51
|
Si J, Zhang H, Wang Z, Wu Z, Lu J, Di C, Zhou X, Wang X. Effects of (12)C(6+) ion radiation and ferulic acid on the zebrafish (Danio rerio) embryonic oxidative stress response and gene expression. Mutat Res 2013; 745-746:26-33. [PMID: 23535216 DOI: 10.1016/j.mrfmmm.2013.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
The effects of carbon ion irradiation and ferulic acid (FA) on the induction of oxidative stress and alteration of gene expression were studied in zebrafish (Danio rerio) embryos. Zebrafish embryos at 8 hpf were divided into seven groups: the control group; the 1Gy, 3Gy and 7Gy irradiation groups; and three FA-pre-treated irradiation groups. In the irradiated groups, a significant increase in the teratogenesis of the zebrafish embryos and oxidative stress was accompanied by increased malondialdehyde (MDA) content, decreased glutathione (GSH) content and alterations in antioxidant enzyme activities (such as catalase [CAT] and superoxide dismutase [SOD]). Moreover, the mRNA levels for Cu/Zn-sod, Mn-sod, cat and gpx, the genes encoding these antioxidant proteins, were altered significantly. However, the mRNA expression patterns were not in accordance with those of the antioxidant enzymes and were more sensitive under low-dose irradiation. In addition, we detected the mRNA expression of ucp-2 and bcl-2, which are located at the mitochondrial inner membrane and related to reactive oxidative species (ROS) production. In the irradiated groups, the mRNA level of ucp-2 was significantly increased, whereas the mRNA level of bcl-2 was significantly decreased. Supplementation with FA, an antioxidant, was better able to reduce the irradiation-induced oxidative damage marked by changes in mortality, morphology, antioxidant enzyme activities and the MDA and GSH content, as well as in the mRNA expression levels. Overall, this study provided helpful information about the transcriptional effects of irradiation to better understand the mechanism of carbon ion-induced oxidative stress and FA-induced radioprotective effects.
Collapse
Affiliation(s)
- Jing Si
- Department of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Koh PO. Ferulic acid attenuates the injury-induced decrease of protein phosphatase 2A subunit B in ischemic brain injury. PLoS One 2013; 8:e54217. [PMID: 23349830 PMCID: PMC3547913 DOI: 10.1371/journal.pone.0054217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ferulic acid provides a neuroprotective effect during cerebral ischemia through its anti-oxidant function. Protein phosphatase 2A (PP2A) is a serine and threonine phosphatase that contributes broadly to normal brain function. This study investigated whether ferulic acid regulates PP2A subunit B in a middle cerebral artery occlusion (MCAO) animal model and glutamate toxicity-induced neuronal cell death. METHODOLOGY/PRINCIPAL FINDINGS MCAO was surgically induced to yield permanent cerebral ischemic injury in rats. The rats were treated with either vehicle or ferulic acid (100 mg/kg, i.v.) immediately after MCAO, and cerebral cortex tissues were collected 24 h after MCAO. A proteomics approach, RT-PCR, and Western blot analyses performed to identification of PP2A subunit B expression levels. Ferulic acid significantly reduced the MCAO-induced infarct volume of the cerebral cortex. A proteomics approach elucidated the reduction of PP2A subunit B in MCAO-induced animals, and ferulic acid treatment prevented the injury-induced reduction in PP2A subunit B levels. RT-PCR and Western blot analyses also showed that ferulic acid treatment attenuates the injury-induced decrease in PP2A subunit B levels. Moreover, the number of PP2A subunit B-positive cells was reduced in MCAO-induced animals, and ferulic acid prevented these decreases. In cultured neuronal cells, ferulic acid treatment protected cells against glutamate toxicity and prevented the glutamate-induced decrease in PP2A subunit B. CONCLUSIONS/SIGNIFICANCE These results suggest that the maintenance of PP2A subunit B by ferulic acid in ischemic brain injury plays an important role for the neuroprotective function of ferulic acid.
Collapse
Affiliation(s)
- Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.
| |
Collapse
|
53
|
Lagouri V, Alexandri G. Antioxidant Properties of GreekO. dictamnusandR. officinalisMethanol and Aqueous Extracts—HPLC Determination of Phenolic Acids. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2010.535185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
54
|
Qin J, Shang L, Ping AS, Li J, Li XJ, Yu H, Magdalou J, Chen LB, Wang H. TNF/TNFR signal transduction pathway-mediated anti-apoptosis and anti-inflammatory effects of sodium ferulate on IL-1β-induced rat osteoarthritis chondrocytes in vitro. Arthritis Res Ther 2012; 14:R242. [PMID: 23134577 PMCID: PMC3674623 DOI: 10.1186/ar4085] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 11/06/2012] [Indexed: 01/25/2023] Open
Abstract
Introduction Sodium ferulate (SF) is a natural component of traditional Chinese herbs. Our previous study shows that SF has a protective effect on osteoarthritis (OA). The objective of this study was to investigate the effect of SF on the TNF/TNF receptor (TNFR) signal transduction pathway of rat OA chondrocytes. Methods Primary rat articular chondrocytes were co-treated with IL-1β and SF. Chondrocyte apoptosis was assessed by fluorescein isothiocyanate-annexin V/propidium iodide assay. The PCR array was used to screen the expression of 84 key genes involved in apoptosis. The release of TNFα and prostaglandin E2 were analyzed by ELISA. Expressions of proteins were assessed by western blotting. The activity of NF-κB was determined by electrophoretic mobility shift assay (EMSA). Gene expression of inducible nitric oxide synthase (iNOS) was evaluated by real-time quantitative PCR. The nitric oxide content was measured with the Griess method. Results After treatment with SF, the apoptosis rate of chondrocytes significantly attenuated (P < 0.01). Results of the apoptosis PCR array suggested that mRNA expression of some core proteins in the TNF/TNFR pathway showed valuable regulation. The protein expressions of TNFα, TNFR-1, TNF receptor-associated death domain, caspase-8 and caspase-3 were prevented by SF in a concentration-dependent manner. SF also inhibited activities of caspase-8 and caspase-3 compared with the OA model control (P < 0.01). TNF receptor-associated factor-2 expression, phosphorylations of inhibitor of NF-κB kinase (IKK) subunits alpha and beta, and NF-κB inhibitor, alpha (IκBα) were all concentration-dependently suppressed by SF treatment. The results of EMSA showed that SF inhibited the activity of NF-κB. In addition, the expressions of cycloxygenase-2 and iNOS and the contents of prostaglandin E2 and NO were attenuated with the treatment of SF (P < 0.01). Conclusion SF has anti-apoptosis and anti-inflammatory effects on an OA model induced by IL-1β in vitro, which were due to inhibitory actions on the caspase-dependent apoptosis pathway and the IKK/NF-κB signal transduction pathway of the TNF/TNFR pathway.
Collapse
|
55
|
Azab KS, Bashandy M, Salem M, Ahmed O, Tawfik Z, Helal H. Royal jelly modulates oxidative stress and tissue injury in gamma irradiated male Wister Albino rats. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012; 3:268-76. [PMID: 22540097 PMCID: PMC3336918 DOI: 10.4297/najms.2011.3268] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Royal jelly is a nutritive secretion produced by the worker bees, rich in proteins, carbohydrates, vitamins and minerals. AIM The present study was designed to determine the possible protective effects of royal jelly against radiation induced oxidative stress, hematological, biochemical and histological alterations in male Wister albino rats. MATERIALS AND METHODS Male Wister albino rats were exposed to a fractionated dose of gamma radiation (2 Gy every 3 days up to 8 Gy total doses). Royal jelly was administrated (g/Kg/day) by gavages 14 days before exposure to the 1(st) radiation fraction and the treatment was continued for 15 days after the 1(st) irradiation fraction till the end of the experiment. The rats were sacrificed 3(rd), equivalent to 3rd post 2nd irradiation fraction, and equivalent to 3rd day post last irradiation fraction. RESULTS In the present study, gamma- irradiation induced hematological, biochemical and histological effects in male Wister albino rats. In royal jelly treated irradiated group, there was a noticeable decrease recorded in thiobarbituric reactive substances concentration when compared to γ-irradiated group. Also, the serum nitric oxide concentration was significantly improved. The administration of royal jelly to irradiated rats according to the current experimental design significantly ameliorates the changes induced in serum lipid profile. Moreover, in royal jelly treated irradiated group, there was a noticeable amelioration recorded in all hematological parameters along the three experimental intervals. The microscopic examination of cardiac muscle of royal jelly treated irradiated rats demonstrated structural amelioration, improved nuclei and normal features of capillaries and veins in endomysium when compared to gamma-irradiated rats. CONCLUSION It was suggested that the biochemical, hematological and histological amelioration observed in royal jelly (g/Kg/day) treated irradiated rats might be due to the antioxidant capacity of royal jelly active constituents.
Collapse
Affiliation(s)
- Khaled Shaaban Azab
- Department of Radiation Biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
56
|
Gao XX, Cui J, Zheng XY, Li ZY, Choi YH, Zhou YZ, Tian JS, Xing J, Tan XJ, Du GH, Qin XM. An investigation of the antidepressant action of xiaoyaosan in rats using ultra performance liquid chromatography-mass spectrometry combined with metabonomics. Phytother Res 2012; 27:1074-85. [PMID: 22975930 DOI: 10.1002/ptr.4805] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 07/10/2012] [Accepted: 07/16/2012] [Indexed: 11/09/2022]
Abstract
A rapid, highly sensitive, and selective method was applied in a non-invasive way to investigate the antidepressant action of Xiaoyaosan (XYS) using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) and chemometrics. Many significantly altered metabolites were used to explain the mechanism. Venlafaxine HCl and fluoxetine HCl were used as chemical positive control drugs with a relatively clear mechanism of action to evaluate the efficiency and to predict the mechanism of action of XYS. Urine obtained from rats subjected to chronic unpredictable mild stress (CUMS) was analyzed by UPLC-MS. Distinct changes in the pattern of metabolites in the rat urine after CUMS production and drug intervention were observed using partial least squares-discriminant analysis. The results of behavioral tests and multivariate analysis showed that CUMS was successfully reproduced, and a moderate-dose XYS produced significant therapeutic effects in the rodent model, equivalent to those of the positive control drugs, venlafaxine HCl and fluoxetine HCl. Metabolites with significant changes induced by CUMS were identified, and 17 biomarker candidates for stress and drug intervention were identified. The therapeutic effect of XYS on depression may involve regulation of the dysfunctions of energy metabolism, amino acid metabolism, and gut microflora changes. Metabonomic methods are valuable tools for measuring efficacy and mechanisms of action in the study of traditional Chinese medicines.
Collapse
Affiliation(s)
- Xiao-Xia Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan 030006, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Ashry O, Moustafa M, Baset AAE, Abu Sinna GE, Farouk H. Outcome of venom bradykinin potentiating factor on rennin-angiotensin system in irradiated rats. Int J Radiat Biol 2012; 88:840-5. [PMID: 22852795 DOI: 10.3109/09553002.2012.715788] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The objective of this work was to compare the effect of a bradykinin potentiating (BPF) isolated from venom of Egyptian scorpion Androctonus amoreuxi as a natural angiotensin converting enzyme inhibitor (ACEI) with losartan (LOS), a chemical angiotensin receptor blocker (ARB), in the modulation of radiation-induced damage. MATERIAL AND METHODS Rats were grouped into: (i) CONTROL untreated; (ii) + C(BPF): Received intraperitoneally (i.p.) BPF 1 μg/g body weight (b.w.) (twice/week) during 3 weeks; (iii) + C(LOS:) Received i.p. LOS 5 μg/g b.w. (twice/week) during 3 weeks; (iv) R: Irradiated at 4 Gy; (v) R + BPF and (vi) R + LOS: Received BPF or LOS post-irradiation for 3 weeks. RESULTS BPF or LOS treatment induced a significant drop of sodium and uric acid. Irradiation induced a significant elevation of malondialdehyde (MDA) and advanced oxidation protein product (AOPP) associated with a significant decrease of glutathione (GSH) content in the kidney. Serum aldosterone, sodium, urea and creatinine levels showed a significant increase while a significant drop was recorded for haematological values, calcium and uric acid levels. Treatment of irradiated animals with BPF or LOS significantly improved radiation-induced changes. CONCLUSION It could be concluded that the use of BPF as a natural product is comparable to the chemical compound LOS.
Collapse
Affiliation(s)
- Omaima Ashry
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Cairo, Egypt.
| | | | | | | | | |
Collapse
|
58
|
Effect of acute and fractionated irradiation on hippocampal neurogenesis. Molecules 2012; 17:9462-8. [PMID: 22874790 PMCID: PMC6268856 DOI: 10.3390/molecules17089462] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/27/2012] [Accepted: 08/06/2012] [Indexed: 11/17/2022] Open
Abstract
Ionizing radiation has become an inevitable health concern emanating from natural sources like space travel and from artificial sources like medical therapies. In general, exposure to ionizing radiation such as γ-rays is one of the methods currently used to stress specific model systems. In this study, we elucidated the long-term effect of acute and fractionated irradiation on DCX-positive cells in hippocampal neurogenesis. Groups of two-month-old C57BL/6 female mice were exposed to whole-body irradiation at acute dose (5 Gy) or fractional doses (1 Gy × 5 times and 0.5 Gy × 10 times). Six months after exposure to γ-irradiation, the hippocampus was analyzed. Doublecortin (DCX) immunohistochemistry was used to measure changes of neurogenesis in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). The number of DCX-positive cells was significantly decreased in all acute and fractionally irradiation groups. The long-term changes in DCX-positive cells triggered by radiation exposure showed a very different pattern to the short-term changes which tended to return to the control level in previous studies. Furthermore, the number of DCX-positive cells was relatively lower in the acute irradiation group than the fractional irradiation groups (approximately 3.6-fold), suggesting the biological change on hippocampal neurogenesis was more susceptible to being damaged by acute than fractional irradiation. These results suggest that the exposure to γ-irradiation as a long-term effect can trigger biological responses resulting in the inhibition of hippocampal neurogenesis.
Collapse
|
59
|
Koh PO. Ferulic acid prevents the cerebral ischemic injury-induced decreases of astrocytic phosphoprotein PEA-15 and its two phosphorylated forms. Neurosci Lett 2012; 511:101-5. [PMID: 22306184 DOI: 10.1016/j.neulet.2012.01.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/07/2012] [Accepted: 01/19/2012] [Indexed: 11/25/2022]
Abstract
Ferulic acid protects neuronal cells against focal cerebral ischemic injury through its anti-oxidative and anti-inflammatory effects. Phosphoprotein enriched in astrocytes 15 (PEA-15) is known to modulate various cellular processes including cell proliferation, apoptosis, and survival. This study was investigated whether ferulic acid can regulate the levels of PEA-15 and its two phosphorylated forms (Ser 104 and Ser 116) in a cerebral ischemic injury model and in neuronal cells exposed to glutamate. A middle cerebral artery occlusion (MCAO) was performed to induce focal cerebral ischemic injury. Adult male rats were immediately treated with vehicle or ferulic acid (100 mg/kg) at the beginning of the MCAO, and then cerebral cortices were collected 24h after MCAO. The decrease in PEA-15 level after ischemic injury was detected using a proteomic approach. Ferulic acid administration prevented the ischemic injury-induced decrease of PEA-15 level. Moreover, Western blot analysis clearly confirmed that ferulic acid attenuates the ischemic injury-induced decreases in PEA-15, phospho-PEA-15 (Ser 104), and phospho-PEA-15 (Ser 116) levels. Glutamate exposure induced significant reductions in the levels of PEA-15 and the two phospho-PEA-15 (Ser 104 and Ser 116) in cultured hippocampal neuron, while pretreatment with ferulic acid prevented the glutamate toxicity-induced decreases in these proteins levels. The decrease of phospho-PEA-15 protein level indicates that the anti-apoptotic function of PEA-15 was being inhibited. Thus, these results suggest that ferulic acid protects neuronal cells against ischemic injury by maintenance of phospho-PEA-15 protein levels.
Collapse
Affiliation(s)
- Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.
| |
Collapse
|
60
|
Koh PO. Ferulic acid prevents the cerebral ischemic injury-induced decrease of Akt and Bad phosphorylation. Neurosci Lett 2011; 507:156-60. [PMID: 22200499 DOI: 10.1016/j.neulet.2011.12.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/25/2011] [Accepted: 12/08/2011] [Indexed: 11/28/2022]
Abstract
Ferulic acid protects neuronal cells from glutamate-induced excitotoxicity and focal cerebral ischemia. This study investigated whether ferulic acid exerts a neuroprotective effect through the activation of Akt and its downstream targets, Bad and 14-3-3. Adult male rats were immediately treated with ferulic acid (100mg/kg, i.v.) after middle cerebral artery occlusion (MCAO). Brains were collected 24h after MCAO and infarct volumes were analyzed using triphenyltetrazolium chloride staining. It was found that ferulic acid treatment significantly reduced infarct volume during MCAO. Ferulic acid attenuated the MCAO injury-induced decrease of phospho-PDK1, phospho-Akt and phospho-Bad levels. However, ferulic acid did not affect the expression of 14-3-3 and Bcl-xL, which exerts an anti-apoptotic effect through interaction with phospho-Bad. Immunoprecipitation analysis demonstrated that the interaction between phospho-Bad and 14-3-3 decreased during MCAO, whereas ferulic acid prevented the injury-induced decrease in these interaction levels. Moreover, ferulic acid prevented the injury-induced increase in cleaved caspase-3 levels. These findings suggest that ferulic acid attenuates cell death during MCAO and that these protective effects are due to inhibition of Akt signaling pathway inactivation and maintenance of the interaction between phospho-Bad and 14-3-3.
Collapse
Affiliation(s)
- Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.
| |
Collapse
|
61
|
Cheng YH, Yang SH, Yang KC, Chen MP, Lin FH. The effects of ferulic acid on nucleus pulposus cells under hydrogen peroxide-induced oxidative stress. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
62
|
Yang M, Kim JS, Son Y, Kim J, Kim JY, Kim SH, Kim JC, Shin T, Moon C. Detrimental effect of fast neutrons on cultured immature rat hippocampal cells: relative biological effectiveness of in vitro cell death indices. Radiat Res 2011; 176:303-10. [PMID: 21692651 DOI: 10.1667/rr2589.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This in vitro study compared the detrimental effect and relative biological effectiveness (RBE) of high-linear energy transfer (LET) fast neutrons on rat immature hippocampal cultured cells with those of low-LET γ rays. Immature hippocampal cells were exposed to fast neutrons or γ rays. Cytotoxicity and cell viability were analyzed using a lactate dehydrogenase (LDH)-release assay and a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, respectively. The cytotoxicity and cell viability with fast neutrons or γ rays varied in a dose-dependent pattern. In the LDH release and MTT assay indices, the RBEs of fast neutrons were approximately 2.35 and 2.42, respectively. Fast neutrons markedly induced apoptotic changes in immature hippocampal cells with increased expression of active caspase-3 and cleaved poly(ADP-ribose) polymerase. Increased cytotoxicity and decreased cell viability in immature hippocampal cells were seen in a dose-dependent pattern after fast-neutron and γ irradiation. Fast neutrons have a higher RBE for cell death indices than γ rays.
Collapse
Affiliation(s)
- M Yang
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Research on the adsorption property of supported ionic liquids for ferulic acid, caffeic acid and salicylic acid. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1697-703. [PMID: 21543269 DOI: 10.1016/j.jchromb.2011.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 04/02/2011] [Accepted: 04/08/2011] [Indexed: 11/23/2022]
Abstract
In this paper, the preparation of new supported ionic liquids (SILs) composed of the N-methylimidazolium cation and the quinoline cation is described. They have been confirmed and evaluated by infrared spectroscopy, elemental analysis and thermogravimetric analysis. Six kinds of different SILs included SiO(2)·Im(+)·Cl(-), SiO(2)·Im(+)·BF(4)(-), SiO(2)·Im(+)·PF(6)(-), SiO(2)·Qu(+)·Cl(-), SiO(2)·Qu(+)·BF(4)(-) and SiO(2)·Qu(+)·PF(6)(-). The adsorption characteristics of ferulic acid (FA), caffeic acid (CA) and salicylic acid (SA) on SILs were investigated by static adsorption experiments. It was found that SiO(2)·Qu(+)·Cl(-) had excellent adsorption and desorption capacity to three tested phenolic compounds. The dynamic adsorption characteristics of FA, CA and SA on SiO(2)·Qu(+)·Cl(-) were also studied. The saturated adsorption capacity of FA, CA and SA using SiO(2)·Qu(+)·Cl(-) as adsorbent was 64.6 mg/g, 53.2 mg/g and 72.2 mg/g respectively. Using 70% ethanol as eluent, the saturated desorption efficiencies of FA, CA and SA were 97.2%, 90.3% and 96.5% respectively. Thus, SiO(2)·Qu(+)·Cl(-) had strong adsorption and separation capacity for FA, CA and SA.
Collapse
|
64
|
Ma ZC, Hong Q, Wang YG, Tan HL, Xiao CR, Liang QD, Wang DG, Gao Y. Ferulic acid protects lymphocytes from radiation-predisposed oxidative stress through extracellular regulated kinase. Int J Radiat Biol 2010; 87:130-40. [DOI: 10.3109/09553002.2011.523510] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
65
|
Lee HJ, Kim JS, Song MS, Seo HS, Yang M, Kim JC, Jo SK, Shin T, Moon C, Kim SH. Amifostine ameliorates recognition memory defect in acute radiation syndrome caused by relatively low-dose of gamma radiation. J Vet Sci 2010; 11:81-3. [PMID: 20195069 PMCID: PMC2833434 DOI: 10.4142/jvs.2010.11.1.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study examined whether amifostine (WR-2721) could attenuate memory impairment and suppress hippocampal neurogenesis in adult mice with the relatively low-dose exposure of acute radiation syndrome (ARS). These were assessed using object recognition memory test, the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, and immunohistochemical markers of neurogenesis [Ki-67 and doublecortin (DCX)]. Amifostine treatment (214 mg/kg, i.p.) prior to irradiation significantly attenuated the recognition memory defect in ARS, and markedly blocked the apoptotic death and decrease of Ki-67- and DCX-positive cells in ARS. Therefore, amifostine may attenuate recognition memory defect in a relatively low-dose exposure of ARS in adult mice, possibly by inhibiting a detrimental effect of irradiation on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hae-June Lee
- Korea Institute of Radiological and Medical Science, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Chemopreventive potential of ferulic acid in 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in Sprague–Dawley rats. Eur J Pharmacol 2010; 637:22-9. [DOI: 10.1016/j.ejphar.2010.03.054] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/20/2010] [Accepted: 03/24/2010] [Indexed: 11/22/2022]
|
67
|
Yang M, Kim JS, Song MS, Kim JC, Shin T, Lee SS, Kim SH, Moon C. Dose-response and relative biological effectiveness of fast neutrons: induction of apoptosis and inhibition of neurogenesis in the hippocampus of adult mice. Int J Radiat Biol 2010; 86:476-85. [PMID: 20470197 DOI: 10.3109/09553001003667990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Our study compared the effects of high linear energy transfer (LET) fast neutrons on the induction of apoptosis and reduction of neurogenesis in the hippocampus of adult ICR mice with those of low-LET (60)Co gamma-rays, to evaluate the relative biological effectiveness (RBE) of fast neutrons in the adult hippocampal dentate gyrus (DG). MATERIALS AND METHODS The mice were exposed to 35 MeV fast neutrons or (60)Co gamma-rays. We evaluated acutely the incidence of apoptosis and expression of Ki-67 (a protein marker for cell proliferation originally defined by the monoclonal antibody Kiel-67) and doublecortin (DCX: an immature progenitor neuron marker) in the hippocampus after a single whole-body irradiation. RESULTS The number of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labelling (TUNEL)-positive apoptotic nuclei in the DG increased and both Ki-67- and DCX-positive cells declined in a dose-dependent pattern, with fast neutrons or gamma-rays. In the hippocampus, which showed an apoptosis frequency between 2 and 8 per DG, the RBE of fast neutrons was approximately 1.9. Additionally, the inhibitory effects of fast neutrons on the expression frequencies of Ki-67 (4-8) and DCX (8-32) were approximately 3.2 and 2.5 times, respectively, the effects of gamma-rays at the same dose. CONCLUSIONS Increased apoptotic cell death and decreased neurogenesis in the hippocampal DG were seen in a dose-dependent pattern after exposure to fast neutrons and gamma-rays. In addition, the different rate of hippocampal neurogenesis between different radiation qualities may be an index of RBE.
Collapse
Affiliation(s)
- Miyoung Yang
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Buk-Gu, Gwangju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Ma ZC, Hong Q, Wang YG, Tan HL, Xiao CR, Liang QD, Zhang BL, Gao Y. Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways. Biol Pharm Bull 2010; 33:29-34. [PMID: 20045931 DOI: 10.1248/bpb.33.29] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ferulic acid (FA) has been demonstrated to have a remarkable antioxidant activity, the mechanism of FA of protecting human umbilical vein endothelial cells (HUVECs) from radiation induced oxidative stress was investigated in the present study. The oxidative protection of FA was assessed by cellular glutathione (GSH) content, nicotinamide adenine dinucleotide phosphate (NADPH) levels, and reactive oxygen species (ROS) analysis. Nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation was detected using Western blotting. The upstream signaling pathway involved in FA mediated Nrf2 activation was determined by signaling inhibitors. FA significantly increased the transcription of antioxidant related genes such as GCLC (glutamate-cysteine ligase catalytic subunit), GCLM (glutamate-cysteine ligase regulatory subunit), NQO1 (NADPH quinone oxidoreductase-1) and heme oxygenase-1 (HO-1) mRNA in radiated cells, and these changes involved in a significant increase of the intracellular GSH content and the expression of NAPDH. FA evidently promoted Nrf2 translocation into nuclei and increased the intracellular GSH and NADPH levels in radiated cells. Phosphatidylinositol 3-kinase (PI3K) and extracellular signal regulated kinase (ERK) pathways were associated with FA-induced Nrf2 activation. The results suggested that FA-induced Nrf2 activation play key role in cytoprotective effect of FA against oxidative stress via PI3K and ERK signaling pathways.
Collapse
Affiliation(s)
- Zeng-Chun Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Mizukami S, Ichimura R, Kemmochi S, Wang L, Taniai E, Mitsumori K, Shibutani M. Tumor promotion by copper-overloading and its enhancement by excess iron accumulation involving oxidative stress responses in the early stage of a rat two-stage hepatocarcinogenesis model. Chem Biol Interact 2010; 185:189-201. [DOI: 10.1016/j.cbi.2010.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/07/2010] [Accepted: 03/09/2010] [Indexed: 11/27/2022]
|
70
|
Liang QQ, Xi ZJ, Bian Q, Cui XJ, Li CG, Hou W, Shi Q, Wang YJ. Herb formula "Fufangqishe-Pill" prevents upright posture-induced intervertebral disc degeneration at the lumbar in rats. J Pharmacol Sci 2010; 113:23-31. [PMID: 20472983 DOI: 10.1254/jphs.09231fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Degeneration of the lumbar spine plays an important role in most chronic low back pain. Prevention of lumbar intervertebral disc (IVD) degeneration is therefore a high research priority. Both our previous multicenter clinical trials and pharmacological research showed that Fufangqishe-Pill (FFQSP), a newly patented traditional Chinese medicine, could effectively relieve the symptoms of neck pain and prevent cervical degeneration. To clarify the effect of FFQSP on lumbar IVD degeneration, we applied a lumbar IVD degeneration rat model induced by prolonged upright posture. Pretreatment of FFQSP for one month prevented the histological changes indicating IVD disorganization; increased type II-collagen level, decreased type X-collagen protein level, and increased Col2alpha1 mRNA expression at all time points; and decreased Col10alpha1, matrix metalloproteinase (MMP)-3, MMP13, and Interleukin (IL)-1beta mRNA expression induced by upright posture for 7 and 9 months. These results suggest that FFQSP prevents lumbar IVD degeneration induced by upright posture. FFQSP is a promising medicine for lumbar IVD degeneration disease.
Collapse
Affiliation(s)
- Qian-Qian Liang
- Department of Orthopaedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, China
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Batra V, Sridhar S, Devasagayam TPA. Enhanced one-carbon flux towards DNA methylation: Effect of dietary methyl supplements against gamma-radiation-induced epigenetic modifications. Chem Biol Interact 2009; 183:425-33. [PMID: 19931232 DOI: 10.1016/j.cbi.2009.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 11/30/2022]
Abstract
Radiation exposure poses a major risk for workers in the nuclear power plants and other radiation related industry. In this context, we demonstrate that gamma-radiation is an efficient DNA demethylating agent and its injurious effect can be minimized by dietary methyl supplements (folate, choline and vitamin B12). To elucidate the possible underlying mechanism(s), male Swiss mice were maintained on normal control diet (NCD) and methyl-supplemented diet (MSD). After 2 weeks of NCD and MSD dietary regimen, we exposed the animals to gamma-radiation (2, 4 and 6Gy) and investigated the profile of downstream metabolites and activity levels of one-carbon (C(1)) flux generating enzymes. In MSD fed and irradiated animals, hepatic folate levels increased (P<0.01), while hepatic homocysteine levels decreased (P<0.01) compared to NCD fed and irradiated animals. Although hepatic folate level increased significantly in MSD fed animals (P<0.01), it showed a decrease in response to high doses of gamma-irradiation. Under these conditions, a marked suppression of S-adenosylmethionine (SAM) levels occurred in NCD fed and irradiated animals, suggesting reduced conversion of homocysteine to SAM. Concomitant with decline in liver SAM Pool, activities of DNA methyltransferase (Dnmt, that methylates DNA) and methionine synthase (MSase, that regenerates methionine from homocysteine) were both decreased in NCD fed and irradiated mice. However, in MSD fed and irradiated mice, they were increased. These results strongly indicated that increased levels of dnmt and MSase may enhance C(1) flux towards DNA methylation reactions in MSD fed animals. These results were confirmed and further substantiated by measuring genomic DNA methylation levels, which were maintained at normal levels in MSD fed and irradiated mice compared to NCD fed and irradiated animals (P<0.01). In conclusion, our results suggest that maintenance of genomic DNA methylation under gamma-radiation stress might be a very dynamic, progressive diet dependent process that could involve increased one-carbon flux through various C(1) metabolites.
Collapse
Affiliation(s)
- Vipen Batra
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India.
| | | | | |
Collapse
|
72
|
Induction of GST-P-positive proliferative lesions facilitating lipid peroxidation with possible involvement of transferrin receptor up-regulation and ceruloplasmin down-regulation from the early stage of liver tumor promotion in rats. Arch Toxicol 2009; 84:319-31. [PMID: 20091025 DOI: 10.1007/s00204-009-0496-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
To elucidate the role of metal-related molecules in hepatocarcinogenesis, we examined immunolocalization of transferrin receptor (Tfrc), ceruloplasmin (Cp) and metallothionein (MT)-1/2 in relation to liver cell foci positive for glutathione-S-transferase placental form (GST-P) in the early stage of tumor promotion by fenbendazole (FB), phenobarbital, piperonyl butoxide or thioacetamide in a rat two-stage hepatocarcinogenesis model. To estimate the involvement of oxidative stress responses to the promotion, immunolocalization of 4-hydroxy-2-nonenal, malondialdehyde and acrolein was similarly examined. Our findings showed that MT-1/2 immunoreactivity was not associated with the cellular distribution of GST-P and proliferating cell nuclear antigen, suggesting no role of MT-1/2 in hepatocarcinogenesis. We also found enhanced expression of Tfrc after treatment with strong tumor-promoting chemicals. With regard to Cp, the population showing down-regulation was increased in the GST-P-positive foci in relation to tumor promotion. Up-regulation of Tfrc and down-regulation of Cp was maintained in GST-P-positive neoplastic lesions induced after long-term promotion with FB, suggesting the expression changes occurring downstream of the signaling pathway involved in the formation of GST-P-positive lesions. Furthermore, enhanced accumulation of lipid peroxidation end products was observed in the GST-P-positive foci by promotion. Post-initiation treatment with peroxisome proliferator-activated receptor alpha agonists did not enhance any such distribution changes in GST-P-negative foci. The results thus suggest that facilitation of lipid peroxidation is involved in the induction of GST-P-positive lesions by tumor promotion from an early stage, and up-regulation of Tfrc and down-regulation of Cp may be a signature of enhanced oxidative cellular stress in these lesions.
Collapse
|
73
|
Moon C, Ahn K, Kim J, Kim J, Kim SH, Oh TH, Lee NH, Jee Y, Hyun JW, Park JW, Shin T. Eutigoside C attenuates radiation-induced crypt injury in the mouse intestine. Phytother Res 2009; 24:840-5. [DOI: 10.1002/ptr.3029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
74
|
Kilani-Jaziri S, Neffati A, Limem I, Boubaker J, Skandrani I, Sghair MB, Bouhlel I, Bhouri W, Mariotte AM, Ghedira K, Dijoux Franca MG, Chekir-Ghedira L. Relationship correlation of antioxidant and antiproliferative capacity of Cyperus rotundus products towards K562 erythroleukemia cells. Chem Biol Interact 2009; 181:85-94. [DOI: 10.1016/j.cbi.2009.04.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 04/25/2009] [Accepted: 04/27/2009] [Indexed: 11/26/2022]
|
75
|
Shang L, Qin J, Chen LB, Liu BX, Jacques M, Wang H. EFFECTS OF SODIUM FERULATE ON HUMAN OSTEOARTHRITIC CHONDROCYTES AND OSTEOARTHRITIS IN RATS. Clin Exp Pharmacol Physiol 2009; 36:912-8. [DOI: 10.1111/j.1440-1681.2009.05171.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
76
|
El-Barbary MI, Mehrim AI. Protective Effect of Antioxidant Medicinal Herbs, Rosemary and Parsley, on Subacute Aflatoxicosis in Oreochromis niloticus. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/jfas.2009.178.190] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
77
|
Padmavathi P, Reddy VD, Varadacharyulu N. Influence of Chronic Cigarette Smoking on Serum Biochemical Profile in Male Human Volunteers. ACTA ACUST UNITED AC 2009. [DOI: 10.1248/jhs.55.265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Vaddi Damodara Reddy
- Kosair Children's Hospital Research Institute, Department of Pediatrics, School of Medicine, University of Louisville Health sciences
| | | |
Collapse
|
78
|
Batra V, Devasagayam TPA. Interaction between cytotoxic effects of gamma-radiation and folate deficiency in relation to choline reserves. Toxicology 2008; 255:91-9. [PMID: 19010378 DOI: 10.1016/j.tox.2008.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/06/2008] [Accepted: 10/16/2008] [Indexed: 01/18/2023]
Abstract
The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. Recent studies have indicated that bio-molecules such as folate and choline might be of radio-protective value as they are, within broad dose ranges, non-toxic to humans and experimental animals. The objective of the present study was to investigate choline dependent adaptive response to potential synergistic cytotoxic effect of folate deficiency and gamma-radiation. Male Swiss mice maintained on folate sufficient diet (FSD) and folate free diet (FFD) based on AIN-93M formula, were subjected to 1-4Gy total body gamma-irradiation. To investigate liver DNA damage, apurinic/apyrimidinic sites (AP sites) were quantified. A significant increase in liver DNA AP sites with concomitant depletion of liver choline reserves was observed when gamma-radiation was combined with folate deficiency. Further work in this direction suggested that cytotoxic interaction between folate deficiency and gamma radiation might induce utilization of choline and choline containing moieties by modifying levels of key regulatory enzymes dihydrofolate reductase (DHFR) and choline oxidase (ChoOx). Another major finding of these studies is that significant liver damage at higher doses of radiation (3-4Gy), might release considerable amounts of choline reserves to serum. In conclusion, a plausible interpretation of the present studies is that folate deprivation and gamma-radiation interact to mobilize additional choline reserves of hepatic tissue, for redistribution to other organs, which could not be utilized by folate deficiency alone. Present results clearly indicated a distinct choline pool in liver and kidney tissues that could be utilized by folate deficient animals only under radiation stress conditions.
Collapse
Affiliation(s)
- Vipen Batra
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai - 400085, India.
| | | |
Collapse
|
79
|
Kim JS, Lee HJ, Kim JC, Kang SS, Bae CS, Shin T, Jin JK, Kim SH, Wang H, Moon C. Transient impairment of hippocampus-dependent learning and memory in relatively low-dose of acute radiation syndrome is associated with inhibition of hippocampal neurogenesis. JOURNAL OF RADIATION RESEARCH 2008; 49:517-526. [PMID: 18574327 DOI: 10.1269/jrr.08020] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neurogenesis in the adult hippocampus, which occurs constitutively, is vulnerable to ionizing radiation. In the relatively low-dose exposure of acute radiation syndrome (ARS), the change in the adult hippocampal function is poorly understood. This study analyzed the changes in apoptotic cell death and neurogenesis in the DGs of hippocampi from adult ICR mice with single whole-body gamma-irradiation using the TUNEL method and immunohistochemical markers of neurogenesis, Ki-67 and doublecortin (DCX). In addition, the hippocampus-dependent learning and memory tasks after single whole-body gamma-irradiation were examined in order to evaluate the hippocampus-related behavioral dysfunction in the relatively low-dose exposure of ARS. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus (DG) was increased 6-12 h after acute gamma-irradiation (a single dose of 0.5 to 4 Gy). In contrast, the number of Ki-67- and DCX-positive cells began to decrease significantly 6 h postirradiation, reaching its lowest level 24 h after irradiation. The level of Ki-67 and DCX immunoreactivity decreased in a dose-dependent manner within the range of irradiation applied (0-4 Gy). In passive avoidance and object recognition memory test, the mice trained 1 day after acute irradiation (2 Gy) showed significant memory deficits, compared with the sham controls. In conclusion, the pattern of the hippocampus-dependent memory dysfunction is consistent with the change in neurogenesis after acute irradiation. It is suggested that a relatively low dose of ARS in adult ICR mice is sufficiently detrimental to interrupt the functioning of the hippocampus, including learning and memory, possibly through the inhibition of neurogenesis.
Collapse
Affiliation(s)
- Joong-Sun Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Center, Chonnam National University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Pradeep K, Park SH, Ko KC. Hesperidin a flavanoglycone protects against γ-irradiation induced hepatocellular damage and oxidative stress in Sprague–Dawley rats. Eur J Pharmacol 2008; 587:273-80. [DOI: 10.1016/j.ejphar.2008.03.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 03/05/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
|
81
|
Qin J, Chen D, Lu W, Xu H, Yan C, Hu H, Chen B, Qiao M, Zhao X. Preparation, characterization, and evaluation of liposomal ferulic acid in vitro and in vivo. Drug Dev Ind Pharm 2008; 34:602-8. [PMID: 18568910 DOI: 10.1080/03639040701833559] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the present study, various gradients were evaluated for efficient loading of weak acid into liposomes. Several salt gradients showed efficient loading of ferulic acid (FA) into liposomes and the optimized conditions were established in calcium acetate gradient method to obtain 80.2 +/- 5.2% entrapment efficiency (EE). Unilamellar vesicles were observed in micrographs and liposomal FA showed good stability. 80% of FA was released from liposomes within 5 h in vitro. There is a novel finding in this study: that drugs could be entrapped with a high solubility in the intraliposomal buffer in contrast to the low solubility in the extraliposomal buffer. The results of body distribution in rats indicated that liposomes could improve the body distribution of FA. For FA liposome, the concentration of FA in brain was two-fold higher than that of free FA. Liposomal FA was a promising approach to improve the body distribution of FA.
Collapse
Affiliation(s)
- Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Chao HM, Chen YH, Liu JH, Lee SM, Lee FL, Chang Y, Yeh PH, Pan WHT, Chi CW, Liu TY, Lui WY, Ho LT, Kuo CD, Lin DE, Chan CC, Yang DM, Lin AMY, Chao FP. Iron-generated hydroxyl radicals kill retinal cells in vivo: effect of ferulic acid. Hum Exp Toxicol 2008; 27:327-39. [PMID: 18684804 DOI: 10.1177/0960327108092294] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Siderosis bulbi is vision threatening. An investigation into its mechanisms and management is crucial. Experimental siderosis was established by intravitreous administration of an iron particle (chronic) or FeSO4 (acute). After siderosis, there was a significant dose-responsive reduction in eletroretinogram (a/b-wave) amplitude, and an increase in •OH level, greater when caused by 24 mM FeSO4 than that by 8 mM FeSO4. Furthermore, the FeSO4-induced oxidative stress was significantly blunted by 100 μM ferulic acid (FA). Siderosis also resulted in an excessive glutamate release, increased [Ca++]i, and enhanced superoxide dismutase immunoreactivity. The latter finding was consistent with the Western blot result. Obvious disorganization including loss of photoreceptor outer segments and cholinergic amacrines together with a wide-spreading ferric distribution across the retina was present, which were related to the eletro-retinographic and pathologic dysfunctions. Furthermore, b-wave reduction and amacrine damage were respectively, significantly, dose-dependently, and clearly ameliorated by FA. Thus, siderosis stimulates oxidative stress, and possibly, subsequent excitotoxicity, and calcium influx, which explains why the retina is impaired electro-physiologically and pathologically. Importantly, FA protects iron toxicity perhaps by acting as a free radical scavenger. This provides an approach to the study and treatment of the iron-related disorders such as retained intraocular iron and Alzheimer disease.
Collapse
Affiliation(s)
- HM Chao
- Department of Ophthalmology, Veterans General Hospital, Taipei, Taiwan, Republic of China; Department of Ophthalmology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China; Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China; Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, Republic of China; Department of Ophthalmology, China Medical University Hospital,
| | - YH Chen
- Department of Ophthalmology, Veterans General Hospital, Taipei, Taiwan, Republic of China; Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - JH Liu
- Department of Ophthalmology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China; Cheng Hsin Rehabilitation Medical Center, Taipei, Taiwan, Republic of China
| | - SM Lee
- Department of Ophthalmology, Veterans General Hospital, Taipei, Taiwan, Republic of China; Department of Ophthalmology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - FL Lee
- Department of Ophthalmology, Veterans General Hospital, Taipei, Taiwan, Republic of China; Department of Ophthalmology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Y Chang
- Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, Republic of China; Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - PH Yeh
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - WHT Pan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - CW Chi
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China; Department of Medical Research and Education, Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - TY Liu
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China; Department of Medical Research and Education, Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - WY Lui
- Department of Surgery, Veterans General Hospital, Taipei, Taiwan, Republic of China; Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - LT Ho
- Department of Medical Research and Education, Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - CD Kuo
- Department of Medical Research and Education, Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - DE Lin
- Department of Ophthalmology, Veterans General Hospital, Taipei, Taiwan, Republic of China; Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - CC Chan
- Department of Ophthalmology, Veterans General Hospital, Taipei, Taiwan, Republic of China; Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - DM Yang
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China; Department of Medical Research and Education, Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - AMY Lin
- Department of Medical Research and Education, Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - FP Chao
- Department of Ophthalmology, Veterans General Hospital, Taipei, Taiwan, Republic of China; Department of Medical Research and Education, Veterans General Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
83
|
Zhao Z, Moghadasian MH. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem 2008; 109:691-702. [PMID: 26049981 DOI: 10.1016/j.foodchem.2008.02.039] [Citation(s) in RCA: 402] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/12/2008] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
Abstract
Ferulic acid (FA) is an abundant dietary antioxidant which may offer beneficial effects against cancer, cardiovascular disease, diabetes and Alzheimer's disease. The impact of FA on health depends on its intake and pharmacokinetic properties. In this article, the literature pertaining to chemistry, natural sources, dietary intake and pharmacokinetic properties of FA is critically reviewed. High levels of FA are found in both free and bound forms in vegetables, fruits, cereals, and coffee. We have estimated that consumption of these foods may result in approximately 150-250mg/day of FA intake. FA can be absorbed along the entire gastrointestinal tract and metabolized mainly by the liver. The absorption and metabolism of FA seem to be dose dependent at least in experimental settings. Further pharmacokinetic and pharmacodynamic studies are required to characterize the impact of FA on human health.
Collapse
Affiliation(s)
- Zhaohui Zhao
- Department of Human Nutritional Sciences, Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research Centre, University of Manitoba, 351 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6
| | - Mohammed H Moghadasian
- Department of Human Nutritional Sciences, Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Research Centre, University of Manitoba, 351 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6.
| |
Collapse
|
84
|
Extraction of Ferulic Acid and Caffeic Acid with Ionic Liquids. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2007. [DOI: 10.1016/s1872-2040(08)60003-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
85
|
Prasad NR, Ramachandran S, Pugalendi KV, Menon VP. Ferulic acid inhibits UV-B–induced oxidative stress in human lymphocytes. Nutr Res 2007. [DOI: 10.1016/j.nutres.2007.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
86
|
Qin J, Chen D, Hu H, Cui Q, Qiao M, Chen B. Surface Modification of RGD-Liposomes for Selective Drug Delivery to Monocytes/Neutrophils in Brain. Chem Pharm Bull (Tokyo) 2007; 55:1192-7. [PMID: 17666843 DOI: 10.1248/cpb.55.1192] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, RGD peptide was coupled with ferulic acid (FA) liposomes for binding to monocytes and neutrophils in peripheral blood for brain targeting in response to leukocyte recruitment. Cholesterol (Ch) was esterified with succinic anhydride to introduce a carboxylic end group (Ch-COOH). Soybean phosphatidylcholine, cholesterol and Ch-COOH were in a molar ratio of 1 : 0.23 : 0.05. FA was loaded into liposomes with 80.2+/-5.2% entrapment efficiency (EE) using a calcium acetate gradient method since it was difficult to load FA by other methods. RGD peptide was a novel compound coupled with Ch-COOH via carbodiimide and N-hydroxysulfosuccinimide. The results of the in vitro flow cytometric study showed that RGD conjugation liposomes (RGD-liposomes) could bind to monocytes/neutrophils efficiently. The rats were subjected to intrastriatal microinjections of 100 microl of human recombinant IL-1beta to produce brain inflammation and subsequently sacrificed after 15, 30, 60 and 120 min of administration of three formulations (FA solution, FA liposome, RGD-coated FA liposome). The body distribution results showed that RGD-liposomes could be directed to the target site, i.e. the brain, by cell selectivity in case of an inflammatory response. For RGD coated liposomes, the concentration of FA in brain was 6-fold higher than that of FA solution and 3-fold higher than that of uncoated liposomes. MTT assay and flow cytometry were used in the pharmacodynamic studies where it was found that FA liposomes exhibited greater antioxidant activity to FA solution on U937 cell.
Collapse
Affiliation(s)
- Jing Qin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| | | | | | | | | | | |
Collapse
|