51
|
Yang T, Wang Y, Liu H, Zhang W, Chai M, Tang G, Zhang Z. MicroRNA1917-CTR1-LIKE PROTEIN KINASE 4 impacts fruit development via tuning ethylene synthesis and response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110334. [PMID: 31928661 DOI: 10.1016/j.plantsci.2019.110334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/04/2019] [Accepted: 11/08/2019] [Indexed: 05/20/2023]
Abstract
MicroRNA1917 (miR1917) is a newly identified miRNAs that regulate ethylene responses in tomato. However, evidence is still limited about its functions in fruit development and ripening. Here, we investigated the possible roles of miR1917-SlCTR4 module in tomato fruit development. We generated miR1917 knock-down mutants by expressing Short Tandem Target Mimic (STTM1917). qRT-PCR and northern-blot analyses suggested that the expression of miR1917 are down-regulated in STTM1917. Concomitantly, miR1917-targeted SlCTR4 gene was up-regulated. STTM1917 plants showed a series of developmental phenotypes, including larger biomass, longer terminal leaflet, bigger floral organ and enhanced fruit and seed size. RNA-seq and qRT-PCR analyses suggested that the expression levels of numerous miRNAs and genes in the transgenic line were significantly altered compared to the wild type. These miRNAs and genes include fruit development-related miRNAs, fruit ripening-related transcription factors and ethylene metabolism genes. Altogether, our results demonstrated that working in concert with ripening regulators, miR1917 might regulate multiple genes in ethylene pathway, thereby modulating fruit development. Our results further indicated that fine-tuning miRNAs expression via STTM can be deployed for agronomic improvement of tomato.
Collapse
Affiliation(s)
- Tianxiao Yang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Yongyan Wang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Haiping Liu
- Department of Biological Sciences and Biotechnology Research Center, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Wen Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Mao Chai
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Guiliang Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China; Department of Biological Sciences and Biotechnology Research Center, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
52
|
Barrera-Rojas CH, Rocha GHB, Polverari L, Pinheiro Brito DA, Batista DS, Notini MM, da Cruz ACF, Morea EGO, Sabatini S, Otoni WC, Nogueira FTS. miR156-targeted SPL10 controls Arabidopsis root meristem activity and root-derived de novo shoot regeneration via cytokinin responses. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:934-950. [PMID: 31642910 DOI: 10.1093/jxb/erz475] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 05/07/2023]
Abstract
Root growth is modulated by different factors, including phytohormones, transcription factors, and microRNAs (miRNAs). MicroRNA156 and its targets, the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, define an age-dependent pathway that controls several developmental processes, including lateral root emergence. However, it remains unclear whether miR156-regulated SPLs control root meristem activity and root-derived de novo shoot regeneration. Here, we show that MIR156 and SPL genes have opposing expression patterns during the progression of primary root (PR) growth in Arabidopsis, suggesting that age cues may modulate root development. Plants with high miR156 levels display reduced meristem size, resulting in shorter primary root (PRs). Conversely, plants with reduced miR156 levels show higher meristem activity. Importantly, loss of function of SPL10 decreases meristem activity, while SPL10 de-repression increases it. Meristem activity is regulated by SPL10 probably through the reduction of cytokinin responses, via the modulation of type-B ARABIDOPSIS RESPONSE REGULATOR1(ARR1) expression. We also show that SPL10 de-repression in the PRs abolishes de novo shoot regenerative capacity by attenuating cytokinin responses. Our results reveal a cooperative regulation of root meristem activity and root-derived de novo shoot regeneration by integrating age cues with cytokinin responses via miR156-targeted SPL10.
Collapse
Affiliation(s)
- Carlos Hernán Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
- Bioscience Institute, State University of Sao Paulo, Botucatu, Sao Paulo, Brazil
| | - Gabriel Henrique Braga Rocha
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Laura Polverari
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università La Sapienza, Rome, Italy
| | - Diego Armando Pinheiro Brito
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Diego Silva Batista
- Department of Plant Biology, Plant Tissue Culture Laboratory-BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Marcela M Notini
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| | - Ana Claudia Ferreira da Cruz
- Department of Plant Biology, Plant Tissue Culture Laboratory-BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Edna Gicela Ortiz Morea
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
- Bioscience Institute, State University of Sao Paulo, Botucatu, Sao Paulo, Brazil
| | - Sabrina Sabatini
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Università La Sapienza, Rome, Italy
| | - Wagner Campos Otoni
- Department of Plant Biology, Plant Tissue Culture Laboratory-BIOAGRO, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz', University of Sao Paulo, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
53
|
Cheng Z, Hou D, Ge W, Li X, Xie L, Zheng H, Cai M, Liu J, Gao J. Integrated mRNA, MicroRNA Transcriptome and Degradome Analyses Provide Insights into Stamen Development in Moso Bamboo. PLANT & CELL PHYSIOLOGY 2020; 61:76-87. [PMID: 31550004 DOI: 10.1093/pcp/pcz179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/06/2019] [Indexed: 05/11/2023]
Abstract
A flower is an essential organ for sexual reproduction in flowering plants, which has been extensively studied in model plants. In this study, we used transcriptomic, small RNA and degradome analyses to characterize key microRNAs (miRNAs) and their targets in floral organs of moso bamboo. In total, we identified 13,051 differentially expressed genes and 109 known miRNAs from 26 miRNA families. We aligned the miRNAs to known miRNA databases and revealed some conserved as well as novel miRNAs. Sixteen conserved miRNAs were specifically and highly expressed in stamens, including miRNA159 and miRNA166. In situ hybridization shows that miRNA159 plays a key role in the regulation of stamen development, and the expression levels of its targets PheMYB98 and PheMYB42 were low. Furthermore, Phe-MIRNA159 partially recovers phenotypes of mir159ab double mutant. Overexpression of Phe-MIR159 could cause failure in anther dehisce, and the mature pollens could not be dispersed and further reduce fertility in Arabidopsis. Semi-thin section result shows that anther endothelial layer of Phe-MIRNA159 overexpressing lines is lack of secondary thickening, resulting in limited force for anther opening. Phe-miR159 may regulate the expression of genes related to secondary thickening through negative regulation of AtMYB33, affecting the anther dehiscence. Taken together, this study provides insights regarding molecular networks underlying floral organs development of moso bamboo.
Collapse
Affiliation(s)
- Zhanchao Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Dan Hou
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Wei Ge
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
| | - Xiangyu Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Lihua Xie
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Huifang Zheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Miaomiao Cai
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Jun Liu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry and Grassland Administration, Beijing 100102, China
| |
Collapse
|
54
|
Sanz-Carbonell A, Marques MC, Martinez G, Gomez G. Dynamic architecture and regulatory implications of the miRNA network underlying the response to stress in melon. RNA Biol 2019; 17:292-308. [PMID: 31766933 DOI: 10.1080/15476286.2019.1697487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
miRNAs are small RNAs that regulate mRNAs at both transcriptional and posttranscriptional level. In plants, miRNAs are involved in the regulation of different processes including development and stress-response. Elucidating how stress-responsive miRNAs are regulated is key to understand the global response to stress but also to develop efficient biotechnological tools that could help to cope with stress. Here, we describe a computational approach based on sRNA sequencing, transcript quantification and degradome data to analyse the accumulation, function and structural organization of melon miRNAs reactivated under seven biotic and abiotic stress conditions at two and four days post-treatment. Our pipeline allowed us to identify fourteen stress-responsive miRNAs (including evolutionary conserved such as miR156, miR166, miR172, miR319, miR398, miR399, miR894 and miR408) at both analysed times. According to our analysis miRNAs were categorized in three groups showing a broad-, intermediate- or narrow- response range. miRNAs reactive to a broad range of environmental cues appear as central components in the stress-response network. The strictly coordinated response of miR398 and miR408 (broad response-range) to the seven stress treatments during the period analysed here reinforces this notion. Although both, the amplitude and diversity of the miRNA-related response to stress changes during the exposition time, the architecture of the miRNA-network is conserved. This organization of miRNA response to stress is also conserved in rice and soybean supporting the conservation of miRNA-network organization in other crops. Overall, our work sheds light into how miRNA networks in plants organize and function during stress.
Collapse
Affiliation(s)
- Alejandro Sanz-Carbonell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Paterna, Spain.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Maria Carmen Marques
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Paterna, Spain.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - German Martinez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Paterna, Spain.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Paterna, Spain.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
55
|
Ripoll JJ, Zhu M, Brocke S, Hon CT, Yanofsky MF, Boudaoud A, Roeder AHK. Growth dynamics of the Arabidopsis fruit is mediated by cell expansion. Proc Natl Acad Sci U S A 2019; 116:25333-25342. [PMID: 31757847 PMCID: PMC6911193 DOI: 10.1073/pnas.1914096116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fruit have evolved a sophisticated tissue and cellular architecture to secure plant reproductive success. Postfertilization growth is perhaps the most dramatic event during fruit morphogenesis. Several studies have proposed that fertilized ovules and developing seeds initiate signaling cascades to coordinate and promote the growth of the accompanying fruit tissues. This dynamic process allows the fruit to conspicuously increase its size and acquire its final shape and means for seed dispersal. All these features are key for plant survival and crop yield. Despite its importance, we lack a high-resolution spatiotemporal map of how postfertilization fruit growth proceeds at the cellular level. In this study, we have combined live imaging, mutant backgrounds in which fertilization can be controlled, and computational modeling to monitor and predict postfertilization fruit growth in Arabidopsis We have uncovered that, unlike leaves, sepals, or roots, fruit do not exhibit a spatial separation of cell division and expansion domains; instead, there is a separation into temporal stages with fertilization as the trigger for transitioning to cell expansion, which drives postfertilization fruit growth. We quantified the coordination between fertilization and fruit growth by imaging no transmitting tract (ntt) mutants, in which fertilization fails in the bottom half of the fruit. By combining our experimental data with computational modeling, we delineated the mobility properties of the seed-derived signaling cascades promoting growth in the fruit. Our study provides the basis for generating a comprehensive understanding of the molecular and cellular mechanisms governing fruit growth and shape.
Collapse
Affiliation(s)
- Juan-José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116;
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0116
| | - Mingyuan Zhu
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Stephanie Brocke
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Cindy T Hon
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116
| | - Martin F Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093-0116
- Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0116
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieur de Lyon, Claud Bernard University Lyon 1, CNRS, Institut National de la Recherche Agronomique, F-69342 Lyon, France
| | - Adrienne H K Roeder
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853;
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
56
|
Aguilar-Jaramillo AE, Marín-González E, Matías-Hernández L, Osnato M, Pelaz S, Suárez-López P. TEMPRANILLO is a direct repressor of the microRNA miR172. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:522-535. [PMID: 31310397 DOI: 10.1111/tpj.14455] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/04/2019] [Accepted: 06/20/2019] [Indexed: 05/18/2023]
Abstract
In the age-dependent pathway, microRNA 156 (miR156) is essential for the correct timing of developmental transitions. miR156 negatively regulates several SPL genes, which promote the juvenile-to-adult and floral transitions in part through upregulation of miR172. The transcriptional repressors TEMPRANILLO1 (TEM1) and TEM2 delay flowering in Arabidopsis thaliana at least through direct repression of FLOWERING LOCUS T (FT) and gibberellin biosynthetic genes, and have also been reported to participate in the length of the juvenile phase. Levels of TEM mRNA and miR156 decrease gradually, allowing progression through developmental phases. Given these similarities, we hypothesized that TEMs and the miR156/SPL/miR172 module could act through a common genetic pathway. We analyzed the effect of TEMs on levels of miR156, SPL and miR172, tested binding of TEMs to these genes using chromatin immunoprecipitation and analyzed the genetic interaction between TEMs and miR172. We found that TEMs played a stronger role in the floral transition than in the juvenile-to-adult transition. TEM1 repressed MIR172A, MIR172B and MIR172C expressions and bound in vivo to at least MIR172C sequences. Genetic analyses indicated that TEMs affect the regulation of developmental timing through miR172.
Collapse
Affiliation(s)
- Andrea E Aguilar-Jaramillo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Esther Marín-González
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Luis Matías-Hernández
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Michela Osnato
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Paula Suárez-López
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193, Barcelona, Spain
| |
Collapse
|
57
|
Juárez-González VT, López-Ruiz BA, Baldrich P, Luján-Soto E, Meyers BC, Dinkova TD. The explant developmental stage profoundly impacts small RNA-mediated regulation at the dedifferentiation step of maize somatic embryogenesis. Sci Rep 2019; 9:14511. [PMID: 31601893 PMCID: PMC6786999 DOI: 10.1038/s41598-019-50962-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/23/2019] [Indexed: 01/22/2023] Open
Abstract
Maize somatic embryogenesis (SE) requires the induction of embryogenic callus and establishment of proliferation before plant regeneration. The molecular mechanisms underlying callus embryogenic potential are not well understood. Here we explored the role of small RNAs (sRNAs) and the accumulation of their target transcripts in maize SE at the dedifferentiation step using VS-535 zygotic embryos collected at distinct developmental stages and displaying contrasting in vitro embryogenic potential and morphology. MicroRNAs (miRNAs), trans-acting siRNAs (tasiRNAs), heterochromatic siRNAs (hc-siRNAs) populations and their RNA targets were analyzed by high-throughput sequencing. Abundances of specific miRNAs, tasiRNAs and targets were validated by qRT-PCR. Unique accumulation patterns were found for immature embryo at 15 Days After Pollination (DAP) and for the callus induction from this explant, as compared to 23 DAP and mature embryos. miR156, miR164, miR166, tasiARFs and the 24 nt hc-siRNAs displayed the most strikingly different patterns between explants and during dedifferentiation. According to their role in auxin responses and developmental cues, we conclude that sRNA-target regulation operating within the 15 DAP immature embryo explant provides key molecular hints as to why this stage is relevant for callus induction with successful proliferation and plant regeneration.
Collapse
Affiliation(s)
- Vasti T Juárez-González
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510, México
| | - Brenda A López-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510, México
| | - Patricia Baldrich
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Eduardo Luján-Soto
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510, México
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Tzvetanka D Dinkova
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510, México.
| |
Collapse
|
58
|
McCahill IW, Hazen SP. Regulation of Cell Wall Thickening by a Medley of Mechanisms. TRENDS IN PLANT SCIENCE 2019; 24:853-866. [PMID: 31255545 DOI: 10.1016/j.tplants.2019.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 05/08/2023]
Abstract
To provide physical support for developing structures and to withstand the pressures associated with water and nutrient transport, some cells deposit a secondary cell wall, a rigid matrix of polysaccharide and phenolic biopolymers. The biosynthesis and deposition of these materials and the patterning of secondary wall-forming cells is controlled by a network of transcription factors. However, recent work suggests that this network forms the core of a more complex, multilevel regulatory system. This expanded system includes epigenetic, post-transcriptional, and post-translational regulation, and is coordinated with other pathways controlling primary growth and responses to environmental stimuli. New findings expand the set of transcription factors identified as secondary cell wall regulators and reveal novel regulatory processes that further govern secondary wall biogenesis.
Collapse
Affiliation(s)
- Ian W McCahill
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Samuel P Hazen
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
59
|
Yang R, Li P, Mei H, Wang D, Sun J, Yang C, Hao L, Cao S, Chu C, Hu S, Song X, Cao X. Fine-Tuning of MiR528 Accumulation Modulates Flowering Time in Rice. MOLECULAR PLANT 2019; 12:1103-1113. [PMID: 31059825 DOI: 10.1016/j.molp.2019.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 05/18/2023]
Abstract
In plants, microRNA (miRNA) functions in the post-transcriptional repression of target mRNAs have been well explored. However, the mechanisms regulating the accumulation of miRNAs remain poorly understood. Here, we report that distinct mechanisms regulate accumulation of a monocot-specific miRNA, rice (Oryza sativa) miR528. At the transcriptional level, miR528 accumulated to higher levels in older plants than in young seedlings and exhibited aging-modulated gradual accumulation and diurnal rhythms in leaves; at the post-transcriptional level, aging also modulated miR528 levels by enhancing pri-miR528 alternative splicing. We found that miR528 promotes rice flowering under long-day conditions by targeting RED AND FAR-RED INSENSITIVE 2 (OsRFI2). Moreover, natural variations in the MIR528 promoter region caused differences in miR528 expression among rice varieties, which are correlated with their different binding affinities with the transcription factor OsSPL9 that activates the expression of miR528. Taken together, our findings reveal rice plants have evolved sophisticated modes fine-tuning miR528 levels and provide insight into the mechanisms that regulate MIRNA expression in plants.
Collapse
Affiliation(s)
- Rongxin Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingchuan Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailiang Mei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Hao
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shouyun Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songnian Hu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
60
|
Nadarajah K, Kumar IS. Drought Response in Rice: The miRNA Story. Int J Mol Sci 2019; 20:ijms20153766. [PMID: 31374851 PMCID: PMC6696311 DOI: 10.3390/ijms20153766] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
As a semi-aquatic plant, rice requires water for proper growth, development, and orientation of physiological processes. Stress is induced at the cellular and molecular level when rice is exposed to drought or periods of low water availability. Plants have existing defense mechanisms in planta that respond to stress. In this review we examine the role played by miRNAs in the regulation and control of drought stress in rice through a summary of molecular studies conducted on miRNAs with emphasis on their contribution to drought regulatory networks in comparison to other plant systems. The interaction between miRNAs, target genes, transcription factors and their respective roles in drought-induced stresses is elaborated. The cross talk involved in controlling drought stress responses through the up and down regulation of targets encoding regulatory and functional proteins is highlighted. The information contained herein can further be explored to identify targets for crop improvement in the future.
Collapse
Affiliation(s)
- Kalaivani Nadarajah
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia.
| | - Ilakiya Sharanee Kumar
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| |
Collapse
|
61
|
Hunt M, Banerjee S, Surana P, Liu M, Fuerst G, Mathioni S, Meyers BC, Nettleton D, Wise RP. Small RNA discovery in the interaction between barley and the powdery mildew pathogen. BMC Genomics 2019; 20:610. [PMID: 31345162 PMCID: PMC6657096 DOI: 10.1186/s12864-019-5947-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background Plants encounter pathogenic and non-pathogenic microorganisms on a nearly constant basis. Small RNAs such as siRNAs and miRNAs/milRNAs influence pathogen virulence and host defense responses. We exploited the biotrophic interaction between the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh), and its diploid host plant, barley (Hordeum vulgare) to explore fungal and plant sRNAs expressed during Bgh infection of barley leaf epidermal cells. Results RNA was isolated from four fast-neutron immune-signaling mutants and their progenitor over a time course representing key stages of Bgh infection, including appressorium formation, penetration of epidermal cells, and development of haustorial feeding structures. The Cereal Introduction (CI) 16151 progenitor carries the resistance allele Mla6, while Bgh isolate 5874 harbors the AVRa6 avirulence effector, resulting in an incompatible interaction. Parallel Analysis of RNA Ends (PARE) was used to verify sRNAs with likely transcript targets in both barley and Bgh. Bgh sRNAs are predicted to regulate effectors, metabolic genes, and translation-related genes. Barley sRNAs are predicted to influence the accumulation of transcripts that encode auxin response factors, NAC transcription factors, homeodomain transcription factors, and several splicing factors. We also identified phasing small interfering RNAs (phasiRNAs) in barley that overlap transcripts that encode receptor-like kinases (RLKs) and nucleotide-binding, leucine-rich domain proteins (NLRs). Conclusions These data suggest that Bgh sRNAs regulate gene expression in metabolism, translation-related, and pathogen effectors. PARE-validated targets of predicted Bgh milRNAs include both EKA (effectors homologous to AVRk1 and AVRa10) and CSEP (candidate secreted effector protein) families. We also identified barley phasiRNAs and miRNAs in response to Bgh infection. These include phasiRNA loci that overlap with a significant proportion of receptor-like kinases, suggesting an additional sRNA control mechanism may be active in barley leaves as opposed to predominant R-gene phasiRNA overlap in many eudicots. In addition, we identified conserved miRNAs, novel miRNA candidates, and barley genome mapped sRNAs that have PARE validated transcript targets in barley. The miRNA target transcripts are enriched in transcription factors, signaling-related proteins, and photosynthesis-related proteins. Together these results suggest both barley and Bgh control metabolism and infection-related responses via the specific accumulation and targeting of genes via sRNAs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5947-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matt Hunt
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, Iowa, 50011, USA.,Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA
| | - Sagnik Banerjee
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA.,Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Priyanka Surana
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA.,Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Meiling Liu
- Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA.,Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA
| | - Greg Fuerst
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Iowa State University, Ames, Iowa, 50011, USA
| | - Sandra Mathioni
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.,Division of Plant Sciences, University of Missouri - Columbia, 52 Agriculture Lab, Columbia, MO, 65211, USA
| | - Dan Nettleton
- Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA.,Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA
| | - Roger P Wise
- Interdepartmental Genetics & Genomics, Iowa State University, Ames, Iowa, 50011, USA. .,Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, 50011, USA. .,Interdepartmental Bioinformatics & Computational Biology, Iowa State University, Ames, Iowa, 50011, USA. .,Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Iowa State University, Ames, Iowa, 50011, USA.
| |
Collapse
|
62
|
López-Galiano MJ, Sentandreu V, Martínez-Ramírez AC, Rausell C, Real MD, Camañes G, Ruiz-Rivero O, Crespo-Salvador O, García-Robles I. Identification of Stress Associated microRNAs in Solanum lycopersicum by High-Throughput Sequencing. Genes (Basel) 2019; 10:genes10060475. [PMID: 31234458 PMCID: PMC6627569 DOI: 10.3390/genes10060475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most important crops around the world and also a model plant to study response to stress. High-throughput sequencing was used to analyse the microRNA (miRNA) profile of tomato plants undergoing five biotic and abiotic stress conditions (drought, heat, P. syringae infection, B. cinerea infection, and herbivore insect attack with Leptinotarsa decemlineata larvae) and one chemical treatment with a plant defence inducer, hexanoic acid. We identified 104 conserved miRNAs belonging to 37 families and we predicted 61 novel tomato miRNAs. Among those 165 miRNAs, 41 were stress-responsive. Reverse transcription quantitative PCR (RT-qPCR) was used to validate high-throughput expression analysis data, confirming the expression profiles of 10 out of 11 randomly selected miRNAs. Most of the differentially expressed miRNAs were stress-specific, except for sly-miR167c-3p upregulated in B. cinerea and P. syringae infection, sly-newmiR26-3p upregulated in drought and Hx treatment samples, and sly-newmiR33-3p, sly-newmiR6-3p and sly-newmiR8-3p differentially expressed both in biotic and abiotic stresses. From mature miRNAs sequences of the 41 stress-responsive miRNAs 279 targets were predicted. An inverse correlation between the expression profiles of 4 selected miRNAs (sly-miR171a, sly-miR172c, sly-newmiR22-3p and sly-miR167c-3p) and their target genes (Kinesin, PPR, GRAS40, ABC transporter, GDP and RLP1) was confirmed by RT-qPCR. Altogether, our analysis of miRNAs in different biotic and abiotic stress conditions highlight the interest to understand the functional role of miRNAs in tomato stress response as well as their putative targets which could help to elucidate plants molecular and physiological adaptation to stress.
Collapse
Affiliation(s)
| | - Vicente Sentandreu
- Servicios Centrales de Soporte a la Investigación Experimental (SCSIE), University of Valencia, 46100 Burjassot, Valencia, Spain.
| | - Amparo C Martínez-Ramírez
- Servicios Centrales de Soporte a la Investigación Experimental (SCSIE), University of Valencia, 46100 Burjassot, Valencia, Spain.
| | - Carolina Rausell
- Department of Genetics, University of Valencia, 46100 Burjassot, Valencia, Spain.
| | - M Dolores Real
- Department of Genetics, University of Valencia, 46100 Burjassot, Valencia, Spain.
| | - Gemma Camañes
- Plant Physiology Area, Biochemistry and Biotechnology Laboratory, Department CAMN, University Jaume I, 12071 Castellón, Spain.
| | - Omar Ruiz-Rivero
- Department of Genetics, University of Valencia, 46100 Burjassot, Valencia, Spain.
| | - Oscar Crespo-Salvador
- Department of Biochemistry and Molecular Biology, University of Valencia, IATA (CSIC), 46980 Paterna, Valencia, Spain.
| | | |
Collapse
|
63
|
Zheng J, Ma Y, Zhang M, Lyu M, Yuan Y, Wu B. Expression Pattern of FT/TFL1 and miR156-Targeted SPL Genes Associated with Developmental Stages in Dendrobium catenatum. Int J Mol Sci 2019; 20:ijms20112725. [PMID: 31163611 PMCID: PMC6600168 DOI: 10.3390/ijms20112725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023] Open
Abstract
Time to flower, a process either referring to juvenile-adult phase change or vegetative-reproductive transition, is strictly controlled by an intricate regulatory network involving at least both FT/TFL1 and the micro RNA (miR)156-regulated SPL family members. Despite substantial progresses recently achieved in Arabidopsis and other plant species, information regarding the involvement of these genes during orchid development and flowering competence is still limited. Dendrobium catenatum, a popular orchid species, exhibits a juvenile phase of at least three years. Here, through whole-genome mining and whole-family expression profiling, we analyzed the homologous genes of FT/TFL1, miR156, and SPL with special reference to the developmental stages. The FT/TFL1 family contains nine members; among them, DcHd3b transcribes abundantly in young and juvenile tissues but not in adult, contrasting with the low levels of others. We also found that mature miR156, encoded by a single locus, accumulated in large quantity in protocorms and declined by seedling development, coincident with an increase in transcripts of three of its targeted SPL members, namely DcSPL14, DcSPL7, and DcSPL18. Moreover, among the seven predicted miR156-targeted SPLs, only DcSPL3 was significantly expressed in adult plants and was associated with plant maturation. Our results might suggest that the juvenile phase change or maturation in this orchid plant likely involves both the repressive action of a TFL1-like pathway and the promotive effect from an SPL3-mediated mechanism.
Collapse
Affiliation(s)
- Jie Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Horticulture, Fujian A & University, Fuzhou 350002, China.
| | - Yuru Ma
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Horticulture, Fujian A & University, Fuzhou 350002, China.
| | - Mengyao Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Horticulture, Fujian A & University, Fuzhou 350002, China.
| | - Meiling Lyu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Horticulture, Fujian A & University, Fuzhou 350002, China.
| | - Yuan Yuan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Horticulture, Fujian A & University, Fuzhou 350002, China.
| | - Binghua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Horticulture, Fujian A & University, Fuzhou 350002, China.
| |
Collapse
|
64
|
Zhao L, Chen C, Wang Y, Shen J, Ding Z. Conserved MicroRNA Act Boldly During Sprout Development and Quality Formation in Pingyang Tezaocha ( Camellia sinensis). Front Genet 2019; 10:237. [PMID: 31001312 PMCID: PMC6455055 DOI: 10.3389/fgene.2019.00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/04/2019] [Indexed: 01/20/2023] Open
Abstract
Tea tree [Camellia sinensis (L.) O. Kuntze] is an important leaf (sometimes tender stem)-using commercial plant with many medicinal uses. The development of newly sprouts would directly affect the yield and quality of tea product, especially significant for Pingyang Tezaocha (PYTZ) which takes up a large percent in the early spring tea market. MicroRNA (miRNA), particularly the conserved miRNAs, often position in the center of subtle and complex gene regulatory systems, precisely control the biological processes together with other factors in a spatio-temporal pattern. Here, quality-determined metabolites catechins, theanine and caffeine in PYTZ sprouts including buds (sBud), different development stages of leaves (sL1, sL2) and stems (sS1, sS2) were quantified. A total of 15 miRNA libraries of the same tissue with three repetitions for each were constructed to explore vital miRNAs during the biological processes of development and quality formation. We analyzed the whole miRNA profiles during the sprout development and defined conserved miRNA families in the tea plant. The differentially expressed miRNAs related to the expression profiles buds, leaves, and stems development stages were described. Twenty one miRNAs and eight miRNA-TF pairs that most likely to participate in regulating development, and at least two miRNA-TF-metabolite triplets that participate in both development and quality formation had been filtered. Our results indicated that conserved miRNA act boldly during important biological processes, they are (i) more likely to be linked with morphological function in primary metabolism during sprout development, and (ii) hold an important position in secondary metabolism during quality formation in tea plant, also (iii) coordinate with transcription factors in forming networks of complex multicellular organism regulation.
Collapse
Affiliation(s)
- Lei Zhao
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, Qingdao, China.,Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, China
| | - Yu Wang
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jiazhi Shen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhaotang Ding
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
65
|
Jiang X, He J, Cheng P, Xiang Z, Zhou H, Wang R, Shen W. Methane Control of Adventitious Rooting Requires γ-Glutamyl Cysteine Synthetase-Mediated Glutathione Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:802-815. [PMID: 30590760 DOI: 10.1093/pcp/pcy241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/20/2018] [Indexed: 05/05/2023]
Abstract
Although the key role of methane (CH4) in the induction of cucumber adventitious rooting has been observed previously, the target molecules downstream of the CH4 action are yet to be fully elucidated. Here, we reported that exogenous glutathione (GSH) induced cucumber adventitious root formation; while l-buthionine-sulfoximine (BSO) treatment inhibited it. BSO is a known inhibitor of γ-glutamyl cysteine synthetase (γ-ECS), an enzyme involved in GSH biosynthesis. Further investigations showed that endogenous GSH content was rapidly increased by CH4 application, which was correlated with the increased CsGSH1 transcript and γ-ECS activity. Mimicking the responses of GSH, CH4 could upregulate cell cycle regulatory genes (CsCDC6, CsCDPK1, CsCDPK5 and CsDNAJ-1) and auxin-response genes (CsAux22D-like and CsAux22B-like). Meanwhile, adventitious rooting-related CsmiR160 and CsmiR167 were increased or decreased, respectively, and contrasting tendencies were observed in the changes of their target genes, that included CsARF17 and CsARF8. The responses above were impaired by the removal of endogenous GSH with BSO, indicating that CH4-triggered adventitious rooting was GSH-dependent. Genetic evidence revealed that in the presence of CH4, Arabidopsis mutants cad2 (a γ-ECS-defective mutant) exhibited, not only the decreased GSH content in vivo, but also the defects in adventitious root formation, both of which were rescued by GSH administration other than CH4. Together, it can be concluded that γ-ECS-dependent GSH homeostasis might be required for CH4-induced adventitious root formation.
Collapse
Affiliation(s)
- Xumin Jiang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Junjie He
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhixin Xiang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Heng Zhou
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
66
|
Fukao T, Barrera-Figueroa BE, Juntawong P, Peña-Castro JM. Submergence and Waterlogging Stress in Plants: A Review Highlighting Research Opportunities and Understudied Aspects. FRONTIERS IN PLANT SCIENCE 2019; 10:340. [PMID: 30967888 PMCID: PMC6439527 DOI: 10.3389/fpls.2019.00340] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/05/2019] [Indexed: 05/20/2023]
Abstract
Soil flooding creates composite and complex stress in plants known as either submergence or waterlogging stress depending on the depth of the water table. In nature, these stresses are important factors dictating the species composition of the ecosystem. On agricultural land, they cause economic damage associated with long-term social consequences. The understanding of the plant molecular responses to these two stresses has benefited from research studying individual components of the stress, in particular low-oxygen stress. To a lesser extent, other associated stresses and plant responses have been incorporated into the molecular framework, such as ion and ROS signaling, pathogen susceptibility, and organ-specific expression and development. In this review, we aim to highlight known or suspected components of submergence/waterlogging stress that have not yet been thoroughly studied at the molecular level in this context, such as miRNA and retrotransposon expression, the influence of light/dark cycles, protein isoforms, root architecture, sugar sensing and signaling, post-stress molecular events, heavy-metal and salinity stress, and mRNA dynamics (splicing, sequestering, and ribosome loading). Finally, we explore biotechnological strategies that have applied this molecular knowledge to develop cultivars resistant to flooding or to offer alternative uses of flooding-prone soils, like bioethanol and biomass production.
Collapse
Affiliation(s)
- Takeshi Fukao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Piyada Juntawong
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Julián Mario Peña-Castro
- Laboratorio de Biotecnología Vegetal, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec, Mexico
| |
Collapse
|
67
|
Yang T, Wang Y, Teotia S, Wang Z, Shi C, Sun H, Gu Y, Zhang Z, Tang G. The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Sci Rep 2019; 9:2832. [PMID: 30808969 PMCID: PMC6391385 DOI: 10.1038/s41598-019-39397-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/14/2019] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in plant development and abiotic stresses. To date, studies have mainly focused on the roles of individual miRNAs, however, a few have addressed the interactions among multiple miRNAs. In this study, we investigated the interplay and regulatory circuit between miR160 and miR165/166 and its effect on leaf development and drought tolerance in Arabidopsis using Short Tandem Target Mimic (STTM). By crossing STTM160 Arabidopsis with STTM165/166, we successfully generated a double mutant of miR160 and miR165/166. The double mutant plants exhibited a series of compromised phenotypes in leaf development and drought tolerance in comparison to phenotypic alterations in the single STTM lines. RNA-seq and qRT-PCR analyses suggested that the expression levels of auxin and ABA signaling genes in the STTM-directed double mutant were compromised compared to the two single mutants. Our results also suggested that miR160-directed regulation of auxin response factors (ARFs) contribute to leaf development via auxin signaling genes, whereas miR165/166- mediated HD-ZIP IIIs regulation confers drought tolerance through ABA signaling. Our studies further indicated that ARFs and HD-ZIP IIIs may play opposite roles in the regulation of leaf development and drought tolerance that can be further applied to other crops for agronomic traits improvement.
Collapse
Affiliation(s)
- Tianxiao Yang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Yongyan Wang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Sachin Teotia
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China.,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA.,Department of Biotechnology, Sharda University, Greater Noida, 201306, India
| | - Zhaohui Wang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Chaonan Shi
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Huwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Yiyou Gu
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China.
| | - Guiliang Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, P. R. China. .,Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA.
| |
Collapse
|
68
|
Silva GFF, Silva EM, Correa JPO, Vicente MH, Jiang N, Notini MM, Junior AC, De Jesus FA, Castilho P, Carrera E, López-Díaz I, Grotewold E, Peres LEP, Nogueira FTS. Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. THE NEW PHYTOLOGIST 2019; 221:1328-1344. [PMID: 30238569 DOI: 10.1111/nph.15492] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 05/18/2023]
Abstract
Age-regulated microRNA156 (miR156) and targets similarly control the competence to flower in diverse species. By contrast, the diterpene hormone gibberellin (GA) and the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote flowering in the facultative long-day Arabidopsis thaliana, but suppress it in the day-neutral tomato (Solanum lycopersicum). We combined genetic and molecular studies and described a new interplay between GA and two unrelated miRNA-associated pathways that modulates tomato transition to flowering. Tomato PROCERA/DELLA activity is required to promote flowering along with the miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL/SBP) transcription factors by activating SINGLE FLOWER TRUSS (SFT) in the leaves and the MADS-Box gene APETALA1(AP1)/MC at the shoot apex. Conversely, miR319-targeted LANCEOLATE represses floral transition by increasing GA concentrations and inactivating SFT in the leaves and AP1/MC at the shoot apex. Importantly, the combination of high GA concentrations/responses with the loss of SPL/SPB function impaired canonical meristem maturation and flower initiation in tomato. Our results reveal a cooperative regulation of tomato floral induction and flower development, integrating age cues (miR156 module) with GA responses and miR319-controlled pathways. Importantly, this study contributes to elucidate the mechanisms underlying the effects of GA in controlling flowering time in a day-neutral species.
Collapse
Affiliation(s)
- Geraldo F F Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Eder M Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Joao P O Correa
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Mateus H Vicente
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Marcela M Notini
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Airton C Junior
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Frederico A De Jesus
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Pollyanna Castilho
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, 46022, Valencia, Spain
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, 46022, Valencia, Spain
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Lazaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
69
|
Arora S, Pandey DK, Chaudhary B. Target-mimicry based diminution of miRNA167 reinforced flowering-time phenotypes in tobacco via spatial-transcriptional biases of flowering-associated miRNAs. Gene 2019; 682:67-80. [PMID: 30292869 DOI: 10.1016/j.gene.2018.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/29/2018] [Accepted: 10/04/2018] [Indexed: 11/24/2022]
Abstract
Evolutionarily conserved microRNAs such as miR156, miR159, miR167 and miR172 tightly regulate the extensive array of gene expression during flowering in plants, through instant and long-term alterations in the expression of their target genes. Here we employed a novel target-mimicry approach for the diminution of auxin signalling regulator miRNA167 by developing mimic-transgenic lines in tobacco, to investigate the transcriptional biases of flowering-associated miRNAs in apical and floral meristematic tissues and their phenotypic implications. Recorded morpho-alterations such as uneven flowering-time phenotypes, anomalous floral organ formation, and large variations in the seed forming characteristics permitted us to determine the consequence of the extent of miR167 expression diminution accompanying the transcriptional biases of interrelated miRNAs. We demonstrate that percent diminution of miR167 gene expression is proportionally associated with both early and late flowering-time phenotypes in mimic lines. Also, the associated miRNAs, miR156, miR159, and miR172 showed >90% transcriptional diminution in at least 'early-flowering' miR167 mimic lines. On contrary, low percentages of their respective diminution were recorded in 'late-flowering' lines. Evidently, the misexpression of miR156, miR159, and miR172 led to the over-expression of their respective target genes SPL9, AtMYB33-like and AP2 genes in mimic lines which resulted in assorted phenotypes. We describe the scope of spatial regulation of these microRNAs in floral bud tissues of mimic lines which showed negative- or very low (<25%) misexpression levels in early/late-flowering lines highlighting their roles in the acquisition of flowering mechanism. To our knowledge, this study represents the first characterization of transcriptional biases of flowering associated miRNAs in miR167-mimic lines and certainly augments our understanding of the importance of microRNA-mediated regulation of flowering in plants.
Collapse
Affiliation(s)
- Sakshi Arora
- School of Biotechnology, Gautam Buddha University, Greater Noida 201310 U.P., India
| | - Dhananjay K Pandey
- School of Biotechnology, Gautam Buddha University, Greater Noida 201310 U.P., India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida 201310 U.P., India.
| |
Collapse
|
70
|
Kravchik M, Stav R, Belausov E, Arazi T. Functional Characterization of microRNA171 Family in Tomato. PLANTS (BASEL, SWITZERLAND) 2019; 8:E10. [PMID: 30621201 PMCID: PMC6358981 DOI: 10.3390/plants8010010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023]
Abstract
Deeply conserved plant microRNAs (miRNAs) function as pivotal regulators of development. Nevertheless, in the model crop Solanum lycopersicum (tomato) several conserved miRNAs are still poorly annotated and knowledge about their functions is lacking. Here, the tomato miR171 family was functionally analyzed. We found that the tomato genome contains at least 11 SlMIR171 genes that are differentially expressed along tomato development. Downregulation of sly-miR171 in tomato was successfully achieved by transgenic expression of a short tandem target mimic construct (STTM171). Consequently, sly-miR171-targeted mRNAs were upregulated in the silenced plants. Target upregulation was associated with irregular compound leaf development and an increase in the number of axillary branches. A prominent phenotype of STTM171 expressing plants was their male sterility due to a production of a low number of malformed and nonviable pollen. We showed that sly-miR171 was expressed in anthers along microsporogenesis and significantly silenced upon STTM171 expression. Sly-miR171-silenced anthers showed delayed tapetum ontogenesis and reduced callose deposition around the tetrads, both of which together or separately can impair pollen development. Collectively, our results show that sly-miR171 is involved in the regulation of anther development as well as shoot branching and compound leaf morphogenesis.
Collapse
Affiliation(s)
- Michael Kravchik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| | - Ran Stav
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| | - Tzahi Arazi
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| |
Collapse
|
71
|
Salvador-Guirao R, Baldrich P, Tomiyama S, Hsing YI, Okada K, San Segundo B. OsDCL1a activation impairs phytoalexin biosynthesis and compromises disease resistance in rice. ANNALS OF BOTANY 2019; 123:79-93. [PMID: 30032201 PMCID: PMC6344094 DOI: 10.1093/aob/mcy141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/30/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional regulators of gene expression via sequence-specific cleavage or translational repression of target transcripts. They are transcribed as long single-stranded RNA precursors with unique stem-loop structures that are processed by a DICER-Like (DCL) ribonuclease, typically DCL1, to produce mature miRNAs. Although a plethora of miRNAs have been found to be regulated by pathogen infection in plants, the biological function of most miRNAs remains largely unknown. Here, the contribution of OsDCL1 to rice immunity was investigated. METHODS Activation-tagged Osdcl1a (Osdcl1a-Ac) rice mutants were examined for resistance to pathogen infection. mRNA and small RNA deep sequencing, quantitative real-time PCR (RT-qPCR) and stem-loop reverse tanscripion-PCR (RT-PCR) were used to examine DCL1a-mediated alterations in the rice transcriptome. Rice diterpene phytoalexins were quantified by liquid chromatography-tandem mass spectrometry (LC-MSMS). Accumulation of O2·- was determined by nitroblue tetrazolium (NBT) staining. KEY RESULTS dcl1a-Ac mutants exhibit enhanced susceptibility to infection by fungal pathogens which was associated with a weaker induction of defence gene expression. Comparison of the mRNA and miRNA transcriptomes of dcl1a-Ac and wild-type plants revealed misregulation of genes involved in detoxification of reactive oxygen species. Consequently, dcl1a-Ac plants accumulated O2·- in their leaves and were more sensitive to methyl viologen-induced oxidative stress. Furthermore, dcl1a-Ac plants showed downregulation of diterpenoid phytoalexin biosynthetic genes, these genes also being weakly induced during pathogen infection. Upon pathogen challenge, dcl1a-Ac plants failed to accumulate major diterpenoid phytoalexins. OsDCL1a activation resulted in marked alterations in the rice miRNAome, including both upregulation and downregulation of miRNAs. CONCLUSIONS OsDCL1a activation enhances susceptibility to infection by fungal pathogens in rice. Activation of OsDCL1a represses the pathogen-inducible host defence response and negatively regulates diterpenoid phytoalexin production. These findings provide a basis to understand the molecular mechanisms through which OsDCL1a mediates rice immunity.
Collapse
Affiliation(s)
- Raquel Salvador-Guirao
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Patricia Baldrich
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Shiho Tomiyama
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Yue-Ie Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- For correspondence. E-mail
| |
Collapse
|
72
|
Shu J, Chen C, Thapa RK, Bian S, Nguyen V, Yu K, Yuan Z, Liu J, Kohalmi SE, Li C, Cui Y. Genome-wide occupancy of histone H3K27 methyltransferases CURLY LEAF and SWINGER in Arabidopsis seedlings. PLANT DIRECT 2019; 3:e00100. [PMID: 31245749 PMCID: PMC6508855 DOI: 10.1002/pld3.100] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 05/25/2023]
Abstract
The Polycomb Group (PcG) proteins form two protein complexes, PcG Repressive Complex 1 (PRC1) and PRC2, which are key epigenetic regulators in eukaryotes. PRC2 represses gene expression by catalyzing the trimethylation of histone H3 lysine 27 (H3K27me3). In Arabidopsis (Arabidopsis thaliana), CURLY LEAF (CLF) and SWINGER (SWN) are two major H3K27 methyltransferases and core components of PRC2, playing essential roles in plant growth and development. Despite their importance, genome-wide binding profiles of CLF and SWN have not been determined and compared yet. In this study, we generated transgenic lines expressing GFP-tagged CLF/SWN under their respective native promoters and used them for ChIP-seq analyses to profile the genome-wide distributions of CLF and SWN in Arabidopsis seedlings. We also profiled and compared the global H3K27me3 levels in wild-type (WT) and PcG mutants (clf, swn, and clf swn). Our data show that CLF and SWN bind to almost the same set of genes, except that SWN has a few hundred more targets. Two short DNA sequences, the GAGA-like and Telo-box-like motifs, were found enriched in the CLF and SWN binding regions. The H3K27me3 levels in clf, but not in swn, were markedly reduced compared with WT; and the mark was undetectable in the clf swn double mutant. Further, we profiled the transcriptomes in clf, swn, and clf swn, and compared that with WT. Thus this work provides a useful resource for the plant epigenetics community for dissecting the functions of PRC2 in plant growth and development.
Collapse
Affiliation(s)
- Jie Shu
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Chen Chen
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Raj Kumar Thapa
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Shaomin Bian
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- College of Plant ScienceJilin UniversityChangchunChina
| | - Vi Nguyen
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
| | - Kangfu Yu
- Harrow Research and Development CentreAgriculture and Agri‐Food CanadaHarrowOntarioCanada
| | - Ze‐Chun Yuan
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
| | - Jun Liu
- Guangdong Academy of Agricultural SciencesGuangzhouChina
| | | | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yuhai Cui
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
73
|
Hoyer JS, Pruneda‐Paz JL, Breton G, Hassert MA, Holcomb EE, Fowler H, Bauer KM, Mreen J, Kay SA, Carrington JC. Functional dissection of the ARGONAUTE7 promoter. PLANT DIRECT 2019; 3:e00102. [PMID: 31245750 PMCID: PMC6508778 DOI: 10.1002/pld3.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 05/27/2023]
Abstract
ARGONAUTES are the central effector proteins of RNA silencing which bind target transcripts in a small RNA-guided manner. Arabidopsis thaliana has 10 ARGONAUTE (AGO) genes, with specialized roles in RNA-directed DNA methylation, post-transcriptional gene silencing, and antiviral defense. To better understand specialization among AGO genes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters of AGO1,AGO10, and AGO7 using yeast 1-hybrid assays. A ranked list of candidate DNA-binding TFs revealed binding of the AGO7 promoter by a number of proteins in two families: the miR156-regulated SPL family and the miR319-regulated TCP family, both of which have roles in developmental timing and leaf morphology. Possible functions for SPL and TCP binding are unclear: we showed that these binding sites are not required for the polar expression pattern of AGO7, nor for the function of AGO7 in leaf shape. Normal AGO7 transcription levels and function appear to depend instead on an adjacent 124-bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conserved AGO7-triggered TAS3 pathway functions in timing and polarity.
Collapse
Affiliation(s)
- J. Steen Hoyer
- Donald Danforth Plant Science CenterSt. LouisMissouri
- Computational and Systems Biology ProgramWashington UniversitySt. LouisMissouri
| | - Jose L. Pruneda‐Paz
- Division of Biological Sciences and Center for ChronobiologyUniversity of California San DiegoLa JollaCalifornia
| | - Ghislain Breton
- Division of Biological Sciences and Center for ChronobiologyUniversity of California San DiegoLa JollaCalifornia
- Department of Integrative Biology and PharmacologyMcGovern Medical SchoolHoustonTexas
| | | | | | - Halley Fowler
- Donald Danforth Plant Science CenterSt. LouisMissouri
| | | | - Jacob Mreen
- Donald Danforth Plant Science CenterSt. LouisMissouri
| | - Steve A. Kay
- Division of Biological Sciences and Center for ChronobiologyUniversity of California San DiegoLa JollaCalifornia
- Department of NeurologyUniversity of Southern CaliforniaLos AngelesCalifornia
| | | |
Collapse
|
74
|
Szaker HM, Darkó É, Medzihradszky A, Janda T, Liu HC, Charng YY, Csorba T. miR824/AGAMOUS-LIKE16 Module Integrates Recurring Environmental Heat Stress Changes to Fine-Tune Poststress Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1454. [PMID: 31824525 PMCID: PMC6886564 DOI: 10.3389/fpls.2019.01454] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/18/2019] [Indexed: 05/19/2023]
Abstract
Plant development is continually fine-tuned based on environmental factors. How environmental perturbations are integrated into the developmental programs and how poststress adaptation is regulated remains an important topic to dissect. Vegetative to reproductive phase change is a very important developmental transition that is complexly regulated based on endogenous and exogenous cues. Proper timing of flowering is vital for reproductive success. It has been shown previously that AGAMOUS LIKE 16 (AGL16), a MADS-box transcription factor negatively regulates flowering time transition through FLOWERING LOCUS T (FT), a central downstream floral integrator. AGL16 itself is negatively regulated by the microRNA miR824. Here we present a comprehensive molecular analysis of miR824/AGL16 module changes in response to mild and recurring heat stress. We show that miR824 accumulates gradually in response to heat due to the combination of transient transcriptional induction and posttranscriptional stability. miR824 induction requires heat shock cis-elements and activity of the HSFA1 family and HSFA2 transcription factors. Parallel to miR824 induction, its target AGL16 is decreased, implying direct causality. AGL16 posttranscriptional repression during heat stress, however, is more complex, comprising of a miRNA-independent, and a miR824-dependent pathway. We also show that AGL16 expression is leaf vein-specific and overlaps with miR824 (and FT) expression. AGL16 downregulation in response to heat leads to a mild derepression of FT. Finally, we present evidence showing that heat stress regulation of miR824/AGL16 is conserved within Brassicaceae. In conclusion, due to the enhanced post-transcriptional stability of miR824, stable repression of AGL16 is achieved following heat stress. This may serve to fine-tune FT levels and alter flowering time transition. Stress-induced miR824, therefore, can act as a "posttranscriptional memory factor" to extend the acute impact of environmental fluctuations in the poststress period.
Collapse
Affiliation(s)
- Henrik Mihály Szaker
- Agricultural Biotechnology Institute, NARIC, Godollo, Hungary
- Faculty of Natural Sciences, Eötvös Lóránd University, Budapest, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | | | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Hsiang-chin Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yee-yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Tibor Csorba
- Agricultural Biotechnology Institute, NARIC, Godollo, Hungary
- *Correspondence: Tibor Csorba,
| |
Collapse
|
75
|
Abstract
Plant microRNAs do not only perform important roles in development; they also have a fascinating evolutionary dynamics. Their genes appear to originate at quite a high rate during evolution, but most of them evolve initially in an almost neutral way and hence also get lost quite rapidly. Despite the high birth and death rate, a few miRNA-encoding genes got involved in the control of important target genes and thus have been conserved during evolution. This happened obviously at all times and taxonomic levels during land plant evolution. Consequently, the genomes of extant plant species contain a mix of miRNA-encoding genes of different ages, ranging from very young, often even species-specific loci to genes that had already been established in the stem group of extant land plants more than 400 million years ago. It could well be that the evolutionary dynamics of miRNA-encoding genes contributed substantially to the evolution of developmental plasticity in plants.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute-Genetics, Friedrich Schiller University Jena, Jena, Germany
| | - Günter Theißen
- Matthias Schleiden Institute-Genetics, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
76
|
Cao J, Gulyás Z, Kalapos B, Boldizsár Á, Liu X, Pál M, Yao Y, Galiba G, Kocsy G. Identification of a redox-dependent regulatory network of miRNAs and their targets in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:85-99. [PMID: 30260414 DOI: 10.1093/jxb/ery339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species and antioxidants have an important role in the regulation of plant growth and development under both optimal and stress conditions. In this study, we investigate a possible redox control of miRNAs in wheat (Triticum aestivum ssp. aestivum). Treatment of seedlings with 10 mM H2O2 via the roots for 24 h resulted in decreased glutathione content, increased half-cell reduction potential of the glutathione disulphide/glutathione redox pair, and greater ascorbate peroxidase activity compared to the control plants. These changes were accompanied by alterations in the miRNA transcript profile, with 70 miRNAs being identified with at least 1.5-fold difference in their expression between control and treated (0, 3, 6 h) seedlings. Degradome sequencing identified 86 target genes of these miRNAs, and 6722 possible additional target genes were identified using bioinformatics tools. The H2O2-responsiveness of 1647 target genes over 24 h of treatment was also confirmed by transcriptome analysis, and they were mainly found to be related to the control of redox processes, transcription, and protein phosphorylation and degradation. In a time-course experiment (0-24 h of treatment) a correlation was found between the levels of glutathione, other antioxidants, and the transcript levels of the H2O2-responsive miRNAs and their target mRNAs. This relationship together with bioinformatics modelling of the regulatory network indicated glutathione-related redox control of miRNAs and their targets, which allows the adjustment of the metabolism to changing environmental conditions.
Collapse
Affiliation(s)
- Jie Cao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Deák Ferenc str. 16., Hungary
| | - Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Magda Pál
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, China
| | - Gábor Galiba
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, Keszthely, Deák Ferenc str. 16., Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
77
|
Expression Analysis of miRNA 164c During Rice Regeneration in Different indica Rice Genotypes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
78
|
Correa JPDO, Silva EM, Nogueira FTS. Molecular Control by Non-coding RNAs During Fruit Development: From Gynoecium Patterning to Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2018; 9:1760. [PMID: 30555499 PMCID: PMC6283909 DOI: 10.3389/fpls.2018.01760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/13/2018] [Indexed: 05/02/2023]
Abstract
Fruits are originated from the transition of a quiescent ovary to a fast-growing young fruit. The evolution of reproductive structures such as ovary and fruit has made seed dispersal easier, which is a key process for reproductive success in flowering plants. The complete fruit development and ripening are characterized by a remarkable phenotypic plasticity which is orchestrated by a myriad of genetic factors. In this context, transcriptional regulation by non-coding small (i.e., microRNAs) and long (lncRNAs) RNAs underlies important mechanisms controlling reproductive organ development. These mechanisms may act together and interact with other pathways (i.e., phytohormones) to regulate cell fate and coordinate reproductive organ development. Functional genomics has shown that non-coding RNAs regulate a diversity of developmental reproductive stages, from carpel formation and ovary development to the softening of the ripe/ripened fruit. This layer of transcriptional control has been associated with ovule, seed, and fruit development as well as fruit ripening, which are crucial developmental processes in breeding programs because of their relevance for crop production. The final ripe fruit is the result of a process under multiple levels of regulation, including mechanisms orchestrated by microRNAs and lncRNAs. Most of the studies we discuss involve work on tomato and Arabidopsis. In this review, we summarize non-coding RNA-controlled mechanisms described in the current literature that act coordinating the main steps of gynoecium development/patterning and fruit ripening.
Collapse
Affiliation(s)
| | | | - Fabio T. S. Nogueira
- Laboratory of Molecular Genetics of Plant Development, Department of Biological Sciences (LCB), Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
79
|
Peng T, Qiao M, Liu H, Teotia S, Zhang Z, Zhao Y, Wang B, Zhao D, Shi L, Zhang C, Le B, Rogers K, Gunasekara C, Duan H, Gu Y, Tian L, Nie J, Qi J, Meng F, Huang L, Chen Q, Wang Z, Tang J, Tang X, Lan T, Chen X, Wei H, Zhao Q, Tang G. A Resource for Inactivation of MicroRNAs Using Short Tandem Target Mimic Technology in Model and Crop Plants. MOLECULAR PLANT 2018; 11:1400-1417. [PMID: 30243763 DOI: 10.1016/j.molp.2018.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 08/01/2018] [Accepted: 09/06/2018] [Indexed: 05/04/2023]
Abstract
microRNAs (miRNAs) are endogenous small non-coding RNAs that bind to mRNAs and target them for cleavage and/or translational repression, leading to gene silencing. We previously developed short tandem target mimic (STTM) technology to deactivate endogenous miRNAs in Arabidopsis. Here, we created hundreds of STTMs that target both conserved and species-specific miRNAs in Arabidopsis, tomato, rice, and maize, providing a resource for the functional interrogation of miRNAs. We not only revealed the functions of several miRNAs in plant development, but also demonstrated that tissue-specific inactivation of a few miRNAs in rice leads to an increase in grain size without adversely affecting overall plant growth and development. RNA-seq and small RNA-seq analyses of STTM156/157 and STTM165/166 transgenic plants revealed the roles of these miRNAs in plant hormone biosynthesis and activation, secondary metabolism, and ion-channel activity-associated electrophysiology, demonstrating that STTM technology is an effective approach for studying miRNA functions. To facilitate the study and application of STTM transgenic plants and to provide a useful platform for storing and sharing of information about miRNA-regulated gene networks, we have established an online Genome Browser (https://blossom.ffr.mtu.edu/designindex2.php) to display the transcriptomic and miRNAomic changes in STTM-induced miRNA knockdown plants.
Collapse
Affiliation(s)
- Ting Peng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Mengmeng Qiao
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Haiping Liu
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sachin Teotia
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhanhui Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Yafan Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Bobo Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Dongjie Zhao
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Lina Shi
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Cui Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Brandon Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Kestrel Rogers
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Chathura Gunasekara
- School of Forest Resources and Environmental Science, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Haitang Duan
- Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Yiyou Gu
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Lei Tian
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Jinfu Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China; Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jian Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Fanrong Meng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Qinghui Chen
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA; Department of Kinesiology and Integrative Physiology, Life Science and Technology Instituted, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhenlin Wang
- Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Jinshan Tang
- School of Technology, Michigan Technological University, Houghton, MI 49931, USA
| | - Xiaoqing Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA; Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China.
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, P.R. China.
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guiliang Tang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA; Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China; Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
80
|
Identification of browning-related microRNAs and their targets reveals complex miRNA-mediated browning regulatory networks in Luffa cylindrica. Sci Rep 2018; 8:16242. [PMID: 30389964 PMCID: PMC6214963 DOI: 10.1038/s41598-018-33896-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/07/2018] [Indexed: 11/09/2022] Open
Abstract
As a non-coding and endogenous small RNA, MicroRNA (miRNA) takes a vital regulatory role in plant growth and development. Long-term storage and processing of many fruits and vegetables, including Luffa, are subject to influences from browning, a common post-harvest problem that adversely affects flavor, aroma, and nutritional value. The browning regulatory networks mediated by miRNA, however, remain largely unexplored. For a systematic identification of browning-responsive miRNAs and the targets, we built two RNA libraries from Luffa pulps of near-isogenic line, with resistant and sensitive browning characteristics respectively, and then sequenced them using Solexa high-throughput technology. We consequently identified 179 known miRNAs that represent 17 non-conserved miRNA families and 24 conserved families, as well as 84 potential novel miRNAs, among which 16 miRNAs (eight known and eight novel miRNAs) were found to exhibit significant differential expressions and were thus identified as browning-related miRNAs. We then studied those browning-responsive miRNAs and the corresponding targets with RT-qPCR and finally validated their expression patterns. The results revealed that the expression patterns are specific to plant development stages and the miRNAs are identified with 39 target transcripts, which involve in plant development, defense response, transcriptional regulation, and signal transduction. After characterizing these miRNAs and their targets, we propose a browning regulatory network model of miRNA-mediatation in this paper. The findings of the work are helpful for the understanding of miRNA-mediated regulatory mechanisms of browning in Luffa, and will facilitate genetic improvement of pulp characteristics in Luffa.
Collapse
|
81
|
Megha S, Basu U, Joshi RK, Kav NNV. Physiological studies and genome-wide microRNA profiling of cold-stressed Brassica napus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:1-17. [PMID: 30170322 DOI: 10.1016/j.plaphy.2018.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/26/2018] [Accepted: 08/21/2018] [Indexed: 05/27/2023]
Abstract
Temperature extremes, including cold, adversely impact plant growth and development. Plant responses to cold stress (CS) are regulated at both transcriptional and post-transcriptional levels. MicroRNAs (miRNAs), small non-coding RNAs, are known to be involved in post-transcriptional regulation of various developmental processes and metal stress in Brassica napus L. (canola), however, their role in response to CS is largely unknown. In this study, changes in various physiological parameters and endogenous abundance of miRNAs were characterized in spring canola seedlings (DH12075) exposed to 4 °C for 0-48 h. Cold stress induced electrolyte leakage, increased the levels of malondialdheyde and antioxidant enzymes and reduced photosynthetic efficiency. Using small RNA sequencing, 70 known and 126 novel miRNAs were identified in CS leaf tissues and among these, 25 known and 104 novel miRNAs were differentially expressed. Quantitative real-time (qRT) PCR analysis of eight selected miRNAs confirmed their CS responsiveness. Furthermore, the expression of six out of eight miRNAs exhibited an opposite trend in a winter variety of canola, 'Mendel', when compared to 'DH12075'. This first study on the B. napus miRNAome provides a framework for further functional analysis of these miRNAs and their targets in response to CS which may contribute towards the future development of cold resilient crops.
Collapse
Affiliation(s)
- Swati Megha
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Raj Kumar Joshi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
82
|
Kakrana A, Mathioni SM, Huang K, Hammond R, Vandivier L, Patel P, Arikit S, Shevchenko O, Harkess AE, Kingham B, Gregory BD, Leebens-Mack JH, Meyers BC. Plant 24-nt reproductive phasiRNAs from intramolecular duplex mRNAs in diverse monocots. Genome Res 2018; 28:1333-1344. [PMID: 30002159 PMCID: PMC6120631 DOI: 10.1101/gr.228163.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 07/11/2018] [Indexed: 11/25/2022]
Abstract
In grasses, two pathways that generate diverse and numerous 21-nt (premeiotic) and 24-nt (meiotic) phased siRNAs are highly enriched in anthers, the male reproductive organs. These "phasiRNAs" are analogous to mammalian piRNAs, yet their functions and evolutionary origins remain largely unknown. The 24-nt meiotic phasiRNAs have only been described in grasses, wherein their biogenesis is dependent on a specialized Dicer (DCL5). To assess how evolution gave rise to this pathway, we examined reproductive phasiRNA pathways in nongrass monocots: garden asparagus, daylily, and lily. The common ancestors of these species diverged approximately 115-117 million years ago (MYA). We found that premeiotic 21-nt and meiotic 24-nt phasiRNAs were abundant in all three species and displayed spatial localization and temporal dynamics similar to grasses. The miR2275-triggered pathway was also present, yielding 24-nt reproductive phasiRNAs, and thus originated more than 117 MYA. In asparagus, unlike in grasses, these siRNAs are largely derived from inverted repeats (IRs); analyses in lily identified thousands of precursor loci, and many were also predicted to form foldback substrates for Dicer processing. Additionally, reproductive phasiRNAs were present in female reproductive organs and thus may function in both male and female germinal development. These data describe several distinct mechanisms of production for 24-nt meiotic phasiRNAs and provide new insights into the evolution of reproductive phasiRNA pathways in monocots.
Collapse
Affiliation(s)
- Atul Kakrana
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Sandra M Mathioni
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Kun Huang
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Reza Hammond
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Lee Vandivier
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Parth Patel
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19714, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen and Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Olga Shevchenko
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Alex E Harkess
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Bruce Kingham
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
83
|
Martín-Rodríguez JÁ, Leija A, Formey D, Hernández G. The MicroRNA319d/TCP10 Node Regulates the Common Bean - Rhizobia Nitrogen-Fixing Symbiosis. FRONTIERS IN PLANT SCIENCE 2018; 9:1175. [PMID: 30147704 PMCID: PMC6095992 DOI: 10.3389/fpls.2018.01175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/23/2018] [Indexed: 05/30/2023]
Abstract
Micro-RNAs from legume plants are emerging as relevant regulators of the rhizobia nitrogen-fixing symbiosis. In this work we functionally characterized the role of the node conformed by micro-RNA319 (miR319) - TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factor in the common bean (Phaseolus vulgaris) - Rhizobium tropici symbiosis. The miR319d, one of nine miR319 isoforms from common bean, was highly expressed in root and nodules from inoculated plants as compared to roots from fertilized plants. The miR319d targets TCP10 (Phvul.005G067950), identified by degradome analysis, whose expression showed a negative correlation with miR319d expression. The phenotypic analysis of R. tropici-inoculated composite plants with transgenic roots/nodules overexpressing or silencing the function of miR319d demonstrated the relevant role of the miR319d/TCP10 node in the common bean rhizobia symbiosis. Increased miR319d resulted in reduced root length/width ratio, increased rhizobial infection evidenced by more deformed root hairs and infection threads, and decreased nodule formation and nitrogenase activity per plant. In addition, these plants with lower TCP10 levels showed decreased expression level of the jasmonic acid (JA) biosynthetic gene: LOX2. The transcription of LOX2 by TCPs has been demonstrated for Arabidopsis and in several plants LOX2 level and JA content have been associate with TCP levels. On this basis, we propose that in roots/nodules of inoculated common bean plants TCP10 could be the transcriptional regulator of LOX2 and the miR319d/TCP10 node could affect nodulation through JA signaling. However, given the complexity of nodulation, the participation of other signaling pathways in the phenotypes observed cannot be ruled out.
Collapse
|
84
|
Fard EM, Bakhshi B, Farsi M, Kakhki AM, Nikpay N, Ebrahimi MA, Mardi M, Salekdeh GH. MicroRNAs regulate the main events in rice drought stress response by manipulating the water supply to shoots. MOLECULAR BIOSYSTEMS 2018; 13:2289-2302. [PMID: 28872648 DOI: 10.1039/c7mb00298j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous regulatory RNAs that are involved in a variety of biological processes related to proliferation, development, and response to biotic and abiotic stresses. miRNA profiles of rice (Oryza sativa L. cv. IR64.) leaves in a partial root zone drying (PRD) system were analysed using a high-throughput sequencing approach to identify miRNAs associated with drought signalling. The treatments performed in this study were as follows: well-watered ("wet" roots, WW), wherein both halves of the pot were watered daily; drought ("dry" roots, DD), wherein water was withheld from both halves of the pot; and well-watered/drought ("wet" and "dry" roots, WD), wherein one half of each pot was watered daily, the same as in WW, and water was withheld from the other part, the same as in DD. High-throughput sequencing enabled us to detect novel miRNAs and study the differential expression of known miRNAs. A total of 209 novel miRNAs were detected in this study. Differential miRNA profiling of the DD, WD and WW conditions showed differential expression of 159 miRNAs, among which 83, 44 and 32 miRNAs showed differential expression under both DD and WD conditions. The detection of putative targets of the differentially expressed miRNAs and investigation of their functions showed that most of these genes encode transcription factors involved in growth and development, leaf morphology, regulation of hormonal homeostasis, and stress response. The most important differences between the DD and WD conditions involved regulation of the levels of hormones such as auxin, cytokinin, abscisic acid, and jasmonic acid and also regulation of phosphor homeostasis. Overall, differentially expressed miRNAs under WD conditions were found to differ from those under DD conditions, with such differences playing a role in adaptation and inducing the normal condition. The mechanisms involved in regulating hormonal homeostasis and involved in energy production and consumption were found to be the most important regulatory pathways distinguishing the DD and WD conditions.
Collapse
Affiliation(s)
- Ehsan Mohseni Fard
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
von Born P, Bernardo-Faura M, Rubio-Somoza I. An artificial miRNA system reveals that relative contribution of translational inhibition to miRNA-mediated regulation depends on environmental and developmental factors in Arabidopsis thaliana. PLoS One 2018; 13:e0192984. [PMID: 29451902 PMCID: PMC5815599 DOI: 10.1371/journal.pone.0192984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/01/2018] [Indexed: 11/24/2022] Open
Abstract
Development and fitness of any organism rely on properly controlled gene expression. This is especially true for plants, as their development is determined by both internal and external cues. MicroRNAs (miRNAs) are embedded in the genetic cascades that integrate and translate those cues into developmental programs. miRNAs negatively regulate their target genes mainly post-transcriptionally through two co-existing mechanisms; mRNA cleavage and translational inhibition. Despite our increasing knowledge about the genetic and biochemical processes involved in those concurrent mechanisms, little is known about their relative contributions to the overall miRNA-mediated regulation. Here we show that co-existence of cleavage and translational inhibition is dependent on growth temperature and developmental stage. We found that efficiency of an artificial miRNA-mediated (amiRNA) gene silencing declines with age during vegetative development in a temperature-dependent manner. That decline is mainly due to a reduction on the contribution from translational inhibition. Both, temperature and developmental stage were also found to affect mature amiRNA accumulation and the expression patterns of the core players involved in miRNA biogenesis and action. Therefore, that suggests that each miRNA family specifically regulates their respective targets, while temperature and growth might influence the performance of miRNA-dependent regulation in a more general way.
Collapse
Affiliation(s)
- Patrick von Born
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Ignacio Rubio-Somoza
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Molecular Reprogramming and Evolution Laboratory. Centre for Research in Agricultural Genomics, Barcelona, Spain
- * E-mail:
| |
Collapse
|
86
|
Liu P, Liu J, Dong H, Sun J. Functional regulation of Q by microRNA172 and transcriptional co-repressor TOPLESS in controlling bread wheat spikelet density. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:495-506. [PMID: 28703466 PMCID: PMC5787848 DOI: 10.1111/pbi.12790] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 05/20/2023]
Abstract
Bread wheat (Triticum aestivum) spike architecture is an important agronomic trait. The Q gene plays a key role in the domestication of bread wheat spike architecture. However, the regulatory mechanisms of Q expression and transcriptional activity remain largely unknown. In this study, we show that overexpression of bread wheat tae-miR172 caused a speltoid-like spike phenotype, reminiscent of that in wheat plants with the q gene. The reduction in Q transcript levels in the tae-miR172 overexpression transgenic bread wheat lines suggests that the Q expression can be suppressed by tae-miR172 in bread wheat. Indeed, our RACE analyses confirmed that the Q mRNA is targeted by tae-miR172 for cleavage. According to our analyses, the Q protein is localized in nucleus and confers transcriptional repression activity. Meanwhile, the Q protein could physically interact with the bread wheat transcriptional co-repressor TOPLESS (TaTPL). Specifically, the N-terminal ethylene-responsive element binding factor-associated amphiphilic repression (EAR) (LDLNVE) motif but not the C-terminal EAR (LDLDLR) motif of Q protein mediates its interaction with the CTLH motif of TaTPL. Moreover, we show that the N-terminal EAR motif of Q protein is also essentially required for the transcriptional repression activity of Q protein. Taken together, we reveal the functional regulation of Q protein by tae-miR172 and transcriptional co-repressor TaTPL in controlling the bread wheat spike architecture.
Collapse
Affiliation(s)
- Pan Liu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jie Liu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Huixue Dong
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
87
|
Salvador-Guirao R, Baldrich P, Weigel D, Rubio-Somoza I, San Segundo B. The MicroRNA miR773 Is Involved in the Arabidopsis Immune Response to Fungal Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:249-259. [PMID: 28990488 DOI: 10.1094/mpmi-05-17-0108-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) are 21- to 24-nucleotide short noncoding RNAs that trigger gene silencing in eukaryotes. In plants, miRNAs play a crucial role in a wide range of developmental processes and adaptive responses to abiotic and biotic stresses. In this work, we investigated the role of miR773 in modulating resistance to infection by fungal pathogens in Arabidopsis thaliana. Interference with miR773 activity by target mimics (in MIM773 plants) and concomitant upregulation of the miR773 target gene METHYLTRANSFERASE 2 (MET2) increased resistance to infection by necrotrophic (Plectosphaerrella cucumerina) and hemibiotrophic (Fusarium oxysporum, Colletototrichum higginianum) fungal pathogens. By contrast, both MIR773 overexpression and MET2 silencing enhanced susceptibility to pathogen infection. Upon pathogen challenge, MIM773 plants accumulated higher levels of callose and reactive oxygen species than wild-type plants. Stronger induction of defense-gene expression was also observed in MIM773 plants in response to fungal infection. Expression analysis revealed an important reduction in miR773 accumulation in rosette leaves of plants upon elicitor perception and pathogen infection. Taken together, our results show not only that miR773 mediates pathogen-associated molecular pattern-triggered immunity but also demonstrate that suppression of miR773 activity is an effective approach to improve disease resistance in Arabidopsis plants.
Collapse
Affiliation(s)
- Raquel Salvador-Guirao
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC, IRTA, UAB, UB. Edifici CRAG. Carrer de la Vall Moronta. Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Patricia Baldrich
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC, IRTA, UAB, UB. Edifici CRAG. Carrer de la Vall Moronta. Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Detlef Weigel
- 2 Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; and
| | - Ignacio Rubio-Somoza
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC, IRTA, UAB, UB. Edifici CRAG. Carrer de la Vall Moronta. Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Blanca San Segundo
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC, IRTA, UAB, UB. Edifici CRAG. Carrer de la Vall Moronta. Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
- 3 Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
88
|
Megha S, Basu U, Kav NNV. Regulation of low temperature stress in plants by microRNAs. PLANT, CELL & ENVIRONMENT 2018; 41:1-15. [PMID: 28346818 DOI: 10.1111/pce.12956] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 05/22/2023]
Abstract
Low temperature is one of the most common environmental stresses that seriously affect the growth and development of plants. However, plants have the plasticity in their defence mechanisms enabling them to tolerate and, sometimes, even survive adverse environmental conditions. MicroRNAs (miRNAs) are small non-coding RNAs, approximately 18-24 nucleotides in length, and are being increasingly recognized as regulators of gene expression at the post-transcriptional level and have the ability to influence a broad range of biological processes. There is growing evidence in the literature that reprogramming of gene expression mediated through miRNAs is a major defence mechanism in plants enabling them to respond to stresses. To date, numerous studies have established the importance of miRNA-based regulation of gene expression under low temperature stress. Individual miRNAs can modulate the expression of multiple mRNA targets, and, therefore, the manipulation of a single miRNA has the potential to affect multiple biological processes. Numerous functional studies have attempted to identify the miRNA-target interactions and have elaborated the role of several miRNAs in cold-stress regulation. This review summarizes the current understanding of miRNA-mediated modulation of the expression of key genes as well as genetic and regulatory pathways, involved in low temperature stress responses in plants.
Collapse
Affiliation(s)
- Swati Megha
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
89
|
Yang T, Wang Y, Teotia S, Zhang Z, Tang G. The Making of Leaves: How Small RNA Networks Modulate Leaf Development. FRONTIERS IN PLANT SCIENCE 2018; 9:824. [PMID: 29967634 PMCID: PMC6015915 DOI: 10.3389/fpls.2018.00824] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/28/2018] [Indexed: 05/20/2023]
Abstract
Leaf development is a sequential process that involves initiation, determination, transition, expansion and maturation. Many coding genes and a few non-coding small RNAs (sRNAs) have been identified as being involved in leaf development. sRNAs and their interactions not only determine gene expression and regulation, but also play critical roles in leaf development through their coordination with other genetic networks and physiological pathways. In this review, we first introduce the biogenesis pathways of sRNAs, mainly microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs), and then describe the function of miRNA-transcription factors in leaf development, focusing on guidance by interactive sRNA regulatory networks.
Collapse
Affiliation(s)
- Tianxiao Yang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Yongyan Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Sachin Teotia
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
- Department of Biotechnology, Sharda University,Greater Noida, India
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Zhanhui Zhang, Guiliang Tang,
| | - Guiliang Tang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
- *Correspondence: Zhanhui Zhang, Guiliang Tang,
| |
Collapse
|
90
|
Wójcik AM, Nodine MD, Gaj MD. miR160 and miR166/165 Contribute to the LEC2-Mediated Auxin Response Involved in the Somatic Embryogenesis Induction in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2024. [PMID: 29321785 PMCID: PMC5732185 DOI: 10.3389/fpls.2017.02024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/14/2017] [Indexed: 05/04/2023]
Abstract
MicroRNAs are non-coding small RNA molecules that are involved in the post-transcriptional regulation of the genes that control various developmental processes in plants, including zygotic embryogenesis (ZE). miRNAs are also believed to regulate somatic embryogenesis (SE), a counterpart of the ZE that is induced in vitro in plant somatic cells. However, the roles of specific miRNAs in the regulation of the genes involved in SE, in particular those encoding transcription factors (TFs) with an essential function during SE including LEAFY COTYLEDON2 (LEC2), remain mostly unknown. The aim of the study was to reveal the function of miR165/166 and miR160 in the LEC2-controlled pathway of SE that is induced in in vitro cultured Arabidopsis explants.In ZE, miR165/166 controls the PHABULOSA/PHAVOLUTA (PHB/PHV) genes, which are the positive regulators of LEC2, while miR160 targets the AUXIN RESPONSE FACTORS (ARF10, ARF16, ARF17) that control the auxin signaling pathway, which plays key role in LEC2-mediated SE. We found that a deregulated expression/function of miR165/166 and miR160 resulted in a significant accumulation of auxin in the cultured explants and the spontaneous formation of somatic embryos. Our results show that miR165/166 might contribute to SE induction via targeting PHB, a positive regulator of LEC2 that controls embryogenic induction via activation of auxin biosynthesis pathway (Wójcikowska et al., 2013). Similar to miR165/166, miR160 was indicated to control SE induction through auxin-related pathways and the negative impact of miR160 on ARF10/ARF16/ARF17 was shown in an embryogenic culture. Altogether, the results suggest that the miR165/166- and miR160-node contribute to the LEC2-mediated auxin-related pathway of embryogenic transition that is induced in the somatic cells of Arabidopsis. A model summarizing the suggested regulatory interactions between the miR165/166-PHB and miR160-ARF10/ARF16/ARF17 nodes that control SE induction in Arabidopsis was proposed.
Collapse
Affiliation(s)
- Anna M. Wójcik
- Department of Genetics, University of Silesia, Faculty of Biology and Environmental Protection, Katowice, Poland
| | - Michael D. Nodine
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Małgorzata D. Gaj
- Department of Genetics, University of Silesia, Faculty of Biology and Environmental Protection, Katowice, Poland
| |
Collapse
|
91
|
Liu Y, El-Kassaby YA. Global Analysis of Small RNA Dynamics during Seed Development of Picea glauca and Arabidopsis thaliana Populations Reveals Insights on their Evolutionary Trajectories. FRONTIERS IN PLANT SCIENCE 2017; 8:1719. [PMID: 29046688 PMCID: PMC5632664 DOI: 10.3389/fpls.2017.01719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
While DNA methylation carries genetic signals and is instrumental in the evolution of organismal complexity, small RNAs (sRNAs), ~18-24 ribonucleotide (nt) sequences, are crucial mediators of methylation as well as gene silencing. However, scant study deals with sRNA evolution via featuring their expression dynamics coupled with species of different evolutionary time. Here we report an atlas of sRNAs and microRNAs (miRNAs, single-stranded sRNAs) produced over time at seed-set of two major spermatophytes represented by populations of Picea glauca and Arabidopsis thaliana with different seed-set duration. We applied diverse profiling methods to examine sRNA and miRNA features, including size distribution, sequence conservation and reproduction-specific regulation, as well as to predict their putative targets. The top 27 most abundant miRNAs were highly overlapped between the two species (e.g., miR166,-319 and-396), but in P. glauca, they were less abundant and significantly less correlated with seed-set phases. The most abundant sRNAs in libraries were deeply conserved miRNAs in the plant kingdom for Arabidopsis but long sRNAs (24-nt) for P. glauca. We also found significant difference in normalized expression between populations for population-specific sRNAs but not for lineage-specific ones. Moreover, lineage-specific sRNAs were enriched in the 21-nt size class. This pattern is consistent in both species and alludes to a specific type of sRNAs (e.g., miRNA, tasiRNA) being selected for. In addition, we deemed 24 and 9 sRNAs in P. glauca and Arabidopsis, respectively, as sRNA candidates targeting known adaptive genes. Temperature had significant influence on selected gene and miRNA expression at seed development in both species. This study increases our integrated understanding of sRNA evolution and its potential link to genomic architecture (e.g., sRNA derivation from genome and sRNA-mediated genomic events) and organismal complexity (e.g., association between different sRNA expression and their functionality).
Collapse
|
92
|
Yu X, Hou Y, Chen W, Wang S, Wang P, Qu S. Malus hupehensis miR168 Targets to ARGONAUTE1 and Contributes to the Resistance against Botryosphaeria dothidea Infection by Altering Defense Responses. PLANT & CELL PHYSIOLOGY 2017; 58:1541-1557. [PMID: 28633325 DOI: 10.1093/pcp/pcx080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/29/2017] [Indexed: 05/23/2023]
Abstract
MicroRNA (miRNA)-mediated post-transcriptional regulation plays a fundamental role in various plant physiological processes, including responses to pathogens. MicroRNA168 has been implicated as an essential factor of miRNA pathways by targeting ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC). A fluctuation in AGO1 expression influences various plant-pathogen interactions, and the homeostasis of AGO1 and miR168 accumulation is maintained by a complicated feedback regulatory loop. In this study, the connection between miR168 and the resistance of Malus hupehensis to Botryosphaeria dothidea is revealed. The induction of both the mature miR168 and its precursor in plants subjected to B. dothidea infection indicate the transcriptional activation of MIR168a. MIR168a promoter analysis demonstrates that the promoter can be activated by B. dothidea and salicylic acid (SA). However, the direct target of miR168, M. hupehensis ARGONAUTE1 (MhAGO1), is shown to be induced under the infection. Expression and transcription activity analysis demonstrate the transcriptional activation and the post-transcriptional suppression of MhAGO1 in response to B. dothidea infection. By inhibiting reactive oxygen species (ROS) production and enhancing SA-mediated defense responses, miR168a delays the symptom development of leaves inoculated with B. dothidea and impedes the pathogen growth, while MhAGO1 is found to have the opposite effects. Collectively, these findings suggest that the expression of miR168 and MhAGO1 in M. hupehensis in response to B. dothidea infection is regulated by a complicated mechanism. Targeting to MhAGO1, a negative regulator, miR168 plays a positive role in the resistance by alterations in diverse defense responses.
Collapse
Affiliation(s)
- Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Yingjun Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weiping Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Sanhong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Peihong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
93
|
Sablok G, Yang K, Chen R, Wen X. tRNA Derived smallRNAs: smallRNAs Repertoire Has Yet to Be Decoded in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1167. [PMID: 28791028 PMCID: PMC5524738 DOI: 10.3389/fpls.2017.01167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 05/28/2023]
Abstract
Among several smallRNAs classes, microRNAs play an important role in controlling the post-transcriptional events. Next generation sequencing has played a major role in extending the landscape of miRNAs and revealing their spatio-temporal roles in development and abiotic stress. Lateral evolution of these smallRNAs classes have widely been seen with the recently emerging knowledge on tRNA derived smallRNAs. In the present perspective, we discussed classification, identification and roles of tRNA derived smallRNAs across plants and their potential involvement in abiotic and biotic stresses.
Collapse
Affiliation(s)
- Gaurav Sablok
- Finnish Museum of Natural HistoryHelsinki, Finland
- Department of Biosciences, Viikki Plant Science Center, University of HelsinkiHelsinki, Finland
| | - Kun Yang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou UniversityGuiyang, China
| | - Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural SciencesTianjin, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering and College of Life Sciences, Guizhou UniversityGuiyang, China
| |
Collapse
|
94
|
Zhang H, Yin L, Wang H, Wang G, Ma X, Li M, Wu H, Fu Q, Zhang Y, Yi H. Genome-wide identification of Hami melon miRNAs with putative roles during fruit development. PLoS One 2017; 12:e0180600. [PMID: 28742088 PMCID: PMC5524408 DOI: 10.1371/journal.pone.0180600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs represent a family of small endogenous, non-coding RNAs that play critical regulatory roles in plant growth, development, and environmental stress responses. Hami melon is famous for its attractive flavor and excellent nutritional value, however, the mechanisms underlying the fruit development and ripening remains largely unknown. Here, we performed small RNA sequencing to investigate the roles of miRNAs during Hami melon fruit development. Two batches of flesh samples were collected at four fruit development stages. Small RNA sequencing yielded a total of 54,553,424 raw reads from eight libraries. 113 conserved miRNAs belonging to 30 miRNA families and nine novel miRNAs comprising nine miRNA families were identified. The expression of 42 conserved miRNAs and three Hami melon-specific miRNAs significantly changed during fruit development. Furthermore, 484 and 124 melon genes were predicted as putative targets of 29 conserved and nine Hami melon-specific miRNA families, respectively. GO enrichment analysis were performed on target genes, "transcription, DNA-dependent", "rRNA processing", "oxidation reduction", "signal transduction", "regulation of transcription, DNA-dependent", and "metabolic process" were the over-represented biological process terms. Cleavage sites of six target genes were validated using 5' RACE. Our results present a comprehensive set of identification and characterization of Hami melon fruit miRNAs and their potential targets, which provide valuable basis towards understanding the regulatory mechanisms in programmed process of normal Hami fruit development and ripening. Specific miRNAs could be selected for further research and applications in breeding practices.
Collapse
Affiliation(s)
- Hong Zhang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Lan Yin
- ABLife, Inc., Wuhan, Hubei, China
| | - Huaisong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangzhi Wang
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Xinli Ma
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Meihua Li
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Haibo Wu
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Qiushi Fu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Zhang
- ABLife, Inc., Wuhan, Hubei, China
| | - Hongping Yi
- Hami Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
95
|
Genetic Subtraction Profiling Identifies Candidate miRNAs Involved in Rice Female Gametophyte Abortion. G3-GENES GENOMES GENETICS 2017; 7:2281-2293. [PMID: 28526728 PMCID: PMC5499135 DOI: 10.1534/g3.117.040808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The female gametophyte is an important participant in the sexual reproduction of plants. The molecular mechanism of its development has received much attention in recent years. As important regulators of gene expression, miRNAs have been certified to play a significant role in many biological processes of plants, including sexual reproduction. In this study, to investigate the potential regulatory effects of miRNAs on rice female gametophyte abortion, we used the high-throughput sequencing method to compare the miRNA transcriptome in ovules of a high frequency female-sterile line (fsv1) and a rice wild-type line (Gui 99) during ovule development. As a result, 522 known miRNAs and 295 novel miRNAs were expressed in the developing ovule of rice, while 100 known miRNAs were significantly differentially expressed between these two rice lines during ovule development. Combining with gene expression information, a total of 627 coherent target genes of these differential expressed known miRNAs between fsv1 and Gui 99 were identified. The functional analyses of these coherent target genes revealed that the coherent target genes of differential expressed known miRNAs between the two rice lines are involved in many biological pathways, such as protein degradation, auxin signal transduction, and transcription factor regulation. These results provide us with important clues to investigate the regulatory roles of miRNAs in rice female gametophyte abortion.
Collapse
|
96
|
Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F, De-la-Peña C. Plant hormone signaling in flowering: An epigenetic point of view. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:16-27. [PMID: 28419906 DOI: 10.1016/j.jplph.2017.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/06/2017] [Accepted: 03/29/2017] [Indexed: 05/19/2023]
Abstract
Reproduction is one of the most important phases in an organism's lifecycle. In the case of angiosperm plants, flowering provides the major developmental transition from the vegetative to the reproductive stage, and requires genetic and epigenetic reprogramming to ensure the success of seed production. Flowering is regulated by a complex network of genes that integrate multiple environmental cues and endogenous signals so that flowering occurs at the right time; hormone regulation, signaling and homeostasis are very important in this process. Working alone or in combination, hormones are able to promote flowering by epigenetic regulation. Some plant hormones, such as gibberellins, jasmonic acid, abscisic acid and auxins, have important effects on chromatin compaction mediated by DNA methylation and histone posttranslational modifications, which hints at the role that epigenetic regulation may play in flowering through hormone action. miRNAs have been viewed as acting independently from DNA methylation and histone modification, ignoring their potential to interact with hormone signaling - including the signaling of auxins, gibberellins, ethylene, jasmonic acid, salicylic acid and others - to regulate flowering. Therefore, in this review we examine new findings about interactions between epigenetic mechanisms and key players in hormone signaling to coordinate flowering.
Collapse
Affiliation(s)
| | | | | | - Rosa Us-Camas
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| | - Fátima Duarte-Aké
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| |
Collapse
|
97
|
Increase of DNA Methylation at the HvCKX2.1 Promoter by Terminal Drought Stress in Barley. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1020009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
98
|
Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B. Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics 2017; 18:481. [PMID: 28651543 PMCID: PMC5485680 DOI: 10.1186/s12864-017-3869-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Abiotic stresses cause severe loss of crop production. Among them, drought is one of the most frequent environmental stresses, which limits crop growth, development and productivity. Plant drought tolerance is fine-tuned by a complex gene regulatory network. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success to improve plant yield and quality. Recent studies have demonstrated that microRNAs play critical roles in plant drought tolerance. However, little is known about the microRNA in drought response of the model plant tomato. Here, we described the profiling of drought-responsive microRNA and mRNA in tomato using high-throughput next-generation sequencing. RESULTS Drought stress was applied on the seedlings of M82, a drought-sensitive cultivated tomato genotype, and IL9-1, a drought-tolerant introgression line derived from the stress-resistant wild species Solanum pennellii LA0716 and M82. Under drought, IL9-1 performed superior than M82 regarding survival rate, H2O2 elimination and leaf turgor maintenance. A total of four small RNA and eight mRNA libraries were constructed and sequenced using Illumina sequencing technology. 105 conserved and 179 novel microRNAs were identified, among them, 54 and 98 were differentially expressed upon drought stress, respectively. The majority of the differentially-expressed conserved microRNAs was up-regulated in IL9-1 whereas down-regulated in M82. Under drought stress, 2714 and 1161 genes were found to be differentially expressed in M82 and IL9-1, respectively, and many of their homologues are involved in plant stress, such as genes encoding transcription factor and protein kinase. Various pathways involved in abiotic stress were revealed by Gene Ontology and pathway analysis. The mRNA sequencing results indicated that most of the target genes were regulated by their corresponding microRNAs, which suggested that microRNAs may play essential roles in the drought tolerance of tomato. CONCLUSION In this study, numerous microRNAs and mRNAs involved in the drought response of tomato were identified using high-throughput sequencing, which will provide new insights into the complex regulatory network of plant adaption to drought stress. This work will also help to exploit new players functioning in plant drought-stress tolerance.
Collapse
Affiliation(s)
- Minmin Liu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Gangjun Zhao
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiufeng Huang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
99
|
Matsuda R, Iehisa JCM, Sakaguchi K, Ohno R, Yoshida K, Takumi S. Global gene expression profiling related to temperature-sensitive growth abnormalities in interspecific crosses between tetraploid wheat and Aegilops tauschii. PLoS One 2017; 12:e0176497. [PMID: 28463975 PMCID: PMC5413045 DOI: 10.1371/journal.pone.0176497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids.
Collapse
Affiliation(s)
- Ryusuke Matsuda
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Julio Cesar Masaru Iehisa
- Departmento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Kouhei Sakaguchi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Ryoko Ohno
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kentaro Yoshida
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
100
|
Liu Y, El-Kassaby YA. Regulatory crosstalk between microRNAs and hormone signalling cascades controls the variation on seed dormancy phenotype at Arabidopsis thaliana seed set. PLANT CELL REPORTS 2017; 36:705-717. [PMID: 28197719 DOI: 10.1007/s00299-017-2111-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/26/2017] [Indexed: 05/05/2023]
Abstract
We employed an Illumina sequencing approach to identify candidate microRNA cohorts that may greatly contribute to seed dormancy modulation and to construct a microRNA-gene regulatory network in hormone signalling cascades. MicroRNAs (miRNAs) are important signalling molecules and regulate many developmental programs of plants. Some miRNAs have been integrated into gene regulatory networks (GRNs) and coordinate developmental plasticity, but few study systematically investigated how phenotypical variations are regulated through differential expression of miRNA tags in GRNs during seed set. Using 'top-down' analyses (i.e., identify miRNAs associated with known phenotypical variations), we chose two Arabidopsis ecotypes (Cvi-0 and Col-0) with contrasting seed dormancy and sequenced miRNA reads in the first ten phases at seed set. We computationally predicted target genes of miRNAs and implemented statistical analyses for normalized relative expression of top abundant miRNA cohorts between the two ecotypes. We especially focused on miRNA cohorts targeting mRNAs encoding transcription factors in hormone signalling cascades. We report, with high confidence hits, that a cohort of 14 miRNAs (miR-156b, -159b, -160, -161*, -319a, -390a, -396, -773a, -779, -842, -852, -859, -1886*, and a novel sequence in miR8172 family) may greatly contribute to seed dormancy modulation, of which seven are involved in hormone signalling cascades. Moreover, their expression patterns indicated that 5 ± 1 days after flowering (at embryogenesis-to-maturation transition) is a critical phase at seed set. This study reinforces the notion that miRNAs that regulate seed dormancy modulation and provides a novel paradigm of studying the correlation between genotypes (miRNAs) and phenotypes.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|