51
|
Nie J, Liu L, Wang Q, Chen R, Ning T, Liu Q, Huang W, Wang Y. Nipah pseudovirus system enables evaluation of vaccines in vitro and in vivo using non-BSL-4 facilities. Emerg Microbes Infect 2019; 8:272-281. [PMID: 30866781 PMCID: PMC6455126 DOI: 10.1080/22221751.2019.1571871] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Because of its high infectivity in humans and the lack of effective vaccines, Nipah virus is classified as a category C agent and handling has to be performed under biosafety level 4 conditions in non-endemic countries, which has hindered the development of vaccines. Based on a highly efficient pseudovirus production system using a modified HIV backbone vector, a pseudovirus-based mouse model has been developed for evaluating the efficacy of Nipah vaccines in biosafety level 2 facilities. For the first time, the correlates of protection have been identified in a mouse model. The limited levels of neutralizing antibodies against immunogens fusion protein (F), glycoprotein (G), and combination of F and G (FG) were found to be 148, 275, and 115, respectively, in passive immunization. Relatively lower limited levels of protection of 52, and 170 were observed for immunogens F, and G, respectively, in an active immunization model. Although the minimal levels for protection of neutralizing antibody in passive immunization were slightly higher than those in active immunization, neutralizing antibody played a key role in protection against Nipah virus infection. The immunogens F and G provided similar protection, and the combination of these immunogens did not provide better outcomes. Either immunogen F or G would provide sufficient protection for Nipah vaccine. The Nipah pseudovirus mouse model, which does not involve highly pathogenic virus, has the potential to greatly facilitate the standardization and implementation of an assay to propel the development of NiV vaccines.
Collapse
Affiliation(s)
- Jianhui Nie
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Lin Liu
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Qing Wang
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Ruifeng Chen
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Tingting Ning
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Qiang Liu
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Weijin Huang
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Youchun Wang
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| |
Collapse
|
52
|
van Doremalen N, Lambe T, Sebastian S, Bushmaker T, Fischer R, Feldmann F, Haddock E, Letko M, Avanzato VA, Rissanen I, LaCasse R, Scott D, Bowden TA, Gilbert S, Munster V. A single-dose ChAdOx1-vectored vaccine provides complete protection against Nipah Bangladesh and Malaysia in Syrian golden hamsters. PLoS Negl Trop Dis 2019; 13:e0007462. [PMID: 31170144 PMCID: PMC6581282 DOI: 10.1371/journal.pntd.0007462] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/18/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022] Open
Abstract
Nipah virus (NiV) is a highly pathogenic re-emerging virus that causes outbreaks in South East Asia. Currently, no approved and licensed vaccine or antivirals exist. Here, we investigated the efficacy of ChAdOx1 NiVB, a simian adenovirus-based vaccine encoding NiV glycoprotein (G) Bangladesh, in Syrian hamsters. Prime-only as well as prime-boost vaccination resulted in uniform protection against a lethal challenge with NiV Bangladesh: all animals survived challenge and we were unable to find infectious virus either in oral swabs, lung or brain tissue. Furthermore, no pathological lung damage was observed. A single-dose of ChAdOx1 NiVB also prevented disease and lethality from heterologous challenge with NiV Malaysia. While we were unable to detect infectious virus in swabs or tissue of animals challenged with the heterologous strain, a very limited amount of viral RNA could be found in lung tissue by in situ hybridization. A single dose of ChAdOx1 NiVB also provided partial protection against Hendra virus and passive transfer of antibodies elicited by ChAdOx1 NiVB vaccination partially protected Syrian hamsters against NiV Bangladesh. From these data, we conclude that ChAdOx1 NiVB is a suitable candidate for further NiV vaccine pre-clinical development.
Collapse
Affiliation(s)
- Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah Sebastian
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| | - Robert Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| | - Michael Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| | - Victoria A. Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ilona Rissanen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rachel LaCasse
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| |
Collapse
|
53
|
Mire CE, Geisbert JB, Agans KN, Versteeg KM, Deer DJ, Satterfield BA, Fenton KA, Geisbert TW. Use of Single-Injection Recombinant Vesicular Stomatitis Virus Vaccine to Protect Nonhuman Primates Against Lethal Nipah Virus Disease. Emerg Infect Dis 2019; 25:1144-1152. [PMID: 31107231 PMCID: PMC6537706 DOI: 10.3201/eid2506.181620] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nipah virus (NiV) is a zoonotic pathogen that causes high case-fatality rates (CFRs) in humans. Two NiV strains have caused outbreaks: the Malaysia strain (NiVM), discovered in 1998-1999 in Malaysia and Singapore (≈40% CFR); and the Bangladesh strain (NiVB), discovered in Bangladesh and India in 2001 (≈80% CFR). Recently, NiVB in African green monkeys resulted in a more severe and lethal disease than NiVM. No NiV vaccines or treatments are licensed for human use. We assessed replication-restricted single-injection recombinant vesicular stomatitis vaccine NiV vaccine vectors expressing the NiV glycoproteins against NiVB challenge in African green monkeys. All vaccinated animals survived to the study endpoint without signs of NiV disease; all showed development of NiV F Ig, NiV G IgG, or both, as well as neutralizing antibody titers. These data show protective efficacy against a stringent and relevant NiVB model of human infection.
Collapse
|
54
|
Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya DT. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Vet Q 2019. [PMID: 31006350 PMCID: PMC6830995 DOI: 10.1080/01652176.2019.1580827] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.
Collapse
Affiliation(s)
- Raj Kumar Singh
- a ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Sandip Chakraborty
- c Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry , West Tripura , India
| | - Ruchi Tiwari
- d Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Senthilkumar Natesan
- e Biomac Life Sciences Pvt Ltd. , Indian Institute of Public Health Gandhinagar , Gujarat , India
| | - Rekha Khandia
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Ashok Munjal
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Kranti Suresh Vora
- g Wheels India Niswarth (WIN) Foundation, Maternal and Child Health (MCH) , University of Canberra , Gujarat , India
| | - Shyma K Latheef
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kumaragurubaran Karthik
- h Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - Yashpal Singh Malik
- i Division of Biological Standardization , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rajendra Singh
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Wanpen Chaicumpa
- j Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Devendra T Mourya
- k National Institute of Virology , Ministry of Health and Family Welfare, Govt of India , Pune , India
| |
Collapse
|
55
|
Keshwara R, Shiels T, Postnikova E, Kurup D, Wirblich C, Johnson RF, Schnell MJ. Rabies-based vaccine induces potent immune responses against Nipah virus. NPJ Vaccines 2019; 4:15. [PMID: 31016033 PMCID: PMC6465360 DOI: 10.1038/s41541-019-0109-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
Nipah Virus (NiV) is a re-emerging zoonotic pathogen in the genus Henipavirus of the Paramyxoviridae family of viruses. NiV is endemic to Bangladesh and Malaysia and is highly fatal to both livestock and humans (human case fatality rate = 74.5%). Currently, there is no approved vaccine against NiV on the market. The goal of this study was to use a recombinant RABV vector expressing NiV glycoprotein (NiV G) to develop a bivalent candidate vaccine against NiV disease and rabies virus (RABV) disease, which is also a significant health burden in the regions where NiV is endemic. The rabies vector is a well-established vaccine strain that lacks neurovirulence and can stably expresses foreign antigens that are immunogenic in various animal models. Mice inoculated intranasally with the live recombinant RABV/NiV vaccine (NIPARAB) showed no signs of disease. To test the immunogenicity of the vaccine candidate, groups of C57BL/6 mice were immunized intramuscularly with a single dose of live vaccine particles or two doses of chemically inactivated viral particles. Both vaccination groups showed NiV G-specific seroconversion, and the inactivated (INAC) vaccine group yielded higher titers of NiV G-specific antibodies. Furthermore, cross-reactivity of NiV G-specific immune sera against Hendra virus (HeV), was confirmed by immunofluorescence (IF) and indirect ELISA against soluble recombinant HeV glycoprotein (HeV G). Both live and killed vaccines induced neutralizing antibodies. These results indicate that NIPARAB may be used as a killed virus vaccine to protect humans against NiV and RABV, and possibly as a preventative measure against HeV as well.
Collapse
Affiliation(s)
- Rohan Keshwara
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Thomas Shiels
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Elena Postnikova
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702 USA
| | - Drishya Kurup
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
- Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
56
|
Monath TP, Fast PE, Modjarrad K, Clarke DK, Martin BK, Fusco J, Nichols R, Heppner DG, Simon JK, Dubey S, Troth SP, Wolf J, Singh V, Coller BA, Robertson JS, For the Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG). rVSVΔG-ZEBOV-GP (also designated V920) recombinant vesicular stomatitis virus pseudotyped with Ebola Zaire Glycoprotein: Standardized template with key considerations for a risk/benefit assessment. Vaccine X 2019; 1:100009. [PMID: 31384731 PMCID: PMC6668225 DOI: 10.1016/j.jvacx.2019.100009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022] Open
Abstract
The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) was formed to evaluate the safety and characteristics of live, recombinant viral vector vaccines. A recent publication by the V3SWG described live, attenuated, recombinant vesicular stomatitis virus (rVSV) as a chimeric virus vaccine for HIV-1 (Clarke et al., 2016). The rVSV vector system is being explored as a platform for development of multiple vaccines. This paper reviews the molecular and biological features of the rVSV vector system, followed by a template with details on the safety and characteristics of a rVSV vaccine against Zaire ebolavirus (ZEBOV). The rVSV-ZEBOV vaccine is a live, replication competent vector in which the VSV glycoprotein (G) gene is replaced with the glycoprotein (GP) gene of ZEBOV. Multiple copies of GP are expressed and assembled into the viral envelope responsible for inducing protective immunity. The vaccine (designated V920) was originally constructed by the National Microbiology Laboratory, Public Health Agency of Canada, further developed by NewLink Genetics Corp. and Merck & Co., and is now in final stages of registration by Merck. The vaccine is attenuated by deletion of the principal virulence factor of VSV (the G protein), which also removes the primary target for anti-vector immunity. The V920 vaccine caused no toxicities after intramuscular (IM) or intracranial injection of nonhuman primates and no reproductive or developmental toxicity in a rat model. In multiple studies, cynomolgus macaques immunized IM with a wide range of virus doses rapidly developed ZEBOV-specific antibodies measured in IgG ELISA and neutralization assays and were fully protected against lethal challenge with ZEBOV virus. Over 20,000 people have received the vaccine in clinical trials; the vaccine has proven to be safe and well tolerated. During the first few days after vaccination, many vaccinees experience a mild acute-phase reaction with fever, headache, myalgia, and arthralgia of short duration; this period is associated with a low-level viremia, activation of anti-viral genes, and increased levels of chemokines and cytokines. Oligoarthritis and rash appearing in the second week occur at a low incidence, and are typically mild-moderate in severity and self-limited. V920 vaccine was used in a Phase III efficacy trial during the West African Ebola epidemic in 2015, showing 100% protection against Ebola Virus Disease, and it has subsequently been deployed for emergency control of Ebola outbreaks in central Africa. The template provided here provides a comprehensive picture of the first rVSV vector to reach the final stage of development and to provide a solution to control of an alarming human disease.
Collapse
Affiliation(s)
| | - Patricia E. Fast
- International AIDS Vaccine Initiative, New York, NY 10004, United States
| | - Kayvon Modjarrad
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | | | | | - Joan Fusco
- NewLink Genetics Corp, Ames, IA, United States
| | | | | | | | - Sheri Dubey
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Sean P. Troth
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jayanthi Wolf
- Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Vidisha Singh
- Immunology and Molecular Pathogenesis, Emory University, Atlanta, GA 30322, United States
| | | | | | | |
Collapse
|
57
|
Ambat AS, Zubair SM, Prasad N, Pundir P, Rajwar E, Patil DS, Mangad P. Nipah virus: A review on epidemiological characteristics and outbreaks to inform public health decision making. J Infect Public Health 2019; 12:634-639. [PMID: 30808593 DOI: 10.1016/j.jiph.2019.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/02/2018] [Accepted: 02/05/2019] [Indexed: 11/25/2022] Open
Abstract
The objectives of this review were to understand the epidemiology and outbreak of NiV infection and to discuss the preventive and control measures across different regions. We searched PubMed and Scopus for relevant articles from January 1999 to July 2018 and identified 927 articles which were screened for titles, abstracts and full texts by two review authors independently. The screening process resulted in 44 articles which were used to extract relevant information. Information on epidemiology of NiV, outbreaks in Malaysia, Singapore, Bangladesh, India and Philippines, including diagnosis, prevention, treatment, vaccines, control, surveillance and economic burden due to NiV were discussed. Interdisciplinary and multi sectoral approach is vital in preventing the emergence of NiV. It is necessary to undertake rigorous research for developing vaccines and medicines to prevent and treat NiV.
Collapse
Affiliation(s)
- Aishwarya S Ambat
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sabah M Zubair
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Neha Prasad
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Prachi Pundir
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Eti Rajwar
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Divya S Patil
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India.
| | - Praveen Mangad
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
58
|
Dong F, Li D, Wen D, Li S, Zhao C, Qi Y, Jangra RK, Wu C, Xia D, Zhang X, Deng F, Chandran K, Zou Z, Yuan F, Zheng A. Single dose of a rVSV-based vaccine elicits complete protection against severe fever with thrombocytopenia syndrome virus. NPJ Vaccines 2019; 4:5. [PMID: 30701094 PMCID: PMC6347601 DOI: 10.1038/s41541-018-0096-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022] Open
Abstract
Severe fever with thrombocytopenia virus (SFTSV) is an emerging tick-borne phlebovirus that causes lethal human disease, for which there are no licensed antiviral vaccines or therapies. Herein, we developed a live attenuated recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate expressing the SFTSV Gn/Gc glycoproteins (rVSV-SFTSV/AH12-GP). High titers of cross-protective, broadly neutralizing antibodies were elicited by a single dose of rVSV-SFTSV/AH12-GP in both immunocompetent and immunocompromised mice against multiple strains of SFTSV and the related but distinct phlebovirus Heartland virus (HRTV). Remarkably, complete protection against lethal challenge with SFTSV was conferred in young and old immunocompromised mice irrespective of any pre-existing vector-specific immunity. Collectively, these results suggest that a rVSV vector expressing SFTSV glycoproteins is a promising candidate vaccine against two emerging phleboviruses associated with severe human diseases.
Collapse
Affiliation(s)
- Fangfang Dong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Suhua Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaoyue Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Qi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY USA
| | - Cuiping Wu
- Department of Infectious Disease, Yidu Central Hospital of Weifang, Weifang, China
| | - Dequan Xia
- Department of Infectious Disease, Yidu Central Hospital of Weifang, Weifang, China
| | - Xing Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Deng
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
59
|
Generation of therapeutic antisera for emerging viral infections. NPJ Vaccines 2018; 3:42. [PMID: 30323953 PMCID: PMC6173733 DOI: 10.1038/s41541-018-0082-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/10/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023] Open
Abstract
The recent Ebola virus outbreak has highlighted the therapeutic potential of antisera and renewed interest in this treatment approach. While human convalescent sera may not be readily available in the early stages of an outbreak, antisera of animal origin can be produced in a short time frame. Here, we compared adjuvanted virus-like particles (VLP) with recombinant modified vaccinia virus Ankara and vesicular stomatitis virus (VSV), both expressing the Ebola virus antigens. The neutralizing antibody titers of rabbits immunized with adjuvanted VLPs were similar to those immunized with the replication-competent VSV, indicating that presentation of the antigen in its native conformation rather than de novo antigen expression is essential for production of functional antibodies. This approach also yielded high-titer antisera against Nipah virus glycoproteins, illustrating that it is transferable to other virus families. Multiple-step immunoglobulin G purification using a two-step 20–40% ammonium sulfate precipitation followed by protein A affinity chromatography resulted in 90% recovery of functionality and sustained in vivo stability. Adjuvanted VLP-based immunization strategies are thus a promising approach for the rapid generation of therapeutic antisera against emerging infections. Passive immunity through the transfer of anti-serum represents the earliest clinical application of antibodies and is still widely used to this day in the form of anti-venoms. Veronika von Messling and colleagues at the Paul Ehrlich Institute investigate the potential of generating neutralizing anti-serum to the emerging viruses Ebola and Nipah. The authors compare different vaccination platforms in mice and rabbits and find that following multiple vaccine challenges, neutralizing antibody titers equivalent to that seen in convalescent patients could be obtained. Purification of the IgG fraction and processing into F(ab’)2 fragments has the potential to significantly reduce xeno-responses yet the authors find that neutralizing capacity is largely retained albeit at the cost of a shorter in vivo half-life. These findings offer the hope of rapidly generating large quantities of neutralizing anti-serum that could be used in a viral outbreak scenario.
Collapse
|
60
|
Emanuel J, Callison J, Dowd KA, Pierson TC, Feldmann H, Marzi A. A VSV-based Zika virus vaccine protects mice from lethal challenge. Sci Rep 2018; 8:11043. [PMID: 30038228 PMCID: PMC6056530 DOI: 10.1038/s41598-018-29401-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/05/2018] [Indexed: 01/25/2023] Open
Abstract
Infection with Zika virus (ZIKV) is commonly mild in humans but has been associated with alarming negative health outcomes including Guillain-Barré syndrome in adults and microcephaly in fetuses. As such, developing a vaccine for ZIKV is a global public health priority. Recombinant vesicular stomatitis virus (VSV) expressing the Ebola virus (EBOV) glycoprotein (GP) has been successfully used as a vaccine platform in the past. In this study, two novel VSV-ZIKV vaccines were generated utilizing the favorable immune targeting of the existing VSV-EBOV vector. In addition to the EBOV GP, these new vaccines express the full-length pre-membrane and envelope proteins or pre-membrane and truncated soluble envelope proteins as antigens. Efficacy testing of both of the VSV vectors against ZIKV was conducted in IFNAR−/− mice and resulted in uniform protection when a single dose was administered 28 days prior to lethal challenge. Furthermore, this vaccine is fast-acting and can uniformly protect mice from lethal disease when administered as late as 3 days prior to ZIKV challenge. Thus, VSV-ZIKV vectors are promising vaccine candidates and should move forward along the licensure pathway.
Collapse
Affiliation(s)
- Jackson Emanuel
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julie Callison
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly A Dowd
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
61
|
Suder E, Furuyama W, Feldmann H, Marzi A, de Wit E. The vesicular stomatitis virus-based Ebola virus vaccine: From concept to clinical trials. Hum Vaccin Immunother 2018; 14:2107-2113. [PMID: 29757706 PMCID: PMC6183239 DOI: 10.1080/21645515.2018.1473698] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/30/2018] [Indexed: 10/25/2022] Open
Abstract
The devastating Ebola virus (EBOV) epidemic in West Africa in 2013-2016 accelerated the progress of several vaccines and antivirals through clinical trials, including the replication-competent vesicular stomatitis virus-based vaccine expressing the EBOV glycoprotein (VSV-EBOV). Extensive preclinical testing in animal models demonstrated the prophylactic and post-exposure efficacy of this vaccine, identified the mechanism of protection, and suggested it was safe for human use. Based on these data, VSV-EBOV was extensively tested in phase 1-3 clinical trials in North America, Europe and Africa. Although some side effects of vaccination were observed, these clinical trials showed that the VSV-EBOV was safe and immunogenic in humans. Moreover, the data supported the use of VSV-EBOV as an emergency vaccine in individuals at risk for Ebola virus disease. In this review, we summarize the results of the extensive preclinical and clinical testing of the VSV-EBOV vaccine.
Collapse
MESH Headings
- Animals
- Clinical Trials as Topic
- Drug Carriers
- Drug Evaluation, Preclinical
- Drug-Related Side Effects and Adverse Reactions/epidemiology
- Drug-Related Side Effects and Adverse Reactions/pathology
- Ebola Vaccines/administration & dosage
- Ebola Vaccines/genetics
- Ebola Vaccines/immunology
- Ebola Vaccines/isolation & purification
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
- Vesiculovirus/genetics
Collapse
Affiliation(s)
- Ellen Suder
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Wakako Furuyama
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| |
Collapse
|
62
|
Dawes BE, Kalveram B, Ikegami T, Juelich T, Smith JK, Zhang L, Park A, Lee B, Komeno T, Furuta Y, Freiberg AN. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. Sci Rep 2018; 8:7604. [PMID: 29765101 PMCID: PMC5954062 DOI: 10.1038/s41598-018-25780-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/27/2018] [Indexed: 01/18/2023] Open
Abstract
Nipah and Hendra viruses are recently emerged bat-borne paramyxoviruses (genus Henipavirus) causing severe encephalitis and respiratory disease in humans with fatality rates ranging from 40–75%. Despite the severe pathogenicity of these viruses and their pandemic potential, no therapeutics or vaccines are currently approved for use in humans. Favipiravir (T-705) is a purine analogue antiviral approved for use in Japan against emerging influenza strains; and several phase 2 and 3 clinical trials are ongoing in the United States and Europe. Favipiravir has demonstrated efficacy against a broad spectrum of RNA viruses, including members of the Paramyxoviridae, Filoviridae, Arenaviridae families, and the Bunyavirales order. We now demonstrate that favipiravir has potent antiviral activity against henipaviruses. In vitro, favipiravir inhibited Nipah and Hendra virus replication and transcription at micromolar concentrations. In the Syrian hamster model, either twice daily oral or once daily subcutaneous administration of favipiravir for 14 days fully protected animals challenged with a lethal dose of Nipah virus. This first successful treatment of henipavirus infection in vivo with a small molecule drug suggests that favipiravir should be further evaluated as an antiviral treatment option for henipavirus infections.
Collapse
Affiliation(s)
- Brian E Dawes
- Department of Pathology, University of Texas Medical Branch, Galveston, USA
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch, Galveston, USA
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch, Galveston, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, USA
| | - Terry Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, USA
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, USA
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, USA
| | - Arnold Park
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, USA
| | | | | | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, USA. .,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, USA. .,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, USA.
| |
Collapse
|
63
|
Ewer K, Sebastian S, Spencer AJ, Gilbert S, Hill AVS, Lambe T. Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Hum Vaccin Immunother 2017; 13:3020-3032. [PMID: 29083948 PMCID: PMC5718829 DOI: 10.1080/21645515.2017.1383575] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
The 2014-15 Ebola outbreak in West Africa highlighted the potential for large disease outbreaks caused by emerging pathogens and has generated considerable focus on preparedness for future epidemics. Here we discuss drivers, strategies and practical considerations for developing vaccines against outbreak pathogens. Chimpanzee adenoviral (ChAd) vectors have been developed as vaccine candidates for multiple infectious diseases and prostate cancer. ChAd vectors are safe and induce antigen-specific cellular and humoral immunity in all age groups, as well as circumventing the problem of pre-existing immunity encountered with human Ad vectors. For these reasons, such viral vectors provide an attractive platform for stockpiling vaccines for emergency deployment in response to a threatened outbreak of an emerging pathogen. Work is already underway to develop vaccines against a number of other outbreak pathogens and we will also review progress on these approaches here, particularly for Lassa fever, Nipah and MERS.
Collapse
Affiliation(s)
- Katie Ewer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Sarah Sebastian
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Alexandra J. Spencer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Adrian V. S. Hill
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| |
Collapse
|
64
|
Escaffre O, Saito TB, Juelich TL, Ikegami T, Smith JK, Perez DD, Atkins C, Levine CB, Huante MB, Nusbaum RJ, Endsley JJ, Freiberg AN, Rockx B. Contribution of Human Lung Parenchyma and Leukocyte Influx to Oxidative Stress and Immune System-Mediated Pathology following Nipah Virus Infection. J Virol 2017; 91:e00275-17. [PMID: 28539439 PMCID: PMC5651721 DOI: 10.1128/jvi.00275-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 12/27/2022] Open
Abstract
Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets.IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Terry L Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - David D Perez
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Corri B Levine
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rebecca J Nusbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Barry Rockx
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
65
|
Cytoplasmic Motifs in the Nipah Virus Fusion Protein Modulate Virus Particle Assembly and Egress. J Virol 2017; 91:JVI.02150-16. [PMID: 28250132 DOI: 10.1128/jvi.02150-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/21/2017] [Indexed: 01/19/2023] Open
Abstract
Nipah virus (NiV), a paramyxovirus in the genus Henipavirus, has a mortality rate in humans of approximately 75%. While several studies have begun our understanding of NiV particle formation, the mechanism of this process remains to be fully elucidated. For many paramyxoviruses, M proteins drive viral assembly and egress; however, some paramyxoviral glycoproteins have been reported as important or essential in budding. For NiV the matrix protein (M), the fusion glycoprotein (F) and, to a much lesser extent, the attachment glycoprotein (G) autonomously induce the formation of virus-like particles (VLPs). However, functional interactions between these proteins during assembly and egress remain to be fully understood. Moreover, if the F-driven formation of VLPs occurs through interactions with host cell machinery, the cytoplasmic tail (CT) of F is a likely interactive domain. Therefore, we analyzed NiV F CT deletion and alanine mutants and report that several but not all regions of the F CT are necessary for efficient VLP formation. Two of these regions contain YXXØ or dityrosine motifs previously shown to interact with cellular machinery involved in F endocytosis and transport. Importantly, our results showed that F-driven, M-driven, and M/F-driven viral particle formation enhanced the recruitment of G into VLPs. By identifying key motifs, specific residues, and functional viral protein interactions important for VLP formation, we improve our understanding of the viral assembly/egress process and point to potential interactions with host cell machinery.IMPORTANCE Henipaviruses can cause deadly infections of medical, veterinary, and agricultural importance. With recent discoveries of new henipa-like viruses, understanding the mechanisms by which these viruses reproduce is paramount. We have focused this study on identifying the functional interactions of three Nipah virus proteins during viral assembly and particularly on the role of one of these proteins, the fusion glycoprotein, in the incorporation of other viral proteins into viral particles. By identifying several regions in the fusion glycoprotein that drive viral assembly, we further our understanding of how these viruses assemble and egress from infected cells. The results presented will likely be useful toward designing treatments targeting this aspect of the viral life cycle and for the production of new viral particle-based vaccines.
Collapse
|
66
|
Pickering BS, Hardham JM, Smith G, Weingartl ET, Dominowski PJ, Foss DL, Mwangi D, Broder CC, Roth JA, Weingartl HM. Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response. Vaccine 2016; 34:4777-86. [PMID: 27544586 DOI: 10.1016/j.vaccine.2016.08.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are members of the genus Henipavirus, within the family Paramyxoviridae. Nipah virus has caused outbreaks of human disease in Bangladesh, Malaysia, Singapore, India and Philippines, in addition to a large outbreak in swine in Malaysia in 1998/1999. Recently, NiV was suspected to be a causative agent of an outbreak in horses in 2014 in the Philippines, while HeV has caused multiple human and equine outbreaks in Australia since 1994. A swine vaccine able to prevent shedding of infectious virus is of veterinary and human health importance, and correlates of protection against henipavirus infection in swine need to be better understood. In the present study, three groups of animals were employed. Pigs vaccinated with adjuvanted recombinant soluble HeV G protein (sGHEV) and challenged with HeV, developed antibody levels considered to be protective prior to the challenge (titers of 320). However, activation of the cell-mediated immune response was not detected, and the animals were only partially protected against challenge with 5×10(5) PFU of HeV per animal. In the second group, cross-neutralizing antibody levels against NiV in the sGHEV vaccinated animals did not reach protective levels, and with no activation of cellular immune memory, these animals were not protected against NiV. Only pigs orally infected with 5×10(4) PFU of NiV per animal were protected against nasal challenge with 5×10(5) PFU of NiV per animal. This group of pigs developed protective antibody levels, as well as cell-mediated immune memory. Peripheral blood mononuclear cells restimulated with UV-inactivated NiV upregulated IFN-gamma, IL-10 and the CD25 activation marker on CD4(+)CD8(+) T memory helper cells and to lesser extent on CD4(-)CD8(+) T cells. In conclusion, both humoral and cellular immune responses were required for protection of swine against henipaviruses.
Collapse
Affiliation(s)
- Brad S Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - John M Hardham
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Greg Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Eva T Weingartl
- School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul J Dominowski
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Dennis L Foss
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Duncan Mwangi
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - James A Roth
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA; Transboundary Animal Biologics, Inc, Ames, IA 50010, USA
| | - Hana M Weingartl
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
67
|
DeBuysscher BL, Scott D, Thomas T, Feldmann H, Prescott J. Peri-exposure protection against Nipah virus disease using a single-dose recombinant vesicular stomatitis virus-based vaccine. NPJ Vaccines 2016; 1:16002. [PMID: 28706736 PMCID: PMC5505655 DOI: 10.1038/npjvaccines.2016.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/26/2016] [Accepted: 05/08/2016] [Indexed: 11/08/2022] Open
Abstract
Nipah virus is a zoonotic paramyxovirus that causes severe disease in humans and animals. Due to almost yearly outbreaks in Bangladesh, and a large outbreak in Malaysia that lead to the shutdown of swine export, Nipah virus is both a threat to public health and the economy. Infection is associated with respiratory distress, encephalitis and human-to-human transmission, resulting in high case fatality rates during outbreaks. This study aims to address the amount of time needed until protection from a recombinant vesicular stomatitis virus-based vaccine candidate expressing the Nipah virus glycoprotein (G), which we have previously shown to protect hamsters and non-human primates when administered 28 days before challenge. We found that a single-dose vaccination, when administered 1 day before challenge, reduced viral load, limited pathology and fully protected hamsters from Nipah virus infection. The vaccine was even partially protective when administered at early time points following challenge with Nipah virus. These data indicate that a single administration of this vaccine to high-risk individuals, such as family members and health-care workers of infected patients, could be protective and useful for reducing human-to-human transmission and curbing an outbreak.
Collapse
Affiliation(s)
- Blair L DeBuysscher
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Tina Thomas
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Joseph Prescott
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| |
Collapse
|
68
|
Guillaume-Vasselin V, Lemaitre L, Dhondt KP, Tedeschi L, Poulard A, Charreyre C, Horvat B. Protection from Hendra virus infection with Canarypox recombinant vaccine. NPJ Vaccines 2016; 1:16003. [PMID: 29263849 PMCID: PMC5707888 DOI: 10.1038/npjvaccines.2016.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/14/2016] [Accepted: 05/25/2016] [Indexed: 11/18/2022] Open
Abstract
Hendra virus (HeV) is an emerging zoonotic pathogen, which causes severe respiratory illness and encephalitis in humans and horses. Since its first appearance in 1994, spillovers of HeV from its natural reservoir fruit bats occur on almost an annual basis. The high mortality rate in both humans and horses and the wide-ranging reservoir distribution are making HeV a serious public health problem, especially for people exposed to sick horses. This study has aimed to develop an efficient low-cost HeV vaccine for horses based on Canarypox recombinant vector expressing HeV glycoproteins, attachment glycoprotein (G) and fusion protein (F). This vaccine was used to immunise hamsters and then challenged intraperitoneally with HeV 3 weeks later. The higher tested dose of the vaccine efficiently prevented oropharyngeal virus shedding and protected animals from clinical disease and virus-induced mortality. Vaccine induced generation of seroneutralising antibodies and prevented virus-induced histopathological changes and a production of viral RNA and antigens in animal tissues. Interestingly, some vaccinated animals, including those immunised at a lower dose, were protected in the absence of detectable specific antibodies, suggesting the induction of an efficient virus-specific cellular immunity. Finally, ponies immunised using the same vaccination protocol as hamsters developed strong seroneutralising titres against both HeV and closely related Nipah virus, indicating that this vaccine may have the ability to induce cross-protection against Henipavirus infection. These data suggest that Canarypox-based vectors encoding for HeV glycoproteins present very promising new vaccine candidate to prevent infection and shedding of the highly lethal HeV.
Collapse
Affiliation(s)
- Vanessa Guillaume-Vasselin
- CIRI, International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | | | - Kévin P Dhondt
- CIRI, International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | - Branka Horvat
- CIRI, International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
69
|
Status of vaccine research and development of vaccines for Nipah virus. Vaccine 2016; 34:2971-2975. [DOI: 10.1016/j.vaccine.2015.12.075] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/22/2015] [Indexed: 01/29/2023]
|
70
|
Broder CC, Weir DL, Reid PA. Hendra virus and Nipah virus animal vaccines. Vaccine 2016; 34:3525-34. [PMID: 27154393 DOI: 10.1016/j.vaccine.2016.03.075] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/30/2015] [Accepted: 03/11/2016] [Indexed: 01/07/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are zoonotic viruses that emerged in the mid to late 1990s causing disease outbreaks in livestock and people. HeV appeared in Queensland, Australia in 1994 causing a severe respiratory disease in horses along with a human case fatality. NiV emerged a few years later in Malaysia and Singapore in 1998-1999 causing a large outbreak of encephalitis with high mortality in people and also respiratory disease in pigs which served as amplifying hosts. The key pathological elements of HeV and NiV infection in several species of mammals, and also in people, are a severe systemic and often fatal neurologic and/or respiratory disease. In people, both HeV and NiV are also capable of causing relapsed encephalitis following recovery from an acute infection. The known reservoir hosts of HeV and NiV are several species of pteropid fruit bats. Spillovers of HeV into horses continue to occur in Australia and NiV has caused outbreaks in people in Bangladesh and India nearly annually since 2001, making HeV and NiV important transboundary biological threats. NiV in particular possesses several features that underscore its potential as a pandemic threat, including its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals, along with a capacity of limited human-to-human transmission. Several HeV and NiV animal challenge models have been developed which have facilitated an understanding of pathogenesis and allowed for the successful development of both active and passive immunization countermeasures.
Collapse
Affiliation(s)
- Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, United States.
| | - Dawn L Weir
- Navy Environmental and Preventive Medicine Unit Six, Joint Base Pearl Harbor Hickam, HI, 96860, United States
| | - Peter A Reid
- Equine Veterinary Surgeon, Brisbane, Queensland, 4034, Australia
| |
Collapse
|
71
|
Henipaviruses. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153454 DOI: 10.1007/978-3-319-33133-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The first henipaviruses, Hendra virus (HeV), and Nipah virus (NiV) were pathogenic zoonoses that emerged in the mid to late 1990s causing serious disease outbreaks in livestock and humans. HeV was recognized in Australia 1994 in horses exhibiting respiratory disease along with a human case fatality, and then NiV was identified during a large outbreak of human cases of encephalitis with high mortality in Malaysia and Singapore in 1998–1999 along with respiratory disease in pigs which served as amplifying hosts. The recently identified third henipavirus isolate, Cedar virus (CedPV), is not pathogenic in animals susceptible to HeV and NiV disease. Molecular detection of additional henipavirus species has been reported but no additional isolates of virus have been reported. Central pathological features of both HeV and NiV infection in humans and several susceptible animal species is a severe systemic and often fatal neurologic and/or respiratory disease. In people, both viruses can also manifest relapsed encephalitis following recovery from an acute infection, particularly NiV. The recognized natural reservoir hosts of HeV, NiV, and CedPV are pteropid bats, which do not show clinical illness when infected. With spillovers of HeV continuing to occur in Australia and NiV in Bangladesh and India, these henipaviruses continue to be important transboundary biological threats. NiV in particular possesses several features that highlight a pandemic potential, such as its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals along with a capacity of limited human-to-human transmission. Several henipavirus animal challenge models have been developed which has aided in understanding HeV and NiV pathogenesis as well as how they invade the central nervous system, and successful active and passive immunization strategies against HeV and NiV have been reported which target the viral envelope glycoproteins.
Collapse
|
72
|
Marzi A, Feldmann F, Geisbert TW, Feldmann H, Safronetz D. Vesicular stomatitis virus-based vaccines against Lassa and Ebola viruses. Emerg Infect Dis 2015; 21:305-7. [PMID: 25625358 PMCID: PMC4313664 DOI: 10.3201/eid2102.141649] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We demonstrated that previous vaccination with a vesicular stomatitis virus (VSV)–based Lassa virus vaccine does not alter protective efficacy of subsequent vaccination with a VSV-based Ebola virus vaccine. These findings demonstrate the utility of VSV-based vaccines against divergent viral pathogens, even when preexisting immunity to the vaccine vector is present.
Collapse
|
73
|
Prescott J, DeBuysscher BL, Feldmann F, Gardner DJ, Haddock E, Martellaro C, Scott D, Feldmann H. Single-dose live-attenuated vesicular stomatitis virus-based vaccine protects African green monkeys from Nipah virus disease. Vaccine 2015; 33:2823-9. [PMID: 25865472 DOI: 10.1016/j.vaccine.2015.03.089] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 11/19/2022]
Abstract
Nipah virus is a zoonotic paramyxovirus that causes severe respiratory and/or encephalitic disease in humans, often resulting in death. It is transmitted from pteropus fruit bats, which serve as the natural reservoir of the virus, and outbreaks occur on an almost annual basis in Bangladesh or India. Outbreaks are small and sporadic, and several cases of human-to-human transmission have been documented as an important feature of the epidemiology of Nipah virus disease. There are no approved countermeasures to combat infection and medical intervention is supportive. We recently generated a recombinant replication-competent vesicular stomatitis virus-based vaccine that encodes a Nipah virus glycoprotein as an antigen and is highly efficacious in the hamster model of Nipah virus disease. Herein, we show that this vaccine protects African green monkeys, a well-characterized model of Nipah virus disease, from disease one month after a single intramuscular administration of the vaccine. Vaccination resulted in a rapid and strong virus-specific immune response which inhibited virus shedding and replication. This vaccine platform provides a rapid means to afford protection from Nipah virus in an outbreak situation.
Collapse
Affiliation(s)
| | - Blair L DeBuysscher
- National Institutes of Health, Hamilton, MT, USA; University of Montana, Missoula, MT, USA
| | | | | | | | | | - Dana Scott
- National Institutes of Health, Hamilton, MT, USA
| | | |
Collapse
|
74
|
Abstract
UNLABELLED The emerging zoonotic pathogens Hendra virus (HeV) and Nipah virus (NiV) are in the genus Henipavirus in the family Paramyxoviridae. HeV and NiV infections can be highly fatal to humans and livestock. The goal of this study was to develop candidate vaccines against henipaviruses utilizing two well-established rhabdoviral vaccine vector platforms, recombinant rabies virus (RABV) and recombinant vesicular stomatitis virus (VSV), expressing either the codon-optimized or the wild-type (wt) HeV glycoprotein (G) gene. The RABV vector expressing the codon-optimized HeV G showed a 2- to 3-fold increase in incorporation compared to the RABV vector expressing wt HeV G. There was no significant difference in HeV G incorporation in the VSV vectors expressing either wt or codon-optimized HeV G. Mice inoculated intranasally with any of these live recombinant viruses showed no signs of disease, including weight loss, indicating that HeV G expression and incorporation did not increase the neurotropism of the vaccine vectors. To test the immunogenicity of the vaccine candidates, we immunized mice intramuscularly with either one dose of the live vaccines or 3 doses of 10 μg chemically inactivated viral particles. Increased codon-optimized HeV G incorporation into RABV virions resulted in higher antibody titers against HeV G compared to inactivated RABV virions expressing wt HeV G. The live VSV vectors induced more HeV G-specific antibodies as well as higher levels of HeV neutralizing antibodies than the RABV vectors. In the case of killed particles, HeV neutralizing serum titers were very similar between the two platforms. These results indicated that killed RABV with codon-optimized HeV G should be the vector of choice as a dual vaccine in areas where rabies is endemic. IMPORTANCE Scientists have been tracking two new viruses carried by the Pteropid fruit bats: Hendra virus (HeV) and Nipah virus (NiV). Both viruses can be fatal to humans and also pose a serious risk to domestic animals. A recent escalation in the frequency of outbreaks has increased the need for a vaccine that prevents HeV and NiV infections. In this study, we performed an extensive comparison of live and killed particles of two recombinant rhabdoviral vectors, rabies virus and vesicular stomatitis virus (VSV), expressing wild-type or codon-optimized HeV glycoprotein, with the goal of developing a candidate vaccine against HeV. Based on our data from the presented mouse immunogenicity studies, we conclude that a killed RABV vaccine would be highly effective against HeV infections and would make an excellent vaccine candidate in areas where both RABV and henipaviruses pose a threat to human health.
Collapse
|