51
|
Yamamoto M, Legendre NP, Biswas AA, Lawton A, Yamamoto S, Tajbakhsh S, Kardon G, Goldhamer DJ. Loss of MyoD and Myf5 in Skeletal Muscle Stem Cells Results in Altered Myogenic Programming and Failed Regeneration. Stem Cell Reports 2018; 10:956-969. [PMID: 29478898 PMCID: PMC5918368 DOI: 10.1016/j.stemcr.2018.01.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/22/2022] Open
Abstract
MyoD and Myf5 are fundamental regulators of skeletal muscle lineage determination in the embryo, and their expression is induced in satellite cells following muscle injury. MyoD and Myf5 are also expressed by satellite cell precursors developmentally, although the relative contribution of historical and injury-induced expression to satellite cell function is unknown. We show that satellite cells lacking both MyoD and Myf5 (double knockout [dKO]) are maintained with aging in uninjured muscle. However, injured muscle fails to regenerate and dKO satellite cell progeny accumulate in damaged muscle but do not undergo muscle differentiation. dKO satellite cell progeny continue to express markers of myoblast identity, although their myogenic programming is labile, as demonstrated by dramatic morphological changes and increased propensity for non-myogenic differentiation. These data demonstrate an absolute requirement for either MyoD or Myf5 in muscle regeneration and indicate that their expression after injury stabilizes myogenic identity and confers the capacity for muscle differentiation. MyoD or Myf5 expression in satellite cells is essential for muscle regeneration Satellite cells lacking both regulatory genes exhibit labile myogenic programming A single functional allele of either MyoD or Myf5 can support muscle regeneration Satellite cells lacking both MyoD and Myf5 are maintained with aging
Collapse
Affiliation(s)
- Masakazu Yamamoto
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Nicholas P Legendre
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Arpita A Biswas
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Alexander Lawton
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Shoko Yamamoto
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells & Development, CNRS URA 2578, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - David J Goldhamer
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
52
|
Vanderplanck C, Tassin A, Ansseau E, Charron S, Wauters A, Lancelot C, Vancutsem K, Laoudj-Chenivesse D, Belayew A, Coppée F. Overexpression of the double homeodomain protein DUX4c interferes with myofibrillogenesis and induces clustering of myonuclei. Skelet Muscle 2018; 8:2. [PMID: 29329560 PMCID: PMC5767009 DOI: 10.1186/s13395-017-0148-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is associated with DNA hypomethylation at the 4q35 D4Z4 repeat array. Both the causal gene DUX4 and its homolog DUX4c are induced. DUX4c is immunodetected in every myonucleus of proliferative cells, while DUX4 is present in only 1/1000 of myonuclei where it initiates a gene deregulation cascade. FSHD primary myoblasts differentiate into either atrophic or disorganized myotubes. DUX4 expression induces atrophic myotubes and associated FSHD markers. Although DUX4 silencing normalizes the FSHD atrophic myotube phenotype, this is not the case for the disorganized phenotype. DUX4c overexpression increases the proliferation rate of human TE671 rhabdomyosarcoma cells and inhibits their differentiation, suggesting a normal role during muscle differentiation. METHODS By gain- and loss-of-function experiments in primary human muscle cells, we studied the DUX4c impact on proliferation, differentiation, myotube morphology, and FSHD markers. RESULTS In primary myoblasts, DUX4c overexpression increased the staining intensity of KI67 (a proliferation marker) in adjacent cells and delayed differentiation. In differentiating cells, DUX4c overexpression led to the expression of some FSHD markers including β-catenin and to the formation of disorganized myotubes presenting large clusters of nuclei and cytoskeletal defects. These were more severe when DUX4c was expressed before the cytoskeleton reorganized and myofibrils assembled. In addition, endogenous DUX4c was detected at a higher level in FSHD myotubes presenting abnormal clusters of nuclei and cytoskeletal disorganization. We found that the disorganized FSHD myotube phenotype could be rescued by silencing of DUX4c, not DUX4. CONCLUSION Excess DUX4c could disturb cytoskeletal organization and nuclear distribution in FSHD myotubes. We suggest that DUX4c up-regulation could contribute to DUX4 toxicity in the muscle fibers by favoring the clustering of myonuclei and therefore facilitating DUX4 diffusion among them. Defining DUX4c functions in the healthy skeletal muscle should help to design new targeted FSHD therapy by DUX4 or DUX4c inhibition without suppressing DUX4c normal function.
Collapse
Affiliation(s)
- Céline Vanderplanck
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Sébastien Charron
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Céline Lancelot
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Kelly Vancutsem
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | | | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000 Mons, Belgium
| |
Collapse
|
53
|
Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood) 2018; 243:118-128. [PMID: 29307280 DOI: 10.1177/1535370217749494] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prenatal and postnatal myogenesis share many cellular and molecular aspects. Myogenic regulatory factors are basic Helix-Loop-Helix transcription factors that indispensably regulate both processes. These factors (Myf5, MyoD, Myogenin, and MRF4) function as an orchestrating cascade, with some overlapped actions. Prenatally, myogenic regulatory factors are restrictedly expressed in somite-derived myogenic progenitor cells and their derived myoblasts. Postnatally, myogenic regulatory factors are important in regulating the myogenesis process via satellite cells. Many positive and negative regulatory mechanisms exist either between myogenic regulatory factors themselves or between myogenic regulatory factors and other proteins. Upstream factors and signals are also involved in the control of myogenic regulatory factors expression within different prenatal and postnatal myogenic cells. Here, the authors have conducted a thorough and an up-to-date review of the myogenic regulatory factors since their discovery 30 years ago. This review discusses the myogenic regulatory factors structure, mechanism of action, and roles and regulations during prenatal and postnatal myogenesis. Impact statement Myogenic regulatory factors (MRFs) are key players in the process of myogenesis. Despite a considerable amount of literature regarding these factors, their exact mechanisms of actions are still incompletely understood with several overlapped functions. Herein, we revised what has hitherto been reported in the literature regarding MRF structures, molecular pathways that regulate their activities, and their roles during pre- and post-natal myogenesis. The work submitted in this review article is considered of great importance for researchers in the field of skeletal muscle formation and regeneration, as it provides a comprehensive summary of all the biological aspects of MRFs and advances a better understanding of the cellular and molecular mechanisms regulating myogenesis. Indeed, attaining a better understanding of MRFs could be utilized in developing novel therapeutic protocols for multiple myopathies.
Collapse
Affiliation(s)
- Hasan A Asfour
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Mohammed Z Allouh
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| | - Raed S Said
- Department of Anatomy, Faculty of Medicine, 37251 Jordan University of Science & Technology , Irbid 22110, Jordan
| |
Collapse
|
54
|
|
55
|
Baghdadi MB, Tajbakhsh S. Regulation and phylogeny of skeletal muscle regeneration. Dev Biol 2018; 433:200-209. [DOI: 10.1016/j.ydbio.2017.07.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
|
56
|
Hernández-Ancheyta L, Salinas-Tobón MDR, Cifuentes-Goches JC, Hernández-Sánchez J. Trichinella spiralis muscle larvae excretory-secretory products induce changes in cytoskeletal and myogenic transcription factors in primary myoblast cultures. Int J Parasitol 2017; 48:275-285. [PMID: 29258830 DOI: 10.1016/j.ijpara.2017.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/04/2023]
Abstract
Trichinella spiralis infection in skeletal muscle culminates with nurse cell formation. The participation of excretory-secretory products of the muscle larvae has been implicated in this process through different studies performed in infected muscle and the muscle cell line C2C12. In this work, we developed primary myoblast cultures to analyse the changes induced by excretory-secretory products of the muscle larvae in muscle cells. Microarray analyses revealed expression changes in muscle cell differentiation, proliferation, cytoskeleton organisation, cell motion, transcription, cell cycle, apoptosis and signalling pathways such as MAPK, Jak-STAT, Wnt and PI3K-Akt. Some of these changes were further evaluated by other methodologies such as quantitative real-time PCR (qRT-PCR) and western blot, confirming that excretory-secretory products of the muscle larvae treated primary mouse myoblasts undergo increased proliferation, decreased expression of MHC and up-regulation of α-actin. In addition, changes in relevant muscle transcription factors (Pax7, Myf5 and Mef2c) were observed. Taken together, these results provide new information about how T. spiralis could alter the normal process of skeletal muscle repair after ML invasion to accomplish nurse cell formation.
Collapse
Affiliation(s)
- Lizbeth Hernández-Ancheyta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - María Del Rosario Salinas-Tobón
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N. Santo Tomás, 11340 Mexico City, Mexico
| | - Juan Carlos Cifuentes-Goches
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - Javier Hernández-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional, No. 2508, San Pedro Zacatenco, 07360 Mexico City, Mexico.
| |
Collapse
|
57
|
Shahini A, Choudhury D, Asmani M, Zhao R, Lei P, Andreadis ST. NANOG restores the impaired myogenic differentiation potential of skeletal myoblasts after multiple population doublings. Stem Cell Res 2017; 26:55-66. [PMID: 29245050 DOI: 10.1016/j.scr.2017.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
Adult skeletal muscle regeneration relies on the activity of satellite cells residing in the skeletal muscle niche. However, systemic and intrinsic factors decrease the myogenic differentiation potential of satellite cells thereby impairing muscle regeneration. Here we present data showing that late passage C2C12 myoblasts exhibited significantly impaired myogenic differentiation potential that was accompanied by impaired expression of myogenic regulatory factors (Myf5, MyoD, Myogenin, and MRF4) and members of myocyte enhancer factor 2 family. Notably, ectopic expression of NANOG preserved the morphology and restored the myogenic differentiation capacity of late passage myoblasts, possibly by restoring the expression level of these myogenic factors. Muscle regeneration was effective in 2D cultures and in 3D skeletal microtissues mimicking the skeletal muscle niche. The presence of NANOG was required for at least 15days to reverse the impaired differentiation potential of myoblasts. However, it was critical to remove NANOG during the process of maturation, as it inhibited myotube formation. Finally, myoblasts that were primed by NANOG maintained their differentiation capacity for 20days after NANOG withdrawal, suggesting potential epigenetic changes. In conclusion, these results shed light on the potential of NANOG to restore the myogenic differentiation potential of myoblasts, which is impaired after multiple rounds of cellular division, and to reverse the loss of muscle regeneration.
Collapse
Affiliation(s)
- Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Debanik Choudhury
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Mohammadnabi Asmani
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA.
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14263, USA.
| |
Collapse
|
58
|
Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 2017; 72:19-32. [PMID: 29127046 DOI: 10.1016/j.semcdb.2017.11.011] [Citation(s) in RCA: 508] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Discovery of the myogenic regulatory factor family of transcription factors MYF5, MYOD, Myogenin and MRF4 was a seminal step in understanding specification of the skeletal muscle lineage and control of myogenic differentiation during development. These factors are also involved in specification of the muscle satellite cell lineage, which becomes the resident stem cell compartment inadult skeletal muscle. While MYF5, MYOD, Myogenin and MRF4 have subtle roles in mature muscle, they again play a crucial role in directing satellite cell function to regenerate skeletal muscle: linking the genetic control of developmental and regenerative myogenesis. Here, I review the role of the myogenic regulatory factors in developing and mature skeletal muscle, satellite cell specification and muscle regeneration.
Collapse
Affiliation(s)
- Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
59
|
Raman R, Grant L, Seo Y, Cvetkovic C, Gapinske M, Palasz A, Dabbous H, Kong H, Pinera PP, Bashir R. Damage, Healing, and Remodeling in Optogenetic Skeletal Muscle Bioactuators. Adv Healthc Mater 2017; 6:10.1002/adhm.201700030. [PMID: 28489332 PMCID: PMC8257561 DOI: 10.1002/adhm.201700030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/09/2017] [Indexed: 12/31/2022]
Abstract
A deeper understanding of biological materials and the design principles that govern them, combined with the enabling technology of 3D printing, has given rise to the idea of "building with biology." Using these materials and tools, bio-hybrid robots or bio-bots, which adaptively sense and respond to their environment, can be manufactured. Skeletal muscle bioactuators are developed to power these bio-bots, and an approach is presented to make them dynamically responsive to changing environmental loads and robustly resilient to induced damage. Specifically, since the predominant cause of skeletal muscle loss of function is mechanical damage, the underlying mechanisms of damage are investigated in vitro, and an in vivo inspired healing strategy is developed to counteract this damage. The protocol that is developed yields complete recovery of healthy tissue functionality within two days of damage, setting the stage for a more robust, resilient, and adaptive bioactuator technology than previously demonstrated. Understanding and exploiting the adaptive response behaviors inherent within biological systems in this manner is a crucial step forward in designing bio-hybrid machines that are broadly applicable to grand engineering challenges.
Collapse
Affiliation(s)
- Ritu Raman
- Department of Mechanical Science and Engineering, Micro and Nano Technology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lauren Grant
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yongbeom Seo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Caroline Cvetkovic
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michael Gapinske
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alexandra Palasz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Howard Dabbous
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pablo Perez Pinera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
60
|
Wang J, Zhou H, Forrest RHJ, Hu J, Liu X, Li S, Luo Y, Hickford JGH. Variation in the ovine MYF5 gene and its effect on carcass lean meat yield in New Zealand Romney sheep. Meat Sci 2017; 131:146-151. [PMID: 28527365 DOI: 10.1016/j.meatsci.2017.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/07/2017] [Accepted: 05/11/2017] [Indexed: 01/25/2023]
Abstract
Myogenic factor 5 (MYF5) plays an important role in regulating skeletal muscle, but to date there have been no reports on whether the gene is variable and whether this variation is associated with meat yield in sheep. In this study, four variants (A to D) of ovine MYF5 containing two Single Nucleotide Polymorphisms (SNPs) and one basepair (bp) insertion/deletion were detected by Polymerase Chain Reaction - Single Stranded Conformational Polymorphism (PCR-SSCP) analysis. Breed differences in variant frequencies were observed. The effect of variation in ovine MYF5 on lean meat yield, predicted using VIAScan® technology, was investigated in 388 male NZ Romney lambs. Only genotypes AA and AB were found in these lambs. Lambs with genotype AA had a higher leg yield (P=0.044), loin yield (P=0.002) and total yield (P=0.012) than those with genotype AB. No association with shoulder yield was detected. These results suggest that ovine MYF5 may be a valuable genetic marker for improved lean meat yield.
Collapse
Affiliation(s)
- Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Rachel H J Forrest
- Faculty of Education, Humanities & Health Sciences, Eastern Institute of Technology, Napier 4112, New Zealand
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jon G H Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
61
|
Ohtsubo H, Sato Y, Suzuki T, Mizunoya W, Nakamura M, Tatsumi R, Ikeuchi Y. APOBEC2 negatively regulates myoblast differentiation in muscle regeneration. Int J Biochem Cell Biol 2017; 85:91-101. [DOI: 10.1016/j.biocel.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
|
62
|
Gonçalves TJ, Armand AS. Non-coding RNAs in skeletal muscle regeneration. Noncoding RNA Res 2017; 2:56-67. [PMID: 30159421 PMCID: PMC6096429 DOI: 10.1016/j.ncrna.2017.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 01/09/2023] Open
Abstract
Following injury, skeletal muscles can regenerate from muscle specific stem cells, called satellite cells. Quiescent in uninjured muscles, satellite cells become activated, proliferate and differentiate into myotubes. Muscle regeneration occurs following distinct main overlapping phases, including inflammation, regeneration and maturation of the regenerated myofibers. Each step of muscle regeneration is orchestrated through complex signaling networks and gene regulatory networks, leading to the expression of specific set of genes in each concerned cell type. Apart from the well-established transcriptional mechanisms involving the myogenic regulatory factors of the MyoD family, increasing data indicate that each step of muscle regeneration is controlled by a wide range of non-coding RNAs. In this review, we discuss the role of two classes of non-coding RNAs (microRNAs and long non-coding RNAs) in the inflammatory, regeneration and maturation steps of muscle regeneration.
Collapse
Affiliation(s)
- Tristan J.M. Gonçalves
- Institut Necker-Enfants Malades, Inserm, U1151, 14 rue Maria Helena Vieira Da Silva, CS 61431, Paris, F-75014, France
- INSERM UMRS 1124, 45 rue des Saints-Pères, F-75270 Paris cedex 06, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne-Sophie Armand
- Institut Necker-Enfants Malades, Inserm, U1151, 14 rue Maria Helena Vieira Da Silva, CS 61431, Paris, F-75014, France
- INSERM UMRS 1124, 45 rue des Saints-Pères, F-75270 Paris cedex 06, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
63
|
Yang X, Sui W, Zhang M, Dong M, Lim S, Seki T, Guo Z, Fischer C, Lu H, Zhang C, Yang J, Zhang M, Wang Y, Cao C, Gao Y, Zhao X, Sun M, Sun Y, Zhuang R, Samani NJ, Zhang Y, Cao Y. Switching harmful visceral fat to beneficial energy combustion improves metabolic dysfunctions. JCI Insight 2017; 2:e89044. [PMID: 28239649 PMCID: PMC5313060 DOI: 10.1172/jci.insight.89044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/05/2017] [Indexed: 01/16/2023] Open
Abstract
Visceral fat is considered the genuine and harmful white adipose tissue (WAT) that is associated to development of metabolic disorders, cardiovascular disease, and cancer. Here, we present a new concept to turn the harmful visceral fat into a beneficial energy consumption depot, which is beneficial for improvement of metabolic dysfunctions in obese mice. We show that low temperature-dependent browning of visceral fat caused decreased adipose weight, total body weight, and body mass index, despite increased food intake. In high-fat diet-fed mice, low temperature exposure improved browning of visceral fat, global metabolism via nonshivering thermogenesis, insulin sensitivity, and hepatic steatosis. Genome-wide expression profiling showed upregulation of WAT browning-related genes including Cidea and Dio2. Conversely, Prdm16 was unchanged in healthy mice or was downregulated in obese mice. Surgical removal of visceral fat and genetic knockdown of UCP1 in epididymal fat largely ablated low temperature-increased global thermogenesis and resulted in the death of most mice. Thus, browning of visceral fat may be a compensatory heating mechanism that could provide a novel therapeutic strategy for treating visceral fat-associated obesity and diabetes.
Collapse
Affiliation(s)
- Xiaoyan Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sharon Lim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ziheng Guo
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Carina Fischer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Jianmin Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caixia Cao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Gao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingguo Zhao
- Department of Otolaryngology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Rujie Zhuang
- The TCM Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Yihai Cao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
64
|
Xie X, Tsai SY, Tsai MJ. COUP-TFII regulates satellite cell function and muscular dystrophy. J Clin Invest 2016; 126:3929-3941. [PMID: 27617862 DOI: 10.1172/jci87414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle-wasting disease caused by mutations in the dystrophin gene. Although dystrophin deficiency in myofiber triggers the disease's pathological changes, the degree of satellite cell (SC) dysfunction defines disease progression. Here, we have identified chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) hyperactivity as a contributing factor underlying muscular dystrophy in a dystrophin-deficient murine model of DMD. Ectopic expression of COUP-TFII in murine SCs led to Duchenne-like dystrophy in the muscles of control animals and exacerbated degenerative myopathies in dystrophin-deficient mice. COUP-TFII-overexpressing mice exhibited regenerative failure that was attributed to deficient SC proliferation and myoblast fusion. Mechanistically, we determined that COUP-TFII coordinated a regenerative program through combined regulation of multiple promyogenic factors. Furthermore, inhibition of COUP-TFII preserved SC function and counteracted the muscle weakness associated with Duchenne-like dystrophy in the murine model, suggesting that targeting COUP-TFII is a potential treatment for DMD. Together, our findings reveal a regulatory role of COUP-TFII in the development of muscular dystrophy and open up a potential therapeutic opportunity for managing disease progression in patients with DMD.
Collapse
MESH Headings
- Animals
- COUP Transcription Factor II/physiology
- Cell Fusion
- Cell Proliferation
- Cells, Cultured
- Female
- Male
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Muscle Development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Regeneration
- Satellite Cells, Skeletal Muscle/physiology
Collapse
|
65
|
Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, Wattrus S, Heidecker B, Fong YW, Rubin LL, Ganz P, Thompson TB, Wagers AJ, Lee RT. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. Circ Res 2016; 118:1125-41; discussion 1142. [PMID: 27034275 DOI: 10.1161/circresaha.116.308391] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging.
Collapse
Affiliation(s)
- Ryan G Walker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Tommaso Poggioli
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lida Katsimpardi
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sean M Buchanan
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Juhyun Oh
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Sam Wattrus
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Bettina Heidecker
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Yick W Fong
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Lee L Rubin
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Peter Ganz
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Thomas B Thompson
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.)
| | - Amy J Wagers
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| | - Richard T Lee
- From the Department of Molecular Genetics, College of Medicine, University of Cincinnati, OH (R.G.W., T.B.T.); Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA (T.P., L.K., S.M.B., J.O., S.W., L.L.R., A.J.W., R.T.L.); Department of Neuroscience, Institut Pasteur, Paris, France (L.K.); Cardiovascular Division (T.P.), Department of Medicine, Brigham Regenerative Medicine Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (Y.W.F., R.T.L.); Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA (J.O., S.W., A.J.W.); Division of Cardiology, Universitäres Herzzentrum, Zürich, Switzerland (B.H.); Department of Medicine, University of California, San Francisco (B.H., P.G.); and Division of Cardiology, San Francisco General Hospital, CA (P.G.).
| |
Collapse
|
66
|
Harper SC, Brack A, MacDonnell S, Franti M, Olwin BB, Bailey BA, Rudnicki MA, Houser SR. Is Growth Differentiation Factor 11 a Realistic Therapeutic for Aging-Dependent Muscle Defects? Circ Res 2016; 118:1143-50; discussion 1150. [PMID: 27034276 DOI: 10.1161/circresaha.116.307962] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/02/2016] [Indexed: 11/16/2022]
Abstract
This "Controversies in Cardiovascular Research" article evaluates the evidence for and against the hypothesis that the circulating blood level of growth differentiation factor 11 (GDF11) decreases in old age and that restoring normal GDF11 levels in old animals rejuvenates their skeletal muscle and reverses pathological cardiac hypertrophy and cardiac dysfunction. Studies supporting the original GDF11 hypothesis in skeletal and cardiac muscle have not been validated by several independent groups. These new studies have either found no effects of restoring normal GDF11 levels on cardiac structure and function or have shown that increasing GDF11 or its closely related family member growth differentiation factor 8 actually impairs skeletal muscle repair in old animals. One possible explanation for what seems to be mutually exclusive findings is that the original reagent used to measure GDF11 levels also detected many other molecules so that age-dependent changes in GDF11 are still not well known. The more important issue is whether increasing blood [GDF11] repairs old skeletal muscle and reverses age-related cardiac pathologies. There are substantial new and existing data showing that GDF8/11 can exacerbate rather than rejuvenate skeletal muscle injury in old animals. There is also new evidence disputing the idea that there is pathological hypertrophy in old C57bl6 mice and that GDF11 therapy can reverse cardiac pathologies. Finally, high [GDF11] causes reductions in body and heart weight in both young and old animals, suggestive of a cachexia effect. Our conclusion is that elevating blood levels of GDF11 in the aged might cause more harm than good.
Collapse
Affiliation(s)
- Shavonn C Harper
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.C.H., S.R.H.); Eli and Edythe Broad Center of Stem Cell Research and Regeneration Medicine, Department of Orthopaedic Surgery, University of California, San Francisco (A.B.); Department of Cardiovascular Research (S.M.), and Department of Research Beyond Borders (M.F.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT (S.M., M.F.); Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (B.B.O.); Department of Biology, Ursinus College, Collegeville, PA (B.A.B.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada (M.A.R.); and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (M.A.R.)
| | - Andrew Brack
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.C.H., S.R.H.); Eli and Edythe Broad Center of Stem Cell Research and Regeneration Medicine, Department of Orthopaedic Surgery, University of California, San Francisco (A.B.); Department of Cardiovascular Research (S.M.), and Department of Research Beyond Borders (M.F.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT (S.M., M.F.); Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (B.B.O.); Department of Biology, Ursinus College, Collegeville, PA (B.A.B.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada (M.A.R.); and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (M.A.R.)
| | - Scott MacDonnell
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.C.H., S.R.H.); Eli and Edythe Broad Center of Stem Cell Research and Regeneration Medicine, Department of Orthopaedic Surgery, University of California, San Francisco (A.B.); Department of Cardiovascular Research (S.M.), and Department of Research Beyond Borders (M.F.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT (S.M., M.F.); Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (B.B.O.); Department of Biology, Ursinus College, Collegeville, PA (B.A.B.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada (M.A.R.); and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (M.A.R.)
| | - Michael Franti
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.C.H., S.R.H.); Eli and Edythe Broad Center of Stem Cell Research and Regeneration Medicine, Department of Orthopaedic Surgery, University of California, San Francisco (A.B.); Department of Cardiovascular Research (S.M.), and Department of Research Beyond Borders (M.F.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT (S.M., M.F.); Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (B.B.O.); Department of Biology, Ursinus College, Collegeville, PA (B.A.B.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada (M.A.R.); and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (M.A.R.)
| | - Bradley B Olwin
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.C.H., S.R.H.); Eli and Edythe Broad Center of Stem Cell Research and Regeneration Medicine, Department of Orthopaedic Surgery, University of California, San Francisco (A.B.); Department of Cardiovascular Research (S.M.), and Department of Research Beyond Borders (M.F.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT (S.M., M.F.); Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (B.B.O.); Department of Biology, Ursinus College, Collegeville, PA (B.A.B.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada (M.A.R.); and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (M.A.R.)
| | - Beth A Bailey
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.C.H., S.R.H.); Eli and Edythe Broad Center of Stem Cell Research and Regeneration Medicine, Department of Orthopaedic Surgery, University of California, San Francisco (A.B.); Department of Cardiovascular Research (S.M.), and Department of Research Beyond Borders (M.F.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT (S.M., M.F.); Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (B.B.O.); Department of Biology, Ursinus College, Collegeville, PA (B.A.B.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada (M.A.R.); and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (M.A.R.)
| | - Michael A Rudnicki
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.C.H., S.R.H.); Eli and Edythe Broad Center of Stem Cell Research and Regeneration Medicine, Department of Orthopaedic Surgery, University of California, San Francisco (A.B.); Department of Cardiovascular Research (S.M.), and Department of Research Beyond Borders (M.F.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT (S.M., M.F.); Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (B.B.O.); Department of Biology, Ursinus College, Collegeville, PA (B.A.B.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada (M.A.R.); and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (M.A.R.)
| | - Steven R Houser
- From the Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.C.H., S.R.H.); Eli and Edythe Broad Center of Stem Cell Research and Regeneration Medicine, Department of Orthopaedic Surgery, University of California, San Francisco (A.B.); Department of Cardiovascular Research (S.M.), and Department of Research Beyond Borders (M.F.), Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT (S.M., M.F.); Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder (B.B.O.); Department of Biology, Ursinus College, Collegeville, PA (B.A.B.); Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada (M.A.R.); and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (M.A.R.).
| |
Collapse
|
67
|
Gurevich DB, Nguyen PD, Siegel AL, Ehrlich OV, Sonntag C, Phan JMN, Berger S, Ratnayake D, Hersey L, Berger J, Verkade H, Hall TE, Currie PD. Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo. Science 2016; 353:aad9969. [PMID: 27198673 DOI: 10.1126/science.aad9969] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
Abstract
Skeletal muscle is an example of a tissue that deploys a self-renewing stem cell, the satellite cell, to effect regeneration. Recent in vitro studies have highlighted a role for asymmetric divisions in renewing rare "immortal" stem cells and generating a clonal population of differentiation-competent myoblasts. However, this model currently lacks in vivo validation. We define a zebrafish muscle stem cell population analogous to the mammalian satellite cell and image the entire process of muscle regeneration from injury to fiber replacement in vivo. This analysis reveals complex interactions between satellite cells and both injured and uninjured fibers and provides in vivo evidence for the asymmetric division of satellite cells driving both self-renewal and regeneration via a clonally restricted progenitor pool.
Collapse
Affiliation(s)
- David B Gurevich
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Phong Dang Nguyen
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Ashley L Siegel
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Ophelia V Ehrlich
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jennifer M N Phan
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Lucy Hersey
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Joachim Berger
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Heather Verkade
- School of Biological Sciences, Building 18, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas E Hall
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, Victoria 3800, Australia. European Molecular Biology Laboratory Australia Melbourne Node, Level 1, Building 75, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| |
Collapse
|
68
|
Belizário JE, Fontes-Oliveira CC, Borges JP, Kashiabara JA, Vannier E. Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. SPRINGERPLUS 2016; 5:619. [PMID: 27330885 PMCID: PMC4870483 DOI: 10.1186/s40064-016-2197-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/20/2016] [Indexed: 12/20/2022]
Abstract
Adult skeletal tissue is composed of heterogeneous population of cells that constantly self-renew by means of a controlled process of activation and proliferation of tissue-resident stem cells named satellite cells. Many growth factors, cytokines and myokines produced by skeletal muscle cells play critical roles in local regulation of the inflammatory process and skeletal muscle regeneration during different pathological conditions. IL-6 is a pleiotropic cytokine released in large amount during infection, autoimmunity and cancer. Low levels of IL-6 can promote activation of satellite cells and myotube regeneration while chronically elevated production promote skeletal muscle wasting. These distinct effects may be explained by a crosstalk of the IL-6/IL-6 receptor and gp130 trans-signaling pathway that oppose to regenerative and anti-inflammatory of the classical IL-6 receptor signaling pathway. Here we discuss on potential therapeutic strategies using monoclonal antibodies to IL-6R for the treatment of skeletal muscle wasting and cachexia. We also highlight on the IL-6/JAK/STAT and FGF/p38αβ MAPK signaling pathways in satellite cell activation and the use of protein kinase inhibitors for tailoring and optimizing satellite cell proliferation during the skeletal muscle renewal. Future investigations on the roles of the IL-6 classical and trans-signaling pathways in both immune and non-immune cells in skeletal muscle tissue will provide new basis for therapeutic approaches to reverse atrophy and degeneration of skeletal muscles in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, São Paulo, SP 05508-900 Brazil
| | | | - Janaina Padua Borges
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, São Paulo, SP 05508-900 Brazil
| | - Janete Akemi Kashiabara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Lineu Prestes, 1524, São Paulo, SP 05508-900 Brazil
| | - Edouard Vannier
- Division of Geographic Medicine and Infectious Disease, Tufts Medical Center, Boston, MA 02111 USA
| |
Collapse
|
69
|
Yao Y, Norris EH, Mason CE, Strickland S. Laminin regulates PDGFRβ(+) cell stemness and muscle development. Nat Commun 2016; 7:11415. [PMID: 27138650 PMCID: PMC4857399 DOI: 10.1038/ncomms11415] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/22/2016] [Indexed: 12/15/2022] Open
Abstract
Muscle-resident PDGFRβ+ cells, which include pericytes and PW1+ interstitial cells (PICs), play a dual role in muscular dystrophy. They can either undergo myogenesis to promote muscle regeneration or differentiate into adipocytes and other cells to compromise regeneration. How the differentiation and fate determination of PDGFRβ+ cells are regulated, however, remains unclear. Here, by utilizing a conditional knockout mouse line, we report that PDGFRβ+ cell-derived laminin inhibits their proliferation and adipogenesis, but is indispensable for their myogenesis. In addition, we show that laminin alone is able to partially reverse the muscle dystrophic phenotype in these mice at the molecular, structural and functional levels. Further RNAseq analysis reveals that laminin regulates PDGFRβ+ cell differentiation/fate determination via gpihbp1. These data support a critical role of laminin in the regulation of PDGFRβ+ cell stemness, identify an innovative target for future drug development and may provide an effective treatment for muscular dystrophy. Muscle PDGFRβ+ cells are interstitial stem/progenitor cells with myogenic potential. Here, Yao et al. show that PDGFRβ+ cell-derived laminin actively regulates their proliferation, differentiation and fate determination.
Collapse
Affiliation(s)
- Yao Yao
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.,College of Pharmacy, University of Minnesota, 1110 Kirby Drive, Duluth, Minnesota 55812, USA
| | - Erin H Norris
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, USA.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10065, USA.,Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York 10065, USA.,The Feil Family Brain and Mind Research Institute, New York, New York 10065, USA
| | - Sidney Strickland
- Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
70
|
Putarjunan A, Torii KU. Stomagenesis versus myogenesis: Parallels in intrinsic and extrinsic regulation of transcription factor mediated specialized cell-type differentiation in plants and animals. Dev Growth Differ 2016; 58:341-54. [PMID: 27125444 PMCID: PMC11520973 DOI: 10.1111/dgd.12282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/01/2024]
Abstract
Although the last common unicellular ancestor of plants and animals diverged several billion years ago, and while having developed unique developmental programs that facilitate differentiation and proliferation specific to plant and animal systems, there still exists a high degree of conservation in the logic regulating these developmental processes within these two seemingly diverse kingdoms. Stomatal differentiation in plants involves a series of orchestrated cell division events mediated by a family of closely related bHLH transcription factors (TFs) to create a pair of mature guard cells. These TFs are in turn regulated by a number of upstream signaling components that ultimately function to achieve lineage specific differentiation and organized tissue patterning on the plant epidermis. The logic involved in the specification of the myogenic differentiation program in animals is intriguingly similar to stomatal differentiation in plants: Closely-related myogenic bHLHs, known as MRFs (Myogenic Regulatory Factors) provide lineage specificity essential for cell-fate determination. These MRFs, similar to the bHLHs in plants, are regulated by several upstream signaling cascades that succinctly regulate each differentiation step, leading to the production of mature muscle fibers. This review aims at providing a perspective on the emerging parallels in the logic employed by key bHLH transcription factors and their upstream signaling components that function to precisely regulate key cell-state transition events in the stomatal as well as myogenic cell lineages.
Collapse
Affiliation(s)
- Aarthi Putarjunan
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, Washington, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
71
|
β-Catenin Activation in Muscle Progenitor Cells Regulates Tissue Repair. Cell Rep 2016; 15:1277-90. [PMID: 27134174 DOI: 10.1016/j.celrep.2016.04.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 02/08/2016] [Accepted: 03/31/2016] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle regeneration relies on a pool of resident muscle stem cells called satellite cells (MuSCs). Following injury-induced destruction of the myofibers, quiescent MuSCs are activated and generate transient amplifying progenitors (myoblasts) that will fuse to form new myofibers. Here, we focus on the canonical Wnt signaling pathway and find that either conditional β-catenin disruption or activation in adult MuSCs results in perturbation of muscle regeneration. Using both in vivo and in vitro approaches, we observed that myoblasts lacking β-catenin show delayed differentiation, whereas myoblasts with constitutively active β-catenin undergo precocious growth arrest and differentiation. Transcriptome analysis further demonstrated that Wnt/β-catenin signaling interacts with multiple pathways and, more specifically, TGF-β signaling. Indeed, exogenous TGF-β2 stimulation restores the regenerative potential of muscles with targeted β-catenin disruption in MuSCs. We conclude that a precise level of β-catenin activity is essential for regulating the amplification and differentiation of MuSC descendants during adult myogenesis.
Collapse
|
72
|
Jin W, Peng J, Jiang S. The epigenetic regulation of embryonic myogenesis and adult muscle regeneration by histone methylation modification. Biochem Biophys Rep 2016; 6:209-219. [PMID: 28955879 PMCID: PMC5600456 DOI: 10.1016/j.bbrep.2016.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle formation in vertebrates is derived from the paraxial mesoderm, which develops into myogenic precursor cells and finally differentiates into mature myofibers. This myogenic program involves temporal-spatial molecular events performed by transcription regulators (such as members of the Pax, MRFs and Six families) and signaling pathways (such as Wnts, BMP and Shh signaling). Epigenetic regulation, including histone post-translational modifications is crucial for controlling gene expression through recruitment of various chromatin-modifying enzymes that alter chromatin dynamics during myogenesis. The chromatin modifying enzymes are also recruited at regions of muscle gene regulation, coordinating transcription regulators to influence gene expression. In particular, the reversible methylation status of histone N-terminal tails provides the important regulatory mechanisms in either activation or repression of muscle genes. In this report, we review the recent literatures to deduce mechanisms underlying the epigenetic regulation of gene expression with a focus on histone methylation modification during embryo myogenesis and adult muscle regeneration. Recent results from different histone methylation/demethylation modifications have increased our understanding about the highly intricate layers of epigenetic regulations involved in myogenesis and cross-talk of histone enzymes with the muscle-specific transcriptional machinery. Myogenesis is influenced by regulation of transcription factors, signal pathways and post-transcriptional modifications. Histone methylation modifications as “on/off” switches regulated myogenic lineage commitment and differentiation. The myogenic regulatory factors and histone methylation modifications established dynamic regulatory mechanism.
Collapse
Key Words
- BMP4, bone morphogenic protein 4
- ChIP, chromatin immunoprecipitation
- Epigenetic
- H3K27, methylation of histone H3 lysine 27
- H3K4, methylation of histone H3 lysine 4
- H3K9, methylation of histone H3 lysine 9
- Histone methylation/demethylation modification
- KDMs, lysine demethyltransferases
- LSD1, lysine specific demethyltransferase 1
- MEF2, myocyte enhancer factor 2
- MRFs, myogenic regulatory factors
- Muscle differentiation
- Muscle progenitor cells
- Muscle regeneration
- Myogenesis
- PRC2, polycomb repressive complex 2
- SCs, satellite cells
- Shh, sonic hedgehog
- TSS, transcription start sites
- UTX, ubiquitously transcribed tetratricopeptide repeat, X chromosome
- bHLH, basic helix-loop-helix
- p38 MAPK, p38 mitogen-activated protein kinase
Collapse
Affiliation(s)
- Wei Jin
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Siwen Jiang
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.,Key Projects in the Cooperative Innovation Center for Sustainable Pig Production of Wuhan, PR China
| |
Collapse
|
73
|
Almada AE, Wagers AJ. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nat Rev Mol Cell Biol 2016; 17:267-79. [PMID: 26956195 DOI: 10.1038/nrm.2016.7] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Satellite cells are adult myogenic stem cells that repair damaged muscle. The enduring capacity for muscle regeneration requires efficient satellite cell expansion after injury, their differentiation to produce myoblasts that can reconstitute damaged fibres and their self-renewal to replenish the muscle stem cell pool for subsequent rounds of injury and repair. Emerging studies indicate that misregulation of satellite cell fate and function can contribute to age-associated muscle dysfunction and influence the severity of muscle diseases, including Duchenne muscular dystrophy (DMD). It has also become apparent that satellite cell fate during muscle regeneration and ageing, and in the context of DMD, is governed by an intricate network of intrinsic and extrinsic regulators. Targeted manipulation of this network may offer unique opportunities for muscle regenerative medicine.
Collapse
Affiliation(s)
- Albert E Almada
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
74
|
Panda AC, Abdelmohsen K, Martindale JL, Di Germanio C, Yang X, Grammatikakis I, Noh JH, Zhang Y, Lehrmann E, Dudekula DB, De S, Becker KG, White EJ, Wilson GM, de Cabo R, Gorospe M. Novel RNA-binding activity of MYF5 enhances Ccnd1/Cyclin D1 mRNA translation during myogenesis. Nucleic Acids Res 2016; 44:2393-408. [PMID: 26819411 PMCID: PMC4797292 DOI: 10.1093/nar/gkw023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/08/2016] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle contains long multinucleated and contractile structures known as muscle fibers, which arise from the fusion of myoblasts into multinucleated myotubes during myogenesis. The myogenic regulatory factor (MRF) MYF5 is the earliest to be expressed during myogenesis and functions as a transcription factor in muscle progenitor cells (satellite cells) and myocytes. In mouse C2C12 myocytes, MYF5 is implicated in the initial steps of myoblast differentiation into myotubes. Here, using ribonucleoprotein immunoprecipitation (RIP) analysis, we discovered a novel function for MYF5 as an RNA-binding protein which associated with a subset of myoblast mRNAs. One prominent MYF5 target was Ccnd1 mRNA, which encodes the key cell cycle regulator CCND1 (Cyclin D1). Biotin-RNA pulldown, UV-crosslinking and gel shift experiments indicated that MYF5 was capable of binding the 3' untranslated region (UTR) and the coding region (CR) of Ccnd1 mRNA. Silencing MYF5 expression in proliferating myoblasts revealed that MYF5 promoted CCND1 translation and modestly increased transcription of Ccnd1 mRNA. Accordingly, overexpressing MYF5 in C2C12 cells upregulated CCND1 expression while silencing MYF5 reduced myoblast proliferation as well as differentiation of myoblasts into myotubes. Moreover, MYF5 silencing reduced myogenesis, while ectopically restoring CCND1 abundance partially rescued the decrease in myogenesis seen after MYF5 silencing. We propose that MYF5 enhances early myogenesis in part by coordinately elevating Ccnd1 transcription and Ccnd1 mRNA translation.
Collapse
Affiliation(s)
- Amaresh C Panda
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | | | - Clara Di Germanio
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Xiaoling Yang
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | | | - Ji Heon Noh
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Elin Lehrmann
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Dawood B Dudekula
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Supriyo De
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Kevin G Becker
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| | - Elizabeth J White
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, MD21224, USA
| |
Collapse
|
75
|
Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thépenier C, Pascal Q, Guguin A, Gayraud-Morel B, Cavaillon JM, Tajbakhsh S, Rocheteau P, Chrétien F. Comparative Study of Injury Models for Studying Muscle Regeneration in Mice. PLoS One 2016; 11:e0147198. [PMID: 26807982 PMCID: PMC4726569 DOI: 10.1371/journal.pone.0147198] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/30/2015] [Indexed: 11/19/2022] Open
Abstract
Background A longstanding goal in regenerative medicine is to reconstitute functional tissus or organs after injury or disease. Attention has focused on the identification and relative contribution of tissue specific stem cells to the regeneration process. Relatively little is known about how the physiological process is regulated by other tissue constituents. Numerous injury models are used to investigate tissue regeneration, however, these models are often poorly understood. Specifically, for skeletal muscle regeneration several models are reported in the literature, yet the relative impact on muscle physiology and the distinct cells types have not been extensively characterised. Methods We have used transgenic Tg:Pax7nGFP and Flk1GFP/+ mouse models to respectively count the number of muscle stem (satellite) cells (SC) and number/shape of vessels by confocal microscopy. We performed histological and immunostainings to assess the differences in the key regeneration steps. Infiltration of immune cells, chemokines and cytokines production was assessed in vivo by Luminex®. Results We compared the 4 most commonly used injury models i.e. freeze injury (FI), barium chloride (BaCl2), notexin (NTX) and cardiotoxin (CTX). The FI was the most damaging. In this model, up to 96% of the SCs are destroyed with their surrounding environment (basal lamina and vasculature) leaving a “dead zone” devoid of viable cells. The regeneration process itself is fulfilled in all 4 models with virtually no fibrosis 28 days post-injury, except in the FI model. Inflammatory cells return to basal levels in the CTX, BaCl2 but still significantly high 1-month post-injury in the FI and NTX models. Interestingly the number of SC returned to normal only in the FI, 1-month post-injury, with SCs that are still cycling up to 3-months after the induction of the injury in the other models. Conclusions Our studies show that the nature of the injury model should be chosen carefully depending on the experimental design and desired outcome. Although in all models the muscle regenerates completely, the trajectories of the regenerative process vary considerably. Furthermore, we show that histological parameters are not wholly sufficient to declare that regeneration is complete as molecular alterations (e.g. cycling SCs, cytokines) could have a major persistent impact.
Collapse
Affiliation(s)
- David Hardy
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
- Paris Est University, Créteil, France
| | - Aurore Besnard
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
| | - Mathilde Latil
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
| | - Grégory Jouvion
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris France
| | - David Briand
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
| | - Cédric Thépenier
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
- IRBA, Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Quentin Pascal
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
| | - Aurélie Guguin
- Inserm, U955, Plateforme de Cytométrie en Flux, Créteil, France
| | - Barbara Gayraud-Morel
- Institut Pasteur, Stem Cells & Development Unit, Department of Developmental & Stem Cell Biology, Paris, France
| | - Jean-Marc Cavaillon
- Institut Pasteur, Cytokines and Inflammation Unit, Infection and Epidemiology Department, Paris, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells & Development Unit, Department of Developmental & Stem Cell Biology, Paris, France
| | - Pierre Rocheteau
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
| | - Fabrice Chrétien
- Institut Pasteur, Human histopathology and animal models Unit, Infection and Epidemiology Department, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris France
- Centre Hospitalier Sainte Anne, Laboratoire de Neuropathologie, Paris, France
- * E-mail:
| |
Collapse
|
76
|
Alzhanov D, Rotwein P. Characterizing a distal muscle enhancer in the mouse Igf2 locus. Physiol Genomics 2015; 48:167-72. [PMID: 26645089 DOI: 10.1152/physiolgenomics.00095.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/03/2015] [Indexed: 11/22/2022] Open
Abstract
Insulin-like growth factor-2 (IGF2) is highly expressed in skeletal muscle and was identified as a quantitative trait locus for muscle mass. Yet little is known about mechanisms of its regulation in muscle. Recently, a DNA segment found ∼100 kb from the Igf2 gene was identified as a possible muscle transcriptional control element. Here we have developed an in vivo reporter system to assess this putative enhancer by substituting nuclear (n) EGFP for Igf2 coding exons in a bacterial artificial chromosome containing the mouse Igf2 - H19 chromosomal locus. After stable transfection into a mesenchymal stem cell line, individual clones were converted to myoblasts and underwent progressive muscle-specific gene expression and myotube formation in differentiation medium. Transgenic mRNA and nuclear-targeted enhanced green fluorescent protein were produced coincident with endogenous Igf2 mRNA, but only in lines containing an intact distal conserved DNA element. Our results show that a 294 bp DNA fragment containing two E-boxes is a necessary and sufficient long-range enhancer for induction of Igf2 gene transcription during skeletal muscle differentiation and provides a robust experimental platform for its further functional dissection.
Collapse
Affiliation(s)
- Damir Alzhanov
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon; and
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon; and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| |
Collapse
|
77
|
Zhu X, Li YL, Liu L, Wang JH, Li HH, Wu P, Chu WY, Zhang JS. Molecular characterization of Myf5 and comparative expression patterns of myogenic regulatory factors in Siniperca chuatsi. Gene Expr Patterns 2015; 20:1-10. [PMID: 26547039 DOI: 10.1016/j.gep.2015.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 01/20/2023]
Abstract
Myogenic regulatory factors (MRFs) are muscle-specific basic helix-loop-helix (bHLH) transcription factor that plays an essential role in regulating skeletal muscle development and growth. To investigate molecular characterization of Myf5 and compare the expressional patterns of the four MRFs, we cloned the Myf5 cDNA sequence and analyzed the MRFs expressional patterns using quantitative real-time polymerase chain reaction in Chinese perch (Siniperca chuatsi). Sequence analysis indicated that Chinese perch Myf5 and other MRFs shared a highly conserved bHLH domain with those of other vertebrates. Sequence alignment and phylogenetic tree showed that Chinese perch MRFs had the highest identity with the MRFs of Epinephelus coioides. Spatio-temporal expressional patterns revealed that the MRFs were primarily expressed in muscle, especially in white muscle. During embryonic development period, Myf5, MyoD and MyoG mRNAs had a steep increase at neurula stage, and their highest expressional level was predominantly observed at hatching period. Whereas the highest expressional level of the MRF4 was observed at the muscular effect stage. The expressional patterns of post-embryonic development showed that the Myf5, MyoD and MyoG mRNAs were highest at 90 days post-hatching (dph). Furthermore, starvation and refeeding results showed that the transcription of the MRFs in the fast skeletal muscle of Chinese perch responded quickly to a single meal after 7 days of fasting. It indicated that the MRFs might contribute to muscle recovery after refeeding in Chinese perch.
Collapse
Affiliation(s)
- Xin Zhu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu-Long Li
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Li Liu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Jian-Hua Wang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Hong-Hui Li
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Ping Wu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China
| | - Wu-Ying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China.
| | - Jian-She Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan 410003, China.
| |
Collapse
|
78
|
Li HX, Chen KL, Wang HY, Tang CB, Xu XL, Zhou GH. Chemerin inhibition of myogenesis and induction of adipogenesis in C2C12 myoblasts. Mol Cell Endocrinol 2015; 414:216-23. [PMID: 26164089 DOI: 10.1016/j.mce.2015.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/04/2015] [Accepted: 07/05/2015] [Indexed: 01/14/2023]
Abstract
Chemerin is an adipocyte-secreted adipokine that regulates the differentiation and metabolism of adipose through auto-/paracrine signaling. Its function in the differentiation of multipotent myoblast cells has thus far received little attention. In this study, C2C12 myoblast cells were cultured in the medium with Chemerin, and the differentiation potential of C2C12 myoblasts was analyzed. The results showed that Chemerin increased ROS levels and TG content of C2C12 cells. At the same time, the mRNA expressions and protein concentrations of the adipogenic factors PPARγ, C/EBPα and UCP1 were up-regulated, while the muscle specific transcription factors MyoD, Myogenin and MyHC were decreased in cultured C2C12 cells. In conclusion, the adipokine Chemerin promoted the adipogenic differentiation potential and altered the fate of myoblast cells from myogenesis to adipogenesis, which contributed in part to the up-regulated adipocyte genes. Our study reveals the importance of functional Chemerin signaling in adipogenesis and in directing the differentiation of multipotent myoblast cells.
Collapse
Affiliation(s)
- Hui-Xia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kun-Lin Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai-Yang Wang
- Department of Animal Sciences, Chungbuk National University, Naesudong-ro, Seowon-gu, Cheongju-si 362-763, Chungcheongbuk-do, Republic of Korea
| | - Chang-Bo Tang
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China; Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing-Lian Xu
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China; Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Guang-Hong Zhou
- National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China; Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
79
|
Gardner S, Gross SM, David LL, Klimek JE, Rotwein P. Separating myoblast differentiation from muscle cell fusion using IGF-I and the p38 MAP kinase inhibitor SB202190. Am J Physiol Cell Physiol 2015; 309:C491-500. [PMID: 26246429 DOI: 10.1152/ajpcell.00184.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/30/2015] [Indexed: 11/22/2022]
Abstract
The p38 MAP kinases play critical roles in skeletal muscle biology, but the specific processes regulated by these kinases remain poorly defined. Here we find that activity of p38α/β is important not only in early phases of myoblast differentiation, but also in later stages of myocyte fusion and myofibrillogenesis. By treatment of C2 myoblasts with the promyogenic growth factor insulin-like growth factor (IGF)-I, the early block in differentiation imposed by the p38 chemical inhibitor SB202190 could be overcome. Yet, under these conditions, IGF-I could not prevent the later impairment of muscle cell fusion, as marked by the nearly complete absence of multinucleated myofibers. Removal of SB202190 from the medium of differentiating myoblasts reversed the fusion block, as multinucleated myofibers were detected several hours later and reached ∼90% of the culture within 30 h. Analysis by quantitative mass spectroscopy of proteins that changed in abundance following removal of the inhibitor revealed a cohort of upregulated muscle-enriched molecules that may be important for both myofibrillogenesis and fusion. We have thus developed a model system that allows separation of myoblast differentiation from muscle cell fusion and should be useful in identifying specific steps regulated by p38 MAP kinase-mediated signaling in myogenesis.
Collapse
Affiliation(s)
- Samantha Gardner
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Sean M Gross
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - John E Klimek
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and
| | - Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon; and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| |
Collapse
|
80
|
Biressi S, Gopinath SD. The quasi-parallel lives of satellite cells and atrophying muscle. Front Aging Neurosci 2015; 7:140. [PMID: 26257645 PMCID: PMC4510774 DOI: 10.3389/fnagi.2015.00140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle atrophy or wasting accompanies various chronic illnesses and the aging process, thereby reducing muscle function. One of the most important components contributing to effective muscle repair in postnatal organisms, the satellite cells (SCs), have recently become the focus of several studies examining factors participating in the atrophic process. We critically examine here the experimental evidence linking SC function with muscle loss in connection with various diseases as well as aging, and in the subsequent recovery process. Several recent reports have investigated the changes in SCs in terms of their differentiation and proliferative capacity in response to various atrophic stimuli. In this regard, we review the molecular changes within SCs that contribute to their dysfunctional status in atrophy, with the intention of shedding light on novel potential pharmacological targets to counteract the loss of muscle mass.
Collapse
Affiliation(s)
- Stefano Biressi
- Dulbecco Telethon Institute and Centre for Integrative Biology (CIBIO), University of TrentoTrento, Italy
| | | |
Collapse
|
81
|
Snyman C, Niesler CU. MMP-14 in skeletal muscle repair. J Muscle Res Cell Motil 2015; 36:215-25. [DOI: 10.1007/s10974-015-9414-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 05/22/2015] [Indexed: 12/15/2022]
|
82
|
Yablonka-Reuveni Z, Danoviz ME, Phelps M, Stuelsatz P. Myogenic-specific ablation of Fgfr1 impairs FGF2-mediated proliferation of satellite cells at the myofiber niche but does not abolish the capacity for muscle regeneration. Front Aging Neurosci 2015; 7:85. [PMID: 26074812 PMCID: PMC4446549 DOI: 10.3389/fnagi.2015.00085] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle satellite cells (SCs) are Pax7+ myogenic stem cells that reside between the basal lamina and the plasmalemma of the myofiber. In mature muscles, SCs are typically quiescent, but can be activated in response to muscle injury. Depending on the magnitude of tissue trauma, SCs may divide minimally to repair subtle damage within individual myofibers or produce a larger progeny pool that forms new myofibers in cases of overt muscle injury. SC transition through proliferation, differentiation and renewal is governed by the molecular blueprint of the cells as well as by the extracellular milieu at the SC niche. In particular, the role of the fibroblast growth factor (FGF) family in regulating SCs during growth and aging is well recognized. Of the several FGFs shown to affect SCs, FGF1, FGF2, and FGF6 proteins have been documented in adult skeletal muscle. These prototypic paracrine FGFs transmit their mitogenic effect through the FGFRs, which are transmembrane tyrosine kinase receptors. Using the mouse model, we show here that of the four Fgfr genes, only Fgfr1 and Fgfr4 are expressed at relatively high levels in quiescent SCs and their proliferating progeny. To further investigate the role of FGFR1 in adult myogenesis, we have employed a genetic (Cre/loxP) approach for myogenic-specific (MyoDCre-driven) ablation of Fgfr1. Neither muscle histology nor muscle regeneration following cardiotoxin-induced injury were overtly affected in Fgfr1-ablated mice. This suggests that FGFR1 is not obligatory for SC performance in this acute muscle trauma model, where compensatory growth factor/cytokine regulatory cascades may exist. However, the SC mitogenic response to FGF2 is drastically repressed in isolated myofibers prepared from Fgfr1-ablated mice. Collectively, our study indicates that FGFR1 is important for FGF-mediated proliferation of SCs and its mitogenic role is not compensated by FGFR4 that is also highly expressed in SCs.
Collapse
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle WA, USA
| | - Maria E Danoviz
- Department of Biological Structure, University of Washington School of Medicine, Seattle WA, USA
| | - Michael Phelps
- Department of Biological Structure, University of Washington School of Medicine, Seattle WA, USA
| | - Pascal Stuelsatz
- Department of Biological Structure, University of Washington School of Medicine, Seattle WA, USA
| |
Collapse
|
83
|
Coles CA, Wadeson J, Leyton CP, Siddell JP, Greenwood PL, White JD, McDonagh MB. Proliferation rates of bovine primary muscle cells relate to liveweight and carcase weight in cattle. PLoS One 2015; 10:e0124468. [PMID: 25875203 PMCID: PMC4398453 DOI: 10.1371/journal.pone.0124468] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 03/11/2015] [Indexed: 12/03/2022] Open
Abstract
Muscling in cattle is largely influenced by genetic background, ultimately affecting beef yield and is of major interest to the beef industry. This investigation aimed to determine whether primary skeletal muscle cells isolated from different breeds of cattle with a varying genetic potential for muscling differ in their myogenic proliferative capacity. Primary skeletal muscle cells were isolated and cultured from the Longissimus muscle (LM) of 6 month old Angus, Hereford and Wagyu X Angus cattle. Cells were assessed for rate of proliferation and gene expression of PAX7, MYOD, MYF5, and MYOG. Proliferation rates were found to differ between breeds of cattle whereby myoblasts from Angus cattle were found to proliferate at a greater rate than those of Hereford and Wagyu X Angus during early stages of growth (5–20 hours in culture) in vitro (P < 0.05). The proliferation rates of myoblasts during early stages of culture in vitro were also found to be positively related to the liveweight and carcase weight of cattle (P < 0.05). Gene expression of MYF5 was also found to be significantly down-regulated in WagyuX compared with Angus cattle (P < 0.05). These findings suggest that early events during myogenesis are important for determining liveweight and caracase weights in cattle.
Collapse
Affiliation(s)
- Chantal A. Coles
- Department of Primary Industries Victoria, Discovery Technologies, Biosciences Research Division, Melbourne, Victoria 3083, Australia
- Department of Veterinary Science, University of Melbourne, Melbourne, Victoria 3010, Australia
- * E-mail:
| | - Jenny Wadeson
- Department of Primary Industries Victoria, Discovery Technologies, Biosciences Research Division, Melbourne, Victoria 3083, Australia
| | - Carolina P. Leyton
- Department of Primary Industries Victoria, Discovery Technologies, Biosciences Research Division, Melbourne, Victoria 3083, Australia
| | - Jason P. Siddell
- Cooperative Research Centre for Cattle and Beef Quality, University of New England, Armidale, NSW 2351, Australia
- New South Wales Department of Primary Industries, Beef Industry Centre of Excellence, Armidale, NSW 2351, Australia
| | - Paul L. Greenwood
- Cooperative Research Centre for Cattle and Beef Quality, University of New England, Armidale, NSW 2351, Australia
- New South Wales Department of Primary Industries, Beef Industry Centre of Excellence, Armidale, NSW 2351, Australia
| | - Jason D. White
- Department of Veterinary Science, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Matthew B. McDonagh
- Department of Primary Industries Victoria, Discovery Technologies, Biosciences Research Division, Melbourne, Victoria 3083, Australia
- Cooperative Research Centre for Cattle and Beef Quality, University of New England, Armidale, NSW 2351, Australia
- New South Wales Department of Primary Industries, Beef Industry Centre of Excellence, Armidale, NSW 2351, Australia
| |
Collapse
|
84
|
Myogenic regulatory factor (MRF) expression is affected by exercise in postnatal chicken skeletal muscles. Gene 2015; 561:292-9. [PMID: 25701607 DOI: 10.1016/j.gene.2015.02.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/21/2015] [Accepted: 02/15/2015] [Indexed: 12/17/2022]
Abstract
The MyoD1, MyoG, Myf5, and Mrf4 proteins belong to the family of muscle regulatory factors (MRFs) and play important roles in skeletal muscle hyperplasia and hypertrophy. We hypothesized that exercise would affect MRF mRNA and protein abundance in postnatal chicken skeletal muscle driving molecular changes that could ultimately lead to increased muscle fiber diameter. At day (d) 43, twelve hundred chickens with similar body weight were randomly assigned to cage, pen, and free-range groups. The MRF mRNA abundance was measured in the pectoralis major and thigh muscle at d56, d70, and d84, and the protein levels of MRFs were determined from the thigh muscle at d84. The results showed no significant difference in mRNA of the MRFs among the three groups at d56 (P>0.05). At d84, chicken in the pen and free-range group showed higher MyoD1, MyoG, Myf5, and Mrf4 mRNA abundance compared to the caged chickens (P<0.05). Free-range chickens had higher Mrf4 and MyoG expression than those in penned ones (P<0.05). Protein abundances of all four factors were lowest in the caged group, and Mrf4 and MyoG protein quantities were greatest in free-range chickens (P<0.05), but Myf5 and MyoD1 protein abundance did not differ between penned and caged groups. The results suggested that exercise up-regulated MRF expression in the postnatal skeletal muscles, which led to an increase in muscle fiber diameter, and eventually affected the meat quality of the skeletal muscles in adult chickens.
Collapse
|
85
|
Chatterjee S, Yin H, Nam D, Li Y, Ma K. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion. Exp Cell Res 2015; 331:200-210. [PMID: 25218946 DOI: 10.1016/j.yexcr.2014.08.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response is observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1(-/-) mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases.
Collapse
Affiliation(s)
- Somik Chatterjee
- Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Hongshan Yin
- Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Deokhwa Nam
- Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yong Li
- Department of Pediatric Surgery, Center for Stem Cell Research and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ke Ma
- Center for Diabetes Research, Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
86
|
Mofarrahi M, McClung JM, Kontos CD, Davis EC, Tappuni B, Moroz N, Pickett AE, Huck L, Harel S, Danialou G, Hussain SNA. Angiopoietin-1 enhances skeletal muscle regeneration in mice. Am J Physiol Regul Integr Comp Physiol 2015; 308:R576-89. [PMID: 25608750 DOI: 10.1152/ajpregu.00267.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/07/2015] [Indexed: 12/27/2022]
Abstract
Activation of muscle progenitor cell myogenesis and endothelial cell angiogenesis is critical for the recovery of skeletal muscle from injury. Angiopoietin-1 (Ang-1), a ligand of Tie-2 receptors, enhances angiogenesis and skeletal muscle satellite cell survival; however, its role in skeletal muscle regeneration after injury is unknown. We assessed the effects of Ang-1 on fiber regeneration, myogenesis, and angiogenesis in injured skeletal muscle (tibialis anterior, TA) in mice. We also assessed endogenous Ang-1 levels and localization in intact and injured TA muscles. TA fiber injury was triggered by cardiotoxin injection. Endogenous Ang-1 mRNA levels immediately decreased in response to cardiotoxin then increased during the 2 wk. Ang-1 protein was expressed in satellite cells, both in noninjured and recovering TA muscles. Positive Ang-1 staining was present in blood vessels but not in nerve fibers. Four days after the initiation of injury, injection of adenoviral Ang-1 into injured muscles resulted in significant increases in in situ TA muscle contractility, muscle fiber regeneration, and capillary density. In cultured human skeletal myoblasts, recombinant Ang-1 protein increased survival, proliferation, migration, and differentiation into myotubes. The latter effect was associated with significant upregulation of the expression of the myogenic regulatory factors MyoD and Myogenin and certain genes involved in cell cycle regulation. We conclude that Ang-1 strongly enhances skeletal muscle regeneration in response to fiber injury and that this effect is mediated through induction of the myogenesis program in muscle progenitor cells and the angiogenesis program in endothelial cells.
Collapse
Affiliation(s)
- Mahroo Mofarrahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Quebec, Canada; Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Joseph M McClung
- Department of Pharmacology and Cancer Biology, Duke University Medical Center and the Duke University School of Medicine, Durham, North Carolina
| | - Christopher D Kontos
- Department of Pharmacology and Cancer Biology, Duke University Medical Center and the Duke University School of Medicine, Durham, North Carolina
| | - Elaine C Davis
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada; and
| | - Bassman Tappuni
- Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Nicolay Moroz
- Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Amy E Pickett
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada; and
| | - Laurent Huck
- Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Sharon Harel
- Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada
| | - Gawiyou Danialou
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Quebec, Canada; Département des sciences de la nature, Collège militaire royal de Saint-Jean, Saint-Jean-sur-Richelieu, Quebec, Canada
| | - Sabah N A Hussain
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, Quebec, Canada; Department of Critical Care, McGill University Health Centre, Royal Victoria Hospital, Montréal, Quebec, Canada;
| |
Collapse
|
87
|
Rocheteau P, Vinet M, Chretien F. Dormancy and quiescence of skeletal muscle stem cells. Results Probl Cell Differ 2015; 56:215-35. [PMID: 25344673 DOI: 10.1007/978-3-662-44608-9_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The skeletal muscle of vertebrates has a huge regenerative capacity. When destroyed after different types of injury, this organ can regenerate very quickly (less than 20 days following myotoxin injection in the mouse) ad integrum and repeatedly. The cell responsible for this regeneration is the so-called satellite cell, the muscle stem cell that lies on top of the muscle fibre, a giant, multinucleated cell that contains the contractile material. When injected in the muscle, satellite cells can efficiently differentiate into contractile muscle fibres. The satellite cell shows great therapeutic potential; and its regenerative capacity has triggered particular interest in the field of muscular degeneration. In this review we will focus on one particular property of the satellite cell: its quiescence and dormancy. Indeed adult satellite cells are quiescent; they lie between the basal lamina and the basement membrane of the muscle fibre, ready to proliferate, and fuse in order to regenerate myofibers upon injury. It has recently been shown that a subpopulation of satellite cells is able to enter dormancy in human and mice cadavers. Dormancy is defined by a low metabolic state, low mobility, and a long lag before division when plated in vitro, compared to quiescent cells. This definition is also based on current knowledge about long-term hematopoietic stem cells, a subpopulation of stem cells that are described as dormant based on the same criteria (rare division and low metabolism when compared to progeny which are dividing more often). In the first part of this review, we will provide a description of satellite cells which addresses their quiescent state. We will then focus on the uneven distribution of satellite cells in the muscle and describe evidence that suggests that their dormancy differs from one muscle to the next and that one should be cautious when making generalisations regarding this cellular state. In a second part, we will discuss the transition between active dividing cells in developing animals to quiescence. This mechanism could be used or amplified in the switch from quiescence to dormancy. In a third part, we will review the signals and dynamics that actively maintain the satellite cell quiescent. The in-depth understanding of these mechanisms is key to describing how dormancy relies on quiescent state of the cells. In a fourth part, we will deal with dormancy per se: how dormant satellite cells can be obtained, their characteristics, their metabolic profile, and their molecular signature as compared to quiescent cells. Here, we will highlight one of the most important recent findings: that quiescence is a prerequisite for the entry of the satellite cell into dormancy. Since dormancy is a newly discovered phenomenon, we will review the mechanisms responsible for quiescence and activation, as these two cellular states are better known and key to understanding satellite cell dormancy. This will allow us to describe dormancy and its prerequisites.
Collapse
Affiliation(s)
- Pierre Rocheteau
- Human histopathology and animal models, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | | | | |
Collapse
|
88
|
Ogawa R, Ma Y, Yamaguchi M, Ito T, Watanabe Y, Ohtani T, Murakami S, Uchida S, De Gaspari P, Uezumi A, Nakamura M, Miyagoe-Suzuki Y, Tsujikawa K, Hashimoto N, Braun T, Tanaka T, Takeda S, Yamamoto H, Fukada SI. Doublecortin marks a new population of transiently amplifying muscle progenitor cells and is required for myofiber maturation during skeletal muscle regeneration. Development 2015; 142:51-61. [DOI: 10.1242/dev.112557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Muscle satellite cells are indispensable for muscle regeneration, but the functional diversity of their daughter cells is unknown. Here, we show that many Pax7+MyoD− cells locate both beneath and outside the basal lamina during myofiber maturation. A large majority of these Pax7+MyoD− cells are not self-renewed satellite cells, but have different potentials for both proliferation and differentiation from Pax7+MyoD+ myoblasts (classical daughter cells), and are specifically marked by expression of the doublecortin (Dcx) gene. Transplantation and lineage-tracing experiments demonstrated that Dcx-expressing cells originate from quiescent satellite cells and that the microenvironment induces Dcx in myoblasts. Expression of Dcx seems to be necessary for myofiber maturation because Dcx-deficient mice exhibited impaired myofiber maturation resulting from a decrease in the number of myonuclei. Furthermore, in vitro and in vivo studies suggest that one function of Dcx in myogenic cells is acceleration of cell motility. These results indicate that Dcx is a new marker for the Pax7+MyoD− subpopulation, which contributes to myofiber maturation during muscle regeneration.
Collapse
Affiliation(s)
- Ryo Ogawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuran Ma
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masahiko Yamaguchi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takahito Ito
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoko Watanabe
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takuji Ohtani
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Satoshi Murakami
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shizuka Uchida
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Piera De Gaspari
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany
| | - Akiyoshi Uezumi
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - Miki Nakamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Naohiro Hashimoto
- Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Oobu, Aichi 474-8522, Japan
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Hiroshi Yamamoto
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - So-ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
89
|
Gene therapy for inherited muscle diseases: where genetics meets rehabilitation medicine. Am J Phys Med Rehabil 2014; 93:S97-107. [PMID: 25313664 DOI: 10.1097/phm.0000000000000138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of clinical vectors to correct genetic mutations that cause inherited myopathies and related disorders of skeletal muscle is advancing at an impressive rate. Adeno-associated virus vectors are attractive for clinical use because (1) adeno-associated viruses do not cause human disease and (2) these vectors are able to persist for years. New vectors are now becoming available as gene therapy delivery tools, and recent preclinical experiments have demonstrated the feasibility, safety, and efficacy of gene therapy with adeno-associated virus for long-term correction of muscle pathology and weakness in myotubularin-deficient canine and murine disease models. In this review, recent advances in the application of gene therapies to treat inherited muscle disorders are presented, including Duchenne muscular dystrophy and x-linked myotubular myopathy. Potential areas for therapeutic synergies between rehabilitation medicine and genetics are also discussed.
Collapse
|
90
|
Di Foggia V, Zhang X, Licastro D, Gerli MFM, Phadke R, Muntoni F, Mourikis P, Tajbakhsh S, Ellis M, Greaves LC, Taylor RW, Cossu G, Robson LG, Marino S. Bmi1 enhances skeletal muscle regeneration through MT1-mediated oxidative stress protection in a mouse model of dystrophinopathy. ACTA ACUST UNITED AC 2014; 211:2617-33. [PMID: 25452464 PMCID: PMC4267246 DOI: 10.1084/jem.20140317] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enhanced polycomb complex protein Bmi1 expression in adult stem cells of the skeletal muscle leads to improved muscle function in a model of Duchenne Muscular Dystrophy via metallothionein1-mediated protection from oxidative stress. The Polycomb group (PcG) protein Bmi1 is an essential epigenetic regulator of stem cell function during normal development and in adult organ systems. We show that mild up-regulation of Bmi1 expression in the adult stem cells of the skeletal muscle leads to a remarkable improvement of muscle function in a mouse model of Duchenne muscular dystrophy. The molecular mechanism underlying enhanced physiological function of Bmi1 depends on the injury context and it is mediated by metallothionein 1 (MT1)–driven modulation of resistance to oxidative stress in the satellite cell population. These results lay the basis for developing Bmi1 pharmacological activators, which either alone or in combination with MT1 agonists could be a powerful novel therapeutic approach to improve regeneration in muscle wasting conditions.
Collapse
Affiliation(s)
- Valentina Di Foggia
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | | | - Mattia F M Gerli
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, England, UK
| | - Rahul Phadke
- The Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 3JH, England, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital for Children, London WC1N 3JH, England, UK
| | - Philippos Mourikis
- Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, URA 2578 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, URA 2578 Paris, France
| | - Matthew Ellis
- Division of Neuropathology, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, England, UK
| | - Laura C Greaves
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE4 2HH, England, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE4 2HH, England, UK
| | - Giulio Cossu
- Institute for Inflammation and Repair, University of Manchester, Manchester M13 9PL, England, UK
| | - Lesley G Robson
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK
| |
Collapse
|
91
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
92
|
Vahidi Ferdousi L, Rocheteau P, Chayot R, Montagne B, Chaker Z, Flamant P, Tajbakhsh S, Ricchetti M. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny. Stem Cell Res 2014; 13:492-507. [PMID: 25262445 DOI: 10.1016/j.scr.2014.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 07/14/2014] [Accepted: 08/15/2014] [Indexed: 01/17/2023] Open
Abstract
The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs.
Collapse
Affiliation(s)
- Leyla Vahidi Ferdousi
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France; Sorbonne Universités, UPMC, University of Paris 06, IFD-ED 515, Place Jussieu, Paris, 72252, France
| | - Pierre Rocheteau
- Institut Pasteur, Stem Cells & Development, Dept. of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS URA 2578, Paris, France
| | - Romain Chayot
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France
| | - Benjamin Montagne
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France
| | - Zayna Chaker
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France
| | - Patricia Flamant
- Institut Pasteur, Stem Cells & Development, Dept. of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS URA 2578, Paris, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells & Development, Dept. of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS URA 2578, Paris, France
| | - Miria Ricchetti
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France.
| |
Collapse
|
93
|
Grassot V, Da Silva A, Saliba J, Maftah A, Dupuy F, Petit JM. Highlights of glycosylation and adhesion related genes involved in myogenesis. BMC Genomics 2014; 15:621. [PMID: 25051993 PMCID: PMC4223822 DOI: 10.1186/1471-2164-15-621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Myogenesis is initiated by myoblast differentiation and fusion to form myotubes and muscle fibres. A population of myoblasts, known as satellite cells, is responsible for post-natal growth of muscle and for its regeneration. This differentiation requires many changes in cell behaviour and its surrounding environment. These modifications are tightly regulated over time and can be characterized through the study of changes in gene expression associated with this process. During the initial myogenesis steps, using the myoblast cell line C2C12 as a model, Janot et al. (2009) showed significant variations in expression for genes involved in pathways of glycolipid synthesis. In this study we used murine satellite cells (MSC) and their ability to differentiate into myotubes or early fat storage cells to select glycosylation related genes whose variation of expression is myogenesis specific. RESULTS The comparison of variant genes in both MSC differentiation pathways identified 67 genes associated with myogenesis. Comparison with data obtained for C2C12 revealed that only 14 genes had similar expression profiles in both cell types and that 17 genes were specifically regulated in MSC. Results were validated statistically by without a priori clustering. Classification according to protein function encoded by these 31 genes showed that the main regulated cellular processes during this differentiation were (i) remodeling of the extracellular matrix, particularly, sulfated structures, (ii) down-regulation of O-mannosyl glycan biosynthesis, and (iii) an increase in adhesion protein expression. A functional study was performed on Itga11 and Chst5 encoding two highly up-regulated proteins. The inactivation of Chst5 by specific shRNA delayed the fusion of MSC. By contrast, the inactivation of Itga11 by specific shRNA dramatically decreased the fusion ability of MSC. This result was confirmed by neutralization of Itga11 product by specific antibodies. CONCLUSIONS Our screening method detected 31 genes specific for myogenic differentiation out of the 383 genes studied. According to their function, interaction networks of the products of these selected genes converged to cell fusion. Functional studies on Itga11 and Chst5 demonstrated the robustness of this screening.
Collapse
Affiliation(s)
- Vincent Grassot
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Anne Da Silva
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - James Saliba
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Abderrahman Maftah
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Fabrice Dupuy
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Jean-Michel Petit
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| |
Collapse
|
94
|
Jang YN, Baik EJ. JAK-STAT pathway and myogenic differentiation. JAKSTAT 2014; 2:e23282. [PMID: 24058805 PMCID: PMC3710318 DOI: 10.4161/jkst.23282] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
Myogenic differentiation plays an important role in muscle regeneration and is regulated by two transcription factor families, MRFs and MEF2, which induce differentiation of myoblasts through expression of the muscle-specific gene, myogenin. In addition, many intracellular signaling pathways are also involved in myogenic differentiation, including p38 MAPK, ERK/MAPK and PI3K/AKT. The JAK-STAT pathway is activated by various cytokines and positively or negatively regulates the differentiation of myoblasts. JAK1 plays a notable role in proliferation; whereas, JAK2 and JAK3 function mainly in differentiation. The STATs, molecules downstream of JAK, regulate myogenesis. With JAK1, STAT1 promotes proliferation, while STAT3 has a dual effect on proliferation and differentiation. The JAK-STAT negative regulator, SOCS, is also associated with myogenesis; although, its role is controversial. In this review, we will discuss the role of the JAK-STAT pathway on myogenic differentiation.
Collapse
Affiliation(s)
- You-Na Jang
- Department of Physiology; Chronic Inflammatory Disease Research Center; Ajou University School of Medicine; Suwon, Korea
| | | |
Collapse
|
95
|
Chakkalakal JV, Christensen J, Xiang W, Tierney MT, Boscolo FS, Sacco A, Brack AS. Early forming label-retaining muscle stem cells require p27kip1 for maintenance of the primitive state. Development 2014; 141:1649-59. [PMID: 24715455 PMCID: PMC3978835 DOI: 10.1242/dev.100842] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Across different niches, subsets of highly functional stem cells are maintained in a relatively dormant rather than proliferative state. Our understanding of proliferative dynamics in tissue-specific stem cells during conditions of increased tissue turnover remains limited. Using a TetO-H2B-GFP reporter of proliferative history, we identify skeletal muscle stem cell, or satellite cells, that retain (LRC) or lose (nonLRC) the H2B-GFP label. We show in mice that LRCs and nonLRCs are formed at birth and persist during postnatal growth and adult muscle repair. Functionally, LRCs and nonLRCs are born equivalent and transition during postnatal maturation into distinct and hierarchically organized subsets. Adult LRCs give rise to LRCs and nonLRCs; the former are able to self-renew, whereas the latter are restricted to differentiation. Expression analysis revealed the CIP/KIP family members p21(cip1) (Cdkn1a) and p27(kip1) (Cdkn1b) to be expressed at higher levels in LRCs. In accordance with a crucial role in LRC fate, loss of p27(kip1) promoted proliferation and differentiation of LRCs in vitro and impaired satellite cell self-renewal after muscle injury. By contrast, loss of p21(cip1) only affected nonLRCs, in which myogenic commitment was inhibited. Our results provide evidence that restriction of self-renewal potential to LRCs is established early in life and is maintained during increased tissue turnover through the cell cycle inhibitor p27(kip1). They also reveal the differential role of CIP/KIP family members at discrete steps within the stem cell hierarchy.
Collapse
Affiliation(s)
- Joe V Chakkalakal
- Massachusetts General Hospital, Center of Regenerative Medicine, Harvard University, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Yennek S, Burute M, Théry M, Tajbakhsh S. Cell adhesion geometry regulates non-random DNA segregation and asymmetric cell fates in mouse skeletal muscle stem cells. Cell Rep 2014; 7:961-70. [PMID: 24836002 DOI: 10.1016/j.celrep.2014.04.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/24/2014] [Accepted: 04/09/2014] [Indexed: 01/11/2023] Open
Abstract
Cells of several metazoan species have been shown to non-randomly segregate their DNA such that older template DNA strands segregate to one daughter cell. The mechanisms that regulate this asymmetry remain undefined. Determinants of cell fate are polarized during mitosis and partitioned asymmetrically as the spindle pole orients during cell division. Chromatids align along the pole axis; therefore, it is unclear whether extrinsic cues that determine spindle pole position also promote non-random DNA segregation. To mimic the asymmetric divisions seen in the mouse skeletal stem cell niche, we used micropatterns coated with extracellular matrix in asymmetric and symmetric motifs. We show that the frequency of non-random DNA segregation and transcription factor asymmetry correlates with the shape of the motif and that these events can be uncoupled. Furthermore, regulation of DNA segregation by cell adhesion occurs within a defined time interval. Thus, cell adhesion cues have a major impact on determining both DNA segregation patterns and cell fates.
Collapse
Affiliation(s)
- Siham Yennek
- Institut Pasteur, Stem Cells & Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 rue du Dr. Roux, Paris F-75015, France; Sorbonne Universités, UPMC, University of Paris 06, IFD-ED 515, 4 Place Jussieu, Paris 75252, France
| | - Mithila Burute
- Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/UJF/INRA/CNRS, 17 rue des Martyrs, Grenoble 38054, France; CYTOO SA, 7 Parvis Louis Néel, BP50, Grenoble 38040, France; Hôpital Saint Louis, Institut Universitaire d'Hematologie, U1160, INSERM/AP-HP/Université Paris Diderot, 1 Avenue Claude Vellefaux, Paris 75010, France
| | - Manuel Théry
- Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/UJF/INRA/CNRS, 17 rue des Martyrs, Grenoble 38054, France; Hôpital Saint Louis, Institut Universitaire d'Hematologie, U1160, INSERM/AP-HP/Université Paris Diderot, 1 Avenue Claude Vellefaux, Paris 75010, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells & Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 rue du Dr. Roux, Paris F-75015, France.
| |
Collapse
|
97
|
Fan CM, Li L, Rozo ME, Lepper C. Making skeletal muscle from progenitor and stem cells: development versus regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:315-27. [PMID: 22737183 DOI: 10.1002/wdev.30] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For locomotion, vertebrate animals use the force generated by contractile skeletal muscles. These muscles form an actin/myosin-based biomachinery that is attached to skeletal elements to affect body movement and maintain posture. The mechanics, physiology, and homeostasis of skeletal muscles in normal and disease states are of significant clinical interest. How muscles originate from progenitors during embryogenesis has attracted considerable attention from developmental biologists. How skeletal muscles regenerate and repair themselves after injury by the use of stem cells is an important process to maintain muscle homeostasis throughout lifetime. In recent years, much progress has been made toward uncovering the origins of myogenic progenitors and stem cells as well as the regulation of these cells during development and regeneration.
Collapse
Affiliation(s)
- Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
98
|
Rossi G, Messina G. Comparative myogenesis in teleosts and mammals. Cell Mol Life Sci 2014; 71:3081-99. [PMID: 24664432 PMCID: PMC4111864 DOI: 10.1007/s00018-014-1604-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 01/02/2023]
Abstract
Skeletal myogenesis has been and is currently under extensive study in both mammals and teleosts, with the latter providing a good model for skeletal myogenesis because of their flexible and conserved genome. Parallel investigations of muscle studies using both these models have strongly accelerated the advances in the field. However, when transferring the knowledge from one model to the other, it is important to take into account both their similarities and differences. The main difficulties in comparing mammals and teleosts arise from their different temporal development. Conserved aspects can be seen for muscle developmental origin and segmentation, and for the presence of multiple myogenic waves. Among the divergences, many fish have an indeterminate growth capacity throughout their entire life span, which is absent in mammals, thus implying different post-natal growth mechanisms. This review covers the current state of the art on myogenesis, with a focus on the most conserved and divergent aspects between mammals and teleosts.
Collapse
Affiliation(s)
- Giuliana Rossi
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | | |
Collapse
|
99
|
Abstract
Regeneration of adult skeletal muscle following injury occurs through the activation of satellite cells, an injury-sensitive muscle stem cell population that proliferates, differentiates, and fuses with injured myofibers. Members of the myocyte enhancer factor 2 (MEF2) family of transcription factors play essential roles in muscle differentiation during embryogenesis, but their potential contributions to adult muscle regeneration have not been systematically explored. To investigate the potential involvement of MEF2 factors in muscle regeneration, we conditionally deleted the Mef2a, c, and d genes, singly and in combination, within satellite cells in mice, using tamoxifen-inducible Cre recombinase under control of the satellite cell-specific Pax7 promoter. We show that deletion of individual Mef2 genes has no effect on muscle regeneration in response to cardiotoxin injury. However, combined deletion of the Mef2a, c, and d genes results in a blockade to regeneration. Satellite cell-derived myoblasts lacking MEF2A, C, and D proliferate normally in culture, but cannot differentiate. The absence of MEF2A, C, and D in satellite cells is associated with aberrant expression of a broad collection of known and unique protein-coding and long noncoding RNA genes. These findings reveal essential and redundant roles of MEF2A, C, and D in satellite cell differentiation and identify a MEF2-dependent transcriptome associated with skeletal muscle regeneration.
Collapse
|
100
|
Abstract
Since the seminal discovery of the cell-fate regulator Myod, studies in skeletal myogenesis have inspired the search for cell-fate regulators of similar potential in other tissues and organs. It was perplexing that a similar transcription factor for other tissues was not found; however, it was later discovered that combinations of molecular regulators can divert somatic cell fates to other cell types. With the new era of reprogramming to induce pluripotent cells, the myogenesis paradigm can now be viewed under a different light. Here, we provide a short historical perspective and focus on how the regulation of skeletal myogenesis occurs distinctly in different scenarios and anatomical locations. In addition, some interesting features of this tissue underscore the importance of reconsidering the simple-minded view that a single stem cell population emerges after gastrulation to assure tissuegenesis. Notably, a self-renewing long-term Pax7+ myogenic stem cell population emerges during development only after a first wave of terminal differentiation occurs to establish a tissue anlagen in the mouse. How the future stem cell population is selected in this unusual scenario will be discussed. Recently, a wealth of information has emerged from epigenetic and genome-wide studies in myogenic cells. Although key transcription factors such as Pax3, Pax7, and Myod regulate only a small subset of genes, in some cases their genomic distribution and binding are considerably more promiscuous. This apparent nonspecificity can be reconciled in part by the permissivity of the cell for myogenic commitment, and also by new roles for some of these regulators as pioneer transcription factors acting on chromatin state.
Collapse
Affiliation(s)
- Glenda Comai
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS URA 2578, Department of Developmental & Stem Cell Biology, Institut Pasteur, Paris, France.
| |
Collapse
|