based binding analysis and visualized using confocal microscopy. By applying these methods, we identified Dectin-1 as a novel CLR recognizing two selected C. jejuni isolates with different LOS and CPS genotypes. In conclusion, the here-described applications of CLR–Fc fusion proteins represent useful methods to screen for and identify novel CLR/bacteria interactions.
Collapse
Affiliation(s)
- Sabine Mayer
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Rebecca Moeller
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - João T Monteiro
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| | - Kerstin Ellrott
- Medical School Hannover, Institute for Medical Microbiology, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Christine Josenhans
- Medical School Hannover, Institute for Medical Microbiology, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.,Max von Pettenkofer Institute, Ludwig Maximilian University Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
75
|
Nanoparticle effect on neutrophil produced myeloperoxidase. PLoS One 2018; 13:e0191445. [PMID: 29346422 PMCID: PMC5773199 DOI: 10.1371/journal.pone.0191445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles affect the immune system as they may interact directly with immune cells and activate them. However, it is possible that nanoparticles also interact with released cytokines and immunologically active enzymes. To test this hypothesis, the activity of myeloperoxidase released from activated neutrophils was measured in the presence of nanoparticles with different chemistry and size. In high concentrations of nanoparticles, myeloperoxidase activity is decreased whereas in low concentrations of nanoparticles the activity is increased. The effect of the nanoparticles on myeloperoxidase is dependent on the total protein concentration as low concentrations of bovine serum albumin together with nanoparticles further increase the myeloperoxidase activity. The results herein show that nanoparticles affect the immune response not only at the cellular level but also on released immune effectors. In particular, they show that the nanoparticle effect on myeloperoxidase activity in the neutrophil degranulation environment is the result of an intricate interplay between the enzyme and protein concentrations in the environment and the available surface area on the nanoparticle.
Collapse
|
76
|
|
77
|
Li RE, van Vliet SJ, van Kooyk Y. Using the glycan toolbox for pathogenic interventions and glycan immunotherapy. Curr Opin Biotechnol 2017; 51:24-31. [PMID: 29175707 DOI: 10.1016/j.copbio.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/29/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Glycans play a crucial role to discern between self and foreign entities by providing key recognition elements for C-type lectin receptors (CLRs) and Siglec receptors expressed on immune cells. The glycan recognition of CLRs has illustrated a potent immune modulatory role affecting not only innate pathogen binding and immune signalling, but also Thelper differentiation, cytokine production and antigen presentation. This broad range of influence has implicated glycans in the pathogenesis of infectious diseases but also revealed their extraordinary properties in cancer. Glycan binding by CLRs and Siglecs can be exploited for immunotherapy and the design of glycan-based therapeutics and their multivalent requirements will aspire new biotechnological approaches to effectively interfere in immunological processes in cancer and infectious diseases.
Collapse
Affiliation(s)
- Rj Eveline Li
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Y van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
78
|
Artigas G, Monteiro JT, Hinou H, Nishimura SI, Lepenies B, Garcia-Martin F. Glycopeptides as Targets for Dendritic Cells: Exploring MUC1 Glycopeptides Binding Profile toward Macrophage Galactose-Type Lectin (MGL) Orthologs. J Med Chem 2017; 60:9012-9021. [PMID: 29045792 DOI: 10.1021/acs.jmedchem.7b01242] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The macrophage galactose-type lectin (MGL) recognizes glycan moieties exposed by pathogens and malignant cells. Particularly, mucin-1 (MUC1) glycoprotein presents an altered glycosylation in several cancers. To estimate the ability of distinct MGL orthologs to recognize aberrant glycan cores in mucins, we applied evanescent-field detection to a versatile MUC1-like glycopeptide microarray platform. Here, as binding was sequence-dependent, we demonstrated that not only sugars but also peptide region impact the recognition of murine MGL1 (mMGL1). In addition, we observed for all three MGL orthologs that divalent glycan presentation increased the binding. To assess the utility of the glycopeptide binders of the MGL orthologs for MGL targeting, we performed uptake assays with fluorescein-MUC1 using murine dendritic cells. A diglycosylated MUC1 peptide was preferentially internalized in an MGL-dependent fashion, thus showing the utility for divalent MGL targeting. These findings may be relevant to a rational design of antitumor vaccines targeting dendritic cells via MGL.
Collapse
Affiliation(s)
- Gerard Artigas
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, 001-0021 Sapporo, Japan
| | - João T Monteiro
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover , Bünteweg 17, 30559 Hannover, Germany
| | - Hiroshi Hinou
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, 001-0021 Sapporo, Japan.,Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku, 060-0009 Sapporo, Japan
| | - Shin-Ichiro Nishimura
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, 001-0021 Sapporo, Japan.,Medicinal Chemistry Pharmaceuticals, Co., Ltd. N9W15, Chuo-ku, 060-0009 Sapporo, Japan
| | - Bernd Lepenies
- Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover , Bünteweg 17, 30559 Hannover, Germany
| | - Fayna Garcia-Martin
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University , N21, W11, Kita-ku, 001-0021 Sapporo, Japan
| |
Collapse
|
79
|
Kruppa J, Lepenies B, Jung K. A genetic algorithm for simulating correlated binary data from biomedical research. Comput Biol Med 2017; 92:1-8. [PMID: 29132014 DOI: 10.1016/j.compbiomed.2017.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 12/01/2022]
Abstract
Correlated binary data arise in a large variety of biomedical research. In order to evaluate methods for their analysis, computer simulations of such data are often required. Existing methods can often not cover the full range of possible correlations between the variables or are not available as implemented software. We propose a genetic algorithm that approaches the desired correlation structure under a given marginal distribution. The procedure generates a large representative matrix from which the probabilities of individual observations can be derived or from which samples can be drawn directly. Our genetic algorithm is evaluated under different specified marginal frequencies and correlation structures, and is compared against two existing approaches. The evaluation checks the speed and precision of the approach as well as its suitability for generating also high-dimensional data. In an example of high-throughput glycan array data, we demonstrate the usability of our approach to simulate the power of global test procedures. An implementation of our own and two other methods were added to the R-package 'RepeatedHighDim'. The presented algorithm is not restricted to certain correlation structures. In contrast to existing methods it is also evaluated for high-dimensional data.
Collapse
Affiliation(s)
- Jochen Kruppa
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bernd Lepenies
- Immunology Unit, University of Veterinary Medicine Hannover, Hannover, Germany; Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany; Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
80
|
Shimoda A, Tahara Y, Sawada SI, Sasaki Y, Akiyoshi K. Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: Importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells. Biochem Biophys Res Commun 2017; 491:701-707. [PMID: 28751214 DOI: 10.1016/j.bbrc.2017.07.126] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/22/2017] [Indexed: 12/29/2022]
Abstract
Studies involving the functional analysis of exosomal contents including proteins, DNA, and RNA have been reported. Most membrane proteins and lipids are glycosylated, which controls their physical properties and functions, but little is known about glycans on exosomes owing to the difficulty of analysing them. To shed light on these issues, we collected exosomes from mesenchymal stem cells (MSCs) derived from human adipose tissue for glycan profiling using evanescent-field fluorescence-assisted lectin array as well as analysis of their uptake in vivo. Initial analyses showed that the mean diameter of the collected exosomes was 178 nm and they presented with typical exosomal and MSC markers. Regarding the glycan profiling, exosomes interacted more strongly than the membrane of the original MSCs did with a range of lectins, especially sialic acid-binding lectins. The findings also showed that cellular exosome uptake involved recognition by HeLa cell-surface-bound sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs). Confirming this siglec-related uptake, in vivo experiments involving subcutaneous injection of the fluorescently labelled exosomes into mice showed their transport into lymph nodes and internalization by antigen-presenting cells, particularly those expressing CD11b. Closer analysis revealed the colocalization of the exosomes with siglecs, indicating their involvement in the uptake. These findings provide us with an improved understanding of the importance of exosomal transport and targeting in relation to glycans on exosomal surfaces, potentially enabling us to standardize exosomes when using them for therapeutic purposes.
Collapse
Affiliation(s)
- Asako Shimoda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Yoshiro Tahara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan.
| |
Collapse
|
81
|
Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 2017; 128:69-83. [PMID: 28292726 PMCID: PMC5417338 DOI: 10.1016/j.biomaterials.2017.02.041] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
The continued evolution of biomedical nanotechnology has enabled clinicians to better detect, prevent, manage, and treat human disease. In order to further push the limits of nanoparticle performance and functionality, there has recently been a paradigm shift towards biomimetic design strategies. By taking inspiration from nature, the goal is to create next-generation nanoparticle platforms that can more effectively navigate and interact with the incredibly complex biological systems that exist within the body. Of great interest are cellular membranes, which play essential roles in biointerfacing, self-identification, signal transduction, and compartmentalization. In this review, we explore the major ways in which researchers have directly leveraged cell membrane-derived biomaterials for the fabrication of novel nanotherapeutics and nanodiagnostics. Such emerging technologies have the potential to significantly advance the field of nanomedicine, helping to improve upon traditional modalities while also enabling novel applications.
Collapse
Affiliation(s)
- Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yao Jiang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean C Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
82
|
Monteiro JT, Lepenies B. Myeloid C-Type Lectin Receptors in Viral Recognition and Antiviral Immunity. Viruses 2017; 9:E59. [PMID: 28327518 PMCID: PMC5371814 DOI: 10.3390/v9030059] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022] Open
Abstract
Recognition of viral glycans by pattern recognition receptors (PRRs) in innate immunity contributes to antiviral immune responses. C-type lectin receptors (CLRs) are PRRs capable of sensing glycans present in viral pathogens to activate antiviral immune responses such as phagocytosis, antigen processing and presentation, and subsequent T cell activation. The ability of CLRs to elicit and shape adaptive immunity plays a critical role in the inhibition of viral spread within the host. However, certain viruses exploit CLRs for viral entry into host cells to avoid immune recognition. To block CLR interactions with viral glycoproteins, antiviral strategies may involve the use of multivalent glycan carrier systems. In this review, we describe the role of CLRs in antiviral immunity and we highlight their dual function in viral clearance and exploitation by viral pathogens.
Collapse
Affiliation(s)
- João T Monteiro
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
83
|
C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol 2016; 147:223-237. [DOI: 10.1007/s00418-016-1523-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 01/26/2023]
|