51
|
Das RN, Yaniv K. Discovering New Progenitor Cell Populations through Lineage Tracing and In Vivo Imaging. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035618. [PMID: 32041709 DOI: 10.1101/cshperspect.a035618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identification of progenitor cells that generate differentiated cell types during development, regeneration, and disease states is central to understanding the mechanisms governing such transitions. For more than a century, different lineage-tracing strategies have been developed, which helped disentangle the complex relationship between progenitor cells and their progenies. In this review, we discuss how lineage-tracing analyses have evolved alongside technological advances, and how this approach has contributed to the identification of progenitor cells in different contexts of cell differentiation. We also highlight a few examples in which lineage-tracing experiments have been instrumental for resolving long-standing debates and for identifying unexpected cellular origins. This discussion emphasizes how this century-old quest to delineate cellular lineage relationships is still active, and new discoveries are being made with the development of newer methodologies.
Collapse
Affiliation(s)
- Rudra Nayan Das
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
52
|
Boezio GL, Bensimon-Brito A, Piesker J, Guenther S, Helker CS, Stainier DY. Endothelial TGF-β signaling instructs smooth muscle cell development in the cardiac outflow tract. eLife 2020; 9:57603. [PMID: 32990594 PMCID: PMC7524555 DOI: 10.7554/elife.57603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
The development of the cardiac outflow tract (OFT), which connects the heart to the great arteries, relies on a complex crosstalk between endothelial (ECs) and smooth muscle (SMCs) cells. Defects in OFT development can lead to severe malformations, including aortic aneurysms, which are frequently associated with impaired TGF-β signaling. To better understand the role of TGF-β signaling in OFT formation, we generated zebrafish lacking the TGF-β receptor Alk5 and found a strikingly specific dilation of the OFT: alk5-/- OFTs exhibit increased EC numbers as well as extracellular matrix (ECM) and SMC disorganization. Surprisingly, endothelial-specific alk5 overexpression in alk5-/- rescues the EC, ECM, and SMC defects. Transcriptomic analyses reveal downregulation of the ECM gene fibulin-5, which when overexpressed in ECs ameliorates OFT morphology and function. These findings reveal a new requirement for endothelial TGF-β signaling in OFT morphogenesis and suggest an important role for the endothelium in the etiology of aortic malformations.
Collapse
Affiliation(s)
- Giulia Lm Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anabela Bensimon-Brito
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Janett Piesker
- Scientific Service Group Microscopy, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
53
|
New Concepts in the Development and Malformation of the Arterial Valves. J Cardiovasc Dev Dis 2020; 7:jcdd7040038. [PMID: 32987700 PMCID: PMC7712390 DOI: 10.3390/jcdd7040038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although in many ways the arterial and atrioventricular valves are similar, both being derived for the most part from endocardial cushions, we now know that the arterial valves and their surrounding structures are uniquely dependent on progenitors from both the second heart field (SHF) and neural crest cells (NCC). Here, we will review aspects of arterial valve development, highlighting how our appreciation of NCC and the discovery of the SHF have altered our developmental models. We will highlight areas of research that have been particularly instructive for understanding how the leaflets form and remodel, as well as those with limited or conflicting results. With this background, we will explore how this developmental knowledge can help us to understand human valve malformations, particularly those of the bicuspid aortic valve (BAV). Controversies and the current state of valve genomics will be indicated.
Collapse
|
54
|
Lee J, Sutani A, Kaneko R, Takeuchi J, Sasano T, Kohda T, Ihara K, Takahashi K, Yamazoe M, Morio T, Furukawa T, Ishino F. In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nat Commun 2020; 11:4283. [PMID: 32883967 PMCID: PMC7471119 DOI: 10.1038/s41467-020-18031-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
Our understanding of the spatiotemporal regulation of cardiogenesis is hindered by the difficulties in modeling this complex organ currently by in vitro models. Here we develop a method to generate heart organoids from mouse embryonic stem cell-derived embryoid bodies. Consecutive morphological changes proceed in a self-organizing manner in the presence of the laminin-entactin (LN/ET) complex and fibroblast growth factor 4 (FGF4), and the resulting in vitro heart organoid possesses atrium- and ventricle-like parts containing cardiac muscle, conducting tissues, smooth muscle and endothelial cells that exhibited myocardial contraction and action potentials. The heart organoids exhibit ultrastructural, histochemical and gene expression characteristics of considerable similarity to those of developmental hearts in vivo. Our results demonstrate that this method not only provides a biomimetic model of the developing heart-like structure with simplified differentiation protocol, but also represents a promising research tool with a broad range of applications, including drug testing. Our understanding of the development of the heart has been limited by a lack of in vitro cellular models. Here, the authors treat mouse embryonic stem cell-derived embryoid bodies with laminin-entactin (to mimic the developing microenvironment) and FGF4 to form heart organoids, with atrial and ventricular-like parts.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Akito Sutani
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Rin Kaneko
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Jun Takeuchi
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Kensuke Ihara
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Kentaro Takahashi
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Masahiro Yamazoe
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| |
Collapse
|
55
|
BVES downregulation in non-syndromic tetralogy of fallot is associated with ventricular outflow tract stenosis. Sci Rep 2020; 10:14167. [PMID: 32843646 PMCID: PMC7447802 DOI: 10.1038/s41598-020-70806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/04/2020] [Indexed: 11/14/2022] Open
Abstract
BVES is a transmembrane protein, our previous work demonstrated that single nucleotide mutations of BVES in tetralogy of fallot (TOF) patients cause a downregulation of BVES transcription. However, the relationship between BVES and the pathogenesis of TOF has not been determined. Here we reported our research results about the relationship between BVES and the right ventricular outflow tract (RVOT) stenosis. BVES expression was significantly downregulated in most TOF samples compared with controls. The expression of the second heart field (SHF) regulatory network genes, including NKX2.5, GATA4 and HAND2, was also decreased in the TOF samples. In zebrafish, bves knockdown resulted in looping defects and ventricular outflow tract (VOT) stenosis, which was mostly rescued by injecting bves mRNA. bves knockdown in zebrafish also decreased the expression of SHF genes, such as nkx2.5, gata4 and hand2, consistent with the TOF samples` results. The dual-fluorescence reporter system analysis showed that BVES positively regulated the transcriptional activity of GATA4, NKX2.5 and HAND2 promoters. In zebrafish, nkx2.5 mRNA partially rescued VOT stenosis caused by bves knockdown. These results indicate that BVES downregulation may be associated with RVOT stenosis of non-syndromic TOF, and bves is probably involved in the development of VOT in zebrafish.
Collapse
|
56
|
Liu X, Chen W, Li W, Li Y, Priest JR, Zhou B, Wang J, Zhou Z. Single-Cell RNA-Seq of the Developing Cardiac Outflow Tract Reveals Convergent Development of the Vascular Smooth Muscle Cells. Cell Rep 2020; 28:1346-1361.e4. [PMID: 31365875 DOI: 10.1016/j.celrep.2019.06.092] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/17/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac outflow tract (OFT) is a major hotspot for congenital heart diseases. A thorough understanding of the cellular diversity, transitions, and regulatory networks of normal OFT development is essential to decipher the etiology of OFT malformations. We performed single-cell transcriptomic sequencing of 55,611 mouse OFT cells from three developmental stages that generally correspond to the early, middle, and late stages of OFT remodeling and septation. Known cellular transitions, such as endothelial-to-mesenchymal transition, have been recapitulated. In particular, we identified convergent development of the vascular smooth muscle cell (VSMC) lineage where intermediate cell subpopulations were found to be involved in either myocardial-to-VSMC trans-differentiation or mesenchymal-to-VSMC transition. Finally, we uncovered transcriptional regulators potentially governing cellular transitions. Our study provides a single-cell reference map of cell states for normal OFT development and paves the way for further studies of the etiology of OFT malformations at the single-cell level.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yan Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - James R Priest
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University. School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Jikui Wang
- Henan Key Laboratory for Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University. Xinxiang 453003, China.
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
| |
Collapse
|
57
|
Amodeo S, Vitrano G, Guardino M, Paci G, Corselli F, Antona V, Barrano G, Magliozzi M, Novelli A, Venezia R, Corsello G. What is the impact of a novel MED12 variant on syndromic conotruncal heart defects? Analysis of case report on two male sibs. Ital J Pediatr 2020; 46:98. [PMID: 32682435 PMCID: PMC7368728 DOI: 10.1186/s13052-020-00865-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/10/2020] [Indexed: 12/29/2022] Open
Abstract
Background Syndromic congenital heart disease accounts for 30% of cases and can be determined by genetic, environmental or multifactorial causes. In many cases the etiology remains uncertain. Many known genes are responsible for specific morphopathogenetic mechanisms during the development of the heart whose alteration can determine specific phenotypes of cardiac malformations. Case presentation We report on two cases of association of conotruncal heart defect with facial dysmorphisms in sibs. In both cases the malformations’ identification occurred by ultrasound in the prenatal period. It was followed by prenatal invasive diagnosis. The genetic analysis revealed no rearrangements in Array-CGH test, while gene panel sequencing identified a new hemizygous variant of uncertain significance (c.887G > A; p.Arg296Gln) in the MED12 gene, located on the X chromosome and inherited from the healthy mother. Conclusion No other reports about the involvement of MED12 gene in syndromic conotruncal heart defects are actually available from the literature and the international genomic databases. This novel variant is a likely pathogenic variant of uncertain significance and it could broaden the spectrum of genes involved in the development of congenital heart diseases and the phenotypic range of MED12-related disorders.
Collapse
Affiliation(s)
- Silvia Amodeo
- Department of Obstetrics and Gynecology, University Hospital Policlinico P. Giaccone, Via Alfonso Giordano 3, Palermo, Italy
| | - Giuseppe Vitrano
- Department of Obstetrics and Gynecology, University Hospital Policlinico P. Giaccone, Via Alfonso Giordano 3, Palermo, Italy
| | - Melania Guardino
- Department of Neonatology and NICU, University Hospital Policlinico P. Giaccone, Palermo, Italy.
| | - Giuseppe Paci
- Department of Obstetrics and Gynecology, University Hospital Policlinico P. Giaccone, Via Alfonso Giordano 3, Palermo, Italy
| | - Fulvio Corselli
- Department of Obstetrics and Gynecology, University Hospital Policlinico P. Giaccone, Via Alfonso Giordano 3, Palermo, Italy
| | - Vincenzo Antona
- Department of Neonatology and NICU, University Hospital Policlinico P. Giaccone, Palermo, Italy
| | - Giuseppe Barrano
- San Pietro Fatebenefratelli Hospital, UOSD Medical Genetics, Rome, Italy
| | - Monia Magliozzi
- Bambino Gesù Children's Hospital, Laboratory of Medical Genetics, Rome, Italy
| | - Antonio Novelli
- Bambino Gesù Children's Hospital, Laboratory of Medical Genetics, Rome, Italy
| | - Renato Venezia
- Department of Obstetrics and Gynecology, University Hospital Policlinico P. Giaccone, Via Alfonso Giordano 3, Palermo, Italy
| | - Giovanni Corsello
- Department of Neonatology and NICU, University Hospital Policlinico P. Giaccone, Palermo, Italy
| |
Collapse
|
58
|
Park N, Kang H. BMP-Induced MicroRNA-101 Expression Regulates Vascular Smooth Muscle Cell Migration. Int J Mol Sci 2020; 21:ijms21134764. [PMID: 32635504 PMCID: PMC7369869 DOI: 10.3390/ijms21134764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022] Open
Abstract
Proliferation and migration of vascular smooth muscle cells (VSMCs) are implicated in blood vessel development, maintenance of vascular homeostasis, and pathogenesis of vascular disorders. MicroRNAs (miRNAs) mediate the regulation of VSMC functions in response to microenvironmental signals. Because a previous study reported that miR-101, a tumor-suppressive miRNA, is a critical regulator of cell proliferation in vascular disease, we hypothesized that miR-101 controls important cellular processes in VSMCs. The present study aimed to elucidate the effects of miR-101 on VSMC function and its molecular mechanisms. We revealed that miR-101 regulates VSMC proliferation and migration. We showed that miR-101 expression is induced by bone morphogenetic protein (BMP) signaling, and we identified dedicator of cytokinesis 4 (DOCK4) as a novel target of miR-101. Our results suggest that the BMP–miR-101–DOCK4 axis mediates the regulation of VSMC function. Our findings help further the understanding of vascular physiology and pathology.
Collapse
Affiliation(s)
- Nanju Park
- Department of Life Sciences, Incheon National University, Incheon 22012, Korea;
| | - Hara Kang
- Department of Life Sciences, Incheon National University, Incheon 22012, Korea;
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Korea
- Correspondence: ; Tel.: +82-32-835-8238; Fax: +82-32-835-0763
| |
Collapse
|
59
|
Zhang E, Yang J, Liu Y, Hong N, Xie H, Fu Q, Li F, Chen S, Yu Y, Sun K. MESP2 variants contribute to conotruncal heart defects by inhibiting cardiac neural crest cell proliferation. J Mol Med (Berl) 2020; 98:1035-1048. [PMID: 32572506 DOI: 10.1007/s00109-020-01929-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 11/24/2022]
Abstract
Conotruncal heart defects (CTDs) are closely related to defective outflow tract (OFT) development, in which cardiac neural crest cells (CNCCs) play an indispensable role. However, the genetic etiology of CTDs remains unclear. Mesoderm posterior 2 (MESP2) is an important transcription factor regulating early cardiogenesis. Nevertheless, MESP2 variants have not been reported in congenital heart defect (CHD) patients. We first identified four MESP2 variants in 601 sporadic nonsyndromic CTD patients that were not detected in 400 healthy controls using targeted sequencing. Reverse transcription-quantitative PCR (RT-qPCR), immunohistochemistry, and immunofluorescence assays revealed MESP2 expression in the OFT of Carnegie stage (CS) 11, CS13, and CS15 human embryos and embryonic day (E) 8.5, E10, and E11.5 mouse embryos. Functional analyses in HEK 293T cells, HL-1 cells, JoMa1 cells, and primary mouse CNCCs revealed that MESP2 directly regulates the transcriptional activities of downstream CTD-related genes and promotes CNCC proliferation by regulating cell cycle factors. Three MESP2 variants, c.346G>C (p.G116R), c.921C>G (p.Y307X), and c.59A>T (p.Q20L), altered the transcriptional activities of MYOCD, GATA4, NKX2.5, and CFC1 and inhibited CNCC proliferation by upregulating p21cip1 or downregulating Cdk4. Based on our findings, MESP2 variants disrupted MESP2 function by interfering with CNCC proliferation during OFT development, which may contribute to CTDs. KEY MESSAGES: This study first analyzed MESP2 variants identified in sporadic nonsyndromic CTD patients. MESP2 is expressed in the OFT of different stages of human and mouse embryos. MESP2 regulates the transcriptional activities of downstream CTD-related genes and promotes CNCC proliferation by regulating cell cycle factor p21cip1 or Cdk4.
Collapse
Affiliation(s)
- Erge Zhang
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jianping Yang
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yang Liu
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Nanchao Hong
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Huilin Xie
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qihua Fu
- Medical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yu Yu
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
60
|
Mengmeng X, Yuejuan X, Sun C, Yanan L, Fen L, Kun S. Novel mutations of the SRF gene in Chinese sporadic conotruncal heart defect patients. BMC MEDICAL GENETICS 2020; 21:95. [PMID: 32380971 PMCID: PMC7203814 DOI: 10.1186/s12881-020-01032-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 04/22/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Conotruncal heart defects (CTDs) are a group of congenital heart malformations that cause anomalies of cardiac outflow tracts. In the past few decades, many genes related to CTDs have been reported. Serum response factor (SRF) is a ubiquitous nuclear protein that acts as transcription factor, and SRF was found to be a critical factor in heart development and to be strongly expressed in the myocardium of the developing mouse and chicken hearts. The targeted inactivation of SRF during heart development leads to embryonic lethality and myocardial defects in mice. METHODS To illustrate the relationship between SRF and human heart defects, we screened SRF mutations in 527 CTD patients, a cross sectional study. DNA was extracted from peripheral leukocyte cells for target sequencing. The mutations of SRF were detected and validated by Sanger sequencing. The affection of the mutations on wild-type protein was analyzed by in silico softwares. Western blot and real time PCR were used to analyze the changes of the expression of the mutant mRNA and protein. In addition, we carried out dual luciferase reporter assay to explore the transcriptional activity of the mutant SRF. RESULTS Among the target sequencing results of 527 patients, two novel mutations (Mut1: c.821A > G p.G274D, the adenine(A) was mutated to guanine(G) at position 821 of the SRF gene coding sequences (CDS), lead to the Glycine(G) mutated to Asparticacid(D) at position 274 of the SRF protein amino acid sequences; Mut2: c.880G > T p.G294C, the guanine(G) was mutated to thymine (T) at position 880 of the SRF CDS, lead to the Glycine(G) mutated to Cysteine (C) at position 294 of the SRF protein amino acid sequences.) of SRF (NM_003131.4) were identified. Western blotting and real-time PCR showed that there were no obvious differences between the protein expression and mRNA transcription of mutants and wild-type SRF. A dual luciferase reporter assay showed that both SRF mutants (G274D and G294C) impaired SRF transcriptional activity at the SRF promoter and atrial natriuretic factor (ANF) promoter (p < 0.05), additionally, the mutants displayed reduced synergism with GATA4. CONCLUSION These results suggest that SRF-p.G274D and SRF-p.G294C may have potential pathogenic effects.
Collapse
Affiliation(s)
- Xu Mengmeng
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China
| | - Xu Yuejuan
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China.
| | - Chen Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China
| | - Lu Yanan
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China
| | - Li Fen
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678, Dongfang Road, Shanghai, 200127, China
| | - Sun Kun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China.
| |
Collapse
|
61
|
Osman I, Wang L, Hu G, Zeqi Z, Jiliang Z. GFAP (Glial Fibrillary Acidic Protein)-Positive Progenitor Cells Contribute to the Development of Vascular Smooth Muscle Cells and Endothelial Cells-Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:1231-1238. [PMID: 32160776 PMCID: PMC7180117 DOI: 10.1161/atvbaha.120.314078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE While GFAP (glial fibrillary acidic protein) is commonly used as a classical marker for astrocytes in the central nervous system, GFAP-expressing progenitor cells give rise to other cell types during development. The goal of this study was to investigate whether GFAP-expressing progenitor cells contribute to the development of vascular cells in major arteries. Approach and Results: To label GFAP-expressing progenitor cells and their progeny, we crossed GFAP promoter-driven Cre recombinase mice (GFAP-Cre) with transgenic mice expressing the Cre-dependent mTmG dual fluorescent reporter gene. Using this genetic fate-mapping approach, here we demonstrate that GFAP-positive progenitor cells contribute to the development of vascular smooth muscle cells in both neural crest- and non-neural crest-derived vascular beds. In addition, GFAP-positive progenitor cells contribute to a subset of endothelial cells in some vasculature. Furthermore, fate-mapping analyses at multiple time points of mouse development demonstrate a time-dependent increase in the contribution of GFAP-positive progenitors to vascular smooth muscle cells, which mostly occurs in the postnatal period. CONCLUSIONS Our study demonstrates that vascular smooth muscle cells and endothelial cells within the same vascular segment are developmentally heterogeneous, where varying proportions of vascular smooth muscle cells and endothelial cells are contributed by GFAP-positive progenitor cells.
Collapse
Affiliation(s)
- Islam Osman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Liang Wang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Guoqing Hu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Zheng Zeqi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhou Jiliang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| |
Collapse
|
62
|
Follow Me! A Tale of Avian Heart Development with Comparisons to Mammal Heart Development. J Cardiovasc Dev Dis 2020; 7:jcdd7010008. [PMID: 32156044 PMCID: PMC7151090 DOI: 10.3390/jcdd7010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022] Open
Abstract
Avian embryos have been used for centuries to study development due to the ease of access. Because the embryos are sheltered inside the eggshell, a small window in the shell is ideal for visualizing the embryos and performing different interventions. The window can then be covered, and the embryo returned to the incubator for the desired amount of time, and observed during further development. Up to about 4 days of chicken development (out of 21 days of incubation), when the egg is opened the embryo is on top of the yolk, and its heart is on top of its body. This allows easy imaging of heart formation and heart development using non-invasive techniques, including regular optical microscopy. After day 4, the embryo starts sinking into the yolk, but still imaging technologies, such as ultrasound, can tomographically image the embryo and its heart in vivo. Importantly, because like the human heart the avian heart develops into a four-chambered heart with valves, heart malformations and pathologies that human babies suffer can be replicated in avian embryos, allowing a unique developmental window into human congenital heart disease. Here, we review avian heart formation and provide comparisons to the mammalian heart.
Collapse
|
63
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
64
|
Lioux G, Liu X, Temiño S, Oxendine M, Ayala E, Ortega S, Kelly RG, Oliver G, Torres M. A Second Heart Field-Derived Vasculogenic Niche Contributes to Cardiac Lymphatics. Dev Cell 2020; 52:350-363.e6. [PMID: 31928974 DOI: 10.1016/j.devcel.2019.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
The mammalian heart contains multiple cell types that appear progressively during embryonic development. Advance in determining cardiac lineage diversification has often been limited by the unreliability of genetic tracers. Here we combine clonal analysis, genetic lineage tracing, tissue transplantation, and mutant characterization to investigate the lineage relationships between epicardium, arterial mesothelial cells (AMCs), and the coronary vasculature. We report a contribution of the second heart field (SHF) to a vasculogenic niche composed of AMCs and sub-mesothelial cells at the base of the pulmonary artery. Sub-mesothelial cells from this niche differentiate into lymphatic endothelial cells and, in close association with AMC-derived cells, contribute to and are essential for the development of ventral cardiac lymphatics. In addition, regionalized epicardial/mesothelial retinoic acid signaling regulates lymphangiogenesis, contributing to the niche properties. These results uncover a SHF vasculogenic contribution to coronary lymphatic development through a local niche at the base of the great arteries.
Collapse
Affiliation(s)
- Ghislaine Lioux
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain
| | - Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Susana Temiño
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain
| | - Michael Oxendine
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Estefanía Ayala
- Mouse Genome Editing Core Unit, National Cancer Research Center (CNIO), CNIO, Madrid 28029, Spain
| | - Sagrario Ortega
- Mouse Genome Editing Core Unit, National Cancer Research Center (CNIO), CNIO, Madrid 28029, Spain
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611, USA
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain.
| |
Collapse
|
65
|
Malashicheva A, Kostina A, Kostareva A, Irtyuga O, Gordeev M, Uspensky V. Notch signaling in the pathogenesis of thoracic aortic aneurysms: A bridge between embryonic and adult states. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165631. [PMID: 31816439 DOI: 10.1016/j.bbadis.2019.165631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Aneurysms of the thoracic aorta are a "silent killer" with no evident clinical signs until the fatal outcome. Molecular and genetic bases of thoracic aortic aneurysms mainly include transforming growth factor beta signaling, smooth muscle contractile units and metabolism genes, and extracellular matrix genes. In recent studies, a role of Notch signaling, among other pathways, has emerged in disease pathogenesis. Notch is a highly conserved signaling pathway that regulates the development and differentiation of many types of tissues and influences major cellular processes such as cell proliferation, differentiation and apoptosis. Mutations in several Notch signaling components have been associated with a number of heart defects, demonstrating an essential role of Notch signaling both in cardiovascular system development and its maintenance during postnatal life. This review discusses the role of Notch signaling in the pathogenesis of thoracic aortic aneurysms considering development and maintenance of the aortic root and how developmental regulations by Notch signaling may influence thoracic aortic aneurysms.
Collapse
Affiliation(s)
- Anna Malashicheva
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia; Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy, 4, 194064 Saint Petersburg, Russia; Saint Petersburg State University, Department of Embryology, Universitetskaya nab., 7/9, 199034, Saint Petersburg, Russia.
| | - Aleksandra Kostina
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia; Institute of Cytology, Russian Academy of Sciences, Tikhoretskiy, 4, 194064 Saint Petersburg, Russia
| | - Anna Kostareva
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| | - Olga Irtyuga
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| | - Mikhail Gordeev
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| | - Vladimir Uspensky
- Almazov National Medical Research Centre, Akkuratova, 2, 197341 Saint Petersburg, Russia
| |
Collapse
|
66
|
Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 2019; 16:727-744. [PMID: 31243391 DOI: 10.1038/s41569-019-0227-9] [Citation(s) in RCA: 699] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are a major cell type present at all stages of an atherosclerotic plaque. According to the 'response to injury' and 'vulnerable plaque' hypotheses, contractile VSMCs recruited from the media undergo phenotypic conversion to proliferative synthetic cells that generate extracellular matrix to form the fibrous cap and hence stabilize plaques. However, lineage-tracing studies have highlighted flaws in the interpretation of former studies, revealing that these studies had underestimated both the content and functions of VSMCs in plaques and have thus challenged our view on the role of VSMCs in atherosclerosis. VSMCs are more plastic than previously recognized and can adopt alternative phenotypes, including phenotypes resembling foam cells, macrophages, mesenchymal stem cells and osteochondrogenic cells, which could contribute both positively and negatively to disease progression. In this Review, we present the evidence for VSMC plasticity and summarize the roles of VSMCs and VSMC-derived cells in atherosclerotic plaque development and progression. Correct attribution and spatiotemporal resolution of clinically beneficial and detrimental processes will underpin the success of any therapeutic intervention aimed at VSMCs and their derivatives.
Collapse
Affiliation(s)
- Gemma L Basatemur
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Helle F Jørgensen
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Murray C H Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK.
- INSERM U970, Paris Cardiovascular Research Center, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
67
|
Wang F, Zhao H, Yin L, Tang Y, Wang X, Zhao Q, Wang T, Huang C. Transcription Factor TBX18 Reprograms Vascular Smooth Muscle Cells of Ascending Aorta to Pacemaker-Like Cells. DNA Cell Biol 2019; 38:1470-1479. [PMID: 31633376 DOI: 10.1089/dna.2019.4940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) of ascending aorta and TBX18+ sinus node both originated from the second heart field. The study explored whether ascending aortic smooth muscle cells in vitro could be reprogrammed into pacemaker-like cells with human TBX18. In the study, VSMCs were infected with TBX18, and then cocultured with neonatal rat ventricular cardiomyocytes (NRVMs) in vitro. By overexpressing TBX18, the transfected VSMCs expressed high levels of hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4), insulin gene enhancer binding protein 1, and human dwarf homeobox gene SHOX2, cardiac troponin I, and low level of connexin 43. In addition, funny current (If) was recorded by patch clamp appeared the time and voltage dependence in TBX18 group, which the amplitude of If density was from -5.164 ± 0.662 pA/pF to -0.765 ± 0.358 pA/pF (n = 14). Furthermore, TBX18-transfected VSMCs coupled with NRVMs showed typical action potential of pacemaker-like cells and the beating rate was faster (178.00 ± 7.55 bpm, p < 0.05) compared with other groups. In conclusion, our study indicated that transcription factor TBX18 could reprogram VSMCs into pacemaker-like cells in vitro.
Collapse
Affiliation(s)
- Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| |
Collapse
|
68
|
Li D, Angermeier A, Wang J. Planar cell polarity signaling regulates polarized second heart field morphogenesis to promote both arterial and venous pole septation. Development 2019; 146:dev181719. [PMID: 31488563 PMCID: PMC6826042 DOI: 10.1242/dev.181719] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
The second heart field (SHF) harbors progenitors that are important for heart formation, but little is known about its morphogenesis. We show that SHF population in the mouse splanchnic mesoderm (SpM-SHF) undergoes polarized morphogenesis to preferentially elongate anteroposteriorly. Loss of Wnt5, a putative ligand of the planar cell polarity (PCP) pathway, causes the SpM-SHF to expand isotropically. Temporal tracking reveals that the Wnt5a lineage is a unique subpopulation specified as early as E7.5, and undergoes bi-directional deployment to form specifically the pulmonary trunk and the dorsal mesenchymal protrusion (DMP). In Wnt5a-/- mutants, Wnt5a lineage fails to extend into the arterial and venous poles, leading to both outflow tract and atrial septation defects that can be rescued by an activated form of PCP effector Daam1. We identify oriented actomyosin cables in the medial SpM-SHF as a potential Wnt5a-mediated mechanism that promotes SpM-SHF lengthening and restricts its widening. Finally, the Wnt5a lineage also contributes to the pulmonary mesenchyme, suggesting that Wnt5a/PCP is a molecular circuit recruited by the recently identified cardiopulmonary progenitors to coordinate morphogenesis of the pulmonary airways and the cardiac septations necessary for pulmonary circulation.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Ding Li
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| | - Allyson Angermeier
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| |
Collapse
|
69
|
Shi Y, Li Y, Wang Y, Zhuang J, Wang H, Hu M, Mo X, Yue S, Chen Y, Fan X, Chen J, Cai W, Zhu X, Wan Y, Zhong Y, Ye X, Li F, Zhou Z, Dai G, Luo R, Ocorr K, Jiang Z, Li X, Zhu P, Wu X, Yuan W. The Functional Polymorphism R129W in the BVES Gene Is Associated with Sporadic Tetralogy of Fallot in the Han Chinese Population. Genet Test Mol Biomarkers 2019; 23:601-609. [PMID: 31386585 DOI: 10.1089/gtmb.2019.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Tetralogy of Fallot (TOF) accounts for ∼10% of congenital heart disease cases. The blood vessel epicardial substance (BVES) gene has been reported to play a role in the function of adult hearts. However, whether allelic variants in BVES contribute to the risk of TOF and its possible mechanism remains unknown. Methods: The open reading frame of the BVES gene was sequenced using samples from 146 TOF patients and 100 unrelated healthy controls. qRT-PCR and western blot assays were used to confirm the expression of mutated BVES variants in the TOF samples. The online software Polyphen2 and SIFT were used to predict the deleterious effects of the observed allelic variants. The effects of these allelic variants on the transcriptional activities of genes were examined using dual-fluorescence reporter assays. Results: We genotyped four single nucleotide polymorphisms (SNPs) in the BVES gene from each of the 146 TOF patients. Among them, the minor allelic frequencies of c.385C>T (p.R129W) were 0.035% in TOF, but ∼0.025% in 100 controls and the Chinese Millionome Database. This allelic variant was predicted to be a potentially harmful alteration by the Polyphen2 and SIFT softwares. qRT-PCR and western blot analyses indicated that the expression of BVES in the six right ventricular outflow tract samples with the c.385C>T allelic variant was significantly downregulated. A dual-fluorescence reporter system showed that the c.385C>T allelic variant significantly decreased the transcriptional activity of the BVES gene and also decreased transcription from the GATA4 and NKX2.5 promoters. Conclusions: c.385C>T (p.R129W) is a functional SNP of the BVES gene that reduces the transcriptional activity of BVES in vitro and in vivo in TOF tissues. This subsequently affects the transcriptional activities of GATA4 and NKX2.5 related to TOF. These findings suggest that c.385C>T may be associated with the risk of TOF in the Han Chinese population.
Collapse
Affiliation(s)
- Yan Shi
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yongqing Li
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuequn Wang
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jian Zhuang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Heng Wang
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Min Hu
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoyang Mo
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shusheng Yue
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiongwei Fan
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wanwan Cai
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaolan Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yongqi Wan
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Zhong
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangli Ye
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fang Li
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zuoqiong Zhou
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China.,Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guo Dai
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Rong Luo
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California
| | - Zhigang Jiang
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoping Li
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Ping Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiushan Wu
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wuzhou Yuan
- State Key Lab of Development Biology of Freshwater Fish, Key Lab of MOE for Development Biology and Protein Chemistry, The Center for Heart Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
70
|
Cdc42 activation by endothelin regulates neural crest cell migration in the cardiac outflow tract. Dev Dyn 2019; 248:795-812. [DOI: 10.1002/dvdy.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
|
71
|
Abstract
The vertebrate heart tube forms from epithelial progenitor cells in the early embryo and subsequently elongates by progressive addition of second heart field (SHF) progenitor cells from adjacent splanchnic mesoderm. Failure to maximally elongate the heart results in a spectrum of morphological defects affecting the cardiac poles, including outflow tract alignment and atrioventricular septal defects, among the most common congenital birth anomalies. SHF cells constitute an atypical apicobasally polarized epithelium with dynamic basal filopodia, located in the dorsal wall of the pericardial cavity. Recent studies have highlighted the importance of epithelial architecture and cell adhesion in the SHF, particularly for signaling events that control the progenitor cell niche during heart tube elongation. The 22q11.2 deletion syndrome gene Tbx1 regulates progenitor cell status through modulating cell shape and filopodial activity and is required for SHF contributions to both cardiac poles. Noncanonical Wnt signaling and planar cell polarity pathway genes control epithelial polarity in the dorsal pericardial wall, as progenitor cells differentiate in a transition zone at the arterial pole. Defects in these pathways lead to outflow tract shortening. Moreover, new biomechanical models of heart tube elongation have been proposed based on analysis of tissue-wide forces driving epithelial morphogenesis in the SHF, including regional cell intercalation, cell cohesion, and epithelial tension. Regulation of the epithelial properties of SHF cells is thus emerging as a key step during heart tube elongation, adding a new facet to our understanding of the mechanisms underlying both heart morphogenesis and congenital heart defects.
Collapse
Affiliation(s)
- Claudio Cortes
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Alexandre Francou
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Christopher De Bono
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France
| | - Robert G Kelly
- From Aix-Marseille University, CNRS UMR 7288, Developmental Biology Institute of Marseille, France.
| |
Collapse
|
72
|
Wang JJ, Liu HX, Song L, Li HR, Yang YP, Zhang T, Jing Y. Isl-1 positive pharyngeal mesenchyme subpopulation and its role in the separation and remodeling of the aortic sac in embryonic mouse heart. Dev Dyn 2019; 248:771-783. [PMID: 31175693 DOI: 10.1002/dvdy.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Second heart field cells and neural crest cells have been reported to participate in the morphogenesis of the pharyngeal arch arteries (PAAs); however, how the PAAs grow out and are separated from the aortic sac into left and right sections is unknown. RESULTS An Isl-1 positive pharyngeal mesenchyme protrusion in the aortic sac ventrally extends and fuses with the aortic sac wall to form a midsagittal septum that divides the aortic sac. The aortic sac division separates the left and right PAAs to form independent arteries. The midsagittal septum dividing the aortic sac has a different expression pattern from the aortic-pulmonary (AP) septum in which Isl-1 positive cells are absent. At 11 days post-conception (dpc) in a mouse embryo, the Isl-1 positive mesenchyme protrusion appears as a heart-shaped structure, in which subpopulations with Isl-1+ Tbx3+ and Isl-1+ Nkx2.5+ cells are included. CONCLUSIONS The aortic sac is a dynamic structure that is continuously divided during the migration from the pharyngeal mesenchyme to the pericardial cavity. The separation of the aortic sac is not complete until the AP septum divides the aortic sac into the ascending aorta and pulmonary trunk. Moreover, the midsagittal septum and the AP septum are distinct structures.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hui-Xia Liu
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Song
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hai-Rong Li
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan-Ping Yang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tao Zhang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ya Jing
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
73
|
Jin H, Wang H, Li J, Yu S, Xu M, Qiu Z, Xia M, Zhu J, Feng Q, Xie J, Xu B, Yang Z. Differential contribution of the two waves of cardiac progenitors and their derivatives to aorta and pulmonary artery. Dev Biol 2019; 450:82-89. [DOI: 10.1016/j.ydbio.2019.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/07/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
|
74
|
Poelmann RE, Gittenberger-de Groot AC. Development and evolution of the metazoan heart. Dev Dyn 2019; 248:634-656. [PMID: 31063648 PMCID: PMC6767493 DOI: 10.1002/dvdy.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of the evolution and development of the heart in metazoans are highlighted, starting with the evolutionary origin of the contractile cell, supposedly the precursor of cardiomyocytes. The last eukaryotic common ancestor is likely a combination of several cellular organisms containing their specific metabolic pathways and genetic signaling networks. During evolution, these tool kits diversified. Shared parts of these conserved tool kits act in the development and functioning of pumping hearts and open or closed circulations in such diverse species as arthropods, mollusks, and chordates. The genetic tool kits became more complex by gene duplications, addition of epigenetic modifications, influence of environmental factors, incorporation of viral genomes, cardiac changes necessitated by air‐breathing, and many others. We evaluate mechanisms involved in mollusks in the formation of three separate hearts and in arthropods in the formation of a tubular heart. A tubular heart is also present in embryonic stages of chordates, providing the septated four‐chambered heart, in birds and mammals passing through stages with first and second heart fields. The four‐chambered heart permits the formation of high‐pressure systemic and low‐pressure pulmonary circulation in birds and mammals, allowing for high metabolic rates and maintenance of body temperature. Crocodiles also have a (nearly) separated circulation, but their resting temperature conforms with the environment. We argue that endothermic ancestors lost the capacity to elevate their body temperature during evolution, resulting in ectothermic modern crocodilians. Finally, a clinically relevant paragraph reviews the occurrence of congenital cardiac malformations in humans as derailments of signaling pathways during embryonic development. The cardiac regulatory toolkit contains many factors including epigenetic, genetic, viral, hemodynamic, and environmental factors, but also transcriptional activators, repressors, duplicated genes, redundancies and dose‐dependancies. Numerous toolkits regulate mechanisms including cell‐cell interactions, EMT, mitosis patterns, cell migration and differentiation and left/right sidedness involved in the development of endocardial cushions, looping, septum complexes, pharyngeal arch arteries, chamber and valve formation and conduction system. Evolutionary development of the yolk sac circulation likely preceded the advent of endothermy in amniotes. Parallel evolutionary traits regulate the development of contractile pumps in various taxa often in conjunction with the gut, lungs and excretory organs.
Collapse
Affiliation(s)
- Robert E Poelmann
- Institute of Biology, Department of Animal Sciences and Health, Leiden University, Leiden, The Netherlands.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
75
|
Lu D, Wang J, Li J, Guan F, Zhang X, Dong W, Liu N, Gao S, Zhang L. Meox1 accelerates myocardial hypertrophic decompensation through Gata4. Cardiovasc Res 2019; 114:300-311. [PMID: 29155983 DOI: 10.1093/cvr/cvx222] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
Aims Pathological hypertrophy is the result of gene network regulation, which ultimately leads to adverse cardiac remodelling and heart failure (HF) and is accompanied by the reactivation of a 'foetal gene programme'. The Mesenchyme homeobox 1 (Meox1) gene is one of the foetal programme genes. Meox1 may play a role in embryonic development, but its regulation of pathological hypertrophy is not known. Therefore, this study investigated the effect of Meox1 on pathological hypertrophy, including familial and pressure overload-induced hypertrophy, and its potential mechanism of action. Methods and results Meox1 expression was markedly down-regulated in the wild-type adult mouse heart with age, and expression was up-regulated in heart tissues from familial dilated cardiomyopathy (FDCM) mice of the cTnTR141W strain, familial hypertrophic cardiomyopathy (FHCM) mice of the cTnTR92Q strain, pressure overload-induced HF mice, and hypertrophic cardiomyopathy (HCM) patients. Echocardiography, histopathology, and hypertrophic molecular markers consistently demonstrated that Meox1 overexpression exacerbated the phenotypes in FHCM and in mice with thoracic aorta constriction (TAC), and that Meox1 knockdown improved the pathological changes. Gata4 was identified as a potential downstream target of Meox1 using digital gene expression (DGE) profiling, real-time PCR, and bioinformatics analysis. Promoter activity data and chromatin immunoprecipitation (ChIP) and Gata4 knockdown analyses indicated that Meox1 acted via activation of Gata4 transcription. Conclusion Meox1 accelerated decompensation via the downstream target Gata4, at least in part directly. Meox1 and other foetal programme genes form a highly interconnected network, which offers multiple therapeutic entry points to dampen the aberrant expression of foetal genes and pathological hypertrophy.
Collapse
Affiliation(s)
- Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishilu, Beijing 100037, China
| | - Jing Li
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Feifei Guan
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Ning Liu
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, NHFPC, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Building 5, Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| |
Collapse
|
76
|
Nakajima Y. Retinoic acid signaling in heart development. Genesis 2019; 57:e23300. [PMID: 31021052 DOI: 10.1002/dvg.23300] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/30/2022]
Abstract
Retinoic acid (RA) is a vitamin A metabolite that acts as a morphogen and teratogen. Excess or defective RA signaling causes developmental defects including in the heart. The heart develops from the anterior lateral plate mesoderm. Cardiogenesis involves successive steps, including formation of the primitive heart tube, cardiac looping, septation, chamber development, coronary vascularization, and completion of the four-chambered heart. RA is dispensable for primitive heart tube formation. Before looping, RA is required to define the anterior/posterior boundaries of the heart-forming mesoderm as well as to form the atrium and sinus venosus. In outflow tract elongation and septation, RA signaling is required to maintain/differentiate cardiogenic progenitors in the second heart field at the posterior pharyngeal arches level. Epicardium-secreted insulin-like growth factor, the expression of which is regulated by hepatic mesoderm-derived erythropoietin under the control of RA, promotes myocardial proliferation of the ventricular wall. Epicardium-derived RA induces the expression of angiogenic factors in the myocardium to form the coronary vasculature. In cardiogenic events at different stages, properly controlled RA signaling is required to establish the functional heart.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
77
|
Majesky MW. Vascular Development. Arterioscler Thromb Vasc Biol 2019; 38:e17-e24. [PMID: 29467221 DOI: 10.1161/atvbaha.118.310223] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The vascular system forms as a branching network of endothelial cells that acquire identity as arterial, venous, hemogenic, or lymphatic. Endothelial specification depends on gene targets transcribed by Ets domain-containing factors, including Ets variant gene 2 (Etv2), together with the activity of chromatin-remodeling complexes containing Brahma-related gene-1 (Brg1). Once specified and assembled into vessels, mechanisms regulating lumen diameter and axial growth ensure that the structure of the branching vascular network matches the need for perfusion of target tissues. In addition, blood vessels provide important morphogenic cues that guide or direct the development of organs forming around them. As the embryo grows and lumen diameters increase, smooth muscle cells wrap around the nascent vessel walls to provide mechanical strength and vasomotor control of the circulation. Increasing mechanical stretch and wall strain promote smooth muscle cell differentiation via coupling of actin cytoskeletal remodeling to myocardin and serum response factor-dependent transcription. Remodeling of artery walls by developmental signaling pathways reappears in postnatal blood vessels during physiological and pathological adaptation to vessel wall injury, inflammation, or chronic hypoxia. Recent reports providing insights into major steps in vascular development are reviewed here with a particular emphasis on studies that have been recently published in Arteriosclerosis, Thrombosis, and Vascular Biology.
Collapse
Affiliation(s)
- Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, WA; and Departments of Pediatrics and Pathology, University of Washington, Seattle.
| |
Collapse
|
78
|
Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiol Rev 2019; 98:2453-2475. [PMID: 30156497 DOI: 10.1152/physrev.00048.2017] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The heart is the first organ to be functional in the fetus. Heart formation is a complex morphogenetic process regulated by both genetic and epigenetic mechanisms. Congenital heart diseases (CHD) are the most prominent congenital diseases. Genetics is not sufficient to explain these diseases or the impact of them on patients. Epigenetics is more and more emerging as a basis for cardiac malformations. This review brings the essential knowledge on cardiac biology of development. It further provides a broad background on epigenetics with a focus on three-dimensional conformation of chromatin. Then, we summarize the current knowledge of the impact of epigenetics on cardiac cell fate decision. We further provide an update on the epigenetic anomalies in the genesis of CHD.
Collapse
Affiliation(s)
- Thomas Moore-Morris
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Patrick Piet van Vliet
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Gregor Andelfinger
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Michel Puceat
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| |
Collapse
|
79
|
Mostefa Kara M, Houyel L, Bonnet D. A new anatomic approach of the ventricular septal defect in the interruption of the aortic arch. J Anat 2018; 234:193-200. [PMID: 30525196 DOI: 10.1111/joa.12911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to analyse the anatomy of the ventricular septal defect (VSD) in heart specimens with interruption of the aortic arch (IAA) in order to explore the hypothesis of different embryologic mechanisms for the different anatomic types of IAA. We examined 42 human heart specimens, 25 with IAA as the main disease with concordant atrioventricular and ventriculo-arterial connections and two distinct great arteries, and 17 hearts with IAA associated with other malformations [six common arterial trunk (CAT), five double-outlet right ventricle (DORV), three transposition of the great arteries (TGA), three atrioventricular septal defect (AVSD)]. The interruption was classified according to Celoria and Patton. We focused on the anatomy of the VSD viewed from the right ventricular side. There were 15 IAA type A, 27 type B, no type C. The VSD in IAA type B was always an outlet VSD, located between the two limbs of the septal band, with posterior malalignment of the outlet septum in hearts with concordant ventriculo-arterial connections, without any fibrous tricuspid-aortic continuity. In addition, the aortic arch was always completely absent. Conversely, the VSD in IAA type A could be of any type (outlet in six, muscular in four, central perimembranous in two, inlet in three) and the aortic arch was either atretic or absent. In addition, IAA type B, when found in the setting of another anomaly, was always associated with neural crest-related anomalies (CAT and DORV), whereas IAA type A was found in association with anomalies not related to the neural crest (TGA and AVSD). These results reinforce the hypothesis that different pathogenic mechanisms are responsible for the two types of IAA, and the inclusion of IAA type B in the group of neural crest defects. Conversely, IAA type A could be due to overlapping mechanisms: flow-related defect (coarctation-like) and neural crest contribution.
Collapse
Affiliation(s)
- Meriem Mostefa Kara
- Paediatric Cardiology, Centre de Référence Malformations Cardiaques Congénitales Complexes - M3C, Necker Hospital for Sick Children, Assistance Publique des Hôpitaux de Paris, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lucile Houyel
- Congenital Cardiac Surgery, Hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - Damien Bonnet
- Paediatric Cardiology, Centre de Référence Malformations Cardiaques Congénitales Complexes - M3C, Necker Hospital for Sick Children, Assistance Publique des Hôpitaux de Paris, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
80
|
Gibb N, Lazic S, Yuan X, Deshwar AR, Leslie M, Wilson MD, Scott IC. Hey2 regulates the size of the cardiac progenitor pool during vertebrate heart development. Development 2018; 145:dev.167510. [PMID: 30355727 DOI: 10.1242/dev.167510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/13/2018] [Indexed: 01/04/2023]
Abstract
A key event in heart development is the timely addition of cardiac progenitor cells, defects in which can lead to congenital heart defects. However, how the balance and proportion of progenitor proliferation versus addition to the heart is regulated remains poorly understood. Here, we demonstrate that Hey2 functions to regulate the dynamics of cardiac progenitor addition to the zebrafish heart. We found that the previously noted increase in myocardial cell number found in the absence of Hey2 function was due to a pronounced expansion in the size of the cardiac progenitor pool. Expression analysis and lineage tracing of hey2-expressing cells showed that hey2 is active in cardiac progenitors. Hey2 acted to limit proliferation of cardiac progenitors, prior to heart tube formation. Use of a transplantation approach demonstrated a likely cell-autonomous (in cardiac progenitors) function for Hey2. Taken together, our data suggest a previously unappreciated role for Hey2 in controlling the proliferative capacity of cardiac progenitors, affecting the subsequent contribution of late-differentiating cardiac progenitors to the developing vertebrate heart.
Collapse
Affiliation(s)
- Natalie Gibb
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Savo Lazic
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Xuefei Yuan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Ashish R Deshwar
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Meaghan Leslie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Michael D Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Ian C Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada.,Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada.,Heart and Stroke Richard Lewar Centres of Excellence in Cardiovascular Research, Toronto, Ontario M5S 3H2, Canada
| |
Collapse
|
81
|
Sayed A, Valente M, Sassoon D. Does cardiac development provide heart research with novel therapeutic approaches? F1000Res 2018; 7. [PMID: 30450195 PMCID: PMC6221076 DOI: 10.12688/f1000research.15609.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
Embryonic heart progenitors arise at specific spatiotemporal periods that contribute to the formation of distinct cardiac structures. In mammals, the embryonic and fetal heart is hypoxic by comparison to the adult heart. In parallel, the cellular metabolism of the cardiac tissue, including progenitors, undergoes a glycolytic to oxidative switch that contributes to cardiac maturation. While oxidative metabolism is energy efficient, the glycolytic-hypoxic state may serve to maintain cardiac progenitor potential. Consistent with this proposal, the adult epicardium has been shown to contain a reservoir of quiescent cardiac progenitors that are activated in response to heart injury and are hypoxic by comparison to adjacent cardiac tissues. In this review, we discuss the development and potential of the adult epicardium and how this knowledge may provide future therapeutic approaches for cardiac repair.
Collapse
Affiliation(s)
- Angeliqua Sayed
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - Mariana Valente
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - David Sassoon
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| |
Collapse
|
82
|
Heterogeneity of Aortic Smooth Muscle Cells: A Determinant for Regional Characteristics of Thoracic Aortic Aneurysms? J Transl Int Med 2018; 6:93-96. [PMID: 30425944 PMCID: PMC6231305 DOI: 10.2478/jtim-2018-0023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
83
|
Xie H, Zhang E, Hong N, Fu Q, Li F, Chen S, Yu Y, Sun K. Identification of TBX2 and TBX3 variants in patients with conotruncal heart defects by target sequencing. Hum Genomics 2018; 12:44. [PMID: 30223900 PMCID: PMC6142335 DOI: 10.1186/s40246-018-0176-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Background Conotruncal heart defects (CTDs) are heterogeneous congenital heart malformations that result from outflow tract dysplasia; however, the genetic determinants underlying CTDs remain unclear. Increasing evidence demonstrates that dysfunctional TBX2 and TBX3 result in outflow tract malformations, implying that both of them are involved in CTD pathogenesis. We screened for TBX2 and TBX3 variants in a large cohort of CTD patients (n = 588) and population-matched healthy controls (n = 300) by target sequencing and genetically analyzed the expression and function of these variants. Results The probably damaging variants p.R608W, p.T249I, and p.R616Q of TBX2 and p.A192T, p.M65L, and p.A562V of TBX3 were identified in CTD patients, but none in controls. All altered amino acids were highly conserved evolutionarily. Moreover, our data suggested that mRNA and protein expressions of TBX2 and TBX3 variants were altered compared with those of the wild-type. We screened PEA3 and MEF2C as novel downstream genes of TBX2 and TBX3, respectively. Functional analysis revealed that TBX2R608W and TBX2R616Q variant proteins further activated HAS2 promoter but failed to activate PEA3 promoter and that TBX3A192T and TBX3A562V variant proteins showed a reduced transcriptional activity over MEF2C promoter. Conclusions Our results indicate that the R608W and R616Q variants of TBX2 as well as the A192T and A562V variants of TBX3 contribute to CTD etiology; this was the first association of variants of TBX2 and TBX3 to CTDs based on a large population. Electronic supplementary material The online version of this article (10.1186/s40246-018-0176-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huilin Xie
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Erge Zhang
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Nanchao Hong
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Qihua Fu
- Medical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sun Chen
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yu Yu
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
84
|
Eley L, Alqahtani AM, MacGrogan D, Richardson RV, Murphy L, Salguero-Jimenez A, Sintes Rodriguez San Pedro M, Tiurma S, McCutcheon L, Gilmore A, de La Pompa JL, Chaudhry B, Henderson DJ. A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice. eLife 2018; 7:34110. [PMID: 29956664 PMCID: PMC6025960 DOI: 10.7554/elife.34110] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Abnormalities of the arterial valve leaflets, predominantly bicuspid aortic valve, are the commonest congenital malformations. Although many studies have investigated the development of the arterial valves, it has been assumed that, as with the atrioventricular valves, endocardial to mesenchymal transition (EndMT) is the predominant mechanism. We show that arterial is distinctly different from atrioventricular valve formation. Whilst the four septal valve leaflets are dominated by NCC and EndMT-derived cells, the intercalated leaflets differentiate directly from Tnnt2-Cre+/Isl1+ progenitors in the outflow wall, via a Notch-Jag dependent mechanism. Further, when this novel group of progenitors are disrupted, development of the intercalated leaflets is disrupted, resulting in leaflet dysplasia and bicuspid valves without raphe, most commonly affecting the aortic valve. This study thus overturns the dogma that heart valves are formed principally by EndMT, identifies a new source of valve interstitial cells, and provides a novel mechanism for causation of bicuspid aortic valves without raphe.
Collapse
Affiliation(s)
- Lorriane Eley
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ahlam Ms Alqahtani
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Donal MacGrogan
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Rachel V Richardson
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lindsay Murphy
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Salguero-Jimenez
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Shindi Tiurma
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lauren McCutcheon
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adam Gilmore
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - José Luis de La Pompa
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Bill Chaudhry
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Deborah J Henderson
- Institute of Genetic Medicine, Cardiovascular Research Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
85
|
Yang YP, Li HR, Cao XM, Qiao CJ, Ya J. Septation of the Intrapericardial Arterial Trunks in the Early Human Embryonic Heart. Chin Med J (Engl) 2018; 131:1457-1464. [PMID: 29893363 PMCID: PMC6006820 DOI: 10.4103/0366-6999.233956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Outflow tract (OFT) septation defects are a common cause of congenital heart disease. Numerous studies have focused on the septation mechanism of the OFT, but have reported inconsistent conclusions. This study, therefore, aimed to investigate the septation of the aortic sac and the OFT in the early embryonic human heart. Methods: Serial sections of 27 human embryonic hearts from Carnegie stage (CS) 10 to CS19 were immunohistochemically stained with antibodies against α-smooth muscle actin (α-SMA) and myosin heavy chain. Results: At CS10–CS11, the OFT wall was an exclusively myocardial structure that was continuous with the aortic sac at the margin of the pericardial cavity. From CS13 onward, the OFT was divided into nonmyocardial and myocardial portions. The cushion formed gradually, and its distal border with the OFT myocardium was consistently maintained. The aortic sac between the fourth and sixth aortic arch arteries was degenerated. At CS16, the α-SMA-positive aortopulmonary septum formed and fused with the two OFT cushions, thus septating the nonmyocardial portion of the OFT into two arteries. At this stage, the cushions were not fused. At CS19, the bilateral cushions were fused to septate the myocardial portion of the OFT. Conclusions: Data suggest that the OFT cushion is formed before the aortopulmonary septum is formed. Thus, the OFT cushion is not derived from the aortopulmonary septum. In addition, the nonmyocardial part of the OFT is septated into the aorta and pulmonary trunk by the aortopulmonary septum, while the main part of the cushion fuses and septates the myocardial portion of the OFT.
Collapse
|
86
|
Woudstra OI, Ahuja S, Bokma JP, Bouma BJ, Mulder BJM, Christoffels VM. Origins and consequences of congenital heart defects affecting the right ventricle. Cardiovasc Res 2018; 113:1509-1520. [PMID: 28957538 DOI: 10.1093/cvr/cvx155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/29/2017] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease is a major health issue, accounting for a third of all congenital defects. Improved early surgical management has led to a growing population of adults with congenital heart disease, including patients with defects affecting the right ventricle, which are often classified as severe. Defects affecting the right ventricle often cause right ventricular volume or pressure overload and affected patients are at high risk for complications such as heart failure and sudden death. Recent insights into the developmental mechanisms and distinct developmental origins of the left ventricle, right ventricle, and the outflow tract have shed light on the common features and distinct problems arising in specific defects. Here, we provide a comprehensive overview of the current knowledge on the development into the normal and congenitally malformed right heart and the clinical consequences of several congenital heart defects affecting the right ventricle.
Collapse
Affiliation(s)
- Odilia I Woudstra
- Department of Cardiology, Academic Medical Center, Meibergdreef 9, 1055 AZ, Amsterdam, The Netherlands
| | - Suchit Ahuja
- Department of Anatomy, Embryology, and Physiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jouke P Bokma
- Department of Cardiology, Academic Medical Center, Meibergdreef 9, 1055 AZ, Amsterdam, The Netherlands.,Netherlands Heart Institute, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Berto J Bouma
- Department of Cardiology, Academic Medical Center, Meibergdreef 9, 1055 AZ, Amsterdam, The Netherlands
| | - Barbara J M Mulder
- Department of Cardiology, Academic Medical Center, Meibergdreef 9, 1055 AZ, Amsterdam, The Netherlands.,Netherlands Heart Institute, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Vincent M Christoffels
- Department of Anatomy, Embryology, and Physiology, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
87
|
Planar Cell Polarity Signaling in Mammalian Cardiac Morphogenesis. Pediatr Cardiol 2018; 39:1052-1062. [PMID: 29564519 PMCID: PMC5959767 DOI: 10.1007/s00246-018-1860-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/06/2018] [Indexed: 01/16/2023]
Abstract
The mammalian heart is the first organ to form and is critical for embryonic survival and development. With an occurrence of 1%, congenital heart defects (CHDs) are also the most common birth defects in humans, and major cause of childhood morbidity and mortality (Hoffman and Kaplan in J Am Coll Cardiol 39(12):1890-1900, 2002; Samanek in Cardiol Young 10(3):179-185, 2000). Understanding how the heart forms will not only help to determine the etiology and to design diagnostic and therapeutic approaches for CHDs, but may also provide insight into regenerative medicine to repair injured adult hearts. Mammalian heart development requires precise orchestration of growth, differentiation, and morphogenesis to remodel a simple linear heart tube into an intricate, four-chambered heart with properly connected pulmonary artery and aorta, a structural basis for establishing the pulmonary and systemic circulation. Here we will review the recent advance in our understanding of how the planar cell polarity pathway, a highly conserved morphogenetic engine in vertebrates, regulates polarized morphogenetic processes to contribute to both the arterial and venous poles development of the heart.
Collapse
|
88
|
Hu J, Shi Y, Xia M, Liu Z, Zhang R, Luo H, Zhang T, Yang Z, Yuan B. WDR1-regulated actin dynamics is required for outflow tract and right ventricle development. Dev Biol 2018; 438:124-137. [PMID: 29654745 DOI: 10.1016/j.ydbio.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 10/17/2022]
Abstract
Outflow tract (OFT) anomalies account for about 30% of human congenital heart defects detected at birth. The second heart field (SHF) progenitors contribute to OFT and right ventricle (RV) development, but the process largely remains unknown. WDR1 (WD-repeat domain 1) is a major co-factor of actin depolymerizing factor (ADF)/cofilin that actively disassembles ADF/cofilin-bound actin filaments. Its function in embryonic heart development has been unknown. Using Wdr1 floxed mice and Nkx2.5-Cre, we deleted Wdr1 in embryonic heart (Wdr1F/F;Nkx2.5-Cre) and found that these mice exhibited embryonic lethality, and hypoplasia of OFT and RV. To investigate the role of WDR1 in OFT and RV development, we generated SHF progenitors-specific Wdr1 deletion mice (shfKO). shfKO mice began to die at embryonic day 11.5 (E11.5), and displayed decreased size of the proximal OFT and RV at E10.5. In shfKO embryos, neither the number of SHF cells deployment to OFT nor cell proliferation and the cell number were changed, whereas the cellular organization and myofibrillar assembly of cardiomyocytes were severely disrupted. In the proximal OFT and RV of both shfKO and Wdr1F/F;Nkx2.5-Cre embryos, cardiomyocytes were dissociated from the outer compact myocardial layer and loosely and disorderly arranged into multilayered myocardium. Our results demonstrate that WDR1 is indispensable for normal OFT and RV development, and suggest that WDR1-mediated actin dynamics functions in controlling the size of OFT and RV, which might through regulating the spatial arrangement of cardiomyocytes.
Collapse
Affiliation(s)
- Jisheng Hu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Yingchao Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Meng Xia
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Zhongying Liu
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Ruirui Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Hongmei Luo
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Tongcun Zhang
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China
| | - Zhongzhou Yang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China.
| | - Baiyin Yuan
- Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430065, China.
| |
Collapse
|
89
|
Lorenzale M, López-Unzu MA, Rodríguez C, Fernández B, Durán AC, Sans-Coma V. The anatomical components of the cardiac outflow tract of chondrichthyans and actinopterygians. Biol Rev Camb Philos Soc 2018; 93:1604-1619. [DOI: 10.1111/brv.12411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Miguel Lorenzale
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
| | - Miguel A. López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Cristina Rodríguez
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Ana C. Durán
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Valentín Sans-Coma
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
| |
Collapse
|
90
|
Bentzon JF, Majesky MW. Lineage tracking of origin and fate of smooth muscle cells in atherosclerosis. Cardiovasc Res 2018; 114:492-500. [PMID: 29293902 PMCID: PMC5852531 DOI: 10.1093/cvr/cvx251] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Advances in lineage-tracking techniques have provided new insights into the origins and fates of smooth muscle cells (SMCs) in atherosclerosis. Yet new tools present new challenges for data interpretation that require careful consideration of the strengths and weaknesses of the methods employed. At the same time, discoveries in other fields have introduced new perspectives on longstanding questions about steps in atherogenesis that remain poorly understood. In this article, we address both the challenges and opportunities for a better understanding of the mechanisms by which cells appearing as or deriving from SMCs accumulate in atherosclerosis.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Biomarkers/metabolism
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Gene Expression Regulation, Developmental
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neovascularization, Physiologic
- Phenotype
- Signal Transduction
Collapse
Affiliation(s)
- Jacob F Bentzon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Deparment of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Room 525, M/S C9S-5, Seattle, WA 98011, USA
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
91
|
A transcriptome-wide association study identifies PALMD as a susceptibility gene for calcific aortic valve stenosis. Nat Commun 2018; 9:988. [PMID: 29511167 PMCID: PMC5840407 DOI: 10.1038/s41467-018-03260-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Calcific aortic valve stenosis (CAVS) is a common and life-threatening heart disease and the current treatment options cannot stop or delay its progression. A GWAS on 1009 cases and 1017 ethnically matched controls was combined with a large-scale eQTL mapping study of human aortic valve tissues (n = 233) to identify susceptibility genes for CAVS. Replication was performed in the UK Biobank, including 1391 cases and 352,195 controls. A transcriptome-wide association study (TWAS) reveals PALMD (palmdelphin) as significantly associated with CAVS. The CAVS risk alleles and increasing disease severity are both associated with decreased mRNA expression levels of PALMD in valve tissues. The top variant identified shows a similar effect and strong association with CAVS (P = 1.53 × 10−10) in UK Biobank. The identification of PALMD as a susceptibility gene for CAVS provides insights into the genetic nature of this disease, opens avenues to investigate its etiology and to develop much-needed therapeutic options. Progressive remodeling and calcification of the aortic valve leads to calcific aortic valve stenosis (CAVS) and, ultimately, heart failure. In a combined GWAS and TWAS approach, Thériault et al. identify PALMD as a candidate causal gene for CAVS, which is further supported by Mendelian randomization.
Collapse
|
92
|
Roostalu U, Wong JK. Arterial smooth muscle dynamics in development and repair. Dev Biol 2018; 435:109-121. [PMID: 29397877 DOI: 10.1016/j.ydbio.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/08/2018] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Arterial vasculature distributes blood from early embryonic development and provides a nutrient highway to maintain tissue viability. Atherosclerosis, peripheral artery diseases, stroke and aortic aneurysm represent the most frequent causes of death and are all directly related to abnormalities in the function of arteries. Vascular intervention techniques have been established for the treatment of all of these pathologies, yet arterial surgery can itself lead to biological changes in which uncontrolled arterial wall cell proliferation leads to restricted blood flow. In this review we describe the intricate cellular composition of arteries, demonstrating how a variety of distinct cell types in the vascular walls regulate the function of arteries. We provide an overview of the developmental origin of arteries and perivascular cells and focus on cellular dynamics in arterial repair. We summarize the current knowledge of the molecular signaling pathways that regulate vascular smooth muscle differentiation in the embryo and in arterial injury response. Our review aims to highlight the similarities as well as differences between cellular and molecular mechanisms that control arterial development and repair.
Collapse
Affiliation(s)
- Urmas Roostalu
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK.
| | - Jason Kf Wong
- Manchester Academic Health Science Centre, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, UK; Department of Plastic Surgery, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK.
| |
Collapse
|
93
|
Management of the moderately dilated sinus of Valsalva: To cut or not to cut? J Thorac Cardiovasc Surg 2018; 155:526-527. [PMID: 29415375 DOI: 10.1016/j.jtcvs.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 11/22/2022]
|
94
|
Zhou Z, Wang J, Guo C, Chang W, Zhuang J, Zhu P, Li X. Temporally Distinct Six2-Positive Second Heart Field Progenitors Regulate Mammalian Heart Development and Disease. Cell Rep 2017; 18:1019-1032. [PMID: 28122228 DOI: 10.1016/j.celrep.2017.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/20/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022] Open
Abstract
The embryonic process of forming a complex structure such as the heart remains poorly understood. Here, we show that Six2 marks a dynamic subset of second heart field progenitors. Six2-positive (Six2+) progenitors are rapidly recruited and assigned, and their descendants are allocated successively to regions of the heart from the right ventricle (RV) to the pulmonary trunk. Global ablation of Six2+ progenitors resulted in RV hypoplasia and pulmonary atresia. An early stage-specific ablation of a small subset of Six2+ progenitors did not cause any apparent structural defect at birth but rather resulted in adult-onset cardiac hypertrophy and dysfunction. Furthermore, Six2 expression depends in part on Shh signaling, and Shh deletion resulted in severe deficiency of Six2+ progenitors. Collectively, these findings unveil the chronological features of cardiogenesis, in which the mammalian heart is built sequentially by temporally distinct populations of cardiac progenitors, and provide insights into late-onset congenital heart disease.
Collapse
Affiliation(s)
- Zhengfang Zhou
- Departments of Urology and Surgery, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Jingying Wang
- Departments of Urology and Surgery, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chaoshe Guo
- Departments of Urology and Surgery, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Weiting Chang
- Divisions of Genetics and Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jian Zhuang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Ping Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Xue Li
- Departments of Urology and Surgery, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
95
|
Duong TB, Ravisankar P, Song YC, Gafranek JT, Rydeen AB, Dohn TE, Barske LA, Crump JG, Waxman JS. Nr2f1a balances atrial chamber and atrioventricular canal size via BMP signaling-independent and -dependent mechanisms. Dev Biol 2017; 434:7-14. [PMID: 29157563 DOI: 10.1016/j.ydbio.2017.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022]
Abstract
Determination of appropriate chamber size is critical for normal vertebrate heart development. Although Nr2f transcription factors promote atrial maintenance and differentiation, how they determine atrial size remains unclear. Here, we demonstrate that zebrafish Nr2f1a is expressed in differentiating atrial cardiomyocytes. Zebrafish nr2f1a mutants have smaller atria due to a specific reduction in atrial cardiomyocyte (AC) number, suggesting it has similar requirements to Nr2f2 in mammals. Furthermore, the smaller atria in nr2f1a mutants are derived from distinct mechanisms that perturb AC differentiation at the chamber poles. At the venous pole, Nr2f1a enhances the rate of AC differentiation. Nr2f1a also establishes the atrial-atrioventricular canal (AVC) border through promoting the differentiation of mature ACs. Without Nr2f1a, AVC markers are expanded into the atrium, resulting in enlarged endocardial cushions (ECs). Inhibition of Bmp signaling can restore EC development, but not AC number, suggesting that Nr2f1a concomitantly coordinates atrial and AVC size through both Bmp-dependent and independent mechanisms. These findings provide insight into conserved functions of Nr2f proteins and the etiology of atrioventricular septal defects (AVSDs) associated with NR2F2 mutations in humans.
Collapse
Affiliation(s)
- Tiffany B Duong
- Molecular and Developmental Biology Master's Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States; The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Padmapriyadarshini Ravisankar
- The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Yuntao Charlie Song
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States; The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jacob T Gafranek
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States; The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ariel B Rydeen
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States; The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Tracy E Dohn
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States; The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lindsey A Barske
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Joshua S Waxman
- The Heart Institute and Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Developmental Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| |
Collapse
|
96
|
Koenig SN, LaHaye S, Feller JD, Rowland P, Hor KN, Trask AJ, Janssen PM, Radtke F, Lilly B, Garg V. Notch1 haploinsufficiency causes ascending aortic aneurysms in mice. JCI Insight 2017; 2:91353. [PMID: 29093270 DOI: 10.1172/jci.insight.91353] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
An ascending aortic aneurysm (AscAA) is a life-threatening disease whose molecular basis is poorly understood. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV), which is associated with AscAA. Here, we describe a potentially novel role for Notch1 in AscAA. We found that Notch1 haploinsufficiency exacerbated the aneurysmal aortic root dilation seen in the Marfan syndrome mouse model and that heterozygous deletion of Notch1 in the second heart field (SHF) lineage recapitulated this exacerbated phenotype. Additionally, Notch1+/- mice in a predominantly 129S6 background develop aortic root dilation, indicating that loss of Notch1 is sufficient to cause AscAA. RNA sequencing analysis of the Notch1.129S6+/- aortic root demonstrated gene expression changes consistent with AscAA. These findings are the first to our knowledge to demonstrate an SHF lineage-specific role for Notch1 in AscAA and suggest that genes linked to the development of BAV may also contribute to the associated aortopathy.
Collapse
Affiliation(s)
- Sara N Koenig
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Dorothy M. Davis Heart and Lung Research Institute
| | - Stephanie LaHaye
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Molecular Genetics
| | - James D Feller
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Patrick Rowland
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, and
| | - Aaron J Trask
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, and
| | - Paul Ml Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Brenda Lilly
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Molecular Genetics
| | - Vidu Garg
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Dorothy M. Davis Heart and Lung Research Institute.,Department of Molecular Genetics.,Department of Pediatrics, and
| |
Collapse
|
97
|
Paffett-Lugassy N, Novikov N, Jeffrey S, Abrial M, Guner-Ataman B, Sakthivel S, Burns CE, Burns CG. Unique developmental trajectories and genetic regulation of ventricular and outflow tract progenitors in the zebrafish second heart field. Development 2017; 144:4616-4624. [PMID: 29061637 DOI: 10.1242/dev.153411] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/11/2017] [Indexed: 02/03/2023]
Abstract
During mammalian embryogenesis, cardiac progenitor cells constituting the second heart field (SHF) give rise to the right ventricle and primitive outflow tract (OFT). In zebrafish, previous lineage-tracing and mutant analyses suggested that SHF ventricular and OFT progenitors co-migrate to the arterial pole of the zebrafish heart tube soon after their specification in the nkx2.5+ field of anterior lateral plate mesoderm (ALPM). Using additional prospective lineage tracing, we demonstrate that while SHF ventricular progenitors migrate directly to the arterial pole, OFT progenitors become temporarily sequestered in the mesodermal cores of pharyngeal arch 2 (PA2), where they downregulate nkx2.5 expression. While there, they intermingle with precursors for PA2-derived head muscles (HMs) and hypobranchial artery endothelium, which we demonstrate are co-specified with SHF progenitors in the nkx2.5+ ALPM. Soon after their sequestration in PA2, OFT progenitors migrate to the arterial pole of the heart and differentiate into OFT lineages. Lastly, we demonstrate that SHF ventricular and OFT progenitors exhibit unique sensitivities to a mutation in fgf8a Our data highlight novel aspects of SHF, OFT and HM development in zebrafish that will inform mechanistic interpretations of cardiopharyngeal phenotypes in zebrafish models of human congenital disorders.
Collapse
Affiliation(s)
- Noelle Paffett-Lugassy
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Natasha Novikov
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Spencer Jeffrey
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Maryline Abrial
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Burcu Guner-Ataman
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Srinivasan Sakthivel
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200N, Denmark
| | - Caroline E Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA .,Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - C Geoffrey Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA .,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
98
|
Hutson MR, Keyte AL, Hernández-Morales M, Gibbs E, Kupchinsky ZA, Argyridis I, Erwin KN, Pegram K, Kneifel M, Rosenberg PB, Matak P, Xie L, Grandl J, Davis EE, Katsanis N, Liu C, Benner EJ. Temperature-activated ion channels in neural crest cells confer maternal fever-associated birth defects. Sci Signal 2017; 10:10/500/eaal4055. [PMID: 29018170 DOI: 10.1126/scisignal.aal4055] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Birth defects of the heart and face are common, and most have no known genetic cause, suggesting a role for environmental factors. Maternal fever during the first trimester is an environmental risk factor linked to these defects. Neural crest cells are precursor populations essential to the development of both at-risk tissues. We report that two heat-activated transient receptor potential (TRP) ion channels, TRPV1 and TRPV4, were present in neural crest cells during critical windows of heart and face development. TRPV1 antagonists protected against the development of hyperthermia-induced defects in chick embryos. Treatment with chemical agonists of TRPV1 or TRPV4 replicated hyperthermia-induced birth defects in chick and zebrafish embryos. To test whether transient TRPV channel permeability in neural crest cells was sufficient to induce these defects, we engineered iron-binding modifications to TRPV1 and TRPV4 that enabled remote and noninvasive activation of these channels in specific cellular locations and at specific developmental times in chick embryos with radio-frequency electromagnetic fields. Transient stimulation of radio frequency-controlled TRP channels in neural crest cells replicated fever-associated defects in developing chick embryos. Our data provide a previously undescribed mechanism for congenital defects, whereby hyperthermia activates ion channels that negatively affect fetal development.
Collapse
Affiliation(s)
- Mary R Hutson
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Anna L Keyte
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA.,Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Miriam Hernández-Morales
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Eric Gibbs
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zachary A Kupchinsky
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27710, USA
| | - Ioannis Argyridis
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kyle N Erwin
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Kelly Pegram
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Margaret Kneifel
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Paul B Rosenberg
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Pavle Matak
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Luke Xie
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jörg Grandl
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27710, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27710, USA
| | - Chunlei Liu
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC 27710, USA. .,Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Eric J Benner
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA.
| |
Collapse
|
99
|
Yassine NM, Shahram JT, Body SC. Pathogenic Mechanisms of Bicuspid Aortic Valve Aortopathy. Front Physiol 2017; 8:687. [PMID: 28993736 PMCID: PMC5622294 DOI: 10.3389/fphys.2017.00687] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/28/2017] [Indexed: 01/06/2023] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital valvular defect and is associated with ascending aortic dilation (AAD) in a quarter of patients. AAD has been ascribed both to the hemodynamic consequences of normally functioning and abnormal BAV morphology, and to the effect of rare and common genetic variation upon function of the ascending aortic media. AAD manifests in two overall and sometimes overlapping phenotypes: that of aortic root aneurysm, similar to the AAD of Marfan syndrome; and that of tubular AAD, similar to the AAD seen with tricuspid aortic valves (TAVs). These aortic phenotypes appear to be independent of BAV phenotype, have different embryologic origins and have unique etiologic factors, notably, regarding the role of hemodynamic changes inherent to the BAV phenotype. Further, in contrast to Marfan syndrome, the AAD seen with BAV is infrequently present as a strongly inherited syndromic phenotype; rather, it appears to be a less-penetrant, milder phenotype. Both reduced levels of normally functioning transcriptional proteins and structurally abnormal proteins have been observed in aneurysmal aortic media. We provide evidence that aortic root AAD has a stronger genetic etiology, sometimes related to identified common non-coding fibrillin-1 (FBN1) variants and other aortic wall protein variants in patients with BAV. In patients with BAV having tubular AAD, we propose a stronger hemodynamic influence, but with pathology still based on a functional deficit of the aortic media, of genetic or epigenetic etiology. Although it is an attractive hypothesis to ascribe common mechanisms to BAV and AAD, thus far the genetic etiologies of AAD have not been associated to the genetic etiologies of BAV, notably, not including BAV variants in NOTCH1 and GATA4.
Collapse
Affiliation(s)
- Noor M Yassine
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| | - Jasmine T Shahram
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| | - Simon C Body
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's HospitalBoston, MA, United States
| |
Collapse
|
100
|
Shen EM, McCloskey KE. Development of Mural Cells: From In Vivo Understanding to In Vitro Recapitulation. Stem Cells Dev 2017; 26:1020-1041. [DOI: 10.1089/scd.2017.0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Edwin M. Shen
- Graduate Program in Biological Engineering and Small-scale Technologies
| | - Kara E. McCloskey
- Graduate Program in Biological Engineering and Small-scale Technologies
- School of Engineering, University of California, Merced, Merced, California
| |
Collapse
|