51
|
Safarzad M, Besharat S, Salimi S, Azarhoush R, Behnampour N, Joshaghani HR. Association between selenium, cadmium, and arsenic levels and genetic polymorphisms in DNA repair genes (XRCC5, XRCC6) in gastric cancerous and non-cancerous tissue. J Trace Elem Med Biol 2019; 55:89-95. [PMID: 31345372 DOI: 10.1016/j.jtemb.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/05/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
Gastric cancer is one of the most prevalent cancers in northern Iran. The DNA repair genes X-ray repair cross-complementing (XRCC) group 5, XRCC6, which are important members of non-homologous end-joining repair system, play an important role in repairing the DNA double-strand breaks. Chronic exposure to heavy metals has long been recognized as being capable of augmenting gastric cancer incidence among exposed human populations. Since trace elements could directly or indirectly damage DNA, and polymorphism in DNA DSBs-repair genes can alter the capacity of system repair, we assumed that XRCC5 VNTR and XRCC6-61C >G polymorphism also impress the DSBs-repair system ability and contribute to gastric cancer. Therefore, the objective of this research was to evaluate the tissue accumulation of Selenium (Se), Cadmium (Cd) and Arsenic (As), and XRCC5 VNTR, XRCC6-61C >G polymorphisms in cancerous and non-cancerous tissues in Golestan province. The study population included 46 gastric cancer patients and 43 cancer-free controls. Two polymorphisms of XRCC5, XRCC6 were genotyped using polymerase chain reaction (PCR) or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Further employed was atomic absorption spectroscopy so as to determine the levels of Se, Cd and As. Finally, the data were analyzed by SPSS (version 16) statistical software. The Se level was significantly higher in tumors as compared to non-tumor tissues, but there was no significant correlation between As and Cd in cancerous and noncancerous tissues. Allele frequencies of the selected genes were not statistically different between groups regarding XRCC6 (-61C>G). XRCC5 0R/0R, 0R/1R, 1R/1R, and 0R/2R genotypes were more common in cancerous group. High levels of Se in cancerous tissues vs. non-cancerous tissues may be one of the carcinogenic factors; in Golestan province, unlike other regions of Iran and the world, the level of Se is high, hence the higher risks of gastric cancer.
Collapse
Affiliation(s)
- Mahdieh Safarzad
- Metabolic disorders research center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Besharat
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Saeedeh Salimi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran and Department of Clinical Biochemistry, School of Medicine, ZahedanUniversity of Medical Sciences, Zahedan, Iran
| | - Ramin Azarhoush
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naser Behnampour
- Biostatistics Department, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Reza Joshaghani
- Laboratory sciences research center, Golestan University of Medical Sciences, Gorgan, Iran; Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
52
|
Qazi IH, Angel C, Yang H, Zoidis E, Pan B, Wu Z, Ming Z, Zeng CJ, Meng Q, Han H, Zhou G. Role of Selenium and Selenoproteins in Male Reproductive Function: A Review of Past and Present Evidences. Antioxidants (Basel) 2019; 8:E268. [PMID: 31382427 PMCID: PMC6719970 DOI: 10.3390/antiox8080268] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Selenium (Se) is an important trace mineral having many essential roles at the cellular and organismal levels in animal and human health. The biological effects of Se are mainly carried out by selenoproteins (encoded by 25 genes in humans and 24 in mice). As an essential component of selenoproteins, Se performs structural and enzymic roles; in the latter context it is well known for its catalytic and antioxidative functions. Studies involving different animal models have added great value to our understanding regarding the potential implications of Se and selenoproteins in mammalian fertility and reproduction. In this review, we highlight the implications of selenoproteins in male fertility and reproduction followed by the characteristic biological functions of Se and selenoproteins associated with overall male reproductive function. It is evident from observations of past studies (both animal and human) that Se is essentially required for spermatogenesis and male fertility, presumably because of its vital role in modulation of antioxidant defense mechanisms and other essential biological pathways and redox sensitive transcription factors. However, bearing in mind the evidences from mainstream literature, it is also advisable to perform more studies focusing on the elucidation of additional roles played by the peculiar and canonical selenoproteins i.e., glutathione peroxidase 4 (GPX4) and selenoprotein P (SELENOP) in the male reproductive functions. Nevertheless, search for the elucidation of additional putative mechanisms potentially modulated by other biologically relevant selenoproteins should also be included in the scope of future studies. However, as for the implication of Se in fertility and reproduction in men, though a few clinical trials explore the effects of Se supplementation on male fertility, due to inconsistencies in the recruitment of subjects and heterogeneity of designs, the comparison of such studies is still complicated and less clear. Therefore, further research focused on the roles of Se and selenoproteins is awaited for validating the evidences at hand and outlining any therapeutic schemes intended for improving male fertility. As such, new dimensions could be added to the subject of male fertility and Se supplementation.
Collapse
Affiliation(s)
- Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand-67210, Sindh, Pakistan
| | - Christiana Angel
- Department of Veterinary Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand-67210, Sindh, Pakistan
| | - Haoxuan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Evangelos Zoidis
- Department of Nutritional Physiology and Feeding, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Bo Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenzheng Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhang Ming
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chang-Jun Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingyong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, China
| | - Hongbing Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
53
|
Romero I, de Francisco P, Gutiérrez JC, Martín-González A. Selenium cytotoxicity in Tetrahymena thermophila: New clues about its biological effects and cellular resistance mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:850-865. [PMID: 30947056 DOI: 10.1016/j.scitotenv.2019.03.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Selenium is an essential micronutrient but at high concentrations can produce severe cytotoxicity and genomic damage. We have evaluated the cytotoxicity, ultrastructural and mitochondrial alterations of the two main selenium inorganic species; selenite and selenate, in the eukaryotic microorganism Tetrahymena thermophila. In this ciliate, selenite is more toxic than selenate. Their LC50 values were calculated as 27.65 μM for Se(IV) and 56.88 mM for Se(VI). Significant levels of peroxides/hydroperoxides are induced under low-moderate selenite or selenate concentrations. Se(VI) exposures induce an immediate mitochondrial membrane depolarization. Selenium treated cells show an intense vacuolization and some of them present numerous discrete and small electrondense particles, probably selenium deposits. Mitochondrial fusion, an intense swelling in peripheral mitochondria and mitophagy are detected in selenium treated cells, especially in those exposed to Se (IV). qRT-PCR analysis of diverse genes, encoding relevant antioxidant enzymes or other proteins, like metallothioneins, involved in an environmental general stress response, have shown that they may be crucial against Se(IV) and/or Se (VI) cytotoxicity.
Collapse
Affiliation(s)
- Ivan Romero
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain
| | - Patricia de Francisco
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain
| | - Juan Carlos Gutiérrez
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain
| | - Ana Martín-González
- Dpto. Genética, Fisiología y Microbiología, Facultad de Biología, C/. José Antonio Novais, 12, Universidad Complutense (UCM), 28040 Madrid, Spain..
| |
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW Selenium, a trace element, is ubiquitous in the environment. The main source of human exposure is diet. Despite its nutritional benefits, it is one of the most toxic naturally occurring elements. Selenium deficiency and overexposure have been associated with adverse health effects. Its level of toxicity may depend on its chemical form, as inorganic and organic species have distinct biological properties. RECENT FINDINGS Nonexperimental and experimental studies have generated insufficient evidence for a role of selenium deficiency in human disease, with the exception of Keshan disease, a cardiomyopathy. Conversely, recent randomized trials have indicated that selenium overexposure is positively associated with type 2 diabetes and high-grade prostate cancer. In addition, a natural experiment has suggested an association between overexposure to inorganic hexavalent selenium and two neurodegenerative diseases, amyotrophic lateral sclerosis and Parkinson's disease. Risk assessments should be revised to incorporate the results of studies demonstrating toxic effects of selenium. Additional observational studies and secondary analyses of completed randomized trials are needed to address the uncertainties regarding the health risks of selenium exposure.
Collapse
|
55
|
Rohn I, Raschke S, Aschner M, Tuck S, Kuehnelt D, Kipp A, Schwerdtle T, Bornhorst J. Treatment of Caenorhabditis elegans with Small Selenium Species Enhances Antioxidant Defense Systems. Mol Nutr Food Res 2019; 63:e1801304. [PMID: 30815971 PMCID: PMC6499701 DOI: 10.1002/mnfr.201801304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Indexed: 01/10/2023]
Abstract
SCOPE Small selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. METHODS AND RESULTS In the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. CONCLUSION Se species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake.
Collapse
Affiliation(s)
- Isabelle Rohn
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Stefanie Raschke
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | | | - Simon Tuck
- Umeå Centre for Molecular Medicine, Umeå University, 90187, Umeå, Sweden
| | - Doris Kuehnelt
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Anna Kipp
- Institute of Nutrition, Friedrich Schiller University Jena, 07743, Jena, Germany
- TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
- TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Julia Bornhorst
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
- TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
56
|
Selenium reduction by a defined co-culture of Shigella fergusonii strain TB42616 and Pantoea vagans strain EWB32213-2. Bioprocess Biosyst Eng 2019; 42:1343-1351. [DOI: 10.1007/s00449-019-02134-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/21/2019] [Indexed: 10/26/2022]
|
57
|
Tian Y, Xin F, Jing J, Zhang X. Fluorescence imaging of lysosomal hydrogen selenide under oxygen-controlled conditions. J Mater Chem B 2019; 7:2829-2834. [PMID: 32255085 DOI: 10.1039/c8tb03169j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrogen selenide (H2Se), a central metabolite of Se supplements, displays critical biological functions in many physiological and pathological processes. To better understand its comprehensive function, especially those exerted in subcellular organelles, the development of specific assays is urgently needed. However, the methodology to detect H2Se is poorly developed. Here, we present a concise design strategy to obtain an activatable fluorescent probe (Se-1) for H2Se by utilizing an intramolecular photoinduced electron transfer (PET) process to switch the fluorescence. The probe is able to selectively react with H2Se without interference from intracellular reactive species, and has been successfully used to image the H2Se content in lysosomes. Additionally, with the aid of Se-1, we demonstrated that lysosomal H2Se can be generated and can gradually accumulate in HepG2 cells under hypoxic conditions. These applications make Se-1 a potential new candidate for deciphering the biological effects of H2Se on lysosomes in biology and pathology.
Collapse
Affiliation(s)
- Yong Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | | | | | | |
Collapse
|
58
|
Fang Y, Wang J, Liu Y, Yan J. An environmentally benign and efficient synthesis of 4‐Selanylpyrazoles catalyzed by haloid salts in water. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yingguo Fang
- College of Biological and Environmental SciencesZhejiang Shuren University Hangzhou 310015 People's Republic of China
| | - Junxing Wang
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Yuhong Liu
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Jie Yan
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310032 People's Republic of China
| |
Collapse
|
59
|
Soukupová K, Rudolf E. Suppression of proliferation and activation of cell death by sodium selenite involves mitochondria and lysosomes in chemoresistant bladder cancer cells. J Trace Elem Med Biol 2019; 52:58-67. [PMID: 30732900 DOI: 10.1016/j.jtemb.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 11/26/2018] [Indexed: 01/13/2023]
Abstract
The specific effects of sodium selenite (selenite) on a chemoresistant human bladder cancer cell line RT-112/D21 were investigated during 72 h. Selenite at low concentration of 2.5 μmol (otherwise tolerated in normal urothelial cells UROtsa) suppressed growth and proliferation of the tested cancer cells via induced oxidative stress. Selenite further altered mitochondrial functions (i.e. decreased mitochondrial membrane potential, increased production of superoxide and reduced ATP synthesis), disrupted lysosomal membranes and activated autophagy. These changes in selenite-exposed cells ultimately resulted in their demise via necrosis and other cell death modality displaying heterotypic apoptotic and autophagic features.
Collapse
Affiliation(s)
- K Soukupová
- Department of Medical Biology and Genetics Charles University, Faculty of Medicine in Hradec Králové, Zborovská 2089, 500 03 Hradec Králové, Czech Republic
| | - E Rudolf
- Department of Medical Biology and Genetics Charles University, Faculty of Medicine in Hradec Králové, Zborovská 2089, 500 03 Hradec Králové, Czech Republic.
| |
Collapse
|
60
|
Samavarchi Tehrani S, Mahmoodzadeh Hosseini H, Yousefi T, Abolghasemi M, Qujeq D, Maniati M, Amani J. The crosstalk between trace elements with DNA damage response, repair, and oxidative stress in cancer. J Cell Biochem 2019; 120:1080-1105. [PMID: 30378148 DOI: 10.1002/jcb.27617] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/14/2018] [Indexed: 01/24/2023]
Abstract
DNA damage response (DDR) is a regulatory system responsible for maintaining genome integrity and stability, which can sense and transduce DNA damage signals. The severity of damage appears to determine DDRs, which can include damage repair, cell-cycle arrest, and apoptosis. Furthermore, defective components in DNA damage and repair machinery are an underlying cause for the development and progression of various types of cancers. Increasing evidence indicates that there is an association between trace elements and DDR/repair mechanisms. In fact, trace elements seem to affect mediators of DDR. Besides, it has been revealed that oxidative stress (OS) and trace elements are associated with cancer development. In this review, we discuss the role of some critical trace elements in the risk of cancer. In addition, we provide a brief introduction on DDR and OS in cancer. Finally, we will further review the interactions between some important trace elements including selenium, zinc, chromium, cadmium, and arsenic, and DDR, and OS in cancer.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Abolghasemi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
61
|
Gan X, Huang JC, Zhou C, He S, Zhou W. Relationship between selenium removal efficiency and production of lipid and hydrogen by Chlorella vulgaris. CHEMOSPHERE 2019; 217:825-832. [PMID: 30458418 DOI: 10.1016/j.chemosphere.2018.11.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/27/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
In our previous studies, Chlorella vulgaris had proven highly efficient in removing selenium (Se) from water, while the disposal of Se containing in algal biomass was still an issue of concern. Firstly, this research suggests algal Se could be released back to water, posing risks to aquatic wildlife. Thus, we further explored the possibility of using C. vulgaris to remove Se and produce lipid and hydrogen simultaneously. Our results show the higher percentage of saturated fatty acids, especially palmitic acid, was found in the sulfur (S) deprived algae exposed to either selenate or selenite, although the highest lipid content (21.9%) was found in the selenite treated algae in full BG11 medium. In addition, compared with the Se free algae, hydrogen production rate was 2.1- and 4.3-fold higher for the selenate and selenite treated algae, respectively. Se removal efficiency achieved by the selenite treated algae through accumulation and volatilization was 2.3-fold higher than the selenate treatment under hypoxic condition with S deprived, which is in contrast to the results obtained under aerobic conditions.
Collapse
Affiliation(s)
- Xinyu Gan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
62
|
Wojtunik-Kulesza K, Oniszczuk A, Waksmundzka-Hajnos M. An attempt to elucidate the role of iron and zinc ions in development of Alzheimer's and Parkinson's diseases. Biomed Pharmacother 2019; 111:1277-1289. [PMID: 30841441 DOI: 10.1016/j.biopha.2018.12.140] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/20/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative disorders are among the most studied issues both in medicine and pharmacy. Despite long and extensive research, there is no effective treatment prescribed for such diseases, including Alzheimer's or Parkinson's. Available data exposes their multi-faceted character that requires a complex and multidirectional approach to treatment. In this case, the most important challenge is to understand the neurodegenerative mechanisms, which should permit the development of more elaborate and effective therapies. In the submitted review, iron and zinc are discussed as important and perfectly possible neurodegenerative factors behind Alzheimer's and Parkinson's diseases. It is commonly known that these elements are present in living organisms and are essential for the proper operation of the body. Still, their influence is positive only when their proper balance is maintained. Otherwise, when any imbalance occurs, this can eventuate in numerous disturbances, among them oxidative stress, accumulation of amyloid β and the formation of neurofibrillary tangles, let alone the increase in α-synuclein concentration. At the same time, available research data reveals certain discrepancies in approaching metal ions as either impassive, helpful, or negative factors influencing the development of neurodegenerative changes. This review outlines selected neurodegenerative disorders, highlights the role of iron and zinc in the human body and discusses cases of their imbalance leading to neurodegenerative changes as shown in vitro and in vivo studies as well as through relevant mechanisms.
Collapse
Affiliation(s)
- Karolina Wojtunik-Kulesza
- Department of Inorganic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Monika Waksmundzka-Hajnos
- Department of Inorganic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| |
Collapse
|
63
|
Zhao X, Zhao Q, Chen H, Xiong H. Distribution and effects of natural selenium in soybean proteins and its protective role in soybean β-conglycinin (7S globulins) under AAPH-induced oxidative stress. Food Chem 2019; 272:201-209. [DOI: 10.1016/j.foodchem.2018.08.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 11/27/2022]
|
64
|
Ečimović S, Velki M, Vuković R, Štolfa Čamagajevac I, Petek A, Bošnjaković R, Grgić M, Engelmann P, Bodó K, Filipović-Marijić V, Ivanković D, Erk M, Mijošek T, Lončarić Z. Acute toxicity of selenate and selenite and their impacts on oxidative status, efflux pump activity, cellular and genetic parameters in earthworm Eisenia andrei. CHEMOSPHERE 2018; 212:307-318. [PMID: 30145422 DOI: 10.1016/j.chemosphere.2018.08.095] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
Selenium (Se) is an essential element for humans, animals, and certain lower plants, but can be toxic at high concentration. Even though Se is potentially toxic, little information is available about the effects of Se on soil animals. The aim of this study was to assess the impact of different concentrations of two Se forms, selenate and selenite, on earthworm Eisenia andrei. In order to obtain comprehensive overview on the Se effects, different parameters were measured. Namely, acute toxicity, apoptosis, efflux pump activity, different enzymatic and non-enzymatic biomarkers (acetylcholinesterase, carboxylesterase, glutathione S-transferase, catalase, glutathione reductase and superoxide dismutase activities, lipid peroxidation level and GSH/GSSG ratio) and expression of genes involved in oxidative and immune response have been investigated. Additionally, measurement of metallothioneins concentration and concentration of Se in exposed earthworms has been also performed. The assessment of acute toxicity showed a greater sensitivity of E. andrei to selenite exposure, whereas Se concentration measurements in earthworms showed higher accumulation of selenate form. Both Se forms caused inhibition of the efflux pump activity. Decrease in superoxide dismutase activity and increase in lipid peroxidation and glutathione reductase activity indicate that Se has a significant impact on the oxidative status of earthworms. Selenate exposure caused an apoptotic-like cell death in the coelomocytes of exposed earthworms, whereas decreased mRNA levels of stress-related genes and antimicrobial factors were observed upon the exposure to selenite. The obtained data give insight into the effects of two most common forms of Se in soil on the earthworm E. andrei.
Collapse
Affiliation(s)
- Sandra Ečimović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
| | - Rosemary Vuković
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
| | - Ivna Štolfa Čamagajevac
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
| | - Anja Petek
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
| | - Rebeka Bošnjaković
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
| | - Magdalena Grgić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
| | - Péter Engelmann
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u. 12, Pécs H-7643, Hungary.
| | - Kornélia Bodó
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti u. 12, Pécs H-7643, Hungary.
| | - Vlatka Filipović-Marijić
- Laboratory for Biological Effects of Metals, Division for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia.
| | - Dušica Ivanković
- Laboratory for Biological Effects of Metals, Division for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia.
| | - Marijana Erk
- Laboratory for Biological Effects of Metals, Division for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia.
| | - Tatjana Mijošek
- Laboratory for Biological Effects of Metals, Division for Marine and Environmental Research, Ruđer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia.
| | - Zdenko Lončarić
- Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Kralja Petra Svačića 1d, 31000 Osijek, Croatia.
| |
Collapse
|
65
|
Selenium, Selenoproteins, and Female Reproduction: A Review. Molecules 2018; 23:molecules23123053. [PMID: 30469536 PMCID: PMC6321086 DOI: 10.3390/molecules23123053] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 01/31/2023] Open
Abstract
Selenium (Se) is an essential micronutrient that has several important functions in animal and human health. The biological functions of Se are carried out by selenoproteins (encoded by twenty-five genes in human and twenty-four in mice), which are reportedly present in all three domains of life. As a component of selenoproteins, Se has structural and enzymatic functions; in the latter context it is best recognized for its catalytic and antioxidant activities. In this review, we highlight the biological functions of Se and selenoproteins followed by an elaborated review of the relationship between Se and female reproductive function. Data pertaining to Se status and female fertility and reproduction are sparse, with most such studies focusing on the role of Se in pregnancy. Only recently has some light been shed on its potential role in ovarian physiology. The exact underlying molecular and biochemical mechanisms through which Se or selenoproteins modulate female reproduction are largely unknown; their role in human pregnancy and related complications is not yet sufficiently understood. Properly powered, randomized, controlled trials (intervention vs. control) in populations of relatively low Se status will be essential to clarify their role. In the meantime, studies elucidating the potential effect of Se supplementation and selenoproteins (i.e., GPX1, SELENOP, and SELENOS) in ovarian function and overall female reproductive efficiency would be of great value.
Collapse
|
66
|
Rayman MP, Winther KH, Pastor-Barriuso R, Cold F, Thvilum M, Stranges S, Guallar E, Cold S. Effect of long-term selenium supplementation on mortality: Results from a multiple-dose, randomised controlled trial. Free Radic Biol Med 2018; 127:46-54. [PMID: 29454039 DOI: 10.1016/j.freeradbiomed.2018.02.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Selenium, an essential trace element, is incorporated into selenoproteins with a wide range of health effects. Selenoproteins may reach repletion at a plasma selenium concentration of ~ 125 µg/L, at which point the concentration of selenoprotein P reaches a plateau; whether sustained concentrations higher than this are beneficial, or indeed detrimental, is unknown. OBJECTIVE In a population of relatively low selenium status, we aimed to determine the effect on mortality of long-term selenium supplementation at different dose levels. DESIGN The Denmark PRECISE study was a single-centre, randomised, double-blinded, placebo-controlled, multi-arm, parallel clinical trial with four groups. Participants were 491 male and female volunteers aged 60-74 years, recruited at Odense University Hospital, Denmark. The trial was initially designed as a 6-month pilot study, but supplemental funding allowed for extension of the study and mortality assessment. Participants were randomly assigned to treatment with 100, 200, or 300 µg selenium/d as selenium-enriched-yeast or placebo-yeast for 5 years from randomization in 1998-1999 and were followed up for mortality for a further 10 years (through March 31, 2015). RESULTS During 6871 person-years of follow-up, 158 deaths occurred. In an intention-to-treat analysis, the hazard ratio (95% confidence interval) for all-cause mortality comparing 300 µg selenium/d to placebo was 1.62 (0.66, 3.96) after 5 years of treatment and 1.59 (1.02, 2.46) over the entire follow-up period. The 100 and 200 µg/d doses showed non-significant decreases in mortality during the intervention period that disappeared after treatment cessation. Although we lacked power for endpoints other than all-cause mortality, the effects on cancer and cardiovascular mortality appeared similar. CONCLUSIONS A 300 µg/d dose of selenium taken for 5 years in a country with moderately-low selenium status increased all-cause mortality 10 years later. While our study was not initially designed to evaluate mortality and the sample size was limited, our findings indicate that total selenium intake over 300 µg/d and high-dose selenium supplements should be avoided.
Collapse
Affiliation(s)
- Margaret P Rayman
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | | | - Roberto Pastor-Barriuso
- National Center for Epidemiology, Carlos III Institute of Health and Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Frederick Cold
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Marianne Thvilum
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark
| | - Saverio Stranges
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada; Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Eliseo Guallar
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Søren Cold
- Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
67
|
Vinceti M, Vicentini M, Wise LA, Sacchettini C, Malagoli C, Ballotari P, Filippini T, Malavolti M, Rossi PG. Cancer incidence following long-term consumption of drinking water with high inorganic selenium content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:390-396. [PMID: 29674262 DOI: 10.1016/j.scitotenv.2018.04.097] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Selenium, a trace element to which humans are exposed mainly through diet, has been involved in the etiology of human cancer. We investigated the long-term effects of selenium exposure on cancer incidence using data from a natural experiment in Northern Italy. During the 1970s-1980s, in a part of the Italian municipality of Reggio Emilia, residents were inadvertently exposed to unusually high levels of inorganic hexavalent selenium (selenate) through drinking water. We followed the exposed residents for 28years, generating data on incidence (when available) and mortality rates for selected cancer sites; the remaining municipal residents comprised the unexposed (reference) group. We observed no substantial difference in overall cancer incidence comparing exposed and unexposed cohorts. We detected, however, a higher incidence of cancer at some sites, and for a few of them, namely cancers of the buccal cavity and pharynx, melanoma, urinary tract and lymphoid tissue, the excess incidence was particularly evident in the first period of follow-up but decreased over time. Overall, these results suggest that consumption of water with levels of selenium in its inorganic hexavalent form close to the European standard, 10μg/L, may have unfavourable effects on cancer incidence.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN, Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy; Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, United States.
| | - Massimo Vicentini
- Epidemiology Unit, Local Health Authority, IRCCS, Viale Giovanni Amendola, 2, 42122 Reggio Emilia, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, United States
| | - Claudio Sacchettini
- Epidemiology Unit, Local Health Authority, IRCCS, Viale Giovanni Amendola, 2, 42122 Reggio Emilia, Italy
| | - Carlotta Malagoli
- CREAGEN, Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Paola Ballotari
- Epidemiology Unit, Local Health Authority, IRCCS, Viale Giovanni Amendola, 2, 42122 Reggio Emilia, Italy
| | - Tommaso Filippini
- CREAGEN, Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Marcella Malavolti
- CREAGEN, Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Paolo Giorgi Rossi
- Epidemiology Unit, Local Health Authority, IRCCS, Viale Giovanni Amendola, 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
68
|
Selenised yeast sources differ in their capacity to protect porcine jejunal epithelial cells from cadmium-induced toxicity and oxidised DNA damage. Biometals 2018; 31:845-858. [PMID: 30008026 DOI: 10.1007/s10534-018-0129-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022]
Abstract
In recent years there has been increasing interest in the use of selenised yeast (Se-Y) as an antioxidant feed supplement. Here, three selenised yeast products are differentiated in terms of bioefficiency and the ameliorative effect on Cadmium (Cd) toxicity in porcine epithelial cells. A porcine digestion in vitro model was chosen to more accurately simulate the bioavailability of different Se-Y preparations, allowing a comprehensive understanding of the bio efficiency of each Se-Y compound in the porcine model. To elucidate a possible mechanism of action of selenium a number of bioassays were applied. Levels of Se dependent antioxidant enzymes (glutathione peroxidase and thioredoxin reductase) were evaluated to analyze the ROS neutralizing capacity of each Se-Y compound. The effects of Se-Y sources on Cd-induced DNA damage and apoptosis-associated DNA fragmentation was assessed using comet and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, respectively. Lesion-specific DNA damage analysis and in vitro DNA repair assay determined the DNA repair capacity of each Se-Y source. The results presented in this study confirm that the ability of different commercially available Se-Y preparations to enhance a range of cellular mechanisms that protect porcine gut epithelial cells from Cd-induced damage is concentration-dependent and illustrates the difference in bioefficiency of different Se-Y compounds.
Collapse
|
69
|
The Relationship between Selenium and Lung Cancer: An Updated Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.8370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
70
|
Bettazzi F, Voccia D, Bencini A, Giorgi C, Palchetti I, Valtancoli B, Conti L. Optical and Electrochemical Study of Acridine-Based Polyaza Ligands for Anion Sensing. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Francesca Bettazzi
- Department of Chemistry Ugo Schiff; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Diego Voccia
- Department of Chemistry Ugo Schiff; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Andrea Bencini
- Department of Chemistry Ugo Schiff; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Claudia Giorgi
- Department of Chemistry Ugo Schiff; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Ilaria Palchetti
- Department of Chemistry Ugo Schiff; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Barbara Valtancoli
- Department of Chemistry Ugo Schiff; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| | - Luca Conti
- Department of Chemistry Ugo Schiff; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
71
|
Naderi M, Salahinejad A, Ferrari MCO, Niyogi S, Chivers DP. Dopaminergic dysregulation and impaired associative learning behavior in zebrafish during chronic dietary exposure to selenium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:174-185. [PMID: 29482023 DOI: 10.1016/j.envpol.2018.02.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
A growing body of evidence indicates that exposure to selenium (Se) can cause neurotoxicity, and this can occur because of its interference with several neurotransmitter systems in humans and animals. Dopamine is a critical modulator of a variety of brain functions and a prime target for environmental neurotoxicants. However, effects of environmentally relevant concentrations of Se on dopaminergic system and its neurobehavioral effects are still largely unknown. For this purpose, we exposed zebrafish, a model organism, to different concentrations of dietary l-selenomethionine (control, 3.5, 11.1, 27.4, and 63.4 μg Se/g dry weight) for a period of 60 days. Cognitive performance of fish was evaluated using a plus maze associative learning paradigm. Oxidative stress, as the main driver of Se neurotoxicity, was assessed by measuring the ratio of reduced to oxidized glutathione (GSH:GSSG), lipid peroxidation (LPO) levels, and mRNA expression of several antioxidant enzymes in the zebrafish brain. Dopamine levels in the brain and the expression of genes involved in dopamine synthesis, storage, reuptake, metabolism, and receptor activation were examined. Moreover, transcription of several synaptic plasticity-related immediate-early and late response genes was determined. Overall, fish fed with the two highest concentrations of dietary Se displayed impaired associative learning. Se exposure also induced oxidative stress in the zebrafish brain, as indicated by a reduction in GSH:GSSG ratio, increased LPO levels, and up-regulation of antioxidant genes in fish treated with the two highest concentrations of Se. An increase in brain dopamine levels associated with altered expression of dopaminergic cell markers was evident in different treatment groups. Moreover, Se exposure led to the down-regulation of immediate-early and late response genes in fish that exhibiting learning impairment. Taken together, the results of this study imply that the induction of oxidative stress and dysregulation of dopaminergic neurotransmission may underlie Se-induced impairment of associative learning in zebrafish.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
72
|
Hu B, Cheng R, Gao X, Pan X, Kong F, Liu X, Xu K, Tang B. Targetable Mesoporous Silica Nanoprobes for Mapping the Subcellular Distribution of H 2Se in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17345-17351. [PMID: 29708719 DOI: 10.1021/acsami.8b02206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogen selenide, a highly active reductant, is believed as a key molecule in the cytotoxicity of inorganic selenium compounds. However, the detail mechanism has hardly been studied because the distribution of H2Se in the subcellular organelles remains unclear. Herein, we exploited a series of novel targetable mesoporous silica nanoplatforms to map the distribution of H2Se in cytoplasm, lysosome, and mitochondria of cancer cells. The subcellular targeting moiety-conjugated mesoporous silica nanoparticles were assembled with a near-infrared fluorescent probe (NIR-H2Se) for detecting endogenous H2Se in the corresponding organelles. The confocal fluorescence imaging of cancer cells induced by Na2SeO3 found out a higher concentration of H2Se accumulated only in mitochondria. Consequently, the H2Se burst in mitochondria-triggered mitochondrial collapse that led to cell apoptosis. Hence, the selenite-induced cytotoxicity in cancer cells associates with the alteration in mitochondrial function caused by high level of H2Se. These findings provide a new way to explore the tumor cell apoptosis signaling pathways induced by Na2SeO3, meanwhile, we propose a research strategy for tracking the biomolecules in the subcellular organelles and the correlative cellular function and related disease diagnosis.
Collapse
Affiliation(s)
- Bo Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Ranran Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Xiaohong Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Xiaojun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , P. R. China
| |
Collapse
|
73
|
Lazard M, Dauplais M, Blanquet S, Plateau P. Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts 2018; 8:93-104. [PMID: 28574376 DOI: 10.1515/bmc-2017-0007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022] Open
Abstract
Selenium is an essential trace element due to its incorporation into selenoproteins with important biological functions. However, at high doses it is toxic. Selenium toxicity is generally attributed to the induction of oxidative stress. However, it has become apparent that the mode of action of seleno-compounds varies, depending on its chemical form and speciation. Recent studies in various eukaryotic systems, in particular the model organism Saccharomyces cerevisiae, provide new insights on the cytotoxic mechanisms of selenomethionine and selenocysteine. This review first summarizes current knowledge on reactive oxygen species (ROS)-induced genotoxicity of inorganic selenium species. Then, we discuss recent advances on our understanding of the molecular mechanisms of selenocysteine and selenomethionine cytotoxicity. We present evidences indicating that both oxidative stress and ROS-independent mechanisms contribute to selenoamino acids cytotoxicity. These latter mechanisms include disruption of protein homeostasis by selenocysteine misincorporation in proteins and/or reaction of selenols with protein thiols.
Collapse
|
74
|
Contribution of the Yeast Saccharomyces cerevisiae Model to Understand the Mechanisms of Selenium Toxicity. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2018. [DOI: 10.1007/978-3-319-95390-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
75
|
Abstract
A new and simple procedure mediated by I2 is developed for the preparation of 4-selanylpyrazoles from pyrazoles and diselenides.
Collapse
Affiliation(s)
- Junxing Wang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Yuhong Liu
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Jie Yan
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| |
Collapse
|
76
|
Zhong Y, Cheng JJ. Effects of Selenite on Unicellular Green Microalga Chlorella pyrenoidosa: Bioaccumulation of Selenium, Enhancement of Photosynthetic Pigments, and Amino Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10875-10883. [PMID: 29179543 DOI: 10.1021/acs.jafc.7b04246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microalgae were studied as function bioaccumulators of selenium (Se) for food and feed supplement. To investigate the bioaccumulation of Se and its effects on the unicellular green alga Chlorella pyrenoidosa, the algal growth curve, fluorescence parameters, antioxidant enzyme activity, and fatty acid and amino acid profiles were examined. We found that Se at low concentrations (≤40 mg L-1) positively promoted algal growth and inhibited lipid peroxidation and intracellular reactive oxygen species. The antioxidative effect was associated with an increase in the levels of glutathione peroxidase, catalase, linolenic acid, and photosynthetic pigments. Meanwhile, a significant increase in amino acid and organic Se content was also detected in the microalgae. In contrast, we found opposite effects in C. pyrenoidosa exposed to >60 mg L-1 Se. The antioxidation and toxicity appeared to be correlated with the bioaccumulation of excess Se. These results provide a better understanding of the effect of Se on green microalgae, which may help in the development of new technological applications for the production of Se-enriched biomass from microalgae.
Collapse
Affiliation(s)
- Yu Zhong
- School of Environment and Energy, Peking University-Shenzhen Graduate School , Shenzhen 518055, China
| | - Jay J Cheng
- School of Environment and Energy, Peking University-Shenzhen Graduate School , Shenzhen 518055, China
- Department of Biological and Agricultural Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
77
|
Sun X, Zhong Y, Luo H, Yang Y. Selenium-Containing Polysaccharide-Protein Complex in Se-Enriched Ulva fasciata Induces Mitochondria-Mediated Apoptosis in A549 Human Lung Cancer Cells. Mar Drugs 2017; 15:md15070215. [PMID: 28714901 PMCID: PMC5532657 DOI: 10.3390/md15070215] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/18/2017] [Accepted: 07/01/2017] [Indexed: 12/17/2022] Open
Abstract
The role of selenium (Se) and Ulva fasciata as potent cancer chemopreventive and chemotherapeutic agents has been supported by epidemiological, preclinical, and clinical studies. In this study, Se-containing polysaccharide-protein complex (Se-PPC), a novel organoselenium compound, a Se-containing polysaccharide-protein complex in Se-enriched Ulva fasciata, is a potent anti-proliferative agent against human lung cancer A549 cells. Se-PPC markedly inhibited the growth of cancer cells via induction of apoptosis which was accompanied by the formation of apoptotic bodies, an increase in the population of apoptotic sub-G1 phase cells, upregulation of p53, and activation of caspase-3 in A549 cells. Further investigation on intracellular mechanisms indicated that cytochrome C was released from mitochondria into cytosol in A549 cells after Se-PPC treatment. Se-PPC induced depletion of mitochondrial membrane potential (ΔΨm) in A549 cells through regulating the expression of anti-apoptotic (Bcl-2, Bcl-XL) and pro-apoptotic (Bax, Bid) proteins, resulting in disruption of the activation of caspase-9. This is the first report to demonstrate the cytotoxic effect of Se-PPC on human cancer cells and to provide a possible mechanism for this activity. Thus, Se-PPC is a promising novel organoselenium compound with potential to treat human cancers.
Collapse
Affiliation(s)
- Xian Sun
- Institute of Hydrobiology, Jinan University, Jinan 510632, China.
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms, Guangdong Higher Education Institutes, Guangzhou 510632, China.
| | - Yu Zhong
- Institute of Hydrobiology, Jinan University, Jinan 510632, China.
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms, Guangdong Higher Education Institutes, Guangzhou 510632, China.
| | - Hongtian Luo
- Institute of Hydrobiology, Jinan University, Jinan 510632, China.
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms, Guangdong Higher Education Institutes, Guangzhou 510632, China.
| | - Yufeng Yang
- Institute of Hydrobiology, Jinan University, Jinan 510632, China.
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms, Guangdong Higher Education Institutes, Guangzhou 510632, China.
| |
Collapse
|
78
|
Lynch SJ, Horgan KA, White B, Walls D. Selenium Source Impacts Protection of Porcine Jejunal Epithelial Cells from Cadmium-Induced DNA Damage, with Maximum Protection Exhibited with Yeast-Derived Selenium Compounds. Biol Trace Elem Res 2017; 176:311-320. [PMID: 27561293 DOI: 10.1007/s12011-016-0828-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022]
Abstract
Selenium (Se) is found in inorganic and organic forms, both of which are commonly used in animal feed supplements. The aim of this study was to determine the impact of the chemical form of Se on its associated ameliorative effects on cadmium (Cd)-induced DNA damage in a porcine model. At a cellular level, Cd mediates free oxygen radical production leading in particular to DNA damage, with consequential mutagenesis and inhibition of DNA replication. In this study, porcine jejunal epithelial cells (IPEC-J2) were pre-incubated for 48 h with one of Se-yeast (Sel-Plex), selenomethionine (Se-M), sodium selenite (Se-Ni) or sodium selenate (Se-Na). The effects of this supplementation on cell viability and DNA damage following cadmium chloride (CdCl2) exposure were subsequently evaluated. IPEC-J2 cells were cultivated throughout in medium supplemented with porcine serum to generate a superior model that recapitulated the porcine gut epithelium. The results illustrated that Se antioxidant effects were both composition- and dose-dependent as evident from cell viability (Alamar Blue and 5-carboxyfluorescein diacetate acetoxymethyl ester) and DNA damage assays (Comet and TUNEL). Both the Se-yeast and Se-M organic species, when used at the European Food Safety Authority guideline levels, had a protective effect against Cd-induced DNA damage in the IPEC-J2 model system whereas for inorganic Se-Ni and Se-Na sources no protective effects were observed and in fact these were shown to enhance the negative effects of Cd-induced DNA damage. It can be concluded that nutritional supplementation with organoselenium may protect porcine gut integrity from damage induced by Cd.
Collapse
Affiliation(s)
- Sarah J Lynch
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | | | - Blanaid White
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Dublin 9, Ireland.
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
79
|
Exposure to selenomethionine causes selenocysteine misincorporation and protein aggregation in Saccharomyces cerevisiae. Sci Rep 2017; 7:44761. [PMID: 28303947 PMCID: PMC5355996 DOI: 10.1038/srep44761] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/13/2017] [Indexed: 12/23/2022] Open
Abstract
Selenomethionine, a dietary supplement with beneficial health effects, becomes toxic if taken in excess. To gain insight into the mechanisms of action of selenomethionine, we screened a collection of ≈5900 Saccharomyces cerevisiae mutants for sensitivity or resistance to growth-limiting amounts of the compound. Genes involved in protein degradation and synthesis were enriched in the obtained datasets, suggesting that selenomethionine causes a proteotoxic stress. We demonstrate that selenomethionine induces an accumulation of protein aggregates by a mechanism that requires de novo protein synthesis. Reduction of translation rates was accompanied by a decrease of protein aggregation and of selenomethionine toxicity. Protein aggregation was supressed in a ∆cys3 mutant unable to synthetize selenocysteine, suggesting that aggregation results from the metabolization of selenomethionine to selenocysteine followed by translational incorporation in the place of cysteine. In support of this mechanism, we were able to detect random substitutions of cysteinyl residues by selenocysteine in a reporter protein. Our results reveal a novel mechanism of toxicity that may have implications in higher eukaryotes.
Collapse
|
80
|
Zhang Y, Wu S, Yan J. PhI Catalyzed Acetoxyselenylation and Formyloxyselenylation of Alkenes. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201600306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yikun Zhang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310032 P. R. China
| | - Sixue Wu
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310032 P. R. China
| | - Jie Yan
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310032 P. R. China
| |
Collapse
|
81
|
Zheng Y, Li Z, Tao M, Li J, Hu Z. Effects of selenite on green microalga Haematococcus pluvialis: Bioaccumulation of selenium and enhancement of astaxanthin production. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:21-27. [PMID: 27987436 DOI: 10.1016/j.aquatox.2016.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Algae are at a low trophic level and play a crucial role in aquatic food webs. They can uptake and accumulate the trace element selenium (Se), which can be either essential or toxic to algal growth depending on the dosage and species. Se toxicity and algae resistance varied across different organisms. In order to investigate the effects of Se on the unicellular green alga Haematococcus pluvialis, an important industrial resource for natural astaxanthin, the algal growth rate, chlorophyll content, and fluorescence parameters were derived from experimental treatment with different concentrations of selenite. The results showed that the EC50 for the algal growth rate was 24mg/L, and that a low dosage of selenite (3mg/L) may not hinder H. pluvialis cell growth, but selenite at levels higher than 13mg/L do restrain cell growth. Bioaccumulation experiments showed that H. pluvialis accumulated up to 646μg/g total Se and 380μg/g organic Se, dry weight. However, treatment with high concentrations of selenite significantly increased intracellular hydrogen peroxide levels, antioxidant enzyme activity, and the production of astaxanthin, suggesting that Se bioaccumulation might be toxic to H. pluvialis.
Collapse
Affiliation(s)
- Yihong Zheng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Ze Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, PR China
| | - Ming Tao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Jiancheng Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
82
|
Amin KA, Hashem KS, Alshehri FS, Awad ST, Hassan MS. Antioxidant and Hepatoprotective Efficiency of Selenium Nanoparticles Against Acetaminophen-Induced Hepatic Damage. Biol Trace Elem Res 2017; 175:136-145. [PMID: 27220627 DOI: 10.1007/s12011-016-0748-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/16/2016] [Indexed: 12/27/2022]
Abstract
Overdoses of acetaminophen (APAP), a famous and widely used drug, may have hepatotoxic effects. Nanoscience is a novel scientific discipline that provides specific tools for medical science problems including using nano trace elements in hepatic diseases. Our study aimed to assess the hepatoprotective role of selenium nanoparticles (Nano-Se) against APAP-induced hepatic injury. Twenty-four male rats were classified into three equal groups: a control group that received 0.9 % NaCl, an APAP-treated group (oral administration), and a group treated with Nano-Se (10-20 nm, intraperitoneal (i.p.) injection) and APAP (oral administration). APAP overdose induced significant elevations in liver function biomarkers, hepatic lipid peroxidation, hepatic catalase, and superoxide dismutase (SOD), decreased the reduced glutathione (GSH) content and glutathione reductase (GR) activity, and stimulated significant DNA damage in hepatocytes, compared to control rats. Nano-Se administration improved the hepatic antioxidant protection mechanism and decreased cellular sensitivity to DNA fragmentation. Nano-Se exhibits a protective effect against APAP-induced hepatotoxicity through improved liver function and oxidative stress mediated by catalase, SOD, and GSH and decreases hepatic DNA fragmentation, a hepatic biomarker of cell death. Nano-Se could be a novel hepatoprotective strategy to inhibit oxidative stress.
Collapse
Affiliation(s)
- Kamal Adel Amin
- Department of Chemistry, College of Science, University of Dammam, PO Box 383, Dammam, 31113, Dammam, Saudi Arabia.
- Biochemistry Department, Faculty of Veterinary Medicine, Beni Suef University, Beni-Suef City, Egypt.
| | - Khalid Shaban Hashem
- Biochemistry Department, Faculty of Veterinary Medicine, Beni Suef University, Beni-Suef City, Egypt
| | - Fawziah Saleh Alshehri
- Department of Chemistry, College of Science, University of Dammam, PO Box 383, Dammam, 31113, Dammam, Saudi Arabia
| | - Said T Awad
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mohammed S Hassan
- Internal Medicine Department, Faculty of Veterinary Medicine, Beni Suef University, Beni-Suef City, Egypt
| |
Collapse
|
83
|
Wang X, Li H, Zhu M, Yan J. Convenient iodine-mediated aminoselenation of alkenes using benzotriazoles as nitrogen sources. RSC Adv 2017. [DOI: 10.1039/c6ra27202a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Convenient iodine-mediated alkene aminoselenation using benzotriazoles as nitrogen sources.
Collapse
Affiliation(s)
- Xiaolong Wang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Hongjie Li
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| | - Min Zhu
- College of Biological and Environmental Sciences
- Zhejiang Shuren University
- Hangzhou 310015
- P. R. China
| | - Jie Yan
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310032
- P. R. China
| |
Collapse
|
84
|
Fontelles CC, Ong TP. Selenium and Breast Cancer Risk: Focus on Cellular and Molecular Mechanisms. Adv Cancer Res 2017; 136:173-192. [PMID: 29054418 DOI: 10.1016/bs.acr.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selenium (Se) is a micronutrient with promising breast cancer prevention and treatment potential. There is extensive preclinical evidence of Se mammary carcinogenesis inhibition. Evidence from epidemiological studies is, however, unclear and intervention studies are rare. Here, we examine Se chemoprotection, chemoprevention, and chemotherapy effects in breast cancer, focusing on associated cellular and molecular mechanisms. Se exerts its protective actions through multiple mechanisms that involve antioxidant activities, induction of apoptosis, and inhibition of DNA damage, cell proliferation, angiogenesis, and invasion. New aspects of Se actions in breast cancer have emerged such as the impact of genetic polymorphisms on Se metabolism and response, new functions of selenoproteins, epigenetic modulation of gene expression, and long-term influence of early-life exposure on disease risk. Opportunity exists to design interventional studies with Se for breast cancer prevention and treatment taking into consideration these key aspects.
Collapse
|
85
|
Kong F, Zhao Y, Liang Z, Liu X, Pan X, Luan D, Xu K, Tang B. Highly Selective Fluorescent Probe for Imaging H2Se in Living Cells and in Vivo Based on the Disulfide Bond. Anal Chem 2016; 89:688-693. [DOI: 10.1021/acs.analchem.6b03136] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fanpeng Kong
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Yuehui Zhao
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Ziye Liang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Xiaojun Liu
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Xiaohong Pan
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Dongrui Luan
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Kehua Xu
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Institute of Molecular and Nano Science, Shandong Normal University, Jinan, Shandong 250014, P. R. China
| |
Collapse
|
86
|
Reyes ES, Aristizabal Henao JJ, Kornobis KM, Hanning RM, Majowicz SE, Liber K, Stark KD, Low G, Swanson HK, Laird BD. Associations between omega-3 fatty acids, selenium content, and mercury levels in wild-harvested fish from the Dehcho Region, Northwest Territories, Canada. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 80:18-31. [PMID: 27905863 DOI: 10.1080/15287394.2016.1230916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
To better understand the risks and benefits of eating wild-harvested fish from the Northwest Territories, Canada, levels of total mercury (HgT) and selenium (Se) and composition of omega-3 fatty acid (n-3 FA) were measured in muscle tissue of fish harvested from lakes in the Dehcho Region, Northwest Territories, Canada. Average HgT levels ranged from 0.057 mg/kg (cisco) to 0.551 mg/kg (northern pike), while average n-3 FA concentrations ranged from 101 mg/100 g (burbot) to 1,689 mg/100 g (lake trout). In contrast to HgT and n-3 FA, mean Se concentrations were relatively similar among species. Consequently, species such as lake whitefish, cisco, and longnose sucker displayed the highest nutrient levels relative to HgT content. Levels of HgT tended to increase with fish size, while Se and n-3 FA levels were typically not associated with fork length or fish weight. Interestingly, HgT concentration was occasionally inversely related to tissue nutrient content. Significant negative correlations were observed between Hg and n-3 FA for lake trout, northern pike, and walleye. There were also significant negative correlations between Hg and Se noted for lake whitefish, cisco, and northern pike. Samples with the highest nutritional content displayed, on occasion, lower levels of HgT. This study provides valuable information for the design of probabilistic models capable of refining public health messaging related to minimizing Hg risks and maximizing nutrient levels in wild-harvested fish in the Canadian subarctic.
Collapse
Affiliation(s)
- Ellen S Reyes
- a School of Public Health and Health Systems, University of Waterloo , Waterloo , Canada
| | | | | | - Rhona M Hanning
- a School of Public Health and Health Systems, University of Waterloo , Waterloo , Canada
| | - Shannon E Majowicz
- a School of Public Health and Health Systems, University of Waterloo , Waterloo , Canada
| | - Karsten Liber
- d Toxicology Centre, University of Saskatchewan , Saskatoon , Saskatchewan , Canada
| | - Ken D Stark
- b Department of Kinesiology , University of Waterloo , Waterloo , Canada
| | - George Low
- e Dehcho Aboriginal Aquatic Resources and Ocean Management , Hay River, Northwest Territories , Canada
| | - Heidi K Swanson
- c Department of Biology , University of Waterloo , Waterloo , Canada
| | - Brian D Laird
- a School of Public Health and Health Systems, University of Waterloo , Waterloo , Canada
| |
Collapse
|
87
|
Neto JSS, Iglesias BA, Back DF, Zeni G. Iron-Promoted Tandem Cyclization of 1,3-Diynyl Chalcogen Derivatives with Diorganyl Dichalcogenides for the Synthesis of Benzo[b]furan-Fused Selenophenes. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600759] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- José S. S. Neto
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE; UFSM; Santa Maria Rio Grande do Sul Brazil 97105-900
| | - Bernardo A. Iglesias
- Laboratório de Materiais Inorgânicos, Departamento de Química; UFSM; Santa Maria Rio Grande do Sul Brazil 97105-900
| | - Davi F. Back
- Laboratório de Materiais Inorgânicos, Departamento de Química; UFSM; Santa Maria Rio Grande do Sul Brazil 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE; UFSM; Santa Maria Rio Grande do Sul Brazil 97105-900
| |
Collapse
|
88
|
Bhattacharjee A, Basu A, Sen T, Biswas J, Bhattacharya S. Nano-Se as a novel candidate in the management of oxidative stress related disorders and cancer. THE NUCLEUS 2016. [DOI: 10.1007/s13237-016-0183-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
89
|
Dominiak A, Wilkaniec A, Wroczyński P, Jęśko H, Adamczyk A. Protective Effects of Selol Against Sodium Nitroprusside-Induced Cell Death and Oxidative Stress in PC12 Cells. Neurochem Res 2016; 41:3215-3226. [PMID: 27590497 PMCID: PMC5116319 DOI: 10.1007/s11064-016-2046-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/11/2016] [Accepted: 08/24/2016] [Indexed: 01/20/2023]
Abstract
Selol is an organic selenitetriglyceride formulation containing selenium at +4 oxidation level that can be effectively incorporated into catalytic sites of of Se-dependent antioxidants. In the present study, the potential antioxidative and cytoprotective effects of Selol against sodium nitroprusside (SNP)-evoked oxidative/nitrosative stress were investigated in PC12 cells and the underlying mechanisms analyzed. Spectrophoto- and spectrofluorimetic methods as well as fluorescence microscopy were used in this study; mRNA expression was quantified by real-time PCR. Selol dose-dependently improved the survival and decreased the percentage of apoptosis in PC12 cells exposed to SNP. To determine the mechanism of this protective action, the effect of Selol on free radical generation and on antioxidative potential was evaluated. Selol offered significant protection against the elevation of reactive oxidative species (ROS) evoked by SNP. Moreover, this compound restored glutathione homeostasis by ameliorating the SNP-evoked disturbance of GSH/GSSG ratio. The protective effect exerted by Selol was associated with the prevention of SNP-mediated down-regulation of antioxidative enzymes: glutathione peroxidase (Se-GPx), glutathione reductase (GR), and thioredoxin reductase (TrxR). Finally, GPx inhibition significantly abolished the cytoprotective effect of Selol. In conclusion, these results suggest that Selol effectively protected PC12 cells against SNP-induced oxidative damage and death by adjusting free radical levels and antioxidant system, and suppressing apoptosis. Selol could be successfully used in the treatments of diseases that involve oxidative stress and resulting apoptosis.
Collapse
Affiliation(s)
- Agnieszka Dominiak
- Department of Bioanalysis and Drug Analysis, Medical University of Warsaw, 1 Banacha St., 02-097, Warsaw, Poland
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego St., 02-106, Warsaw, Poland
| | - Piotr Wroczyński
- Department of Bioanalysis and Drug Analysis, Medical University of Warsaw, 1 Banacha St., 02-097, Warsaw, Poland
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego St., 02-106, Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego St., 02-106, Warsaw, Poland.
| |
Collapse
|
90
|
Zhong Y, Cheng JJ. Effects of selenium on biological and physiological properties of the duckweed Landoltia punctata. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:797-804. [PMID: 27284791 DOI: 10.1111/plb.12479] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Duckweed can be used for bioremediation of selenium (Se) polluted water because of its capability of absorbing minerals from growing media. However, the presence of Se in the media may affect the growth of the duckweed. Landoltia punctata 7449 has been studied for its changes in chemical and biological properties with the presence of Se in the media. The duckweed was cultivated over a 12-day period at different initial concentrations of selenite (Na2 SeO3 ) from 0 to 80 μmol·l(-1) . The growth rate, the organic and total Se contents, the activity of antioxidant enzymes, the photosynthetic pigment contents, the chlorophyll a fluorescence OJIP transient, and the ultrastructure of the duckweed were monitored during the experiment. The results have shown that Se at low concentrations of ≤20 μmol·l(-1) promoted the growth of the L. punctata and inhibited lipid peroxidation. Substantial increases in duckweed growth rate and organic Se content in the duckweed were observed at low Se concentrations. The anti-oxidative effect occurred likely with the increases in guaiacol peroxidase, catalase and superoxide dismutase activities as well as the amount of photosynthetic pigments. However, negative impact to the duckweed was observed when the L. punctata was exposed to high Se concentrations (≥40 μmol·l(-1) ), in which the duckweed growth was inhibited by the selenium. The results indicate that L. punctata 7449 can be used for bioremediation of selenium (Se) polluted water when the Se concentration is ≤20 μmol·l(-1) .
Collapse
Affiliation(s)
- Y Zhong
- School of Environment and Energy, Peking University-Shenzhen Graduate School, Shenzhen, China
| | - J J Cheng
- School of Environment and Energy, Peking University-Shenzhen Graduate School, Shenzhen, China
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
91
|
Ellwanger JH, Franke SIR, Bordin DL, Prá D, Henriques JAP. Biological functions of selenium and its potential influence on Parkinson's disease. AN ACAD BRAS CIENC 2016; 88:1655-1674. [PMID: 27556332 DOI: 10.1590/0001-3765201620150595] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/28/2015] [Indexed: 03/01/2023] Open
Abstract
Parkinson's disease is characterized by the death of dopaminergic neurons, mainly in the substantia nigra, and causes serious locomotor dysfunctions. It is likely that the oxidative damage to cellular biomolecules is among the leading causes of neurodegeneration that occurs in the disease. Selenium is an essential mineral for proper functioning of the brain, and mainly due to its antioxidant activity, it is possible to exert a special role in the prevention and in the nutritional management of Parkinson's disease. Currently, few researchers have investigated the effects of selenium on Parkinson´s disease. However, it is known that very high or very low body levels of selenium can (possibly) contribute to the pathogenesis of Parkinson's disease, because this imbalance results in increased levels of oxidative stress. Therefore, the aim of this work is to review and discuss studies that have addressed these topics and to finally associate the information obtained from them so that these data and associations serve as input to new research.
Collapse
Affiliation(s)
- Joel H Ellwanger
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil
| | - Silvia I R Franke
- Programa de Pós-Graduação em Promoção da Saúde, Universidade de Santa Cruz do Sul/UNISC, Bloco 42, sala 4206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil
| | - Diana L Bordin
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil
| | - Daniel Prá
- Programa de Pós-Graduação em Promoção da Saúde, Universidade de Santa Cruz do Sul/UNISC, Bloco 42, sala 4206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil.,Departamento de Biologia e Farmácia, Universidade de Santa Cruz do Sul/UNISC, Bloco 12, sala 1206, Av. Independência, 2293, Universitário, 96815-900 Santa Cruz do Sul, RS, Brasil
| | - João A P Henriques
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul/UFRGS, Campus do Vale, Prédio 43421, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brasil.,Instituto de Biotecnologia, Universidade de Caxias do Sul/UCS, Rua Francisco Getúlio Vargas, 1130, 95070-560 Caxias do Sul, RS, Brasil
| |
Collapse
|
92
|
Affiliation(s)
- Yikun Zhang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310032 P. R. China
| | - Sixue Wu
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310032 P. R. China
| | - Jie Yan
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310032 P. R. China
| |
Collapse
|
93
|
Wrobel JK, Wolff G, Xiao R, Power RF, Toborek M. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels. Biol Trace Elem Res 2016; 172:395-407. [PMID: 26706037 PMCID: PMC4930949 DOI: 10.1007/s12011-015-0595-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022]
Abstract
Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process.
Collapse
Affiliation(s)
- Jagoda K Wrobel
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Gretchen Wolff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rijin Xiao
- Nutrigenomics Research Center, Alltech, Nicholasville, KY, 40356, USA
| | - Ronan F Power
- Nutrigenomics Research Center, Alltech, Nicholasville, KY, 40356, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Jerzy Kukuczka Academy of Physical Education, Katowice, 40-065, Poland.
| |
Collapse
|
94
|
Zhang Y, Wu S, Shi H, Yan J. KI catalyzed azidoselenenylation of alkenes with sodium azide and diselenides via an oxidative cleavage of Se–Se bond. PHOSPHORUS SULFUR 2016. [DOI: 10.1080/10426507.2016.1192625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yikun Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Sixue Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Hongwei Shi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jie Yan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
95
|
Burden CM, Elmore C, Hladun KR, Trumble JT, Smith BH. Acute exposure to selenium disrupts associative conditioning and long-term memory recall in honey bees (Apis mellifera). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 127:71-9. [PMID: 26802564 DOI: 10.1016/j.ecoenv.2015.12.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 05/28/2023]
Abstract
A plethora of toxic compounds - including pesticides, heavy metals, and metalloids - have been detected in honey bees (Apis mellifera) and their colonies. One such compound is selenium, which bees are exposed to by consuming nectar and pollen from flowers grown in contaminated areas. Though selenium is lethal at high concentrations, sublethal exposure may also impair honey bees' ability to function normally. Examining the effect of selenium exposure on learning and memory provides a sensitive assay with which to identify sublethal effects on honey bee health and behavior. To determine whether sublethal selenium exposure causes learning and memory deficits, we used proboscis extension reflex conditioning coupled with recall tests 30min and 24h post-conditioning. We exposed forager honey bees to a single sublethal dose of selenium, and 3h later we used an olfactory conditioning assay to train the bees to discriminate between one odor associated with sucrose-reinforcement and a second unreinforced odor. Following conditioning we tested short- and long-term recall of the task. Acute exposure to as little as 1.8ng of an inorganic form of selenium (sodium selenate) before conditioning caused a reduction in behavioral performance during conditioning. And, exposure to 18ng of either an inorganic form (sodium selenate) or an organic form (methylseleno-l-cysteine) of selenium caused a reduction in the bees' performance during the long-term recall test. These concentrations of selenium are lower than those found in the nectar of plants grown in selenium-contaminated soil, indicating that even low-grade selenium toxicity produces significant learning and memory impairments. This may reduce foragers' ability to effectively gather resources for the colony or nurse bees' ability to care for and maintain a healthy colony.
Collapse
Affiliation(s)
- Christina M Burden
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Christopher Elmore
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Kristen R Hladun
- Department of Entomology, University of California Riverside, Riverside, CA, United States of America
| | - John T Trumble
- Department of Entomology, University of California Riverside, Riverside, CA, United States of America
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ, United States of America.
| |
Collapse
|
96
|
Selenite induces DNA damage and specific mitochondrial degeneration in human bladder cancer cells. Toxicol In Vitro 2016; 32:105-14. [DOI: 10.1016/j.tiv.2015.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 01/25/2023]
|
97
|
Abstract
Stress granules (SGs) are dynamic accumulations of stalled preinitiation complexes and translational machinery that assemble under stressful conditions. Sodium selenite (Se) induces the assembly of noncanonical type II SGs that differ in morphology, composition, and mechanism of assembly from canonical SGs. Se inhibits translation initiation by altering the cap-binding activity of eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1). In this work, we show that human immunodeficiency virus type 1 (HIV-1) Gag is able to block the assembly of type II noncanonical SGs to facilitate continued Gag protein synthesis. We demonstrate that expression of Gag reduces the amount of hypophosphorylated 4EBP1 associated with the 5′ cap potentially through an interaction with its target, eIF4E. These results suggest that the assembly of SGs is an important host antiviral defense that HIV-1 has evolved for inhibition through several distinct mechanisms. The antiviral stress response is an important host defense that many viruses, including HIV-1, have evolved to evade. Selenite induces a block in translation and leads to stress granule assembly through the sequestration of eIF4E by binding hypophosphorylated 4EBP1. In this work, we demonstrate that in the face of selenite-induced stress, HIV-1 is able to maintain Gag mRNA translation and to elicit a blockade to selenite-induced stress granule assembly by altering the amount of hypophosphorylated 4EBP1 on the 5′ cap.
Collapse
|
98
|
Hu B, Cheng R, Liu X, Pan X, Kong F, Gao W, Xu K, Tang B. A nanosensor for in vivo selenol imaging based on the formation of Au-Se bonds. Biomaterials 2016; 92:81-9. [PMID: 27043769 DOI: 10.1016/j.biomaterials.2016.03.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 12/22/2022]
Abstract
Selenol is a key metabolite of Na2SeO3 and plays an important role in many physiological and pathological processes. The real-time monitoring of selenol is of scientific interest for understanding the anti-cancer mechanism of Na2SeO3. Based on selenol's ability to specifically break AuS bonds and form more stable AuSe bonds on the surfaces of gold nanoparticles (AuNPs), we developed a novel near-infrared fluorescent nanosensor (Cy5.5-peptide-AuNPs) for detecting selenol. The nanosensor exhibited rapid response to selenol with high selectivity and sensitivity, and it was successfully used to image changes in the selenol level in HepG2 cells during Na2SeO3-induced apoptosis. Moreover, in vivo fluorescence imaging of selenol was obtained from H22 tumor-bearing mice injected with both the nanosensor and sodium selenite. The results showed that the tumor cell apoptosis induced by Na2SeO3 is correlated with high-level of selenol under hypoxic conditions. We believe that this nanosensor could serve as a powerful tool for monitoring selenol and exploring the physiological function of selenol in a variety of physiological and pathological contexts and that the probe-designed strategy will provide a new platform for research on relevant selenium chemistry.
Collapse
Affiliation(s)
- Bo Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Ranran Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Xiaojun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Xiaohong Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
99
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kurcz A. Effects of Selenium on Morphological Changes in Candida utilis ATCC 9950 Yeast Cells. Biol Trace Elem Res 2016; 169:387-393. [PMID: 26166197 PMCID: PMC4717171 DOI: 10.1007/s12011-015-0415-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/15/2015] [Indexed: 01/27/2023]
Abstract
This paper presents the results of microscopic examinations of the yeast cells cultured in yeast extract-peptone-dextrose (YPD) media supplemented with sodium selenite(IV). The analysis of the morphological changes in yeast cells aimed to determine whether the selected selenium doses and culturing time may affect this element accumulation in yeast cell structures in a form of inorganic or organic compounds, as a result of detoxification processes. The range of characteristic morphological changes in yeasts cultivated in experimental media with sodium selenite(IV) was observed, including cell shrinkage and cytoplasm thickening of the changes within vacuole structure. The processes of vacuole disintegration were observed in aging yeast cells in culturing medium, which may indicate the presence of so-called ghost cells lacking intracellular organelles The changes occurring in the morphology of yeasts cultured in media supplemented with sodium selenite were typical for stationary phase of yeast growth. From detailed microscopic observations, larger surface area of the cell (6.03 μm(2)) and yeast vacuole (2.17 μm(2)) were noticed after 24-h culturing in the medium with selenium of 20 mg Se(4+)/L. The coefficient of shape of the yeast cells cultured in media enriched with sodium selenite as well as in the control YPD medium ranged from 1.02 to 1.22. Elongation of cultivation time (up to 48 and 72 h) in the media supplemented with sodium selenite caused a reduction in the surface area of the yeast cell and vacuole due to detoxification processes.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| | - Stanisław Błażejak
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Anna Bzducha-Wróbel
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Agnieszka Kurcz
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| |
Collapse
|
100
|
Bai Y, Feng W, Wang S, Zhang X, Zhang W, He M, Zhang X, Wu T, Guo H. Essential Metals Zinc, Selenium, and Strontium Protect against Chromosome Damage Caused by Polycyclic Aromatic Hydrocarbons Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:951-960. [PMID: 26699282 DOI: 10.1021/acs.est.5b03945] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Essential metals play important roles in maintaining cellular homeostasis, but the effects of their interaction with the environmental pollutants are still not very well-known in human subjects. The aim of this study was to evaluate the roles of essential metals and their interactions with polycyclic aromatic hydrocarbons (PAHs) on chromosome damage, an early carcinogenic event. A total of 1245 male workers were included in this study and the levels of 11 urinary essential metals, 12 urinary PAH metabolites, plasma concentrations of benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydotetrol-albumin (BPDE-Alb) adducts, and lymphocyte micronucleus (MN) frequencies were monitored. We found that zinc (Zn), selenium (Se), and strontium (Sr) have significant inverse dose-response relationships with MN frequencies (all P < 0.05). Furthermore, the protective roles of Zn, Se, and Sr were mainly shown among subjects with high levels of BPDE-Alb adducts. Significant effect modification of BPDE-Alb adducts on the associations of Zn, Se, and Sr with MN frequencies was observed (all Pinteraction < 0.05). Our study showed evidence that Zn, Se, and Sr play protective roles in reducing chromosome damage, and these effects can be modified by PAH exposure levels. These findings add potential evidence for the preventive effects of Zn, Se, and Sr against carcinogenesis in human subjects.
Collapse
Affiliation(s)
- Yansen Bai
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Wei Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Suhan Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Xiao Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Wangzhen Zhang
- Institute of Industrial Health, Wuhan Iron & Steel (Group) Corporation , Wuhan 430070, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430074, China
| |
Collapse
|