51
|
Characterization of Estrogenic Activity and Site-Specific Accumulation of Bisphenol-A in Epididymal Fat Pad: Interfering Effects on the Endocannabinoid System and Temporal Progression of Germ Cells. Int J Mol Sci 2021; 22:ijms22052540. [PMID: 33802611 PMCID: PMC7961766 DOI: 10.3390/ijms22052540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022] Open
Abstract
The objective of this work has been to characterize the estrogenic activity of bisphenol-A (BPA) and the adverse effects on the endocannabinoid system (ECS) in modulating germ cell progression. Male offspring exposed to BPA during the foetal-perinatal period at doses below the no-observed-adverse-effect-level were used to investigate the exposure effects in adulthood. Results showed that BPA accumulates specifically in epididymal fat rather than in abdominal fat and targets testicular expression of 3β-hydroxysteroid dehydrogenase and cytochrome P450 aromatase, thus promoting sustained increase of estrogens and a decrease of testosterone. The exposure to BPA affects the expression levels of some ECS components, namely type-1 (CB1) and type-2 cannabinoid (CB2) receptor and monoacylglycerol-lipase (MAGL). Furthermore, it affects the temporal progression of germ cells reported to be responsive to ECS and promotes epithelial germ cell exfoliation. In particular, it increases the germ cell content (i.e., spermatogonia while reducing spermatocytes and spermatids), accelerates progression of spermatocytes and spermatids, promotes epithelial detachment of round and condensed spermatids and interferes with expression of cell–cell junction genes (i.e., zonula occcludens protein-1, vimentin and β-catenin). Altogether, our study provides evidence that early exposure to BPA produces in adulthood sustained and site-specific BPA accumulation in epididymal fat, becoming a risk factor for the reproductive endocrine pathways associated to ECS.
Collapse
|
52
|
Lombó M, Herráez P. The effects of endocrine disruptors on the male germline: an intergenerational health risk. Biol Rev Camb Philos Soc 2021; 96:1243-1262. [PMID: 33660399 DOI: 10.1111/brv.12701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Environmental pollution is becoming one of the major concerns of society. Among the emerging contaminants, endocrine-disrupting chemicals (EDCs), a large group of toxicants, have been the subject of many scientific studies. Besides the capacity of these compounds to interfere with the endocrine system, they have also been reported to exert both genotoxic and epigenotoxic effects. Given that spermatogenesis is a coordinated process that requires the involvement of several steroid hormones and that entails deep changes in the chromatin, such as DNA compaction and epigenetic remodelling, it could be affected by male exposure to EDCs. A great deal of evidence highlights that these compounds have detrimental effects on male reproductive health, including alterations to sperm motility, sexual function, and gonad development. This review focuses on the consequences of paternal exposure to such chemicals for future generations, which still remain poorly known. Historically, spermatozoa have long been considered as mere vectors delivering the paternal haploid genome to the oocyte. Only recently have they been understood to harbour genetic and epigenetic information that plays a remarkable role during offspring early development and long-term health. This review examines the different modes of action by which the spermatozoa represent a key target for EDCs, and analyses the consequences of environmentally induced changes in sperm genetic and epigenetic information for subsequent generations.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Animal Reproduction, INIA, Puerta de Hierro 18, Madrid, 28040, Spain
| | - Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| |
Collapse
|
53
|
Mokra K. Endocrine Disruptor Potential of Short- and Long-Chain Perfluoroalkyl Substances (PFASs)-A Synthesis of Current Knowledge with Proposal of Molecular Mechanism. Int J Mol Sci 2021; 22:2148. [PMID: 33670069 PMCID: PMC7926449 DOI: 10.3390/ijms22042148] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Endocrine disruptors are a group of chemical compounds that, even in low concentrations, cause a hormonal imbalance in the body, contributing to the development of various harmful health disorders. Many industry compounds, due to their important commercial value and numerous applications, are produced on a global scale, while the mechanism of their endocrine action has not been fully understood. In recent years, per- and polyfluoroalkyl substances (PFASs) have gained the interest of major international health organizations, and thus more and more studies have been aimed to explain the toxicity of these compounds. PFASs were firstly synthesized in the 1950s and broadly used in the industry in the production of firefighting agents, cosmetics and herbicides. The numerous industrial applications of PFASs, combined with the exceptionally long half-life of these substances in the human body and extreme environmental persistence, result in a common and chronic exposure of the general population to their action. Available data have suggested that human exposure to PFASs can occur during different stages of development and may cause short- or/and long-term health effects. This paper synthetizes the current literature reports on the presence, bioaccumulation and, particularly, endocrine toxicity of selected long- and short-chain PFASs, with a special emphasis on the mechanisms underlying their endocrine actions.
Collapse
Affiliation(s)
- Katarzyna Mokra
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St., 90-236 Lodz, Poland
| |
Collapse
|
54
|
Yang X, Feng Y, Li Y, Chen D, Xia X, Li J, Li F. AR regulates porcine immature Sertoli cell growth via binding to RNF4 and miR-124a. Reprod Domest Anim 2020; 56:416-426. [PMID: 33305371 DOI: 10.1111/rda.13877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022]
Abstract
Sertoli cells are the only somatic cells in the seminiferous epithelium which directly contact with germ cells. Sertoli cells exhibit polarized alignment at the basal membrane of seminiferous tubules to maintain the microenvironment for growth and development of germ cells, and therefore play a crucial role in spermatogenesis. Androgens exert their action through androgen receptor (AR) and AR signalling in the testis is essential for maintenance of spermatogonial numbers, blood-testis barrier integrity, completion of meiosis, adhesion of spermatids and spermiation. In the present study, we demonstrated that AR gene could promote the proliferation of immature porcine Sertoli cells (ST cells) and the cell cycle procession, and accelerate the transition from G1 phase into S phase in ST cells. Meanwhile, miR-124a could affect the proliferation and cell cycle procession of ST cells by targeting 3'-UTR of AR gene. Furthermore, AR bound to the RNF4 via AR DNA-binding domain (DBD) and we verified that RNF4 was necessary for AR to regulate the growth of ST cells. Above all, this study suggests that AR regulates ST cell growth via binding to RNF4 and miR-124a, which may help us to further understand the function of AR in spermatogenesis.
Collapse
Affiliation(s)
- Xinpeng Yang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Yue Feng
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Yang Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Dake Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Xuanyan Xia
- College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Jialian Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China
| | - Fenge Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, PR China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, PR China
| |
Collapse
|
55
|
Li J, Quan XJ, Chen G, Hong JW, Wang Q, Xu LL, Wang BH, Yu ZH, Yu HM. PFOS-induced placental cell growth inhibition is partially mediated by lncRNA H19 through interacting with miR-19a and miR-19b. CHEMOSPHERE 2020; 261:127640. [PMID: 32738709 DOI: 10.1016/j.chemosphere.2020.127640] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 05/15/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS), a persistent environmental pollutant, has been associated with decreased birth weight. The dysregulation of long non-coding RNA (lncRNA) H19 has been implicated in pregnancy complications such as intra-uterine growth retardation (IUGR), preeclampsia (PE), however, the expression and function of H19 in PFOS-exerted detrimental effects in the placenta remains to be unveiled. Here, we explored the role of H19 in PFOS-induced placental toxicity. Results showed that PFOS caused decreased cell growth in human HTR-8/SVneo cells. Expression of H19 was increased, while miR-19a and miR-19b expression were decreased in mice placenta tissues and in HTR-8/SVneo cells exposed to PFOS. A significant hypomethylation was observed at the H19 promoter in the placentas of mice that were gestational exposed to high dose of PFOS. H19 was confirmed to bind with miR-19a and miR-19b, targeting SMAD4. Furthermore, H19 appeared to partially improve the cell growth of HTR-8/SVneo cells exposed to PFOS via upregulation of miR-19a and miR-19b. In summary, our findings revealed that H19/miR-19a and miR-19b/SMAD4 axis exerted important functions in PFOS-induced placenta cell toxicity.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Xiao-Jie Quan
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Gang Chen
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Jia-Wei Hong
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Qi Wang
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Lin-Lin Xu
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Bing-Hua Wang
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Ze-Hua Yu
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Hong-Min Yu
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
56
|
Li J, Ji Z, Luo X, Li Y, Yuan P, Long J, Shen N, Lu Q, Zeng Q, Zhong R, Shen Y, Cheng L. Urinary bisphenol A and its interaction with ESR1 genetic polymorphism associated with non-small cell lung cancer: findings from a case-control study in Chinese population. CHEMOSPHERE 2020; 254:126835. [PMID: 32348927 DOI: 10.1016/j.chemosphere.2020.126835] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor, was reported to promote migration and invasion of lung cancer cells, but findings in human study is absent. A case-control study in Chinese population was conducted to evaluate the association between BPA exposure and non-small cell lung cancer (NSCLC), and explore the interaction between BPA exposure and estrogen-related genetic polymorphism on NSCLC. BPA concentrations were measured in urine samples using an UHPLC-MS method and rs2046210 in estrogen receptor α (ESR1) gene was genotyped by TaqMan genotyping system. Logistic regression was performed to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for the association analyses. As a result, 615 NSCLC cases and 615 healthy controls were enrolled from Wuhan, central China. The mean age was 58.0 (SD: 7.9) years old for controls and 59.2 (SD: 8.8) years old for cancer cases. The creatinine-adjusted BPA levels were significantly higher in NSCLC cases than that in healthy controls (median: 0.97 vs 0.73 μg/L, P < 0.001). Exposure to high levels of BPA was significantly associated with NSCLC (adjusted OR = 1.91, 95%CI: 1.39-2.62, P < 0.001 for the highest quartile). We also observed a shallow concave dose-response relationship about the overall association between BPA and NSCLC. Moreover, interaction analyses showed that BPA exposure interacted multiplicatively with rs2046210, with a marginal P value (P = 0.049), to contribute to NSCLC. In conclusion, exposure to high levels BPA may be associated with NSCLC and the relationship may be modified by genetic polymorphism in ESR1.
Collapse
Affiliation(s)
- Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Ji
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peihong Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
57
|
Meng Y, Yannan Z, Ren L, Qi S, Wei W, Lihong J. Adverse reproductive function induced by maternal BPA exposure is associated with abnormal autophagy and activating inflamation via mTOR and TLR4/NF-κB signaling pathways in female offspring rats. Reprod Toxicol 2020; 96:185-194. [PMID: 32634549 DOI: 10.1016/j.reprotox.2020.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/03/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) can affect reproductive function, but its mechanism of reproductive toxicity is unclear, and the effect of BPA on the onset of puberty was inconsistent. The main purpose of this study is to investigate the effects of perinatal exposure to BPA on the onset of puberty and reproductive function, and its mechanism from the aspect of autophagy and inflammation in ovarian and uterus tissues of female offspring. Twenty-one pregnant SD rats were randomly divided into three groups: Control group, 1 μg/mL BPA (LBPA) and 10 μg/mL BPA group (HBPA) via drinking water from gestational day 6 to the end of lactation. After weaning, female offspring rats were fed a normal diet and drinking water for 5 weeks. The levels of E2, LH, FSH, T, and IL-6 and TNF-α, and the onset of puberty, and morphological changes in ovarian and uterine were determined in female offspring at 8 weeks. The levels of TLR4, NF-κB, PI3K/Akt/mTOR and autophagy related protein in uterine tissue were also detected. Our results indicated that perinatal exposure to BPA advanced puberty, which was associated with increased serum E2, LH and FSH levels. There was a significantly thin endometrium epithelium in HBPA group compared with control group, which may affect reproductive function. The adverse effect of perinatal BPA exposure on reproductive function maybe was associated with the activation of inflammation and abnormal autophagy via TLR4/NF-κB and mTOR signaling pathways respectively in female offspring.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Zhao Yannan
- Reproductive Center, Shenyang Maternal and Infant Hospital, Shenyang 110011, China
| | - Lin Ren
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Sun Qi
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Wei Wei
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China; Reproductive Center, Shenyang Maternal and Infant Hospital, Shenyang 110011, China
| | - Jia Lihong
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
58
|
Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, Oriente F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int J Mol Sci 2020; 21:E5761. [PMID: 32796699 PMCID: PMC7460848 DOI: 10.3390/ijms21165761] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is an organic synthetic compound serving as a monomer to produce polycarbonate plastic, widely used in the packaging for food and drinks, medical devices, thermal paper, and dental materials. BPA can contaminate food, beverage, air, and soil. It accumulates in several human tissues and organs and is potentially harmful to human health through different molecular mechanisms. Due to its hormone-like properties, BPA may bind to estrogen receptors, thereby affecting both body weight and tumorigenesis. BPA may also affect metabolism and cancer progression, by interacting with GPR30, and may impair male reproductive function, by binding to androgen receptors. Several transcription factors, including PPARγ, C/EBP, Nrf2, HOX, and HAND2, are involved in BPA action on fat and liver homeostasis, the cardiovascular system, and cancer. Finally, epigenetic changes, such as DNA methylation, histones modification, and changes in microRNAs expression contribute to BPA pathological effects. This review aims to provide an extensive and comprehensive analysis of the most recent evidence about the potential mechanisms by which BPA affects human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT “Genomic of Diabetes” of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), 80131 Naples, Italy; (I.C.); (F.F.); (G.P.); (C.M.); (F.B.); (F.O.)
| | | |
Collapse
|
59
|
Amjad S, Rahman MS, Pang MG. Role of Antioxidants in Alleviating Bisphenol A Toxicity. Biomolecules 2020; 10:biom10081105. [PMID: 32722388 PMCID: PMC7465987 DOI: 10.3390/biom10081105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Bisphenol A (BPA) is an oestrogenic endocrine disruptor widely used in the production of certain plastics, e.g., polycarbonate, hard and clear plastics, and epoxy resins that act as protective coating for food and beverage cans. Human exposure to this chemical is thought to be ubiquitous. BPA alters endocrine function, thereby causing many diseases in human and animals. In the last few decades, studies exploring the mechanism of BPA activity revealed a direct link between BPA-induced oxidative stress and disease pathogenesis. Antioxidants, reducing agents that prevent cellular oxidation reactions, can protect BPA toxicity. Although the important role of antioxidants in minimizing BPA stress has been demonstrated in many studies, a clear consensus on the associated mechanisms is needed, as well as the directives on their efficacy and safety. Herein, considering the distinct biochemical properties of BPA and antioxidants, we provide a framework for understanding how antioxidants alleviate BPA-associated stress. We summarize the current knowledge on the biological function of enzymatic and non-enzymatic antioxidants, and discuss their practical potential as BPA-detoxifying agents.
Collapse
|
60
|
Castellini C, Totaro M, Parisi A, D'Andrea S, Lucente L, Cordeschi G, Francavilla S, Francavilla F, Barbonetti A. Bisphenol A and Male Fertility: Myths and Realities. Front Endocrinol (Lausanne) 2020; 11:353. [PMID: 32595601 PMCID: PMC7304337 DOI: 10.3389/fendo.2020.00353] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Bisphenol A (BPA) represents the main chemical monomer of epoxy resins and polycarbonate plastics. The environmental presence of BPA is widespread, and it can easily be absorbed by the human body through dietary and transdermal routes, so that more than 90% of the population in western countries display detectable BPA levels in the urine. As BPA is qualified as an endocrine disruptor, growing concern is rising for possible harmful effects on human health. This review critically discusses the available literature dealing with the possible impact of BPA on male fertility. In rodent models, the in vivo exposure to BPA negatively interfered with the regulation of spermatogenesis throughout the hypothalamic-pituitary-gonadal axis. Furthermore, in in vitro studies, BPA promoted mitochondrial dysfunction and oxidative/apoptotic damages in spermatozoa from different species, including humans. To date, the claimed clinical adverse effects on male fertility are largely based on the results from studies assessing the relationship between urinary BPA concentration and conventional semen parameters. These studies, however, produced controversial evidence due to heterogeneity in the extent of BPA exposure, type of population, and enrollment setting. Moreover, the cause-effect relationship cannot be established due to the cross-sectional design of the studies as well as the large spontaneous between- and within-subject variability of semen parameters. The best evidence of an adverse effect of BPA on male fertility would be provided by prospective studies on clinically relevant endpoints, including natural or medically assisted pregnancies among men either with different exposure degrees (occupational/environmental) or with different clinical conditions (fertile/subfertile).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Arcangelo Barbonetti
- Medical Andrology, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
61
|
Çiğ B, Yildizhan K. Resveratrol diminishes bisphenol A-induced oxidative stress through TRPM2 channel in the mouse kidney cortical collecting duct cells. J Recept Signal Transduct Res 2020; 40:570-583. [PMID: 32515636 DOI: 10.1080/10799893.2020.1769657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bisphenol A (BisPH-A) is a latent danger that threatens our health, which we frequently exposure in our modern life (e.g. the widespread use of drinking water in plastic pet bottles). But the BisPH-A induced transient receptor potential melastatin 2 (TRPM2)-mediated oxidative stress and apoptosis in these cells has not been studied yet. Calcium (Ca2+) plays an important role in a versatile intracellular signal transduction that works over a wide range to regulate oxidative stress processes. TRPM2 is activated by oxidative stress and it has emerged as an important Ca2+ signaling mechanism in a variety of cells, contributing many cellular functions including cell death. Resveratrol (RESV), which belongs to the polyphenol group, acts as an antioxidant, eliminating cellular oxidative stress and increasing the body's resistance to diseases. The current study aimed to elucidate the effect of antioxidant resveratrol on TRPM2-mediated oxidative stress induced by BisPH-A exposure in the mouse kidney cortical collecting duct cells (mpkCCDcl4). The cells were divided into four groups as control, resveratrol (50 µM for 24 h), BisPH-A (100 µM for 24 h) and BisPH-A + RESV. Intracellular free Ca2+ concentrations and TRPM2 channel currents were high in BisPH-A treated cells, but decreased with resveratrol treatment. In addition, BisPH-A induced mitochondrial membrane depolarization, reactive oxygen species (ROS), caspase 3, caspase 9 and apoptosis values were decreased by the resveratrol treatment. In conclusion, resveratrol protected cells from BisPH-A induced oxidative damage. In this study, we showed that TRPM2 channel mediates this protective effect of resveratrol.
Collapse
Affiliation(s)
- Bilal Çiğ
- Department of Physiology, Faculty of Medicine, Ahi Evran University, Kirsehir, Turkey
| | - Kenan Yildizhan
- Department of Biophysics, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
62
|
Farounbi AI, Ngqwala NP. Occurrence of selected endocrine disrupting compounds in the eastern cape province of South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17268-17279. [PMID: 32152855 PMCID: PMC7192885 DOI: 10.1007/s11356-020-08082-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/11/2020] [Indexed: 05/24/2023]
Abstract
Endocrine-disrupting compounds are attracting attention worldwide because of their effects on living things in the environment. Ten endocrine disrupting compounds: 4-nonylphenol, 2,4-dichlorophenol, estrone, 17β-estradiol, bisphenol A, 4-tert-octylphenol, triclosan, atrazine, imidazole and 1,2,4-triazole were investigated in four rivers and wastewater treatment plants in this study. Rivers were sampled at upstream, midstream and downstream reaches, while the influent and effluent samples of wastewater were collected from treatment plants near the receiving rivers. Sample waters were freeze-dried followed by extraction of the organic content and purification by solid-phase extraction. Concentrations of the compounds in the samples were determined with ultra-high performance liquid chromatography-tandem mass spectrometry. The instrument was operated in the positive electrospray ionization (ESI) mode. The results showed that these compounds are present in the samples with nonylphenol > dichlorophenol > bisphenol A > triclosan > octylphenol > imidazole > atrazine > triazole > estrone > estradiol. Nonylphenol has its highest concentration of 6.72 μg/L in King Williams Town wastewater influent and 2.55 μg/L in midstream Bloukrans River. Dichlorophenol has its highest concentration in Alice wastewater influent with 2.20 μg/L, while it was 0.737 μg/L in midstream Bloukrans River. Uitenhage wastewater effluent has bisphenol A concentration of 1.684 μg/L while it was 0.477 μg/L in the downstream samples of the Bloukrans River. Generally, the upstream samples of the rivers had lesser concentrations of the compounds. The wastewater treatment plants were not able to achieve total removal of the compounds in the wastewater while runoffs and wastes dump from the cities contributed to the concentrations of the compounds in the rivers.
Collapse
Affiliation(s)
- Adebayo I. Farounbi
- Environmental Health and Biotechnology Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown, 6140 South Africa
| | - Nosiphiwe P. Ngqwala
- Environmental Health and Biotechnology Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown, 6140 South Africa
| |
Collapse
|
63
|
Shan Q, Li S, Cao Q, Yue C, Niu M, Chen X, Shi L, Li H, Gao S, Liang J, Yu R, Liu X. Inhibition of chromosomal region maintenance 1 suppresses the migration and invasion of glioma cells via inactivation of the STAT3/MMP2 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:193-201. [PMID: 32392910 PMCID: PMC7193913 DOI: 10.4196/kjpp.2020.24.3.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/07/2023]
Abstract
Chromosomal region maintenance 1 (CRM1) is associated with an adverse prognosis in glioma. We previously reported that CRM1 inhibition suppressed glioma cell proliferation both in vitro and in vivo. In this study, we investigated the role of CRM1 in the migration and invasion of glioma cells. S109, a novel reversible selective inhibitor of CRM1, was used to treat Human glioma U87 and U251 cells. Cell migration and invasion were evaluated by wound-healing and transwell invasion assays. The results showed that S109 significantly inhibited the migration and invasion of U87 and U251 cells. However, mutation of Cys528 in CRM1 abolished the inhibitory activity of S109 in glioma cells. Furthermore, we found that S109 treatment decreased the expression level and activity of MMP2 and reduced the level of phosphorylated STAT3 but not total STAT3. Therefore, the inhibition of migration and invasion induced by S109 may be associated with the downregulation of MMP2 activity and expression, and inactivation of the STAT3 signaling pathway. These results support our previous conclusion that inhibition of CRM1 is an attractive strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Qianqian Shan
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shengsheng Li
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Qiyu Cao
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Chenglong Yue
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Mingshan Niu
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiangyu Chen
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Lin Shi
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Huan Li
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shangfeng Gao
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jun Liang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
64
|
Mechanisms of Testicular Disruption from Exposure to Bisphenol A and Phtalates. J Clin Med 2020; 9:jcm9020471. [PMID: 32046352 PMCID: PMC7074154 DOI: 10.3390/jcm9020471] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Great attention has been paid in recent years to the harmful effects of various chemicals that interfere with our natural hormone balance, collectively known as endocrine-disrupting chemicals (EDCs) or endocrine disruptors. The effects on the reproductive system of bisphenol A (BPA) and phthalates have received particular attention: while they have a short half-life, they are so widespread that human exposure can be considered as continuous. Evidence is often limited to the animal model, disregarding the likelihood of human exposure to a mixture of contaminants. Data from animal models show that maternal exposure probably has harmful effects on the male fetus, with an increased risk of urogenital developmental abnormalities. After birth, exposure is associated with changes in the hypothalamic-pituitary-testicular axis, hindering the development and function of the male genital pathways through the mediation of inflammatory mechanisms and oxidative stress. The epidemiological and clinical evidence, while generally confirming the association between reproductive abnormalities and some phthalate esters and BPA, is more contradictory, with wildly different findings. The aim of this review is therefore to provide an update of the potential mechanisms of the damage caused by BPA and phthalates to reproductive function and a review of the clinical evidence currently available in the literature.
Collapse
|
65
|
Stefanowicz-Hajduk J, Ochocka JR. Real-time cell analysis system in cytotoxicity applications: Usefulness and comparison with tetrazolium salt assays. Toxicol Rep 2020; 7:335-344. [PMID: 32090021 PMCID: PMC7025972 DOI: 10.1016/j.toxrep.2020.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 01/08/2023] Open
Abstract
RTCA system allows to easily monitor cell adhesion and proliferation. The real-time impedance technique is widely used in many toxicological studies. RTCA results are generally comparable with results from tetrazolium salts assays. RTCA analysis should be limited when drugs with electroactive additives are tested. Tetrazolium salts assays should be avoided when colored compounds are studied.
Real-time cell analysis (RTCA) is a technique based on impedance and microsensor electrodes. RTCA system allows label-free, real-time, and continuous monitoring of cell adhesion, morphology, and rate of cell proliferation. The system offers a wide range of applications, mainly in toxicological studies, new drug screening, and microbiology. Here, we describe the usefulness of the system in different applications and compare this technology with conventional endpoint assays based on tetrazolium salts. We present advantages and disadvantages of the system and endpoint methods and their limitations in cytotoxicity investigations.
Collapse
Affiliation(s)
- Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Hallera 107, 80-416, Gdańsk, Poland
| | - J Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Al. Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
66
|
Cavaliere F, Lorenzetti S, Cozzini P. Molecular modelling methods in food safety: Bisphenols as case study. Food Chem Toxicol 2020; 137:111116. [PMID: 31931072 DOI: 10.1016/j.fct.2020.111116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/02/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022]
Abstract
Bisphenol A (BPA), a synthetic compound widely used as a building block for polycarbonate plastics, has been declared in the European Union (EU) as a substance of very high concern (SVHC). A series of BPA alternatives and derivatives (bisphenols/BPs) with similar physical-chemical properties have been produced and used by companies for substituting it. To evaluate the estrogenic and androgenic binding activity of 26 BPs, a non-statistical in silico approach has been applied. The results of molecular docking analyses applied on six different nuclear receptors (NRs) have revealed that: i) some BPA metabolites could lower the harmful effects of BPA exposure; ii) BPS is a lower interactor for all NRs, but it does not appear safer at all for androgen receptor (AR), for which its binding activity is found similar to a pharmacological anti-androgen; iii) only a BP has been found as a safer compound for all NRs considered. Moreover, molecular dynamic simulation of three BPs on ERα have revealed that the presence of negative hydrophobic interactions could induce a decrease in receptor activity. Overall, the present results demonstrate that in silico methods could be a valid approach to screen estrogenic and androgenic activity of food contact materials (FCMs).
Collapse
Affiliation(s)
- Francesca Cavaliere
- Molecular Modelling Lab, Department of Food and Drug, University of Parma, Parco Area Delle Scienze 17/A, I-43124, Parma, Italy.
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, I-00161, Rome, Italy.
| | - Pietro Cozzini
- Molecular Modelling Lab, Department of Food and Drug, University of Parma, Parco Area Delle Scienze 17/A, I-43124, Parma, Italy.
| |
Collapse
|
67
|
Degradation of Bisphenol A by CeCu Oxide Catalyst in Catalytic Wet Peroxide Oxidation: Efficiency, Stability, and Mechanism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234675. [PMID: 31771209 PMCID: PMC6926835 DOI: 10.3390/ijerph16234675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022]
Abstract
The CeCu oxide catalyst CC450 was prepared by citric acid complex method and the catalytic wet peroxide oxidation (CWPO) reaction system was established with bisphenol A (BPA) as the target pollutant. By means of characterization, this research investigated the phase structure, surface morphology, reducibility, surface element composition, and valence of the catalyst before and after reuse. The effects of catalyst dosage and pH on the removal efficiency of BPA were also investigated. Five reuse experiments were carried out to investigate the reusability of the catalyst. In addition, this research delved into the changes of pH value, hydroxyl radical concentration, and ultraviolet-visible spectra of BPA in CWPO reaction system. The possible intermediate products were analyzed by gas chromatography-mass spectrometry (GC-MS). The catalytic mechanism and degradation pathway were also discussed. The results showed that after reaction of 65 min, the removal of BPA and total organic carbon (TOC) could reach 87.6% and 77.9%, respectively. The catalyst showed strong pH adaptability and had high removal efficiency of BPA in the range of pH 1.6-7.9. After five reuses, the removal of BPA remained above 86.7%, with the structure of the catalyst remaining stable to a large extent. With the reaction proceeding, the pH value of the reaction solution increased, the concentration of OH radicals decreased, and the ultraviolet-visible spectrum of BPA shifted to the short wavelength direction, that is, the blue shift direction. The catalysts degraded BPA rapidly in CWPO reaction system and the C-C bond or O-H bond in BPA could be destroyed in a very short time. Also, there may have been two main degradation paths of phenol and ketone.
Collapse
|
68
|
Yanagisawa R, Koike E, Win-Shwe TT, Takano H. Oral exposure to low dose bisphenol A aggravates allergic airway inflammation in mice. Toxicol Rep 2019; 6:1253-1262. [PMID: 31788436 PMCID: PMC6880024 DOI: 10.1016/j.toxrep.2019.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023] Open
Abstract
Oral exposure to BPA relevant to human exposure aggravated allergic asthma. Low dose BPA with allergen reduced lung mRNA levels of hormone receptors. Low dose BPA with allergen altered lymph node and bone marrow microenvironments.
Bisphenol A (BPA) is widely used in many consumer products and has adverse effects on human health including allergic diseases. We investigated the effects of low dose BPA, comparable to actual human oral exposure, on allergic asthma in mice. C3H/HeJ male mice were fed a chow diet containing BPA (equivalent to 0.09, 0.90, or 9.01 μg/kg/day) and were intratracheally administered ovalbumin (OVA, 1 μg/animal) every two weeks from 5–11 weeks of age. All doses of BPA plus OVA enhanced pulmonary inflammation and airway hyperresponsiveness, and increased lung mRNA levels of Th2 cytokine/chemokine, and serum OVA-specific IgE and IgG1 compared to OVA alone, with greater effects observed in the middle- and high-dose BPA plus OVA groups. Furthermore, high-dose BPA with OVA decreased lung mRNA levels of ERβ and AR compared with OVA. Furthermore, BPA enhanced OVA-restimulated cell proliferation and protein levels of IL-4 and IL-5 in mediastinal lymph node (MLN) cells in OVA-sensitized mice. In bone marrow (BM) cells, middle-dose BPA with OVA increased Gr-1 expression. In conclusion, oral exposure to low-dose BPA at levels equivalent to human exposure can aggravate allergic asthmatic responses through enhancement of Th2-skewed responses, lung hormone receptor downregulation, and MLN and BM microenvironment change.
Collapse
Key Words
- AhR, aryl hydrocarbon receptor
- Allergic asthma
- Ar, androgen receptor
- BM, bone marrow
- BPA, bisphenol a
- Bisphenol A
- ER, estrogen receptor
- Endocrine disruptor
- FACS, fluorescence-activated cell-sorting
- GR, glucocorticoid receptor
- Gr-1, granulocyte-differentiation antigen
- Hormone receptor
- Hprt1, hypoxanthine phosphoribosyltransferase 1
- IFN-γ, interferon-gamma
- IL, interleukin
- Ig, immunoglobulin
- Low dose effects
- MCP-1, monocyte chemoattractant protein-1
- MIP-1α, macrophage inflammatory protein 1-alpha
- MLN, mediastinal lymph node
- OVA, ovalbumin
- RANTES, normal T cell expressed and secreted
- SDF-1α, stromal cell derived factor 1 alpha
- Th, T helper
- Th2 response
Collapse
Affiliation(s)
- Rie Yanagisawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Eiko Koike
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
69
|
Nelson W, Liu DY, Yang Y, Zhong ZH, Wang YX, Ding YB. In utero exposure to persistent and nonpersistent endocrine-disrupting chemicals and anogenital distance. A systematic review of epidemiological studies†. Biol Reprod 2019; 102:276-291. [DOI: 10.1093/biolre/ioz200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Abstract
Anti-androgenic endocrine-disrupting chemicals (EDCs) can cross the placenta to modify early offspring sexual dimorphic markers. These changes are linked to anogenital distance (AGD), which is an androgen-sensitive anthropometric parameter used as a biomarker of perineal growth and caudal migration of the genital tubercle. This review aimed to summarize strength of evidence for associations of in utero exposure to EDCs with AGD and to identify gaps and limitations in the literature so as to inform future research. We performed an electronic search of English literature in September 2019 in medical literature analysis and retrieval system online (MEDLINE), Web of Science and Toxline. We included epidemiological studies that examined in utero exposure to persistent and nonpersistent EDCs and considered AGD in offspring as an outcome. Our review contained 16 investigations examining exposure to persistent EDCs (nine studies) and nonpersistent EDCs (seven studies). Some individual studies reported an inverse association between exposure to bisphenol A (BPA), dioxins, perfluoroalkyl substances, and organochlorides and AGD in both male and female offspring. Meta-analysis of three studies found a small reduction of AGD in female offspring exposed to BPA. The number of studies per chemical is small, and number of subjects examined is limited; so, replication of these results is needed. To achieve more specificity and better replication of results, future studies should establish the association of nonpersistent EDCs using multiple urine samples, evaluate the cumulative impact of exposure to a mixture of anti-androgenic chemicals, and offer adequate consideration of more maternal- and children-related confounding factors.
Collapse
Affiliation(s)
- William Nelson
- Joint International Research Laboratory of Reproduction and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania
| | - Ding-Yuan Liu
- Joint International Research Laboratory of Reproduction and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Zhao-Hui Zhong
- Department of Epidemiology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Ying-Xiong Wang
- Joint International Research Laboratory of Reproduction and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yu-bin Ding
- Joint International Research Laboratory of Reproduction and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, P.R. China
| |
Collapse
|
70
|
Zhang S, Bao J, Gong X, Shi W, Zhong X. Hazards of bisphenol A -- blocks RNA splicing leading to abnormal testicular development in offspring male mice. CHEMOSPHERE 2019; 230:432-439. [PMID: 31121507 DOI: 10.1016/j.chemosphere.2019.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/19/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
This study was conducted to investigate the effects of maternal exposure to BPA on testicular development in offspring males. Pregnant Kunming mice were randomly divided into 7 groups with 20 mice in each group. Group A was the control group and the mice were given distilled water orally. Mice in groups B, C, D, E, F, G received BPA orally at a dose of 0.05 mg/kg/d, 0.5 mg/kg/d, 5 mg/kg/d, 10 mg/kg/d, 20 mg/kg/d, 50 mg/kg/d, respectively. F0 mice were exposed to BPA for 40 days from gestation day 0 to lactation day 21. F1 male mice were sacrificed at weaning (postnatal day 21). Histological observations revealed architectural damages in testis in BPA exposed groups. The testicular organ index increased significantly when the BPA oral exposure dose was above 20 mg/kg/d (P < 0.05). BPA contents in serum of F1 male mice increased significantly when BPA was above 5 mg/kg/d (P < 0.05), while the contents significant increased in maternal serum when BPA was higher than 0.5 mg/kg/d. The damage of cell nuclear DNA of testis was significantly aggravated when BPA was above 5 mg/kg/d. The expression of AR in the testis was significantly increased when BPA was above 20 mg/kg/d (P < 0.05). Transcriptome sequencing showed that the Snrnp 40 which encoding U5 snRNA subunit was significantly up-regulated in spliceosome pathway, and the Hnrnpu which encoding splicing universal protein component was significantly down-regulated. The blockage of spliceosome might be one of the reasons why BPA affects testicular development.
Collapse
Affiliation(s)
- Shilei Zhang
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071001, China; College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Xincheng Gong
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Xiuhui Zhong
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071001, China; College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China.
| |
Collapse
|
71
|
Rahman MS, Pang MG. Understanding the molecular mechanisms of bisphenol A action in spermatozoa. Clin Exp Reprod Med 2019; 46:99-106. [PMID: 31484226 PMCID: PMC6736506 DOI: 10.5653/cerm.2019.00276] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical that is capable of interfering with the normal function of the endocrine system in the body. Exposure to this chemical from BPA-containing materials and the environment is associated with deleterious health effects, including male reproductive abnormalities. A search of the literature demonstrated that BPA, as a toxicant, directly affects the cellular oxidative stress response machinery. Because of its hormone-like properties, it can also bind with specific receptors in target cells. Therefore, the tissue-specific effects of BPA mostly depend on its endocrine-disrupting capabilities and the expression of those particular receptors in target cells. Although studies have shown the possible mechanisms of BPA action in various cell types, a clear consensus has yet to be established. In this review, we summarize the mechanisms of BPA action in spermatozoa by compiling existing information in the literature.
Collapse
Affiliation(s)
- Md Saidur Rahman
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, Korea
| |
Collapse
|
72
|
Ma Y, Liu H, Wu J, Yuan L, Wang Y, Du X, Wang R, Marwa PW, Petlulu P, Chen X, Zhang H. The adverse health effects of bisphenol A and related toxicity mechanisms. ENVIRONMENTAL RESEARCH 2019; 176:108575. [PMID: 31299621 DOI: 10.1016/j.envres.2019.108575] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/09/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA) is an industrial component commonly used in synthesis of polycarbonate plastics, epoxy resin and other polymer materials. Due to its mass productions and widespread applications, the presence of BPA is ubiquitous in the environment. BPA can enter the body via different ways such as digestive tract, respiratory tract and dermal tract. As an endocrine disruptor, BPA has estrogen-like and anti-androgen effects causing damages to different tissues and organs, including reproductive system, immune system and neuroendocrine system, etc. Recently, it has been shown that BPA could induce carcinogenesis and mutagenesis in animal models. Here, the underlying mechanisms of BPA-induced multi-organ toxicity were well summarized, involving the receptor pathways, disruption of neuroendocrine system, inhibition of enzymes, modulation of immune and inflammatory responses, as well as genotoxic and epigenetic mechanisms. The aim of this review is to compile the available current research data regarding BPA and provide an overview of the current status of BPA exposure and relevant health effects covering reproductive, developmental, metabolic, immuno, respiratory, hepatic and renal toxicity and carcinogenesis of BPA. This review provides comprehensive data of BPA toxicity on human health and related mechanisms. We also identify any missing data which should be addressed by further studies.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | | | | | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
73
|
González-Rojo S, Lombó M, Fernández-Díez C, Herráez MP. Male exposure to bisphenol a impairs spermatogenesis and triggers histone hyperacetylation in zebrafish testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:368-379. [PMID: 30818116 DOI: 10.1016/j.envpol.2019.01.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 05/18/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor whose ubiquitous presence in the environment has been related with impairment of male reproduction. BPA can cause both transcriptomic and epigenetic changes during spermatogenesis. To evaluate the potential effects of male exposure to BPA, adult zebrafish males were exposed during spermatogenesis to doses of 100 and 2000 μg/L, which were reported in contaminated water bodies and higher than those allowed for human consumption. Fertilization capacity and survival at hatching were analysed after mating with untreated females. Spermatogenic progress was analysed through a morphometrical study of testes and apoptosis was evaluated by TUNEL assay. Testicular gene expression was evaluated by RT-qPCR and epigenetics by using ELISA and immunocytochemistry. In vitro studies were performed to investigate the role of Gper. Chromatin fragmentation and the presence of transcripts were also evaluated in ejaculated sperm. Results on testes from males treated with the highest dose showed a significant decrease in spermatocytes, an increase in apoptosis, a downregulation of ccnb1 and sycp3, all of which point to an alteration of spermatogenesis and to meiotic arrest and an upregulation of gper1 and esrrga receptors. Additionally, BPA at 2000 μg/L caused missregulation of epigenetic remodelling enzymes transcripts in testes and promoted DNA hypermethylation and H3K27me3 demethylation. BPA also triggered an increase in histone acetyltransferase activity, which led to hyperacetylation of histones (H3K9ac, H3K14ac, H4K12ac). In vitro reversion of histone acetylation changes using a specific GPER antagonist, G-36, suggested this receptor as mediator of histone hyperacetylation. Males treated with the lower dose only showed an increase in some histone acetylation marks (H3K14ac, H4K12ac) but their progeny displayed very limited survival at hatching, revealing the deleterious effects of unbalanced paternal epigenetic information. Furthermore, the highest dose of BPA led to chromatin fragmentation, promoting direct reproductive effects, which are incompatible with embryo development.
Collapse
Affiliation(s)
- S González-Rojo
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - M Lombó
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - C Fernández-Díez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain
| | - M P Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Veganaza s/n, León, 24071, Spain.
| |
Collapse
|
74
|
Silva JPA, Ramos JG, Campos MS, da Silva Lima D, de Azevedo Brito PV, Mendes EP, Taboga SR, Biancardi MF, Ghedini PC, Santos FCA. Bisphenol-S promotes endocrine-disrupting effects similar to those promoted by bisphenol-A in the prostate of adult gerbils. Reprod Toxicol 2019; 85:83-92. [DOI: 10.1016/j.reprotox.2019.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 01/20/2023]
|
75
|
Roell D, Rösler TW, Hessenkemper W, Kraft F, Hauschild M, Bartsch S, Abraham TE, Houtsmuller AB, Matusch R, van Royen ME, Baniahmad A. Halogen-substituted anthranilic acid derivatives provide a novel chemical platform for androgen receptor antagonists. J Steroid Biochem Mol Biol 2019; 188:59-70. [PMID: 30615932 DOI: 10.1016/j.jsbmb.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Abstract
Androgen receptor (AR) antagonists are used for hormone therapy of prostate cancer (PCa). However resistance to the treatment occurs eventually. One possible reason is the occurrence of AR mutations that prevent inhibition of AR-mediated transactivation by antagonists. To offer in future more options to inhibit AR signaling, novel chemical lead structures for new AR antagonists would be beneficial. Here we analyzed structure-activity relationships of a battery of 36 non-steroidal structural variants of methyl anthranilate including 23 synthesized compounds. We identified structural requirements that lead to more potent AR antagonists. Specific compounds inhibit the transactivation of wild-type AR as well as AR mutants that render treatment resistance to hydroxyflutamide, bicalutamide and the second-generation AR antagonist enzalutamide. This suggests a distinct mode of inhibiting the AR compared to the clinically used compounds. Competition assays suggest binding of these compounds to the AR ligand binding domain and inhibit PCa cell proliferation. Moreover, active compounds induce cellular senescence despite inhibition of AR-mediated transactivation indicating a transactivation-independent AR-pathway. In line with this, fluorescence resonance after photobleaching (FRAP) - assays reveal higher mobility of the AR in the cell nuclei. Mechanistically, fluorescence resonance energy transfer (FRET) - assays indicate that the amino-carboxy (N/C)-interaction of the AR is not affected, which is in contrast to known AR-antagonists. This suggests a mechanistically novel mode of AR-antagonism. Together, these findings indicate the identification of a novel chemical platform as a new lead structure that extends the diversity of known AR antagonists and possesses a distinct mode of antagonizing AR-function.
Collapse
Affiliation(s)
- Daniela Roell
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Thomas W Rösler
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | | | - Florian Kraft
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Monique Hauschild
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Sophie Bartsch
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Tsion E Abraham
- Department of Pathology and Erasmus Optical Imaging Center OIC, Erasmus MC, Rotterdam, the Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology and Erasmus Optical Imaging Center OIC, Erasmus MC, Rotterdam, the Netherlands
| | - Rudolf Matusch
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Martin E van Royen
- Department of Pathology and Erasmus Optical Imaging Center OIC, Erasmus MC, Rotterdam, the Netherlands
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
76
|
Cariati F, D'Uonno N, Borrillo F, Iervolino S, Galdiero G, Tomaiuolo R. "Bisphenol a: an emerging threat to male fertility". Reprod Biol Endocrinol 2019; 17:6. [PMID: 30660193 PMCID: PMC6339693 DOI: 10.1186/s12958-018-0447-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/17/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Among the factors causing male infertility, one of the most debated is the exposure to environmental contaminants. Recently, the chemical compound Bisphenol A (BPA) has drawn attention from the reproductive science community, due to its ubiquitous presence in day-to-day life. Its toxic action appears to mainly affect the male reproductive system, directly impacting male fertility. MAIN: The purpose of this review is to investigate current research data on BPA, providing an overview of the findings obtained from studies in animal and human models, as well as on its supposed mechanisms of action. CONCLUSION A clear understanding of BPA action mechanisms, as well as the presumed risks deriving from its exposure, is becoming crucial to preserve male fertility. The development and validation of methodologies to detect BPA toxic effects on reproductive organs can provide greater awareness of the potential threat that this chemical represents.
Collapse
Affiliation(s)
- Federica Cariati
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5 -, 80131, Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy.
- KronosDNA s.r.l., Spin-off Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Nadja D'Uonno
- CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Francesca Borrillo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5 -, 80131, Naples, Italy
- CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Stefania Iervolino
- KronosDNA s.r.l., Spin-off Università degli Studi di Napoli Federico II, Naples, Italy
| | - Giacomo Galdiero
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rossella Tomaiuolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5 -, 80131, Naples, Italy
- CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
- KronosDNA s.r.l., Spin-off Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
77
|
Meng Y, Lin R, Wu F, Sun Q, Jia L. Decreased Capacity for Sperm Production Induced by Perinatal Bisphenol A Exposure Is Associated with an Increased Inflammatory Response in the Offspring of C57BL/6 Male Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102158. [PMID: 30275377 PMCID: PMC6210657 DOI: 10.3390/ijerph15102158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 11/16/2022]
Abstract
Many previous studies have indicated the adverse effects of bisphenol A (BPA) on sperm production and quality; however, the mechanisms underlying BPA male reproductive toxicity have yet to be elucidated. The main purpose of this study was to investigate the effect of perinatal exposure to BPA on the spermatogenic capacity of male offspring, and to explore the possible influence of inflammatory responses in BPA reproductive toxicity. Twenty-one pregnant C57BL/6mice were randomly divided into three groups: a control group, a group receiving 0.2 μg/mL (LBPA), and a group receiving 2 μg/mL of BPA (HBPA), all via drinking water from gestational day 6 to the end of lactation. After weaning, one male mouse was randomly selected from each group (n = 7/group); these three mice were fed a normal diet and drinking water for 1 month. Levels of serum testosterone (T) and tumor necrosis factor (TNF)-α were then measured in all mice. Sperm count and the proportion of sperm malformation were also determined. The levels of Toll-like receptor 4 (TLR4), nuclear factor (NF)-κB, and aryl hydrocarbon receptor (AhR) protein expression in the testis tissue were determined. Analysis showed that the proportion of sperm malformation increased in the LBPA and HBPA groups (p < 0.05). Sperm count significantly decreased only in the HBPA group (p < 0.05), while the levels of serum TNF-α increased in the LBPA and HBPA groups (p < 0.05). Levels of serum T decreased significantly in the HBPA group, compared with controls (p < 0.05). Levels of TLR4 and NF-κB protein expression in the testis were significantly higher in the LBPA and HBPA groups (p < 0.05 or p < 0.01), while AhR protein expression was higher and seminiferous tubules in the testis showed more damage in the HBPA group compared to controls (p < 0.05 and p < 0.01, respectively). Our results showed that perinatal exposure to low or high doses of BPA decreased the capacity for spermatogenesis in male offspring, which may be associated with an inflammatory response activated by the TLR4/ NF-κB and AhR signaling pathways in the testis.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Ren Lin
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Fengjuan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
78
|
Conroy-Ben O, Garcia I, Teske SS. In silico binding of 4,4'-bisphenols predicts in vitro estrogenic and antiandrogenic activity. ENVIRONMENTAL TOXICOLOGY 2018; 33:569-578. [PMID: 29392883 DOI: 10.1002/tox.22539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
Bisphenols, anthropogenic pollutants, leach from consumer products and have potential to be ingested and are excreted in waste. The endocrine disrupting effects of highly manufactured bisphenols (BPA, BPS, and BPF) are known, however the activities of others are not. Here, the estrogenic and androgenic activities of a series of 4,4'-bisphenols that vary at the inter-connecting bisphenol bridge were determined (BPA, BPB, BPBP, BPC2, BPE, BPF, BPS, and BPZ) and compared to in silico binding to estrogen receptor-alpha and the androgen receptor. Bioassay results showed the order of estrogenicity (BPC2 (strongest) > BPBP > BPB > BPZ > BPE > BPF > BPA > BPS, r2 = 0.995) and anti-androgenicity (BPC2 (strongest) > BPE, BPB, BPA, BPF, and BPS, r2 = 0.996) correlated to nuclear receptor binding affinities. Like testosterone and the anti-androgen hydroxyflutamide, bisphenol fit in the ligand-binding domain through hydrogen-bonding at residues Thr877 and Asn705, but also interacted at either Cys784/Ser778 or Gln711 through the other phenol ring. This suggests the 4,4'-bisphenols, like hydroxyflutamide, are androgen receptor antagonists. Hydrogen-bond trends between ERα and the 4,4'-bisphenols were limited to residue Glu353, which interacted with the -OH of one phenol and the -OH of the A ring of 17β-estradiol; hydrogen-bonding varied at the -OH of ring D of 17β-estradiol and the second phenol -OH group. While both estrogen and androgen bioassays correlated to in silico results, conservation of hydrogen-bonding residues in the androgen receptor provides a convincing picture of direct antagonist binding by 4,4'-bisphenols.
Collapse
Affiliation(s)
- Otakuye Conroy-Ben
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, 85282
| | - Isabel Garcia
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, 85282
| | - Sondra S Teske
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, 85282
| |
Collapse
|
79
|
MacKay H, Abizaid A. A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA). Horm Behav 2018; 101:59-67. [PMID: 29104009 DOI: 10.1016/j.yhbeh.2017.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/29/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
Bisphenol-A (BPA) is a well-known endocrine disrupting compound (EDC), capable of affecting the normal function and development of the reproductive system, brain, adipose tissue, and more. In spite of these diverse and well characterized effects, there is often comparatively little known about the molecular mechanisms which bring them about. BPA has traditionally been regarded as a primarily estrogenic EDC, and this perspective is often what guides research into the effects of BPA. However, emerging data from in-vitro and in-silico models show that BPA binds with a significant number of hormone receptors, including a number of nuclear and membrane-bound estrogen receptors, androgen receptors, as well as the thyroid hormone receptor, glucocorticoid receptor, and PPARγ. With this increased diversity of receptor targets, it may be possible to explain some of the more puzzling aspects of BPA pharmacology, including its non-monotonic dose-response curve, as well as experimental results which disagree with estrogenic positive controls. This paper reviews the receptors for which BPA has a known interaction, and discusses the implications of taking these receptors into account when studying the disruptive effects of BPA on growth and development.
Collapse
Affiliation(s)
- Harry MacKay
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Childrens Nutrition Research Center, Houston, TX, USA.
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
80
|
Aker AM, Johns L, McElrath TF, Cantonwine DE, Mukherjee B, Meeker JD. Associations between maternal phenol and paraben urinary biomarkers and maternal hormones during pregnancy: A repeated measures study. ENVIRONMENT INTERNATIONAL 2018; 113:341-349. [PMID: 29366524 PMCID: PMC5866216 DOI: 10.1016/j.envint.2018.01.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND A number of phenols and parabens are added to consumer products for a variety of functions, and have been found at detectable levels in the majority of the U.S. POPULATION Among other functions, thyroid hormones are essential in fetal neurodevelopment, and could be impacted by the endocrine disrupting effects of phenols and parabens. The present study investigated the association between ten maternal urinary phenol and paraben biomarkers (bisphenol S, triclosan, triclocarban, benzophenone-3, 2,4-dichlorophenol, 2,5-dichlorophenol, and ethyl, butyl, methyl and propyl paraben) and four plasma thyroid hormones in 439 pregnant women in a case-control sample nested within a cohort study based in Boston, MA. METHODS Urine and blood samples were collected from up to four visits during pregnancy (median weeks of gestation at each visit: Visit 1: 9.64, Visit 2: 17.9, Visit 3: 26.0, Visit 4: 35.1). Linear mixed models were constructed to take into account the repeated measures jointly, followed by multivariate linear regression models stratified by gestational age to explore potential windows of susceptibility. RESULTS We observed decreased total triiodothyronine (T3) in relation to an IQR increase in benzophenone-3 (percent change [%Δ] = -2.07; 95% confidence interval [CI] = -4.16, 0.01), butyl paraben (%Δ = -2.76; 95% CI = -5.25, -0.26) and triclosan (%Δ = -2.53; 95% CI = -4.75, -0.30), and triclocarban at levels above the LOD (%Δ = -5.71; 95% CI = -10.45, -0.97). A 2.41% increase in T3 was associated with an IQR increase in methyl paraben (95% CI = 0.58, 4.24). We also detected a negative association between free thyroxine (FT4) and propyl paraben (%Δ = -3.14; 95% CI = -6.12, -0.06), and a suggestive positive association between total thyroxine (T4) and methyl paraben (%Δ = 1.19; 95% CI = -0.10, 2.47). Gestational age-specific multivariate regression analyses showed that the magnitude and direction of some of the observed associations were dependent on the timing of exposure. CONCLUSION Certain phenols and parabens were associated with altered thyroid hormone levels during pregnancy, and the timing of exposure influenced the association between phenol and paraben, and hormone concentrations. These changes may contribute to downstream maternal and fetal health outcomes. Additional research is required to replicate the associations, and determine the potential biological mechanisms underlying the observed associations.
Collapse
Affiliation(s)
- Amira M Aker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Lauren Johns
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Thomas F McElrath
- Division of Maternal and Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David E Cantonwine
- Division of Maternal and Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109, USA.
| |
Collapse
|
81
|
Castro B, Sánchez P, Torres JM, Ortega E. Effects of perinatal exposure to bisphenol A on the intraprostatic levels of aromatase and 5α-reductase isozymes in juvenile rats. Food Chem Toxicol 2018; 115:20-25. [PMID: 29501275 DOI: 10.1016/j.fct.2018.02.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/12/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
Abstract
The impact of bisphenol A (BPA) on the prostate gland has taken center stage, with a special focus placed on understanding how BPA affects prostate physiopathology. In this study, we evaluated the ability of lower doses of BPA to induce alterations in 5α-R isozymes and aromatase, in the prostate of juvenile rats exposed during developmental stage. Gestating Wistar rats were treated s.c with either vehicle or BPA (2.4 and 10 μg/kg b.w./day) from gestational day 12 to parturition. Then, male pups were s.c treated from postnatal day 1 through day 21, when they were euthanized and qRT-PCR, western blot and hormone levels determination were performed. We found that BPA at dose of 2.4 and 10 μg/kg b.w./day significantly decreased the mRNA and protein levels of 5α-R2. However, neither 5α-R1 nor 5α-R3 was affected by this exposure. BPA at dose of 10 μg/kg b.w./day significantly increased the mRNA and protein levels of aromatase. BPA also decreased plasma levels of both testosterone and dihydrotestosterone and increased estradiol. These data lend support that low-dose BPA during fetal and neonatal prostate development interfere with in situ estrogen and androgen production in the prostate gland of juvenile rats through the enzymes aromatase and 5α-Reductase.
Collapse
Affiliation(s)
- Beatriz Castro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, 11 Avenue of Research, 18016, Granada, Spain
| | - Pilar Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, 11 Avenue of Research, 18016, Granada, Spain
| | - Jesús M Torres
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, 11 Avenue of Research, 18016, Granada, Spain; Faculty of Medicine, Institute of Neurosciences, University of Granada, 11 Avenue of Research, 18016, Granada, Spain.
| | - Esperanza Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, 11 Avenue of Research, 18016, Granada, Spain; Faculty of Medicine, Institute of Neurosciences, University of Granada, 11 Avenue of Research, 18016, Granada, Spain.
| |
Collapse
|
82
|
Murata M, Kang JH. Bisphenol A (BPA) and cell signaling pathways. Biotechnol Adv 2018; 36:311-327. [DOI: 10.1016/j.biotechadv.2017.12.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023]
|