51
|
MafB Is Important for Pancreatic β-Cell Maintenance under a MafA-Deficient Condition. Mol Cell Biol 2019; 39:MCB.00080-19. [PMID: 31208980 PMCID: PMC6692125 DOI: 10.1128/mcb.00080-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022] Open
Abstract
The pancreatic-islet-enriched transcription factors MafA and MafB have unique expression patterns in β cells in rodents. MafA is specifically expressed in β cells and is a key regulatory factor for maintaining adult β-cell function, whereas MafB plays an essential role in β-cell development during embryogenesis, and its expression in β cells gradually decreases and is restricted to α cells after birth in rodents. The pancreatic-islet-enriched transcription factors MafA and MafB have unique expression patterns in β cells in rodents. MafA is specifically expressed in β cells and is a key regulatory factor for maintaining adult β-cell function, whereas MafB plays an essential role in β-cell development during embryogenesis, and its expression in β cells gradually decreases and is restricted to α cells after birth in rodents. However, it was previously observed that MafB started to be reexpressed in insulin-positive (insulin+) β cells in MafA-deficient adult mice. To elucidate how MafB functions in the adult β cell under MafA-deficient conditions, we generated MafA and MafB double-knockout (A0B0) mice in which MafB was specifically deleted from β cells. As a result, the A0B0 mice became more vulnerable to diabetes under a high-fat diet (HFD) treatment, with impaired islet formation and a decreased number of insulin+ β cells because of increased β-cell apoptosis, indicating MafB can take part in the maintenance of adult β cells under certain pathological conditions.
Collapse
|
52
|
Abstract
PURPOSE OF REVIEW To discuss the current understanding of "β cell identity" and factors underlying altered identity of pancreatic β cells in diabetes, especially in humans. RECENT FINDINGS Altered identity of β cells due to dedifferentiation and/or transdifferentiation has been proposed as a mechanism of loss of β cells in diabetes. In dedifferentiation, β cells do not undergo apoptosis; rather, they lose their identity and function. Dedifferentiation is well characterized by the decrease in expression of key β cell markers such as genes encoding major transcription factors, e.g., MafA, NeuroD1, Nkx6.1, and Foxo1, and an increase in atypical or "disallowed" genes for β cells such as lactate dehydrogenase, monocarboxylate transporter MCT1, or progenitor cell genes (Neurog3, Pax4, or Sox9). Moreover, altered identity of mature β cells in diabetes also involves transdifferentiation of β cells into other islet hormone producing cells. For example, overexpression of α cell specific transcription factor Arx or ablation of Pdx1 resulted in an increase of α cell numbers and a decrease in β cell numbers in rodents. The frequency of α-β double-positive cells was also prominent in human subjects with T2D. These altered identities of β cells likely serve as a compensatory response to enhance function/expand cell numbers and may also camouflage/protect cells from ongoing stress. However, it is equally likely that this may be a reflection of new cell formation as a frank regenerative response to ongoing tissue injury. Physiologically, all these responses are complementary. In diabetes, (1) endocrine identity recapitulates the less mature/less-differentiated fetal/neonatal cell type, possibly representing an adaptive mechanism; (2) residual β cells may be altered in their subtype proportions or other molecular features; (3) in humans, "altered identity" is a preferable term to dedifferentiation as their cellular fate (differentiated cells losing identity or progenitors becoming more differentiated) is unclear as yet.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110 Doha, Qatar
| | - Alexandra E. Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 34110 Doha, Qatar
| |
Collapse
|
53
|
Kim J, Stanescu DE, Won KJ. CellBIC: bimodality-based top-down clustering of single-cell RNA sequencing data reveals hierarchical structure of the cell type. Nucleic Acids Res 2019; 46:e124. [PMID: 30102368 PMCID: PMC6265269 DOI: 10.1093/nar/gky698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a powerful tool to study heterogeneity and dynamic changes in cell populations. Clustering scRNA-seq is essential in identifying new cell types and studying their characteristics. We develop CellBIC (single Cell BImodal Clustering) to cluster scRNA-seq data based on modality in the gene expression distribution. Compared with classical bottom-up approaches that rely on a distance metric, CellBIC performs hierarchical clustering in a top-down manner. CellBIC outperformed the bottom-up hierarchical clustering approach and other recently developed clustering algorithms while maintaining the hierarchical structure of cells. Importantly, CellBIC identifies type 2 diabetes and age specific β cell signatures characterized by SIX3 and CDH2, respectively.
Collapse
Affiliation(s)
- Junil Kim
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Diana E Stanescu
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kyoung Jae Won
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
54
|
Newsholme P, Keane KN, Carlessi R, Cruzat V. Oxidative stress pathways in pancreatic β-cells and insulin-sensitive cells and tissues: importance to cell metabolism, function, and dysfunction. Am J Physiol Cell Physiol 2019; 317:C420-C433. [PMID: 31216193 DOI: 10.1152/ajpcell.00141.2019] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is now accepted that nutrient abundance in the blood, especially glucose, leads to the generation of reactive oxygen species (ROS), ultimately leading to increased oxidative stress in a variety of tissues. In the absence of an appropriate compensatory response from antioxidant mechanisms, the cell, or indeed the tissue, becomes overwhelmed by oxidative stress, leading to the activation of intracellular stress-associated pathways. Activation of the same or similar pathways also appears to play a role in mediating insulin resistance, impaired insulin secretion, and late diabetic complications. The ability of antioxidants to protect against the oxidative stress induced by hyperglycemia and elevated free fatty acid (FFA) levels in vitro suggests a causative role of oxidative stress in mediating the latter clinical conditions. In this review, we describe common biochemical processes associated with oxidative stress driven by hyperglycemia and/or elevated FFA and the resulting clinical outcomes: β-cell dysfunction and peripheral tissue insulin resistance.
Collapse
Affiliation(s)
- Philip Newsholme
- School of Pharmacy and Biomedical Sciences, and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Kevin N Keane
- School of Pharmacy and Biomedical Sciences, and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Rodrigo Carlessi
- School of Pharmacy and Biomedical Sciences, and Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Melbourne, Victoria, Australia
| |
Collapse
|
55
|
Nakajima C, Kamimoto K, Miyajima K, Matsumoto M, Okazaki Y, Kobayashi-Hattori K, Shimizu M, Yamane T, Oishi Y, Iwatsuki K. A Method for Identifying Mouse Pancreatic Ducts. Tissue Eng Part C Methods 2019; 24:480-485. [PMID: 29993334 PMCID: PMC6088256 DOI: 10.1089/ten.tec.2018.0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proper identification of pancreatic ducts is a major challenge for researchers performing partial duct ligation (PDL), because pancreatic ducts, which are covered with acinar cells, are translucent and thin. Although damage to pancreatic ducts may activate quiescent ductal stem cells, which may allow further investigation into ductal stem cells for therapeutic use, there is a lack of effective techniques to visualize pancreatic ducts. In this study, we report a new method for identifying pancreatic ducts. First, we aimed to visualize pancreatic ducts using black, waterproof fountain pen ink. We injected the ink into pancreatic ducts through the bile duct. The flow of ink was observed in pancreatic ducts, revealing their precise architecture. Next, to visualize pancreatic ducts in live animals, we injected fluorescein-labeled bile acid, cholyl-lysyl-fluorescein into the mouse tail vein. The fluorescent probe clearly marked not only the bile duct but also pancreatic ducts when observed with a fluorescent microscope. To confirm whether the pancreatic duct labeling was successful, we performed PDL on Neurogenin3 (Ngn3)-GFP transgenic mice. As a result, acinar tissue is lost. PDL tail pancreas becomes translucent almost completely devoid of acinar cells. Furthermore, strong activation of Ngn3 expression was observed in the ligated part of the adult mouse pancreas at 7 days after PDL.
Collapse
Affiliation(s)
- Chiemi Nakajima
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Kenji Kamimoto
- 2 Department of Developmental Biology, Washington University School of Medicine in St. Louis , St. Louis, Missouri
| | - Katsuhiro Miyajima
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Masahito Matsumoto
- 3 Department of Advanced Diabetic Therapeutics and Metabolic Endocrinology, Juntendo University , Tokyo, Japan
| | - Yasushi Okazaki
- 3 Department of Advanced Diabetic Therapeutics and Metabolic Endocrinology, Juntendo University , Tokyo, Japan .,4 Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Center, Juntendo University , Tokyo, Japan
| | - Kazuo Kobayashi-Hattori
- 5 Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Makoto Shimizu
- 5 Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Takumi Yamane
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Yuichi Oishi
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| | - Ken Iwatsuki
- 1 Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , Tokyo, Japan
| |
Collapse
|
56
|
Huijbregts L, Petersen MBK, Berthault C, Hansson M, Aiello V, Rachdi L, Grapin-Botton A, Honore C, Scharfmann R. Bromodomain and Extra Terminal Protein Inhibitors Promote Pancreatic Endocrine Cell Fate. Diabetes 2019; 68:761-773. [PMID: 30655386 DOI: 10.2337/db18-0224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022]
Abstract
Bromodomain and extraterminal (BET) proteins are epigenetic readers that interact with acetylated lysines of histone tails. Recent studies have demonstrated their role in cancer progression because they recruit key components of the transcriptional machinery to modulate gene expression. However, their role during embryonic development of the pancreas has never been studied. Using mouse embryonic pancreatic explants and human induced pluripotent stem cells (hiPSCs), we show that BET protein inhibition with I-BET151 or JQ1 enhances the number of neurogenin3 (NEUROG3) endocrine progenitors. In mouse explants, BET protein inhibition further led to increased expression of β-cell markers but in the meantime, strongly downregulated Ins1 expression. Similarly, although acinar markers, such as Cpa1 and CelA, were upregulated, Amy expression was repressed. In hiPSCs, BET inhibitors strongly repressed C-peptide and glucagon during endocrine differentiation. Explants and hiPSCs were then pulsed with BET inhibitors to increase NEUROG3 expression and further chased without inhibitors. Endocrine development was enhanced in explants with higher expression of insulin and maturation markers, such as UCN3 and MAFA. In hiPSCs, the outcome was different because C-peptide expression remained lower than in controls, but ghrelin expression was increased. Altogether, by using two independent models of pancreatic development, we show that BET proteins regulate multiple aspects of pancreatic development.
Collapse
Affiliation(s)
- Lukas Huijbregts
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Maja Borup Kjær Petersen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Claire Berthault
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | | | - Virginie Aiello
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Latif Rachdi
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| | - Anne Grapin-Botton
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Christian Honore
- Department of Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - Raphael Scharfmann
- INSERM U1016, Institut Cochin, Université Paris Descartes, Paris, France
| |
Collapse
|
57
|
Cyphert HA, Walker EM, Hang Y, Dhawan S, Haliyur R, Bonatakis L, Avrahami D, Brissova M, Kaestner KH, Bhushan A, Powers AC, Stein R. Examining How the MAFB Transcription Factor Affects Islet β-Cell Function Postnatally. Diabetes 2019; 68:337-348. [PMID: 30425060 PMCID: PMC6341297 DOI: 10.2337/db18-0903] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022]
Abstract
The sustained expression of the MAFB transcription factor in human islet β-cells represents a distinct difference in mice. Moreover, mRNA expression of closely related and islet β-cell-enriched MAFA does not peak in humans until after 9 years of age. We show that the MAFA protein also is weakly produced within the juvenile human islet β-cell population and that MafB expression is postnatally restricted in mouse β-cells by de novo DNA methylation. To gain insight into how MAFB affects human β-cells, we developed a mouse model to ectopically express MafB in adult mouse β-cells using MafA transcriptional control sequences. Coexpression of MafB with MafA had no overt impact on mouse β-cells, suggesting that the human adult β-cell MAFA/MAFB heterodimer is functionally equivalent to the mouse MafA homodimer. However, MafB alone was unable to rescue the islet β-cell defects in a mouse mutant lacking MafA in β-cells. Of note, transgenic production of MafB in β-cells elevated tryptophan hydroxylase 1 mRNA production during pregnancy, which drives the serotonin biosynthesis critical for adaptive maternal β-cell responses. Together, these studies provide novel insight into the role of MAFB in human islet β-cells.
Collapse
Affiliation(s)
- Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Yan Hang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Beckman Research Institute, City of Hope, Duarte, CA
| | - Rachana Haliyur
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lauren Bonatakis
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Dana Avrahami
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Anil Bhushan
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
58
|
Lawlor N, Márquez EJ, Orchard P, Narisu N, Shamim MS, Thibodeau A, Varshney A, Kursawe R, Erdos MR, Kanke M, Gu H, Pak E, Dutra A, Russell S, Li X, Piecuch E, Luo O, Chines PS, Fuchbserger C, Sethupathy P, Aiden AP, Ruan Y, Aiden EL, Collins FS, Ucar D, Parker SCJ, Stitzel ML. Multiomic Profiling Identifies cis-Regulatory Networks Underlying Human Pancreatic β Cell Identity and Function. Cell Rep 2019; 26:788-801.e6. [PMID: 30650367 PMCID: PMC6389269 DOI: 10.1016/j.celrep.2018.12.083] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/26/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
EndoC-βH1 is emerging as a critical human β cell model to study the genetic and environmental etiologies of β cell (dys)function and diabetes. Comprehensive knowledge of its molecular landscape is lacking, yet required, for effective use of this model. Here, we report chromosomal (spectral karyotyping), genetic (genotyping), epigenomic (ChIP-seq and ATAC-seq), chromatin interaction (Hi-C and Pol2 ChIA-PET), and transcriptomic (RNA-seq and miRNA-seq) maps of EndoC-βH1. Analyses of these maps define known (e.g., PDX1 and ISL1) and putative (e.g., PCSK1 and mir-375) β cell-specific transcriptional cis-regulatory networks and identify allelic effects on cis-regulatory element use. Importantly, comparison with maps generated in primary human islets and/or β cells indicates preservation of chromatin looping but also highlights chromosomal aberrations and fetal genomic signatures in EndoC-βH1. Together, these maps, and a web application we created for their exploration, provide important tools for the design of experiments to probe and manipulate the genetic programs governing β cell identity and (dys)function in diabetes.
Collapse
Affiliation(s)
- Nathan Lawlor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Eladio J Márquez
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Narisu Narisu
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Muhammad Saad Shamim
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Arushi Varshney
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael R Erdos
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Huiya Gu
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Evgenia Pak
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Amalia Dutra
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Sheikh Russell
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77030, USA
| | - Xingwang Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Emaly Piecuch
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT 06032, USA
| | - Oscar Luo
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter S Chines
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Christian Fuchbserger
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Aviva Presser Aiden
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Erez Lieberman Aiden
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computer Science, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francis S Collins
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT 06032, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT 06032, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| |
Collapse
|
59
|
Singh T, Sarmiento L, Luan C, Prasad RB, Johansson J, Cataldo LR, Renström E, Soneji S, Cilio C, Artner I. MafA Expression Preserves Immune Homeostasis in Human and Mouse Islets. Genes (Basel) 2018; 9:genes9120644. [PMID: 30567413 PMCID: PMC6315686 DOI: 10.3390/genes9120644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Type 1 (T1D) and type 2 (T2D) diabetes are triggered by a combination of environmental and/or genetic factors. Maf transcription factors regulate pancreatic beta (β)-cell function, and have also been implicated in the regulation of immunomodulatory cytokines like interferon-β (IFNβ1). In this study, we assessed MAFA and MAFB co-expression with pro-inflammatory cytokine signaling genes in RNA-seq data from human pancreatic islets. Interestingly, MAFA expression was strongly negatively correlated with cytokine-induced signaling (such as IFNAR1, DDX58) and T1D susceptibility genes (IFIH1), whereas correlation of these genes with MAFB was weaker. In order to evaluate if the loss of MafA altered the immune status of islets, MafA deficient mouse islets (MafA−/−) were assessed for inherent anti-viral response and susceptibility to enterovirus infection. MafA deficient mouse islets had elevated basal levels of Ifnβ1, Rig1 (DDX58 in humans), and Mda5 (IFIH1) which resulted in reduced virus propagation in response to coxsackievirus B3 (CVB3) infection. Moreover, an acute knockdown of MafA in β-cell lines also enhanced Rig1 and Mda5 protein levels. Our results suggest that precise regulation of MAFA levels is critical for islet cell-specific cytokine production, which is a critical parameter for the inflammatory status of pancreatic islets.
Collapse
Affiliation(s)
- Tania Singh
- Stem Cell Center, Lund University, 22184, Lund, Sweden.
| | | | - Cheng Luan
- Lund University Diabetes Center, 22184, Lund, Sweden.
| | | | | | | | - Erik Renström
- Lund University Diabetes Center, 22184, Lund, Sweden.
| | - Shamit Soneji
- Stem Cell Center, Lund University, 22184, Lund, Sweden.
| | - Corrado Cilio
- Lund University Diabetes Center, 22184, Lund, Sweden.
| | - Isabella Artner
- Stem Cell Center, Lund University, 22184, Lund, Sweden.
- Lund University Diabetes Center, 22184, Lund, Sweden.
| |
Collapse
|
60
|
Bartolome A, Zhu C, Sussel L, Pajvani UB. Notch signaling dynamically regulates adult β cell proliferation and maturity. J Clin Invest 2018; 129:268-280. [PMID: 30375986 DOI: 10.1172/jci98098] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
Notch signaling regulates differentiation of the pancreatic endocrine lineage during embryogenesis, but the role of Notch in mature β cells is unclear. We found that islets derived from lean mice show modest β cell Notch activity, which increases in obesity and in response to high glucose. This response appeared maladaptive, as mice with β cell-specific-deficient Notch transcriptional activity showed improved glucose tolerance when subjected to high-fat diet feeding. Conversely, mice with β cell-specific Notch gain of function (β-NICD) had a progressive loss of β cell maturity, due to proteasomal degradation of MafA, leading to impaired glucose-stimulated insulin secretion and glucose intolerance with aging or obesity. Surprisingly, Notch-active β cells had increased proliferative capacity, leading to increased but dysfunctional β cell mass. These studies demonstrate a dynamic role for Notch in developed β cells for simultaneously regulating β cell function and proliferation.
Collapse
Affiliation(s)
- Alberto Bartolome
- Department of Medicine, Columbia University, New York, New York, USA
| | - Changyu Zhu
- Department of Medicine, Columbia University, New York, New York, USA
| | - Lori Sussel
- Department of Pediatrics, University of Colorado, Denver, Colorado, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
61
|
Aguayo-Mazzucato C, Lee TB, Matzko M, DiIenno A, Rezanejad H, Ramadoss P, Scanlan T, Zavacki AM, Larsen PR, Hollenberg A, Colton C, Sharma A, Bonner-Weir S. T 3 Induces Both Markers of Maturation and Aging in Pancreatic β-Cells. Diabetes 2018; 67:1322-1331. [PMID: 29625991 PMCID: PMC6014556 DOI: 10.2337/db18-0030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/25/2022]
Abstract
Previously, we showed that thyroid hormone (TH) triiodothyronine (T3) enhanced β-cell functional maturation through induction of Mafa High levels of T3 have been linked to decreased life span in mammals and low levels to lengthened life span, suggesting a relationship between TH and aging. Here, we show that T3 increased p16Ink4a (a β-cell senescence marker and effector) mRNA in rodent and human β-cells. The kinetics of Mafa and p16Ink4a induction suggested both genes as targets of TH via TH receptors (THRs) binding to specific response elements. Using specific agonists CO23 and GC1, we showed that p16Ink4a expression was controlled by THRA and Mafa by THRB. Using chromatin immunoprecipitation and a transient transfection yielding biotinylated THRB1 or THRA isoforms to achieve specificity, we determined that THRA isoform bound to p16Ink4a , whereas THRB1 bound to Mafa but not to p16Ink4a On a cellular level, T3 treatment accelerated cell senescence as shown by increased number of β-cells with acidic β-galactosidase activity. Our data show that T3 can simultaneously induce both maturation (Mafa) and aging (p16Ink4a ) effectors and that these dichotomous effects are mediated through different THR isoforms. These findings may be important for further improving stem cell differentiation protocols to produce functional β-cells for replacement therapies in diabetes.
Collapse
Affiliation(s)
| | - Terence B Lee
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | | - Amanda DiIenno
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Preeti Ramadoss
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Thomas Scanlan
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR
| | - Ann Marie Zavacki
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - P Reed Larsen
- Thyroid Section, Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Anthony Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Clark Colton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Arun Sharma
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | |
Collapse
|
62
|
Huang C, Walker EM, Dadi PK, Hu R, Xu Y, Zhang W, Sanavia T, Mun J, Liu J, Nair GG, Tan HYA, Wang S, Magnuson MA, Stoeckert CJ, Hebrok M, Gannon M, Han W, Stein R, Jacobson DA, Gu G. Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca 2+ Sensitivity of Insulin Secretion Vesicles. Dev Cell 2018; 45:347-361.e5. [PMID: 29656931 PMCID: PMC5962294 DOI: 10.1016/j.devcel.2018.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/12/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Islet β cells from newborn mammals exhibit high basal insulin secretion and poor glucose-stimulated insulin secretion (GSIS). Here we show that β cells of newborns secrete more insulin than adults in response to similar intracellular Ca2+ concentrations, suggesting differences in the Ca2+ sensitivity of insulin secretion. Synaptotagmin 4 (Syt4), a non-Ca2+ binding paralog of the β cell Ca2+ sensor Syt7, increased by ∼8-fold during β cell maturation. Syt4 ablation increased basal insulin secretion and compromised GSIS. Precocious Syt4 expression repressed basal insulin secretion but also impaired islet morphogenesis and GSIS. Syt4 was localized on insulin granules and Syt4 levels inversely related to the number of readily releasable vesicles. Thus, transcriptional regulation of Syt4 affects insulin secretion; Syt4 expression is regulated in part by Myt transcription factors, which repress Syt4 transcription. Finally, human SYT4 regulated GSIS in EndoC-βH1 cells, a human β cell line. These findings reveal the role that altered Ca2+ sensing plays in regulating β cell maturation.
Collapse
Affiliation(s)
- Chen Huang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Wenjian Zhang
- China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Tiziana Sanavia
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jisoo Mun
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Jennifer Liu
- Diabetes Center, UCSF, San Francisco, CA 94143, USA
| | | | - Hwee Yim Angeline Tan
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Singapore, Singapore
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Christian J Stoeckert
- Institute for Biomedical Informatics and Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | - Maureen Gannon
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Singapore, Singapore
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA.
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; Center for Stem Cell Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA; The Program of Developmental Biology, Vanderbilt University School of Medicine, Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37232, USA.
| |
Collapse
|
63
|
Nishimura W, Sakaue-Sawano A, Takahashi S, Miyawaki A, Yasuda K, Noda Y. Optical clearing of the pancreas for visualization of mature β-cells and vessels in mice. Islets 2018; 10:e1451282. [PMID: 29617192 PMCID: PMC5989882 DOI: 10.1080/19382014.2018.1451282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glucose metabolism is regulated by insulin, which is produced from β-cells in the pancreas. Because insulin is secreted into vessels in response to blood glucose, vascular structures of the pancreas, especially the relationship between vessels and β-cells, are important for physiological and pathological glucose metabolism. Here, we developed a system to visualize vessels surrounding mature β-cells expressing transcription factor MafA in a three-dimensional manner. Optical clearing of the pancreas prevented light scattering of fluorescence driven by the bacterial artificial chromosome (BAC)-mafA promoter in β-cells. Reconstruction of confocal images demonstrated mature β-cells and the glomerular-like structures of β-cell vasculatures labeled with DyLight 488-conjugated lectin in normal mice as well as in low-dose streptozotocin-injected diabetes model mice with reduced β-cell mass. This technological innovation of organ imaging can be used to investigate morphological changes in vascular structures during transplantation, regeneration and diabetes development.
Collapse
Affiliation(s)
- Wataru Nishimura
- Department of Molecular Biology, International University of Health and Welfare School of Medicine, Narita, Chiba, Japan
- Division of Anatomy, Bio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
- CONTACT Wataru Nishimura Department of Molecular Biology, International University of Health and Welfare School of Medicine, Narita, Chiba, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function Dynamics, Brain Science Institute, Wako City, Saitama, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, Brain Science Institute, Wako City, Saitama, Japan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Yasuko Noda
- Division of Anatomy, Bio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi, Japan
- CONTACT Yasuko Noda Division of Anatomy, Bio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
64
|
Yi SA, Lee J, Park JW, Han J, Lee MG, Nam KH, Park JH, Oh H, Ahn SJ, Kim S, Kwon SH, Jo DG, Han JW. S6K1 controls epigenetic plasticity for the expression of pancreatic α/β cell marker genes. J Cell Biochem 2018; 119:6674-6683. [PMID: 29665055 DOI: 10.1002/jcb.26853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/09/2018] [Indexed: 01/17/2023]
Abstract
The failure of insulin production by pancreatic β cells is a common hallmark of type 1 diabetes mellitus (T1DM). Because administration of exogenous insulin is associated with diabetes-derived complications, endogenous α to β cell transition can be an attractive alternative. Although decreased β cell size and hypoinsulinaemia have been observed in S6K1-deficient mice, the molecular mechanism underlying the involvement of S6K1 in the transcriptional regulation of insulin remains elusive. Here, we show that the hypoinsulinaemic phenotype of S6K1-deficient mice stems from the dysregulated transcription of a set of genes required for insulin and glucagon production. First, we observed that increased expression of α cell marker genes and decreased expression of β cell marker genes in pancreas tissues from S6K1-deficient mice. Furthermore, S6K1 was highly activated in murine β cell line, βTC6, compared to murine α cell line αTC1. In both α and β cells, active S6K1 promoted the transcription of β cell marker genes, including insulin, whereas S6K1 inhibition increased the transcription of α cell marker genes. Moreover, S6K1 mediated pancreatic gene regulation by modifying two histone marks (activating H3K4me3 and repressing H3K27me3) on gene promoters. These results suggest that S6K1 drives the α to β transition through the epigenetic regulation of cell-specific genes, including insulin and glucagon. This novel role of S6K1 in islet cells provides basic clues to establish therapeutic strategies against T1DM.
Collapse
Affiliation(s)
- Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jieun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong Woo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jihoon Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Min Gyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jee Hun Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hwamok Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung Jin Ahn
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Saetbyul Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeung-Whan Han
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
65
|
Kropp PA, Dunn JC, Carboneau BA, Stoffers DA, Gannon M. Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability. Am J Physiol Endocrinol Metab 2018; 314:E308-E321. [PMID: 29351489 PMCID: PMC5966755 DOI: 10.1152/ajpendo.00260.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.
Collapse
Affiliation(s)
- Peter A Kropp
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Jennifer C Dunn
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Bethany A Carboneau
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Doris A Stoffers
- Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Department of Medicine, Vanderbilt University , Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
66
|
MafB Is Critical for Glucagon Production and Secretion in Mouse Pancreatic α Cells In Vivo. Mol Cell Biol 2018; 38:MCB.00504-17. [PMID: 29378833 DOI: 10.1128/mcb.00504-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
The MafB transcription factor is expressed in pancreatic α and β cells during development but becomes exclusive to α cells in adult rodents. Mafb-null (Mafb-/- ) mice were reported to have reduced α- and β-cell numbers throughout embryonic development. To further analyze the postnatal function of MafB in the pancreas, we generated endocrine cell-specific (MafbΔEndo ) and tamoxifen-dependent (MafbΔTAM ) Mafb knockout mice. MafbΔEndo mice exhibited reduced populations of insulin-positive (insulin+) and glucagon+ cells at postnatal day 0, but the insulin+ cell population recovered by 8 weeks of age. In contrast, the Arx+ glucagon+ cell fraction and glucagon expression remained decreased even in adulthood. MafbΔTAM mice, with Mafb deleted after pancreas maturation, also demonstrated diminished glucagon+ cells and glucagon content without affecting β cells. A decreased Arx+ glucagon+ cell population in MafbΔEndo mice was compensated for by an increased Arx+ pancreatic polypeptide+ cell population. Furthermore, gene expression analyses from both MafbΔEndo and MafbΔTAM islets revealed that MafB is a key regulator of glucagon expression in α cells. Finally, both mutants failed to respond to arginine, likely due to impaired arginine transporter gene expression and glucagon production ability. Taken together, our findings reveal that MafB is critical for the functional maintenance of mouse α cells in vivo, including glucagon production and secretion, as well as in development.
Collapse
|
67
|
Abstract
INTRODUCTION The etiology of diabetes is mainly attributed to insulin deficiency due to the lack of β cells (type 1), or to insulin resistance that eventually results in β cell dysfunction (type 2). Therefore, an ultimate cure for diabetes requires the ability to replace the lost insulin-secreting β cells. Strategies for regenerating β cells are under extensive investigation. AREAS COVERED Herein, the authors first summarize the mechanisms underlying embryonic β cell development and spontaneous adult β cell regeneration, which forms the basis for developing β cell regeneration strategies. Then the rationale and progress of each β cell regeneration strategy is reviewed. Current β cell regeneration strategies can be classified into two main categories: in vitro β cell regeneration using pluripotent stem cells and in vivo reprogramming of non-β cells into β cells. Each has its own advantages and disadvantages. EXPERT OPINION Regenerating β cells has shown its potential as a cure for the treatment of insulin-deficient diabetes. Much progress has been made, and β cell regeneration therapy is getting closer to a clinical reality. Nevertheless, more hurdles need to be overcome before any of the strategies suggested can be fully translated from bench to bedside.
Collapse
Affiliation(s)
- Shengli Dong
- Department of Biochemistry & Molecular Biology, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Hongju Wu
- Department of Medicine, Tulane University Health Science Center, New Orleans, Louisiana
| |
Collapse
|
68
|
Iwaoka R, Kataoka K. Glucose regulates MafA transcription factor abundance and insulin gene expression by inhibiting AMP-activated protein kinase in pancreatic β-cells. J Biol Chem 2018; 293:3524-3534. [PMID: 29348175 DOI: 10.1074/jbc.m117.817932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/15/2018] [Indexed: 01/12/2023] Open
Abstract
Insulin mRNA expression in pancreatic islet β-cells is up-regulated by extracellular glucose concentration, but the underlying mechanism remains incompletely understood. MafA is a transcriptional activator specifically enriched in β-cells that binds to the insulin gene promoter. Its expression is transcriptionally and posttranscriptionally regulated by glucose. Moreover, AMP-activated protein kinase (AMPK), a regulator of cellular energy homeostasis, is inhibited by high glucose, and this inhibition is essential for the up-regulation of insulin gene expression and glucose-stimulated insulin secretion (GSIS). Here we mutagenized the insulin promoter and found that the MafA-binding element C1/RIPE3b is required for glucose- or AMPK-induced alterations in insulin gene promoter activity. Under high-glucose conditions, pharmacological activation of AMPK in isolated mouse islets or MIN6 cells by metformin or 5-aminoimidazole-4-carboxamide riboside decreased MafA protein levels and mRNA expression of insulin and GSIS-related genes (i.e. glut2 and sur1). Overexpression of constitutively active AMPK also reduced MafA and insulin expression. Conversely, pharmacological AMPK inhibition by dorsomorphin (compound C) or expression of a dominant-negative form of AMPK increased MafA and insulin expression under low-glucose conditions. However, AMPK activation or inhibition did not change the expression levels of the β-cell-enriched transcription factors Pdx1 and Beta2/NeuroD1. AMPK activation accelerated MafA protein degradation, which is not dependent on the proteasome. We also noted that MafA overexpression prevents metformin-induced decreases in insulin and GSIS-related gene expression. These findings indicate that high glucose concentrations inhibit AMPK, thereby increasing MafA protein levels and activating the insulin promoter.
Collapse
Affiliation(s)
- Ryo Iwaoka
- From the Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kohsuke Kataoka
- From the Laboratory of Molecular Medical Bioscience, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
69
|
Abstract
We report a disease-causing mutation in the β-cell–enriched MAFA transcription factor. Strikingly, the missense p.Ser64Phe MAFA mutation was associated with either of two distinct phenotypes, multiple insulin-producing neuroendocrine tumors of the pancreas—a condition known as insulinomatosis—or diabetes mellitus, recapitulating the physiological properties of MAFA both as an oncogene and as a key islet β-cell transcription factor. The implication of MAFA in these human phenotypes will provide insights into how this transcription factor regulates human β-cell activity as well as into the mechanisms of Maf-induced tumorigenesis. The β-cell–enriched MAFA transcription factor plays a central role in regulating glucose-stimulated insulin secretion while also demonstrating oncogenic transformation potential in vitro. No disease-causing MAFA variants have been previously described. We investigated a large pedigree with autosomal dominant inheritance of diabetes mellitus or insulinomatosis, an adult-onset condition of recurrent hyperinsulinemic hypoglycemia caused by multiple insulin-secreting neuroendocrine tumors of the pancreas. Using exome sequencing, we identified a missense MAFA mutation (p.Ser64Phe, c.191C>T) segregating with both phenotypes of insulinomatosis and diabetes. This mutation was also found in a second unrelated family with the same clinical phenotype, while no germline or somatic MAFA mutations were identified in nine patients with sporadic insulinomatosis. In the two families, insulinomatosis presented more frequently in females (eight females/two males) and diabetes more often in males (12 males/four females). Four patients from the index family, including two homozygotes, had a history of congenital cataract and/or glaucoma. The p.Ser64Phe mutation was found to impair phosphorylation within the transactivation domain of MAFA and profoundly increased MAFA protein stability under both high and low glucose concentrations in β-cell lines. In addition, the transactivation potential of p.Ser64Phe MAFA in β-cell lines was enhanced compared with wild-type MAFA. In summary, the p.Ser64Phe missense MAFA mutation leads to familial insulinomatosis or diabetes by impacting MAFA protein stability and transactivation ability. The human phenotypes associated with the p.Ser64Phe MAFA missense mutation reflect both the oncogenic capacity of MAFA and its key role in islet β-cell activity.
Collapse
|
70
|
Zhu M, Wei Y, Geißler C, Abschlag K, Corbalán Campos J, Hristov M, Möllmann J, Lehrke M, Karshovska E, Schober A. Hyperlipidemia-Induced MicroRNA-155-5p Improves β-Cell Function by Targeting Mafb. Diabetes 2017; 66:3072-3084. [PMID: 28970282 DOI: 10.2337/db17-0313] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022]
Abstract
A high-fat diet increases bacterial lipopolysaccharide (LPS) in the circulation and thereby stimulates glucagon-like peptide 1 (GLP-1)-mediated insulin secretion by upregulating interleukin-6 (IL-6). Although microRNA-155-5p (miR-155-5p), which increases IL-6 expression, is upregulated by LPS and hyperlipidemia and patients with familial hypercholesterolemia less frequently develop diabetes, the role of miR-155-5p in the islet stress response to hyperlipidemia is unclear. In this study, we demonstrate that hyperlipidemia-associated endotoxemia upregulates miR-155-5p in murine pancreatic β-cells, which improved glucose metabolism and the adaptation of β-cells to obesity-induced insulin resistance. This effect of miR-155-5p is because of suppression of v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B, which promotes β-cell function through IL-6-induced GLP-1 production in α-cells. Moreover, reduced GLP-1 levels are associated with increased obesity progression, dyslipidemia, and atherosclerosis in hyperlipidemic Mir155 knockout mice. Hence, induction of miR-155-5p expression in β-cells by hyperlipidemia-associated endotoxemia improves the adaptation of β-cells to insulin resistance and represents a protective mechanism in the islet stress response.
Collapse
Affiliation(s)
- Mengyu Zhu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yuanyuan Wei
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Claudia Geißler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kathrin Abschlag
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Judit Corbalán Campos
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hristov
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Möllmann
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Ela Karshovska
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
71
|
Lou YR, Leung AW. Next generation organoids for biomedical research and applications. Biotechnol Adv 2017; 36:132-149. [PMID: 29056474 DOI: 10.1016/j.biotechadv.2017.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022]
Abstract
Organoids are in vitro cultures of miniature fetal or adult organ-like structures. Their potentials for use in tissue and organ replacement, disease modeling, toxicology studies, and drug discovery are tremendous. Currently, major challenges facing human organoid technology include (i) improving the range of cellular heterogeneity for a particular organoid system, (ii) mimicking the native micro- and matrix-environment encountered by cells within organoids, and (iii) developing robust protocols for the in vitro maturation of organoids that remain mostly fetal-like in cultures. To tackle these challenges, we advocate the principle of reverse engineering that replicates the inner workings of in vivo systems with the goal of achieving functionality and maturation of the resulting organoid structures with the input of minimal intrinsic (cellular) and environmental (matrix and niche) constituents. Here, we present an overview of organoid technology development in several systems that employ cell materials derived from fetal and adult tissues and pluripotent stem cell cultures. We focus on key studies that exploit the self-organizing property of embryonic progenitors and the role of designer matrices and cell-free scaffolds in assisting organoid formation. We further explore the relationship between adult stem cells, niche factors, and other current developments that aim to enhance robust organoid maturation. From these works, we propose a standardized pipeline for the development of future protocols that would help generate more physiologically relevant human organoids for various biomedical applications.
Collapse
Affiliation(s)
- Yan-Ru Lou
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Alan W Leung
- Yale Stem Cell Center, Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
72
|
Bastidas-Ponce A, Scheibner K, Lickert H, Bakhti M. Cellular and molecular mechanisms coordinating pancreas development. Development 2017; 144:2873-2888. [PMID: 28811309 DOI: 10.1242/dev.140756] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
73
|
Tritschler S, Theis FJ, Lickert H, Böttcher A. Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab 2017; 6:974-990. [PMID: 28951822 PMCID: PMC5605721 DOI: 10.1016/j.molmet.2017.06.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes mellitus is characterized by loss or dysfunction of insulin-producing β-cells in the pancreas, resulting in failure of blood glucose regulation and devastating secondary complications. Thus, β-cells are currently the prime target for cell-replacement and regenerative therapy. Triggering endogenous repair is a promising strategy to restore β-cell mass and normoglycemia in diabetic patients. Potential strategies include targeting specific β-cell subpopulations to increase proliferation or maturation. Alternatively, transdifferentiation of pancreatic islet cells (e.g. α- or δ-cells), extra-islet cells (acinar and ductal cells), hepatocytes, or intestinal cells into insulin-producing cells might improve glycemic control. To this end, it is crucial to systematically characterize and unravel the transcriptional program of all pancreatic cell types at the molecular level in homeostasis and disease. Furthermore, it is necessary to better determine the underlying mechanisms of β-cell maturation, maintenance, and dysfunction in diabetes, to identify and molecularly profile endocrine subpopulations with regenerative potential, and to translate the findings from mice to man. Recent approaches in single-cell biology started to illuminate heterogeneity and plasticity in the pancreas that might be targeted for β-cell regeneration in diabetic patients. SCOPE OF REVIEW This review discusses recent literature on single-cell analysis including single-cell RNA sequencing, single-cell mass cytometry, and flow cytometry of pancreatic cell types in the context of mechanisms of endogenous β-cell regeneration. We discuss new findings on the regulation of postnatal β-cell proliferation and maturation. We highlight how single-cell analysis recapitulates described principles of functional β-cell heterogeneity in animal models and adds new knowledge on the extent of β-cell heterogeneity in humans as well as its role in homeostasis and disease. Furthermore, we summarize the findings on cell subpopulations with regenerative potential that might enable the formation of new β-cells in diseased state. Finally, we review new data on the transcriptional program and function of rare pancreatic cell types and their implication in diabetes. MAJOR CONCLUSION Novel, single-cell technologies offer high molecular resolution of cellular heterogeneity within the pancreas and provide information on processes and factors that govern β-cell homeostasis, proliferation, and maturation. Eventually, these technologies might lead to the characterization of cells with regenerative potential and unravel disease-associated changes in gene expression to identify cellular and molecular targets for therapy.
Collapse
Affiliation(s)
- Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Am Parkring 11, 85748 Garching-Hochbrück, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
74
|
Oxidative Stress in Pancreatic Beta Cell Regeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1930261. [PMID: 28845211 PMCID: PMC5560096 DOI: 10.1155/2017/1930261] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023]
Abstract
Pancreatic β cell neogenesis and proliferation during the neonatal period are critical for the generation of sufficient pancreatic β cell mass/reserve and have a profound impact on long-term protection against type 2 diabetes (T2D). Oxidative stress plays an important role in β cell neogenesis, proliferation, and survival under both physiological and pathophysiological conditions. Pancreatic β cells are extremely susceptible to oxidative stress due to a high endogenous production of reactive oxygen species (ROS) and a low expression of antioxidative enzymes. In this review, we summarize studies describing the critical roles and the mechanisms of how oxidative stress impacts β cell neogenesis and proliferation. In addition, the effects of antioxidant supplements on reduction of oxidative stress and increase of β cell proliferation are discussed. Exploring the roles and the potential therapeutic effects of antioxidants in the process of β cell regeneration would provide novel perspectives to preserve and/or expand pancreatic β cell mass for the treatment of T2D.
Collapse
|
75
|
Jacobson EF, Tzanakakis ES. Human pluripotent stem cell differentiation to functional pancreatic cells for diabetes therapies: Innovations, challenges and future directions. J Biol Eng 2017; 11:21. [PMID: 28680477 PMCID: PMC5494890 DOI: 10.1186/s13036-017-0066-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
Recent advances in the expansion and directed pancreatogenic differentiation of human pluripotent stem cells (hPSCs) have intensified efforts to generate functional pancreatic islet cells, especially insulin-secreting β-cells, for cell therapies against diabetes. However, the consistent generation of glucose-responsive insulin-releasing cells remains challenging. In this article, we first present basic concepts of pancreatic organogenesis, which frequently serves as a basis for engineering differentiation regimens. Next, past and current efforts are critically discussed for the conversion of hPSCs along pancreatic cell lineages, including endocrine β-cells and α-cells, as well as exocrine cells with emphasis placed on the later stages of commitment. Finally, major challenges and future directions are examined, such as the identification of factors for in vivo maturation, large-scale culture and post processing systems, cell loss during differentiation, culture economics, efficiency, and efficacy and exosomes and miRNAs in pancreatic differentiation.
Collapse
Affiliation(s)
- Elena F Jacobson
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Room 276A, Medford, MA 02155 USA
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby St., Room 276A, Medford, MA 02155 USA.,Tufts Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA 02111 USA
| |
Collapse
|
76
|
Wen J, Xue T, Huang Y, Chen X, Xue Y, Lin W, Zhang L, Yao J, Huang H, Liang J, Li L, Lin L, Shi L, Cai L, Zhu Z, Chen G. Is β-cell aging involved in the pathogenesis of diabetes? J Diabetes 2017; 9:707-716. [PMID: 27613695 DOI: 10.1111/1753-0407.12481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/22/2016] [Accepted: 09/03/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND β-Cells at different stages have different functions and capacity for proliferation, regenerative and apoptosis. The aim of the present study was to investigate whether there are changes in β-cell phonotype in the development of diabetes to identify potential β-cell targets to prevent the progression of diabetes. METHODS A cross-sectional study was performed on pancreatic tissues obtained from 80 patients classified into three groups: 25 with type 2 diabetes (T2D), 25 with impaired fasting glucose (IFG), and 30 non-diabetics (ND). The ratio of the insulin-positive area to pancreatic area was used as an indirect marker of β-cell mass. Insulin-positive duct cells and scattered β-cells were defined as newly generated β-cells, whereas insulin/neurogenin 3 (Ngn3), insulin/v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MafA) and insulin/P16 double-positive cells were defined as immature, mature, and senescent β-cells, respectively; Ki67 was used as a marker of cell proliferation, and terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling (TUNEL) was used as a marker of cell apoptosis. Data were analyzed using the Kruskal-Wallis test. RESULTS There were no significant differences in β-cell mass, the prevalence of insulin-positive duct cells, scattered β-cells, or insulin/Ngn3, insulin/MafA, and Insulin/Ki67 double-positive cells among groups. The incidence of insulin/P16 double-positive cells was significantly higher in T2D than ND. β-Cell apoptosis was significantly higher in T2D and IFG than ND. CONCLUSION The senescence and apoptosis of β-cells may be involved in the course of diabetes.
Collapse
Affiliation(s)
- Junping Wen
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Ting Xue
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Ying Huang
- Department of Pathology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Chen
- Department of Pathology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Ying Xue
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Lizhen Zhang
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Jin Yao
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Huibin Huang
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Jixing Liang
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Liantao Li
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Lixiang Lin
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Lidan Shi
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Liangchun Cai
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Zhuangli Zhu
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| | - Gang Chen
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Academy of Medical Sciences and, Fujian Medical University, Fuzhou, China
| |
Collapse
|
77
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
78
|
Raptor regulates functional maturation of murine beta cells. Nat Commun 2017; 8:15755. [PMID: 28598424 PMCID: PMC5472774 DOI: 10.1038/ncomms15755] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 04/26/2017] [Indexed: 02/08/2023] Open
Abstract
Diabetes is associated with beta cell mass loss and islet dysfunctions. mTORC1 regulates beta cell survival, proliferation and function in physiological and pathological conditions, such as pregnancy and pancreatectomy. Here we show that deletion of Raptor, which is an essential component of mTORC1, in insulin-expressing cells promotes hypoinsulinemia and glucose intolerance. Raptor-deficient beta cells display reduced glucose responsiveness and exhibit a glucose metabolic profile resembling fetal beta cells. Knockout islets have decreased expression of key factors of functional maturation and upregulation of neonatal markers and beta cell disallowed genes, resulting in loss of functional maturity. Mechanistically, Raptor-deficient beta cells show reduced expression of DNA-methyltransferase 3a and altered patterns of DNA methylation at loci that are involved in the repression of disallowed genes. The present findings highlight a novel role of mTORC1 as a core mechanism governing postnatal beta cell maturation and physiologic beta cell mass during adulthood. mTORC1 regulates beta cell survival, function and adaptation to physiologic and pathological stimuli. Here Ni et al. demonstrate that that deficiency of Raptor, a component of mTORC1 complex, impairs insulin secretion and glucose tolerance in mice by affecting maturation of beta cells during the postnatal period.
Collapse
|
79
|
Sinagoga KL, Stone WJ, Schiesser JV, Schweitzer JI, Sampson L, Zheng Y, Wells JM. Distinct roles for the mTOR pathway in postnatal morphogenesis, maturation and function of pancreatic islets. Development 2017; 144:2402-2414. [PMID: 28576773 DOI: 10.1242/dev.146316] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/26/2017] [Indexed: 02/03/2023]
Abstract
While much is known about the molecular pathways that regulate embryonic development and adult homeostasis of the endocrine pancreas, little is known about what regulates early postnatal development and maturation of islets. Given that birth marks the first exposure to enteral nutrition, we investigated how nutrient-regulated signaling pathways influence postnatal islet development in mice. We performed loss-of-function studies of mechanistic target of rapamycin (mTOR), a highly conserved kinase within a nutrient-sensing pathway known to regulate cellular growth, morphogenesis and metabolism. Deletion of Mtor in pancreatic endocrine cells had no significant effect on their embryonic development. However, within the first 2 weeks after birth, mTOR-deficient islets became dysmorphic, β-cell maturation and function were impaired, and animals lost islet mass. Moreover, we discovered that these distinct functions of mTOR are mediated by separate downstream branches of the pathway, in that mTORC1 (with adaptor protein Raptor) is the main complex mediating the maturation and function of islets, whereas mTORC2 (with adaptor protein Rictor) impacts islet mass and architecture. Taken together, these findings suggest that nutrient sensing may be an essential trigger for postnatal β-cell maturation and islet development.
Collapse
Affiliation(s)
- Katie L Sinagoga
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - William J Stone
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Jacqueline V Schiesser
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Jamie I Schweitzer
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Leesa Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA .,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| |
Collapse
|
80
|
Population Dynamics of MafA-Positive Cells During Ontogeny of Human Pancreas. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
81
|
Bastidas-Ponce A, Roscioni SS, Burtscher I, Bader E, Sterr M, Bakhti M, Lickert H. Foxa2 and Pdx1 cooperatively regulate postnatal maturation of pancreatic β-cells. Mol Metab 2017; 6:524-534. [PMID: 28580283 PMCID: PMC5444078 DOI: 10.1016/j.molmet.2017.03.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The transcription factors (TF) Foxa2 and Pdx1 are key regulators of beta-cell (β-cell) development and function. Mutations of these TFs or their respective cis-regulatory consensus binding sites have been linked to maturity diabetes of the young (MODY), pancreas agenesis, or diabetes susceptibility in human. Although Foxa2 has been shown to directly regulate Pdx1 expression during mouse embryonic development, the impact of this gene regulatory interaction on postnatal β-cell maturation remains obscure. METHODS In order to easily monitor the expression domains of Foxa2 and Pdx1 and analyze their functional interconnection, we generated a novel double knock-in homozygous (FVFPBFDHom) fluorescent reporter mouse model by crossing the previously described Foxa2-Venus fusion (FVF) with the newly generated Pdx1-BFP (blue fluorescent protein) fusion (PBF) mice. RESULTS Although adult PBF homozygous animals exhibited a reduction in expression levels of Pdx1, they are normoglycemic. On the contrary, despite normal pancreas and endocrine development, the FVFPBFDHom reporter male animals developed hyperglycemia at weaning age and displayed a reduction in Pdx1 levels in islets, which coincided with alterations in β-cell number and islet architecture. The failure to establish mature β-cells resulted in loss of β-cell identity and trans-differentiation towards other endocrine cell fates. Further analysis suggested that Foxa2 and Pdx1 genetically and functionally cooperate to regulate maturation of adult β-cells. CONCLUSIONS Our data show that the maturation of pancreatic β-cells requires the cooperative function of Foxa2 and Pdx1. Understanding the postnatal gene regulatory network of β-cell maturation will help to decipher pathomechanisms of diabetes and identify triggers to regenerate dedifferentiated β-cell mass.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Sara S Roscioni
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Erik Bader
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,Technical University of Munich, Germany.,German Center for Diabetes Research (DZD), Germany
| |
Collapse
|
82
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
83
|
The Chromatin Modifier MSK1/2 Suppresses Endocrine Cell Fates during Mouse Pancreatic Development. PLoS One 2016; 11:e0166703. [PMID: 27973548 PMCID: PMC5156359 DOI: 10.1371/journal.pone.0166703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/02/2016] [Indexed: 11/24/2022] Open
Abstract
Type I diabetes is caused by loss of insulin-secreting beta cells. To identify novel, pharmacologically-targetable histone-modifying proteins that enhance beta cell production from pancreatic progenitors, we performed a screen for histone modifications induced by signal transduction pathways at key pancreatic genes. The screen led us to investigate the temporal dynamics of ser-28 phosphorylated histone H3 (H3S28ph) and its upstream kinases, MSK1 and MSK2 (MSK1/2). H3S28ph and MSK1/2 were enriched at the key endocrine and acinar promoters in E12.5 multipotent pancreatic progenitors. Pharmacological inhibition of MSK1/2 in embryonic pancreatic explants promoted the specification of endocrine fates, including the beta-cell lineage, while depleting acinar fates. Germline knockout of both Msk isoforms caused enhancement of alpha cells and a reduction in acinar differentiation, while monoallelic loss of Msk1 promoted beta cell mass. Our screen of chromatin state dynamics can be applied to other developmental contexts to reveal new pathways and approaches to modulate cell fates.
Collapse
|
84
|
Prasadan K, Shiota C, Xiangwei X, Ricks D, Fusco J, Gittes G. A synopsis of factors regulating beta cell development and beta cell mass. Cell Mol Life Sci 2016; 73:3623-37. [PMID: 27105622 PMCID: PMC5002366 DOI: 10.1007/s00018-016-2231-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 12/29/2022]
Abstract
The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells; however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation.
Collapse
Affiliation(s)
- Krishna Prasadan
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Chiyo Shiota
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Xiao Xiangwei
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - David Ricks
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Joseph Fusco
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - George Gittes
- Rangos Research Center, Children's Hospital of University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
85
|
A Single-Cell Transcriptome Atlas of the Human Pancreas. Cell Syst 2016; 3:385-394.e3. [PMID: 27693023 PMCID: PMC5092539 DOI: 10.1016/j.cels.2016.09.002] [Citation(s) in RCA: 817] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 07/04/2016] [Accepted: 09/07/2016] [Indexed: 11/21/2022]
Abstract
To understand organ function, it is important to have an inventory of its cell types and of their corresponding marker genes. This is a particularly challenging task for human tissues like the pancreas, because reliable markers are limited. Hence, transcriptome-wide studies are typically done on pooled islets of Langerhans, obscuring contributions from rare cell types and of potential subpopulations. To overcome this challenge, we developed an automated platform that uses FACS, robotics, and the CEL-Seq2 protocol to obtain the transcriptomes of thousands of single pancreatic cells from deceased organ donors, allowing in silico purification of all main pancreatic cell types. We identify cell type-specific transcription factors and a subpopulation of REG3A-positive acinar cells. We also show that CD24 and TM4SF4 expression can be used to sort live alpha and beta cells with high purity. This resource will be useful for developing a deeper understanding of pancreatic biology and pathophysiology of diabetes mellitus. Single-cell sequencing of human pancreas allows in silico purification of cell types We provide cell-type-specific genes, transcription factors, and cell-surface markers StemID finds outlier populations of acinar and beta cells CD24 and TM4SF4 function as two markers to enrich for alpha and beta cells
Collapse
|
86
|
Pipeleers D, Robert T, De Mesmaeker I, Ling Z. Concise Review: Markers for Assessing Human Stem Cell-Derived Implants as β-Cell Replacement in Type 1 Diabetes. Stem Cells Transl Med 2016; 5:1338-1344. [PMID: 27381993 DOI: 10.5966/sctm.2015-0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 05/02/2016] [Indexed: 12/24/2022] Open
Abstract
: A depleted β-cell mass causes diabetes complications that cannot be avoided by insulin administration. β-Cell replacement can stop their development when restoring insulin's homeostatic role. This requires a sufficient number and an adequate functional state of the β cells, together defined as "functional β-cell mass." Intraportal implants of human pancreatic islet cells correct hyperglycemia in patients with type 1 diabetes, but this effect is transient and often incomplete. Studies to improve outcome are hindered by shortage in donor pancreases. Human pluripotent stem cells are a candidate source for mass production of grafts for β-cell replacement. Their in vitro differentiation to pancreatic endoderm (stage 4) and to β-cell-containing preparations (stage 7) provides grafts that generate β-cell implants in mice. In vivo markers indicated a better outcome of device-encapsulated stage 4 cells and microencapsulated stage 7 cells as compared with nonencapsulated grafts. Encapsulation also offers the advantage of representative implant retrieval for direct analysis by ex vivo markers. Combination of in vitro, in vivo, and ex vivo markers allows comparison of different stem cell-derived grafts and implants, with each other and with clinical islet cell preparations that serve as reference. Data in mice provide insights into the biology of stem cell-generated β-cell implants, in particular their capacity to establish and sustain a functional β-cell mass. They can thus be indicative for translation of a graft to similar studies in patients, where metabolic benefit will be an additional marker of primordial importance. SIGNIFICANCE Human stem cell-derived preparations can generate insulin-producing implants in immune-incompetent mice. Steps are undertaken for translation to patients with type 1 diabetes. Their therapeutic significance will depend on their capacity to establish a functional β-cell mass that provides metabolic benefit. This study proposes the combined use of in vitro, in vivo, and ex vivo markers to assess this potential in preclinical models and in clinical studies.
Collapse
Affiliation(s)
- Daniel Pipeleers
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium Center for Beta Cell Therapy in Diabetes, University Hospital UZ-Brussels, Brussels, Belgium
| | - Thomas Robert
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
| | - Ines De Mesmaeker
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center, Brussels Free University-VUB, Brussels, Belgium Center for Beta Cell Therapy in Diabetes, University Hospital UZ-Brussels, Brussels, Belgium
| |
Collapse
|
87
|
Henley KD, Stanescu DE, Kropp PA, Wright CVE, Won KJ, Stoffers DA, Gannon M. Threshold-Dependent Cooperativity of Pdx1 and Oc1 in Pancreatic Progenitors Establishes Competency for Endocrine Differentiation and β-Cell Function. Cell Rep 2016; 15:2637-2650. [PMID: 27292642 DOI: 10.1016/j.celrep.2016.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 02/06/2023] Open
Abstract
Pdx1 and Oc1 are co-expressed in multipotent pancreatic progenitors and regulate the pro-endocrine gene Neurog3. Their expression diverges in later organogenesis, with Oc1 absent from hormone+ cells and Pdx1 maintained in mature β cells. In a classical genetic test for cooperative functional interactions, we derived mice with combined Pdx1 and Oc1 heterozygosity. Endocrine development in double-heterozygous pancreata was normal at embryonic day (E)13.5, but defects in specification and differentiation were apparent at E15.5, the height of the second wave of differentiation. Pancreata from double heterozygotes showed alterations in the expression of genes crucial for β-cell development and function, decreased numbers and altered allocation of Neurog3-expressing endocrine progenitors, and defective endocrine differentiation. Defects in islet gene expression and β-cell function persisted in double heterozygous neonates. These results suggest that Oc1 and Pdx1 cooperate prior to their divergence, in pancreatic progenitors, to allow for proper differentiation and functional maturation of β cells.
Collapse
Affiliation(s)
- Kathryn D Henley
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Diana E Stanescu
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia PA 19104
| | - Peter A Kropp
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Christopher V E Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Kyoung-Jae Won
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Doris A Stoffers
- Institute for Diabetes, Obesity and Metabolism and the Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Maureen Gannon
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232.,Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232.,Department of Medicine, Vanderbilt University, Nashville, TN 37232.,Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University, Nashville, TN 37212
| |
Collapse
|
88
|
β-Cell-Specific Mafk Overexpression Impairs Pancreatic Endocrine Cell Development. PLoS One 2016; 11:e0150010. [PMID: 26901059 PMCID: PMC4763111 DOI: 10.1371/journal.pone.0150010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/08/2016] [Indexed: 01/20/2023] Open
Abstract
The MAF family transcription factors are homologs of v-Maf, the oncogenic component of the avian retrovirus AS42. They are subdivided into 2 groups, small and large MAF proteins, according to their structure, function, and molecular size. MAFK is a member of the small MAF family and acts as a dominant negative form of large MAFs. In previous research we generated transgenic mice that overexpress MAFK in order to suppress the function of large MAF proteins in pancreatic β-cells. These mice developed hyperglycemia in adulthood due to impairment of glucose-stimulated insulin secretion. The aim of the current study is to examine the effects of β-cell-specific Mafk overexpression in endocrine cell development. The developing islets of Mafk-transgenic embryos appeared to be disorganized with an inversion of total numbers of insulin+ and glucagon+ cells due to reduced β-cell proliferation. Gene expression analysis by quantitative RT-PCR revealed decreased levels of β-cell-related genes whose expressions are known to be controlled by large MAF proteins. Additionally, these changes were accompanied with a significant increase in key β-cell transcription factors likely due to compensatory mechanisms that might have been activated in response to the β-cell loss. Finally, microarray comparison of gene expression profiles between wild-type and transgenic pancreata revealed alteration of some uncharacterized genes including Pcbd1, Fam132a, Cryba2, and Npy, which might play important roles during pancreatic endocrine development. Taken together, these results suggest that Mafk overexpression impairs endocrine development through a regulation of numerous β-cell-related genes. The microarray analysis provided a unique data set of differentially expressed genes that might contribute to a better understanding of the molecular basis that governs the development and function of endocrine pancreas.
Collapse
|
89
|
Conrad E, Dai C, Spaeth J, Guo M, Cyphert HA, Scoville D, Carroll J, Yu WM, Goodrich LV, Harlan DM, Grove KL, Roberts CT, Powers AC, Gu G, Stein R. The MAFB transcription factor impacts islet α-cell function in rodents and represents a unique signature of primate islet β-cells. Am J Physiol Endocrinol Metab 2016; 310:E91-E102. [PMID: 26554594 PMCID: PMC4675799 DOI: 10.1152/ajpendo.00285.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Abstract
Analysis of MafB(-/-) mice has suggested that the MAFB transcription factor was essential to islet α- and β-cell formation during development, although the postnatal physiological impact could not be studied here because these mutants died due to problems in neural development. Pancreas-wide mutant mice were generated to compare the postnatal significance of MafB (MafB(Δpanc)) and MafA/B (MafAB(Δpanc)) with deficiencies associated with the related β-cell-enriched MafA mutant (MafA(Δpanc)). Insulin(+) cell production and β-cell activity were merely delayed in MafB(Δpanc) islets until MafA was comprehensively expressed in this cell population. We propose that MafA compensates for the absence of MafB in MafB(Δpanc) mice, which is supported by the death of MafAB(Δpanc) mice soon after birth from hyperglycemia. However, glucose-induced glucagon secretion was compromised in adult MafB(Δpanc) islet α-cells. Based upon these results, we conclude that MafB is only essential to islet α-cell activity and not β-cell. Interestingly, a notable difference between mice and humans is that MAFB is coexpressed with MAFA in adult human islet β-cells. Here, we show that nonhuman primate (NHP) islet α- and β-cells also produce MAFB, implying that MAFB represents a unique signature and likely important regulator of the primate islet β-cell.
Collapse
Affiliation(s)
- Elizabeth Conrad
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jason Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Scoville
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julie Carroll
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Wei-Ming Yu
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - David M Harlan
- Department of Medicine, University of Massachusetts, Worcester, Massachusetts
| | - Kevin L Grove
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Charles T Roberts
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee; and
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
90
|
Abstract
Lineage tracing studies have revealed that transcription factors play a cardinal role in pancreatic development, differentiation and function. Three transitions define pancreatic organogenesis, differentiation and maturation. In the primary transition, when pancreatic organogenesis is initiated, there is active proliferation of pancreatic progenitor cells. During the secondary transition, defined by differentiation, there is growth, branching, differentiation and pancreatic cell lineage allocation. The tertiary transition is characterized by differentiated pancreatic cells that undergo further remodeling, including apoptosis, replication and neogenesis thereby establishing a mature organ. Transcription factors function at multiple levels and may regulate one another and auto-regulate. The interaction between extrinsic signals from non-pancreatic tissues and intrinsic transcription factors form a complex gene regulatory network ultimately culminating in the different cell lineages and tissue types in the developing pancreas. Mutations in these transcription factors clinically manifest as subtypes of diabetes mellitus. Current treatment for diabetes is not curative and thus, developmental biologists and stem cell researchers are utilizing knowledge of normal pancreatic development to explore novel therapeutic alternatives. This review summarizes current knowledge of transcription factors involved in pancreatic development and β-cell differentiation in rodents.
Collapse
Affiliation(s)
- Reshmi Dassaye
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Strini Naidoo
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Marlon E Cerf
- b Diabetes Discovery Platform, South African Medical Research Council , Cape Town , South Africa
| |
Collapse
|
91
|
Abdelalim EM, Emara MM. Pluripotent Stem Cell-Derived Pancreatic β Cells: From In Vitro Maturation to Clinical Application. RECENT ADVANCES IN STEM CELLS 2016. [DOI: 10.1007/978-3-319-33270-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
92
|
El Khattabi I, Sharma A. Proper activation of MafA is required for optimal differentiation and maturation of pancreatic β-cells. Best Pract Res Clin Endocrinol Metab 2015; 29:821-31. [PMID: 26696512 PMCID: PMC4690007 DOI: 10.1016/j.beem.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A key therapeutic approach for the treatment of Type 1 diabetes (T1D) is transplantation of functional islet β-cells. Despite recent advances in generating stem cell-derived glucose-responsive insulin(+) cells, their further maturation to fully functional adult β-cells still remains a daunting task. Conquering this hurdle will require a better understanding of the mechanisms driving maturation of embryonic insulin(+) cells into adult β-cells, and the implementation of that knowledge to improve current differentiation protocols. Here, we will review our current understanding of β-cell maturation, and discuss the contribution of key β-cell transcription factor MafA, to this process. The fundamental importance of MafA in regulating adult β-cell maturation and function indicates that enhancing MafA expression may improve the generation of definitive β-cells for transplantation. Additionally, we suggest that the temporal control of MafA induction at a specific stage of β-cell differentiation will be the next critical challenge for achieving optimum maturation of β-cells.
Collapse
Affiliation(s)
| | - Arun Sharma
- Cardiovascular and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, USA.
| |
Collapse
|
93
|
Nishimura W, Kapoor A, El Khattabi I, Jin W, Yasuda K, Bonner-Weir S, Sharma A. Compensatory Response by Late Embryonic Tubular Epithelium to the Reduction in Pancreatic Progenitors. PLoS One 2015; 10:e0142286. [PMID: 26540252 PMCID: PMC4635002 DOI: 10.1371/journal.pone.0142286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 10/20/2015] [Indexed: 02/05/2023] Open
Abstract
Early in pancreatic development, epithelial cells of pancreatic buds function as primary multipotent progenitor cells (1°MPC) that specify all three pancreatic cell lineages, i.e., endocrine, acinar and duct. Bipotent "Trunk" progenitors derived from 1°MPC are implicated in directly regulating the specification of endocrine progenitors. It is unclear if this specification process is initiated in the 1°MPC where some 1°MPC become competent for later specification of endocrine progenitors. Previously we reported that in Pdx1tTA/+;tetOMafA (bigenic) mice inducing expression of transcription factor MafA in Pdx1-expressing (Pdx1+) cells throughout embryonic development inhibited the proliferation and differentiation of 1°MPC cells, resulting in reduced pancreatic mass and endocrine cells by embryonic day (E) 17.5. Induction of the transgene only until E12.5 in Pdx1+ 1°MPC was sufficient for this inhibition of endocrine cells and pancreatic mass at E17.5. However, by birth (P0), as we now report, such bigenic pups had significantly increased pancreatic and endocrine volumes with endocrine clusters containing all pancreatic endocrine cell types. The increase in endocrine cells resulted from a higher proliferation of tubular epithelial cells expressing the progenitor marker Glut2 in E17.5 bigenic embryos and increased number of Neurog3-expressing cells at E19.5. A BrdU-labeling study demonstrated that inhibiting proliferation of 1°MPC by forced MafA-expression did not lead to retention of those progenitors in E17.5 tubular epithelium. Our data suggest that the forced MafA expression in the 1°MPC inhibits their competency to specify endocrine progenitors only until E17.5, and after that compensatory proliferation of tubular epithelium gives rise to a distinct pool of endocrine progenitors. Thus, these bigenic mice provide a novel way to characterize the competency of 1°MPC for their ability to specify endocrine progenitors, a critical limitation in our understanding of endocrine differentiation.
Collapse
Affiliation(s)
- Wataru Nishimura
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Division of Anatomy, Bio-imaging and Neuro-cell Science, Jichi Univerisity, Tochigi, Japan
| | - Archana Kapoor
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ilham El Khattabi
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wanzhu Jin
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Susan Bonner-Weir
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arun Sharma
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
94
|
Scoville DW, Cyphert HA, Liao L, Xu J, Reynolds A, Guo S, Stein R. MLL3 and MLL4 Methyltransferases Bind to the MAFA and MAFB Transcription Factors to Regulate Islet β-Cell Function. Diabetes 2015; 64:3772-83. [PMID: 26180087 PMCID: PMC4613979 DOI: 10.2337/db15-0281] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/03/2015] [Indexed: 12/19/2022]
Abstract
Insulin produced by islet β-cells plays a critical role in glucose homeostasis, with type 1 and type 2 diabetes both resulting from inactivation and/or loss of this cell population. Islet-enriched transcription factors regulate β-cell formation and function, yet little is known about the molecules recruited to mediate control. An unbiased in-cell biochemical and mass spectrometry strategy was used to isolate MafA transcription factor-binding proteins. Among the many coregulators identified were all of the subunits of the mixed-lineage leukemia 3 (Mll3) and 4 (Mll4) complexes, with histone 3 lysine 4 methyltransferases strongly associated with gene activation. MafA was bound to the ∼1.5 MDa Mll3 and Mll4 complexes in size-fractionated β-cell extracts. Likewise, closely related human MAFB, which is important to β-cell formation and coproduced with MAFA in adult human islet β-cells, bound MLL3 and MLL4 complexes. Knockdown of NCOA6, a core subunit of these methyltransferases, reduced expression of a subset of MAFA and MAFB target genes in mouse and human β-cell lines. In contrast, a broader effect on MafA/MafB gene activation was observed in mice lacking NCoA6 in islet β-cells. We propose that MLL3 and MLL4 are broadly required for controlling MAFA and MAFB transactivation during development and postnatally.
Collapse
Affiliation(s)
- David W Scoville
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Al Reynolds
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Shuangli Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roland Stein
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
95
|
Zhang C, Guo Z. Multiple functions of Maf in the regulation of cellular development and differentiation. Diabetes Metab Res Rev 2015; 31:773-8. [PMID: 26122665 PMCID: PMC5042042 DOI: 10.1002/dmrr.2676] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/29/2015] [Accepted: 06/24/2015] [Indexed: 11/08/2022]
Abstract
Cellular muscular aponeurotic fibrosarcoma (c-Maf) is a member of the large macrophage-activating factor family. C-Maf plays important roles in the morphogenetic processes and cellular differentiation of the lens, kidneys, liver, T cells and nervous system, and it is particularly important in pancreatic islet and erythroblastic island formation. However, the exact role of c-Maf remains to be elucidated. In this review, we summarize the research to clarify the functions of c-Maf in the cellular development and differentiation. The expression of c-Maf is higher in pancreatic duct cells than in pancreatic islet cells. Therefore, we suggest that pancreatic duct cells may be converted to the functional insulin-secreting cells by regulating c-Maf.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Endocrinology and MetabolismThe Second Hospital of Jilin UniversityChangchunChina
| | - Zhi‐Min Guo
- Department of Experimental MicrobiologyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
96
|
Aguayo-Mazzucato C, DiIenno A, Hollister-Lock J, Cahill C, Sharma A, Weir G, Colton C, Bonner-Weir S. MAFA and T3 Drive Maturation of Both Fetal Human Islets and Insulin-Producing Cells Differentiated From hESC. J Clin Endocrinol Metab 2015; 100. [PMID: 26207953 PMCID: PMC4596039 DOI: 10.1210/jc.2015-2632] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CONTEXT Human embryonic stem cells (hESCs) differentiated toward β-cells and fetal human pancreatic islet cells resemble each other transcriptionally and are characterized by immaturity with a lack of glucose responsiveness, low levels of insulin content, and impaired proinsulin-to-insulin processing. However, their response to stimuli that promote functionality have not been compared. OBJECTIVE The objective of the study was to evaluate the effects of our previous strategies for functional maturation developed in rodents in these two human models of β-cell immaturity and compare their responses. Design, Settings, Participants, and Interventions: In proof-of-principle experiments using either adenoviral-mediated overexpression of V-Maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA) or the physiologically driven path via thyroid hormone (T3) and human fetal islet-like cluster (ICC) functional maturity was evaluated. Then the effects of T3 were evaluated upon the functional maturation of hESCs differentiated toward β-cells. MAIN OUTCOME MEASURES Functional maturation was evaluated by the following parameters: glucose responsiveness, insulin content, expression of the mature β-cell transcription factor MAFA, and proinsulin-to-insulin processing. RESULTS ICCs responded positively to MAFA overexpression and T3 treatment as assessed by two different maturation parameters: increased insulin secretion at 16.8 mM glucose and increased proinsulin-to-insulin processing. In hESCs differentiated toward β-cells, T3 enhanced MAFA expression, increased insulin content (probably mediated by the increased MAFA), and increased insulin secretion at 16.8 mM glucose. CONCLUSION T3 is a useful in vitro stimulus to promote human β-cell maturation as shown in both human fetal ICCs and differentiated hESCs. The degree of maturation induced varied in the two models, possibly due to the different developmental status at the beginning of the study.
Collapse
Affiliation(s)
- Cristina Aguayo-Mazzucato
- Joslin Diabetes Center (C.A.-M., J.H.-L., C.Ca., A.S., G.W., S.B.-W.), Harvard Medical School, Boston, Massachusetts 02215; and Department of Chemical Engineering (A.D., C.Co.), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
| | - Amanda DiIenno
- Joslin Diabetes Center (C.A.-M., J.H.-L., C.Ca., A.S., G.W., S.B.-W.), Harvard Medical School, Boston, Massachusetts 02215; and Department of Chemical Engineering (A.D., C.Co.), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
| | - Jennifer Hollister-Lock
- Joslin Diabetes Center (C.A.-M., J.H.-L., C.Ca., A.S., G.W., S.B.-W.), Harvard Medical School, Boston, Massachusetts 02215; and Department of Chemical Engineering (A.D., C.Co.), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
| | - Christopher Cahill
- Joslin Diabetes Center (C.A.-M., J.H.-L., C.Ca., A.S., G.W., S.B.-W.), Harvard Medical School, Boston, Massachusetts 02215; and Department of Chemical Engineering (A.D., C.Co.), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
| | - Arun Sharma
- Joslin Diabetes Center (C.A.-M., J.H.-L., C.Ca., A.S., G.W., S.B.-W.), Harvard Medical School, Boston, Massachusetts 02215; and Department of Chemical Engineering (A.D., C.Co.), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
| | - Gordon Weir
- Joslin Diabetes Center (C.A.-M., J.H.-L., C.Ca., A.S., G.W., S.B.-W.), Harvard Medical School, Boston, Massachusetts 02215; and Department of Chemical Engineering (A.D., C.Co.), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
| | - Clark Colton
- Joslin Diabetes Center (C.A.-M., J.H.-L., C.Ca., A.S., G.W., S.B.-W.), Harvard Medical School, Boston, Massachusetts 02215; and Department of Chemical Engineering (A.D., C.Co.), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
| | - Susan Bonner-Weir
- Joslin Diabetes Center (C.A.-M., J.H.-L., C.Ca., A.S., G.W., S.B.-W.), Harvard Medical School, Boston, Massachusetts 02215; and Department of Chemical Engineering (A.D., C.Co.), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
| |
Collapse
|
97
|
Shi YC, Loh K, Bensellam M, Lee K, Zhai L, Lau J, Cantley J, Luzuriaga J, Laybutt DR, Herzog H. Pancreatic PYY Is Critical in the Control of Insulin Secretion and Glucose Homeostasis in Female Mice. Endocrinology 2015; 156:3122-36. [PMID: 26125465 DOI: 10.1210/en.2015-1168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Insulin secretion is tightly controlled through coordinated actions of a number of systemic and local factors. Peptide YY (PYY) is expressed in α-cells of the islet, but its role in control of islet function such as insulin release is not clear. In this study, we generated a transgenic mouse model (Pyy(tg/+)/Rip-Cre) overexpressing the Pyy gene under the control of the rat insulin 2 gene promoter and assessed the impact of islet-released PYY on β-cell function, insulin release, and glucose homeostasis in mice. Our results show that up-regulation of PYY in islet β-cells leads to an increase in serum insulin levels as well as improved glucose tolerance. Interestingly, PYY-overproducing mice show increased lean mass and reduced fat mass with no significant changes in food intake or body weight. Energy expenditure is also increased accompanied by increased respiratory exchange ratio. Mechanistically, the enhanced insulin levels and improved glucose tolerance are primarily due to increased β-cell mass and secretion. This is associated with alterations in the expression of genes important for β-cell proliferation and function as well as the maintenance of the β-cell phenotype. Taken together, these data demonstrate that pancreatic islet-derived PYY plays an important role in controlling glucose homeostasis through the modulation of β-cell mass and function.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Kim Loh
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Mohammed Bensellam
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Kailun Lee
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Lei Zhai
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Jackie Lau
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - James Cantley
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Jude Luzuriaga
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - D Ross Laybutt
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| | - Herbert Herzog
- Neuroscience (Y.-C.S., K.Lo., K.Le., L.Z., J.La., H.H.) and Diabetes and Metabolism (M.B., J.C., J.Lu., D.R.L.) Divisions, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst NSW 2010, Sydney, Australia; Faculty of Medicine (Y.-C.S., K.Lo., J.C., D.R.L., H.H.), UNSW Australia, Sydney, NSW, 2052 Australia; and Department of Physiology, Anatomy and Genetics (J.C.), University of Oxford, Oxford, OX1 3QX United Kingdom
| |
Collapse
|
98
|
Gomez DL, O’Driscoll M, Sheets TP, Hruban RH, Oberholzer J, McGarrigle JJ, Shamblott MJ. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate. PLoS One 2015; 10:e0133862. [PMID: 26288179 PMCID: PMC4545947 DOI: 10.1371/journal.pone.0133862] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/02/2015] [Indexed: 01/01/2023] Open
Abstract
Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment.
Collapse
Affiliation(s)
- Danielle L. Gomez
- Children’s Research Institute, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States of America
| | - Marci O’Driscoll
- Children’s Research Institute, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States of America
| | - Timothy P. Sheets
- Department of Gynecology and Obstetrics, John Hopkins University, Baltimore, MD, United States of America
| | - Ralph H. Hruban
- Departments of Pathology and Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jose Oberholzer
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - James J. McGarrigle
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Michael J. Shamblott
- Children’s Research Institute, Department of Pediatrics, University of South Florida Morsani College of Medicine, St. Petersburg, FL, United States of America
- Department of Gynecology and Obstetrics, John Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
99
|
Nishimura W, Ishibashi N, Eto K, Funahashi N, Udagawa H, Miki H, Oe S, Noda Y, Yasuda K. Demethylation of the MafB promoter in a compromised β-cell model. J Mol Endocrinol 2015; 55:31-40. [PMID: 26108485 DOI: 10.1530/jme-15-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 11/08/2022]
Abstract
Recent studies suggest that dedifferentiation of pancreatic β-cells is involved in compromised β-cell function in diabetes mellitus. We have previously shown that the promoter activity of MafB, which is expressed in α-cells of adult islets and immature β-cells in embryonic pancreas but not in mature β-cells in mice, is increased in compromised β-cells of diabetic model mice. Here, we investigated a rat β-cell line of INS1 cells with late-passage numbers, which showed extremely low expression of MafA and insulin, as an in vitro model of compromised β-cells. In these INS1 cells, the mRNA expression and the promoter activity of MafB were upregulated compared with the early-passage ('conventional') INS1 cells. Analysis of the MafB promoter in these late-passage INS1 cells revealed that specific CpG sites in the MafB promoter were partially demethylated. The reporter assay revealed that the unmethylated promoter activity of the 373 bp region containing these CpG sites was higher than the in vitro methylated promoter activity. These results suggest that the chronic culture of the rat β-cell line resulted in partial DNA demethylation of the MafB promoter, which may have a role in MafB promoter activation and possible dedifferentiation in our compromised β-cell model.
Collapse
Affiliation(s)
- Wataru Nishimura
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Naoko Ishibashi
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Koki Eto
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Nobuaki Funahashi
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Haruhide Udagawa
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Harukata Miki
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Souichi Oe
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Yasuko Noda
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Kazuki Yasuda
- Department of Metabolic DisordersDiabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, JapanDivision of AnatomyBio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
100
|
Abstract
Pancreatic β cells support glucose homeostasis with great precision by matching insulin release to the metabolic needs of the moment. Previous gene-expression analysis indicates that adult β cells not only produce cell-specific proteins, but also repress a small set of housekeeping genes - such as those encoding lactate dehydrogenase A (LDHA), solute transporter MCT1, and hexokinase 1 (HK1) - that would otherwise interfere with normal β cell function. In this issue of the JCI, Dhawan et al. elucidate a molecular mechanism involved in β cell-specific repression of Ldha and Hk1 that is mediated by induction of the de novo DNA methyltransferase DNMT3A during the first weeks after birth. Failure to induce DNMT3A-dependent methylation disrupts normal glucose-induced insulin release in adult life. The results of this study reinforce the idea that the phenotype of adult β cells has two faces and that failure to achieve selective gene repression undermines β cell support of normal glucose homeostasis.
Collapse
|