51
|
The Role of Diet as a Modulator of the Inflammatory Process in the Neurological Diseases. Nutrients 2023; 15:nu15061436. [PMID: 36986165 PMCID: PMC10057655 DOI: 10.3390/nu15061436] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Neurological diseases are recognized as major causes of disability and mortality worldwide. Due to the dynamic progress of diseases such as Alzheimer’s disease (AD), Parkinson’s Disease (PD), Schizophrenia, Depression, and Multiple Sclerosis (MD), scientists are mobilized to look for new and more effective methods of interventions. A growing body of evidence suggests that inflammatory processes and an imbalance in the composition and function of the gut microbiome, which play a critical role in the pathogenesis of various neurological diseases and dietary interventions, such as the Mediterranean diet the DASH diet, or the ketogenic diet can have beneficial effects on their course. The aim of this review was to take a closer look at the role of diet and its ingredients in modulating inflammation associated with the development and/or progression of central nervous system diseases. Presented data shows that consuming a diet abundant in fruits, vegetables, nuts, herbs, spices, and legumes that are sources of anti-inflammatory elements such as omega-3 fatty acids, polyphenols, vitamins, essential minerals, and probiotics while avoiding foods that promote inflammation, create a positive brain environment and is associated with a reduced risk of neurological diseases. Personalized nutritional interventions may constitute a non-invasive and effective strategy in combating neurological disorders.
Collapse
|
52
|
Is Hormone Replacement Therapy a Risk Factor or a Therapeutic Option for Alzheimer's Disease? Int J Mol Sci 2023; 24:ijms24043205. [PMID: 36834617 PMCID: PMC9964432 DOI: 10.3390/ijms24043205] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accounts for more than half of all dementia cases in the elderly. Interestingly, the clinical manifestations of AD disproportionately affect women, comprising two thirds of all AD cases. Although the underlying mechanisms for these sex differences are not fully elucidated, evidence suggests a link between menopause and a higher risk of developing AD, highlighting the critical role of decreased estrogen levels in AD pathogenesis. The focus of this review is to evaluate clinical and observational studies in women, which have investigated the impact of estrogens on cognition or attempted to answer the prevailing question regarding the use of hormone replacement therapy (HRT) as a preventive or therapeutic option for AD. The articles were retrieved through a systematic review of the databases: OVID, SCOPUS, and PubMed (keywords "memory", "dementia," "cognition," "Alzheimer's disease", "estrogen", "estradiol", "hormone therapy" and "hormone replacement therapy" and by searching reference sections from identified studies and review articles). This review presents the relevant literature available on the topic and discusses the mechanisms, effects, and hypotheses that contribute to the conflicting findings of HRT in the prevention and treatment of age-related cognitive deficits and AD. The literature suggests that estrogens have a clear role in modulating dementia risk, with reliable evidence showing that HRT can have both a beneficial and a deleterious effect. Importantly, recommendation for the use of HRT should consider the age of initiation and baseline characteristics, such as genotype and cardiovascular health, as well as the dosage, formulation, and duration of treatment until the risk factors that modulate the effects of HRT can be more thoroughly investigated or progress in the development of alternative treatments can be made.
Collapse
|
53
|
Sultana F, Davis SR, Bell RJ, Taylor S, Islam RM. Association between testosterone and cognitive performance in postmenopausal women: a systematic review of observational studies. Climacteric 2023; 26:5-14. [PMID: 36366914 DOI: 10.1080/13697137.2022.2139600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review was conducted to explore the association between endogenous testosterone blood concentrations and cognitive performance among community dwelling postmenopausal women. We searched Ovid MEDLINE, EMBASE, PsycINFO and Web of Science databases for observational studies with at least 100 postmenopausal participants. The results were categorized by study design, reporting of total or free testosterone and risk of bias assessments, narratively. Ten of the 26 articles retrieved for full-text review met the inclusion criteria, six provided cross-sectional data, seven provided longitudinal data and one provided case-control data. Cognitive performance tests differed between studies. Eight studies measured testosterone by immunoassay, one by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and one did not specify their methodology. Eleven different cognitive domains were tested by 37 different instruments. Irrespective of the study design, the findings were inconsistent and inconclusive. Both positive and inverse associations were reported for each of global cognition and immediate and delayed verbal recall. The majority of studies reported no association between total or free testosterone and cognitive performance. Although this review did not demonstrate an association between testosterone and cognitive performance in postmenopausal women, the findings should be considered inconclusive due to the imprecision of testosterone measurement and the methodological heterogeneity of the included studies.
Collapse
Affiliation(s)
- F Sultana
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Environmental Interventions Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - S R Davis
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.,Department of Endocrinology and Diabetes, Alfred Health, Melbourne, VIC, Australia
| | - R J Bell
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - S Taylor
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - R M Islam
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
54
|
Valencia-Olvera AC, Maldonado Weng J, Christensen A, LaDu MJ, Pike CJ. Role of estrogen in women's Alzheimer's disease risk as modified by APOE. J Neuroendocrinol 2023; 35:e13209. [PMID: 36420620 PMCID: PMC10049970 DOI: 10.1111/jne.13209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy. In the brain, dementia risk is greater in APOE4 carriers, and the impacts of hormone therapy on cognitive decline and dementia risk vary according to both outcome measure and APOE genotype. Beyond the CNS, estrogen and APOE genotype affect vulnerability to menopause-associated bone loss, dyslipidemia and cardiovascular disease risk. An emerging concept that may link these relationships is the possibility that the effects of APOE in women interact with estrogen status by mechanisms that may include modulation of estrogen responsiveness. This review highlights the need to consider the key AD risk factors of advancing age in a sex-specific manner to optimize development of therapeutic approaches for AD, a view aligned with the principle of personalized medicine.
Collapse
Affiliation(s)
- AC Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - J Maldonado Weng
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - A Christensen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| | - MJ LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - CJ Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
55
|
Unnisa A, Greig NH, Kamal MA. Nanotechnology: A Promising Targeted Drug Delivery System for Brain Tumours and Alzheimer's Disease. Curr Med Chem 2023; 30:255-270. [PMID: 35345990 PMCID: PMC11335033 DOI: 10.2174/0929867329666220328125206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
Abstract
Nanotechnology is the process of modulating shape and size at the nanoscale to design and manufacture structures, devices, and systems. Nanotechnology's prospective breakthroughs are incredible, and some cannot even be comprehended right now. The blood-brain barrier, which is a prominent physiological barrier in the brain, limits the adequate elimination of malignant cells by changing the concentration of therapeutic agents at the target tissue. Nanotechnology has sparked interest in recent years as a way to solve these issues and improve drug delivery. Inorganic and organic nanomaterials have been found to be beneficial for bioimaging approaches and controlled drug delivery systems. Brain cancer (BC) and Alzheimer's disease (AD) are two of the prominent disorders of the brain. Even though the pathophysiology and pathways for both disorders are different, nanotechnology with common features can deliver drugs over the BBB, advancing the treatment of both disorders. This innovative technology could provide a foundation for combining diagnostics, treatments, and delivery of targeted drugs to the tumour site, further supervising the response and designing and delivering materials by employing atomic and molecular elements. There is currently limited treatment for Alzheimer's disease, and reversing further progression is difficult. Recently, various nanocarriers have been investigated to improve the bioavailability and efficacy of many AD treatment drugs. Nanotechnology-assisted drugs can penetrate the BBB and reach the target tissue. However, further research is required in this field to ensure the safety and efficacy of drug-loaded nanoparticles. The application of nanotechnology in the diagnosis and treatment of brain tumours and Alzheimer's disease is briefly discussed in this review.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, KSA
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammad A. Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Novel Global Community Educational Foundation, Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
56
|
Abstract
As men grow older, circulating testosterone concentrations decline, while prevalence of cognitive impairment and dementia increase. Epidemiological studies of middle-aged and older men have demonstrated associations of lower testosterone concentrations with higher prevalence and incidence of cognitive decline and dementia, including Alzheimer's disease. In observational studies, men with prostate cancer treated by androgen deprivation therapy had a higher risk of dementia. Small intervention studies of testosterone using different measures of cognitive function have provided inconsistent results, with some suggesting improvement. A randomised placebo-controlled trial of one year's testosterone treatment conducted in 788 men aged ≥ 65 years, baseline testosterone < 9.54 nmol/L, showed an improvement in sexual function, but no improvement in cognitive function. There is a known association between diabetes and dementia risk. A randomised placebo-controlled trial of two year's testosterone treatment in 1,007 men aged 50-74 years, waist circumference ≥ 95 cm, baseline testosterone ≤ 14 nmol/L, showed an effect of testosterone in reducing type 2 diabetes risk. There were no cognitive endpoints in that trial. Additional research is warranted but at this stage lower testosterone concentrations in ageing men should be regarded as a biomarker rather than a proven therapeutic target for risk reduction of cognitive decline and dementia, including Alzheimer's disease.
Collapse
Affiliation(s)
- Bu B Yeap
- Medical School, University of Western Australia, Perth, Australia.
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia.
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia
- Western Australian Centre for Health and Ageing, University of Western Australia, Perth, Australia
- Department of Geriatric Medicine, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
57
|
Evidence of Sex Differences in Cellular Senescence. Neurobiol Aging 2022; 120:88-104. [PMID: 36166919 DOI: 10.1016/j.neurobiolaging.2022.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022]
|
58
|
Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular Mechanisms Related to Responses to Oxidative Stress and Antioxidative Therapies in COVID-19: A Systematic Review. Antioxidants (Basel) 2022; 11:1609. [PMID: 36009328 PMCID: PMC9405444 DOI: 10.3390/antiox11081609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is a leading global health and economic challenge. What defines the disease's progression is not entirely understood, but there are strong indications that oxidative stress and the defense against reactive oxygen species are crucial players. A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic mechanisms. We have reviewed the available literature and clinical trials to extract the relevant genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials on glutathione and N-acetylcysteine.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Una Glamočlija
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Fulden Ulucan-Karnak
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, 35100 İzmir, Turkey
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
59
|
Northey JJ, Weaver VM. Mechanosensitive Steroid Hormone Signaling and Cell Fate. Endocrinology 2022; 163:bqac085. [PMID: 35678467 PMCID: PMC9237634 DOI: 10.1210/endocr/bqac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/19/2022]
Abstract
Mechanical forces collaborate across length scales to coordinate cell fate during development and the dynamic homeostasis of adult tissues. Similarly, steroid hormones interact with their nuclear and nonnuclear receptors to regulate diverse physiological processes necessary for the appropriate development and function of complex multicellular tissues. Aberrant steroid hormone action is associated with tumors originating in hormone-sensitive tissues and its disruption forms the basis of several therapeutic interventions. Prolonged perturbations to mechanical forces may further foster tumor initiation and the evolution of aggressive metastatic disease. Recent evidence suggests that steroid hormone and mechanical signaling intersect to direct cell fate during development and tumor progression. Potential mechanosensitive steroid hormone signaling pathways along with their molecular effectors will be discussed in this context.
Collapse
Affiliation(s)
- Jason J Northey
- Department of Surgery, University of California, San Francisco, CA 94143, USA
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143,USA
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, CA 94143, USA
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143,USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143,USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143,USA
- Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143,USA
| |
Collapse
|
60
|
Overman MJ, Pendleton N, O'Neill TW, Bartfai G, Casanueva FF, Forti G, Rastrelli G, Giwercman A, Han TS, Huhtaniemi IT, Slowikowska-Hilczer J, Lean ME, Punab M, Lee DM, Antonio L, Gielen E, Rutter MK, Vanderschueren D, Wu FC, Tournoy J. Reproductive hormone levels, androgen receptor CAG repeat length and their longitudinal relationships with decline in cognitive subdomains in men: The European Male Ageing Study. Physiol Behav 2022; 252:113825. [PMID: 35487276 DOI: 10.1016/j.physbeh.2022.113825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It has been proposed that endogenous sex hormone levels may present a modifiable risk factor for cognitive decline. However, the evidence for effects of sex steroids on cognitive ageing is conflicting. We therefore investigated associations between endogenous hormone levels, androgen receptor CAG repeat length, and cognitive domains including visuoconstructional abilities, visual memory, and processing speed in a large-scale longitudinal study of middle-aged and older men. METHODS Men aged 40-79 years from the European Male Ageing Study (EMAS) underwent cognitive assessments and measurements of hormone levels at baseline and follow-up (mean = 4.4 years, SD ± 0.3 years). Hormone levels measured included total and calculated free testosterone and estradiol, dihydrotestosterone, luteinizing hormone, follicle-stimulating hormone, dehydroepiandrosterone sulphate and sex hormone-binding globulin. Cognitive function was assessed using the Rey-Osterrieth Complex Figure Copy and Recall, the Camden Topographical Recognition Memory and the Digit Symbol Substitution Test. Multivariate linear regressions were used to examine associations between baseline and change hormone levels, androgen receptor CAG repeat length, and cognitive decline. RESULTS Statistical analyses included 1,827 and 1,423 participants for models investigating relationships of cognition with hormone levels and CAG repeat length, respectively. In age-adjusted models, we found a significant association of higher baseline free testosterone (β=-0.001, p=0.005) and dihydrotestosterone levels (β=-0.065, p=0.003) with greater decline on Rey-Osterrieth Complex Figure Recall over time. However, these effects were no longer significant following adjustment for centre, health, and lifestyle factors. No relationships were observed between any other baseline hormone levels, change in hormone levels, or androgen receptor CAG repeat length with cognitive decline in the measured domains. CONCLUSIONS In this large-scale prospective study there was no evidence for an association between endogenous sex hormone levels or CAG repeat length and cognitive ageing in men. These data suggest that sex steroid levels do not affect visuospatial function, visual memory, or processing speed in middle-aged and older men.
Collapse
Affiliation(s)
- Margot J Overman
- Gerontology and Geriatrics, KU Leuven, Leuven, Belgium; Department of Psychiatry, University of Oxford, UK
| | - Neil Pendleton
- Clinical & Cognitive Neurosciences, Institute of Brain, Behaviour and Mental Health, The University of Manchester, UK
| | - Terence W O'Neill
- Centre for Epidemiology Versus Arthritis, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Gyorgy Bartfai
- Department of Obstetrics, Gynaecology and Andrology, Albert Szent-György Medical University, Szeged, Hungary
| | - Felipe F Casanueva
- Department of Medicine, Santiago de Compostela University Spain; CIBEROBN Instituto de Salud Carlos III. Santiago de Compostela, Spain
| | - Gianni Forti
- Endocrinology Unit, University of Florence, Florence, Italy
| | - Giulia Rastrelli
- Sexual Medicine and Andrology Unit, Department of Experimental, Clinical, and Biomedical Sciences, University of Florence, Florence, Italy
| | - Aleksander Giwercman
- Reproductive Medicine Centre, Skåne University Hospital, University of Lund, Lund, Sweden
| | - Thang S Han
- Institute of Cardiovascular Research, Royal Holloway University of London, Egham, Surrey, UK
| | - Ilpo T Huhtaniemi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London UK
| | | | - Michael Ej Lean
- Department of Human Nutrition, University of Glasgow, Glasgow, UK
| | - Margus Punab
- Andrology Unit, Tartu University Hospital, Tartu, Estonia
| | - David M Lee
- Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Manchester, UK
| | - Leen Antonio
- Department of Andrology and Endocrinology, KU Leuven, Leuven, Belgium; Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Evelien Gielen
- Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Martin K Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medical and Human Sciences, Institute of Human Development, University of Manchester, Manchester, UK; Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Dirk Vanderschueren
- Department of Andrology and Endocrinology, KU Leuven, Leuven, Belgium; Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Frederick Cw Wu
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medical and Human Sciences, Institute of Human Development, University of Manchester, Manchester, UK
| | - Jos Tournoy
- Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
| |
Collapse
|
61
|
Sun L, Guo D, Jia Y, Shi M, Yang P, Wang Y, Liu F, Chen GC, Zhang Y, Zhu Z. Association Between Human Blood Metabolome and the Risk of Alzheimer's Disease. Ann Neurol 2022; 92:756-767. [PMID: 35899678 DOI: 10.1002/ana.26464] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is the most common degenerative neurological disorder with limited therapeutic options. Therefore, it is particularly important to explore the potential biomarkers implicated in the occurrence and progression of AD prior to clinical testing. METHODS We selected 119 unique blood metabolites from 3 metabolome genome-wide association studies (GWASs) with 147,827 European participants. Summary data about AD were obtained from a GWAS meta-analysis with 63,926 European individuals from the International Genomics of Alzheimer's Project. MR analyses were performed to assess the associations of blood metabolites with AD, and a phenome-wide MR analysis was further applied to ascertain the potential on-target side effects of metabolite interventions. RESULTS Four metabolites were identified as causal mediators for AD, including epiandrosterone sulfate (odds ratio [OR] per SD increase: 0.60; 95% confidence interval [CI]: 0.51-0.71; P=6.14×10-9 ), 5alpha-androstan-3beta-17beta-diol disulfate (OR per SD increase: 0.69; 95% CI: 0.57-0.84; P=1.98×10-4 ), sphingomyelin (OR per SD increase: 2.53; 95% CI: 1.78-3.59; P=2.10×10-7 ), and glutamine (OR per SD increase: 0.83; 95% CI: 0.77-0.89; P=2.09×10-6 ). Phenome-wide MR analysis showed that epiandrosterone sulfate, 5alpha-androstan-3beta-17beta-diol disulfate and sphingomyelin mediated the risk of multiple diseases, and glutamine had beneficial effects on the risk of 4 diseases. INTERPRETATION Genetically predicted increased epiandrosterone sulfate, 5alpha-androstan-3beta-17beta-diol disulfate and glutamine might be associated with a decreased risk of AD, while sphingomyelin was associated with an increased risk. Side-effect profiles were characterized to help inform drug target prioritization, and glutamine might be a promising target for the prevention and treatment of AD with no predicted detrimental side effects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lulu Sun
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- School of Nursing, Medical College of Soochow University, Suzhou, China
| | - Yiming Jia
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Pinni Yang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Yu Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Fanghua Liu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
62
|
Harrington YA, Parisi JM, Duan D, Rojo-Wissar DM, Holingue C, Spira AP. Sex Hormones, Sleep, and Memory: Interrelationships Across the Adult Female Lifespan. Front Aging Neurosci 2022; 14:800278. [PMID: 35912083 PMCID: PMC9331168 DOI: 10.3389/fnagi.2022.800278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/09/2022] [Indexed: 01/26/2023] Open
Abstract
As the population of older adults grows, so will the prevalence of aging-related conditions, including memory impairments and sleep disturbances, both of which are more common among women. Compared to older men, older women are up to twice as likely to experience sleep disturbances and are at a higher risk of cognitive decline and Alzheimer's disease and related dementias (ADRD). These sex differences may be attributed in part to fluctuations in levels of female sex hormones (i.e., estrogen and progesterone) that occur across the adult female lifespan. Though women tend to experience the most significant sleep and memory problems during the peri-menopausal period, changes in memory and sleep have also been observed across the menstrual cycle and during pregnancy. Here, we review current knowledge on the interrelationships among female sex hormones, sleep, and memory across the female lifespan, propose possible mediating and moderating mechanisms linking these variables and describe implications for ADRD risk in later life.
Collapse
Affiliation(s)
- Yasmin A. Harrington
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeanine M. Parisi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Darlynn M. Rojo-Wissar
- The Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Center for Behavioral and Preventive Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Johns Hopkins Center on Aging and Health, Baltimore, MD, United States
| |
Collapse
|
63
|
Kim JW, Kim DK, Lee HS, Park JY, Ahn HK, Ha JS, Lee D, Cho KS. Androgen Deprivation Therapy in Patients with Prostate Cancer is Associated with the Risk of Subsequent Alzheimer's Disease but Not with Vascular Dementia. World J Mens Health 2022; 40:481-489. [PMID: 34448373 PMCID: PMC9253795 DOI: 10.5534/wjmh.210019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE We aimed to investigate the association between androgen deprivation therapy (ADT) and the risk of dementia according to subtypes of dementia in men with prostate cancer. MATERIALS AND METHODS We performed a nationwide population-based cohort study using the nationwide claims database in Korea. A total of 195,308 men with newly diagnosed prostate cancer were identified between January 2008 and December 2017, and 132,700 men were selected for analysis after applying inclusion and exclusion criteria. The patients were divided into ADT and non-ADT groups. To adjust for imbalances in relevant comorbidities between the groups, exact matching was performed. Study events included newly developed Alzheimer's disease, vascular dementia, and overall dementia. Cox proportional hazard regression models were used. RESULTS After exact matching, 44,854 men with prostate cancer were selected for the main analysis. In age-adjusted Cox regression analysis, the ADT group was significantly associated with increased risks for overall dementia (hazard ratio [HR], 1.070; 95% confidence interval [CI], 1.009-1.134; p=0.0232) and Alzheimer's disease (HR, 1.086; 95% CI, 1.018-1.160; p=0.0127), compared to the non-ADT group. No difference in vascular dementia risk was observed between the two groups (HR, 0.990; 95% CI, 0.870-1.126; p=0.8792). CONCLUSIONS The risk of overall dementia increased in men who received ADT. According to dementia subtypes, ADT was associated with an increased risk of Alzheimer's disease, but not with vascular dementia.
Collapse
Affiliation(s)
- Jong Won Kim
- Department of Urology, Inha University College of Medicine, Incheon, Korea
| | - Do Kyung Kim
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Ju-Young Park
- Department of Statistics and Data Science, Yonsei University, Seoul, Korea
| | - Hyun Kyu Ahn
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Soo Ha
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dongu Lee
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kang Su Cho
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
64
|
Lohner V, Pehlivan G, Sanroma G, Miloschewski A, Schirmer MD, Stöcker T, Reuter M, Breteler MMB. The Relation Between Sex, Menopause, and White Matter Hyperintensities: The Rhineland Study. Neurology 2022; 99:e935-e943. [PMID: 35768207 DOI: 10.1212/wnl.0000000000200782] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Mounting evidence implies that there are sex differences in white matter hyperintensity (WMH) burden in the elderly. Questions remain regarding possible differences in WMH burden between men and women of younger age, sex-specific age trajectories and effects of (un)controlled hypertension, and the effect of menopause on WMH. Therefore, our aim is to investigate these sex differences and age-dependencies in WMH load across the adult life span, and to examine the effect of menopause. METHODS This cross-sectional analysis was based on participants of the population-based Rhineland Study (30 - 95 years) who underwent brain MRI. We automatically quantified WMH using T1-weighted, T2-weighted and FLAIR images. Menopausal status was self-reported. We examined associations of sex and menopause with WMH load (logit-transformed and z-standardised) using linear regression models, while adjusting for age, age-squared, and vascular risk factors. We checked for an age*sex and (un)controlled hypertension*sex interaction and stratified for menopausal status comparing men with premenopausal women (persons aged ≤ 59 years), men with postmenopausal women (persons aged ≥ 45 years), and pre- with postmenopausal women (age range 45 - 59 years). RESULTS Of 3410 participants with a mean age of 54.3 years (SD = 13.7), 1973 (57.9%) were women, of which 1167 (59.1%) were postmenopausal. We found that the increase in WMH load accelerates with age and in a sex-dependent way. Premenopausal women and men of similar age did not differ in WMH burden. WMH burden was higher and accelerated faster in postmenopausal women compared to men of similar age. Additionally, we observed changes related to menopause, in that postmenopausal women had more WMH than premenopausal women of similar age.. Women with uncontrolled hypertension had a higher WMH burden compared to men, which was unrelated to menopausal status. DISCUSSION After menopause, women displayed a higher burden of WMH than contemporary premenopausal women and men, and an accelerated increase in WMH. Sex-specific effects of uncontrolled hypertension on WMH were not related to menopause. Further studies are warranted to investigate menopause-related physiological changes, that may inform on causal mechanisms involved in cerebral small vessel disease progression.
Collapse
Affiliation(s)
- Valerie Lohner
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gökhan Pehlivan
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gerard Sanroma
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anne Miloschewski
- Statistics and Machine Learning, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Markus D Schirmer
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston.,Clinic for Neuroradiology, University Hospital Bonn, Germany
| | - Tony Stöcker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| | - Martin Reuter
- Image Analysis, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany .,Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Germany
| |
Collapse
|
65
|
Targeting the TLR4/NF-κΒ Axis and NLRP1/3 Inflammasomes by Rosuvastatin: A Role in Impeding Ovariectomy-Induced Cognitive Decline Neuropathology in Rats. Mol Neurobiol 2022; 59:4562-4577. [PMID: 35578102 DOI: 10.1007/s12035-022-02852-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/25/2022] [Indexed: 01/29/2023]
Abstract
Postmenopausal hormone-related cognitive decline has gained an immense interest to explore the underlying mechanisms and potential therapies. The current work aimed to study the possible beneficial effect of rosuvastatin (ROS) on the cognitive decline induced by ovariectomy in rats. Four groups were used as follows: control group, control + rosuvastatin, ovariectomy, and ovariectomy + rosuvastatin. After sham operation or ovariectomy, rats were given saline or oral dosages of ROS (2 mg/kg) every day for 30 days. The cognitive functions were assessed using the Morris water maze paradigm, Y-maze test, and new object recognition test. After rat killing, TLR4, caspase-8, and NLRP mRNA expression and protein levels of ASC, AIM2, caspase-1, NLRP1, and PKR were measured in hippocampus. This was complemented by the estimation of tissue content of NF-κΒ, IL-1β, and IL-18 and serum lipid profile quantification. Rosuvastatin showed a promising potential for halting the cognitive impairments induced by estrogen decline through interfering with the TLR4/NF-κΒ/NLRP1/3 axis and inflammasomes activation and the subsequent pyroptosis. This was complemented by the amendment in the deranged lipid profile. Rosuvastatin may exert a beneficial role in attenuating the inflammatory and apoptotic signaling mechanisms associated with postmenopausal cognitive decline. Further investigations are needed to unveil the relationship between deranged plasma lipids and cognitive function.
Collapse
|
66
|
Crawford SL. Contributions of oophorectomy and other gynecologic surgeries to cognitive decline and dementia. Menopause 2022; 29:499-501. [PMID: 35324541 DOI: 10.1097/gme.0000000000001991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sybil L Crawford
- UMass Chan Medical School, Tan Chingfen Graduate School of Nursing, Worcester, MA
| |
Collapse
|
67
|
Marazuela P, Paez-Montserrat B, Bonaterra-Pastra A, Solé M, Hernández-Guillamon M. Impact of Cerebral Amyloid Angiopathy in Two Transgenic Mouse Models of Cerebral β-Amyloidosis: A Neuropathological Study. Int J Mol Sci 2022; 23:ijms23094972. [PMID: 35563362 PMCID: PMC9103818 DOI: 10.3390/ijms23094972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
The pathological accumulation of parenchymal and vascular amyloid-beta (Aβ) are the main hallmarks of Alzheimer’s disease (AD) and Cerebral Amyloid Angiopathy (CAA), respectively. Emerging evidence raises an important contribution of vascular dysfunction in AD pathology that could partially explain the failure of anti-Aβ therapies in this field. Transgenic mice models of cerebral β-amyloidosis are essential to a better understanding of the mechanisms underlying amyloid accumulation in the cerebrovasculature and its interactions with neuritic plaque deposition. Here, our main objective was to evaluate the progression of both parenchymal and vascular deposition in APP23 and 5xFAD transgenic mice in relation to age and sex. We first showed a significant age-dependent accumulation of extracellular Aβ deposits in both transgenic models, with a greater increase in APP23 females. We confirmed that CAA pathology was more prominent in the APP23 mice, demonstrating a higher progression of Aβ-positive vessels with age, but not linked to sex, and detecting a pronounced burden of cerebral microbleeds (cMBs) by magnetic resonance imaging (MRI). In contrast, 5xFAD mice did not present CAA, as shown by the negligible Aβ presence in cerebral vessels and the occurrence of occasional cMBs comparable to WT mice. In conclusion, the APP23 mouse model is an interesting tool to study the overlap between vascular and parenchymal Aβ deposition and to evaluate future disease-modifying therapy before its translation to the clinic.
Collapse
|
68
|
Finding New Ways How to Control BACE1. J Membr Biol 2022; 255:293-318. [PMID: 35305135 DOI: 10.1007/s00232-022-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023]
Abstract
Recently, all applications of BACE1 inhibitors failed as therapeutical targets for Alzheimer´s disease (AD) due to severe side effects. Therefore, alternative ways for treatment development are a hot research topic. The present analysis investigates BACE1 protein-protein interaction networks and attempts to solve the absence of complete knowledge about pathways involving BACE1. A bioinformatics analysis matched the functions of the non-substrate interaction network with Voltage-gated potassium channels, which also appear as top priority protein nodes. Targeting BACE1 interactions with PS1 and GGA-s, blocking of BACE1 access to APP by BRI3 and RTN-s, activation of Wnt signaling and upregulation of β-catenin, and brain delivery of the extracellular domain of p75NTR, are the main alternatives to the use of BACE 1 inhibitors highlighted by the analysis. The pathway enrichment analysis also emphasized substrates and substrate candidates with essential biological functions, which cleavage must remain controlled. They include ephrin receptors, ROBO1, ROBO2, CNTN-s, CASPR-s, CD147, CypB, TTR, APLP1/APLP2, NRXN-s, and PTPR-s. The analysis of the interaction subnetwork of BACE1 functionally related to inflammation identified a connection to three cardiomyopathies, which supports the hypothesis of the common molecular mechanisms with AD. A lot of potential shows the regulation of BACE1 activity through post-translational modifications. The interaction network of BACE1 and its phosphorylation enzyme CSNK1D functionally match the Circadian clock, p53, and Hedgehog signaling pathways. The regulation of BACE1 glycosylation could be achieved through N-acetylglucosamine transferases, α-(1→6)-fucosyltransferase, β-galactoside α-(2→6)-sialyltransferases, galactosyltransferases, and mannosidases suggested by the interaction network analysis of BACE1-MGAT3. The present analysis proposes possibilities for the alternative control of AD pathology.
Collapse
|
69
|
Cervera-Juanes R, Darakjian P, Ball M, Kohama SG, Urbanski HF. Effects of estradiol supplementation on the brain transcriptome of old rhesus macaques maintained on an obesogenic diet. GeroScience 2022; 44:229-252. [PMID: 34642852 PMCID: PMC8810962 DOI: 10.1007/s11357-021-00453-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity, the cessation of ovarian steroids with menopause, and age are risk factors for mood disorders, dementia, and Alzheimer's disease (AD). However, immediate hormone therapy (HT) after menopause may have beneficial effects in different brain regions involved in memory and cognition. To more closely replicate the age, endocrine, and metabolic environment of obese postmenopausal women, either on or off HT, middle-aged female rhesus macaques were ovariectomized/hysterectomized (OvH) and maintained on a high-fat, high-sugar, obesogenic Western-style diet (WSD) for 30 months; half of the animals received HT immediately after OvH and half served as placebo controls. RNAseq of the occipital (OC) and prefrontal cortex (PFC), hippocampus (HIP), and amygdala (AMG) identified 293, 379, 505, and 4993 differentially expressed genes (DEGs), respectively. Pathway enrichment analysis identified an activation of neuroinflammation in OC and HIP, but an inhibition in the AMG with HT. Synaptogenesis, circadian rhythm, mitochondrial dysfunction, mTOR, glutamate, serotonin, GABA, dopamine, epinephrine/norepinephrine, glucocorticoid receptor signaling, neuronal NOS, and amyloid processing were exclusively enriched in AMG. As compared to the placebo control group, most of these signaling pathways are downregulated after HT, suggesting a protective effect of HT in OvH females under a WSD. Overall, our results suggest that a chronic obesogenic diet may induce a wide range of alterations in multiple signaling pathways that are linked to age-associated brain pathology and dementia. In these individuals, HT seems to have a protective effect against neuroinflammation, amyloid beta depositions, and tau tangle formation.
Collapse
Affiliation(s)
- Rita Cervera-Juanes
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA.
| | - Priscila Darakjian
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Megan Ball
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
70
|
Pang K, Jiang R, Zhang W, Yang Z, Li LL, Shimozawa M, Tambaro S, Mayer J, Zhang B, Li M, Wang J, Liu H, Yang A, Chen X, Liu J, Winblad B, Han H, Jiang T, Wang W, Nilsson P, Guo W, Lu B. An App knock-in rat model for Alzheimer's disease exhibiting Aβ and tau pathologies, neuronal death and cognitive impairments. Cell Res 2022; 32:157-175. [PMID: 34789895 PMCID: PMC8807612 DOI: 10.1038/s41422-021-00582-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
A major obstacle in Alzheimer's disease (AD) research is the lack of predictive and translatable animal models that reflect disease progression and drug efficacy. Transgenic mice overexpressing amyloid precursor protein (App) gene manifest non-physiological and ectopic expression of APP and its fragments in the brain, which is not observed in AD patients. The App knock-in mice circumvented some of these problems, but they do not exhibit tau pathology and neuronal death. We have generated a rat model, with three familiar App mutations and humanized Aβ sequence knocked into the rat App gene. Without altering the levels of full-length APP and other APP fragments, this model exhibits pathologies and disease progression resembling those in human patients: deposit of Aβ plaques in relevant brain regions, microglia activation and gliosis, progressive synaptic degeneration and AD-relevant cognitive deficits. Interestingly, we have observed tau pathology, neuronal apoptosis and necroptosis and brain atrophy, phenotypes rarely seen in other APP models. This App knock-in rat model may serve as a useful tool for AD research, identifying new drug targets and biomarkers, and testing therapeutics.
Collapse
Affiliation(s)
- Keliang Pang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Richeng Jiang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, and Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lin-Lin Li
- Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, School of Future Technology, University of CAS, and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Makoto Shimozawa
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Mayer
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Man Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, and Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, and Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Liu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ailing Yang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xi Chen
- Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, School of Future Technology, University of CAS, and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiazheng Liu
- Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, School of Future Technology, University of CAS, and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Hua Han
- Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, School of Future Technology, University of CAS, and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, and Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China.
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China.
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
71
|
Nácul AP, Rezende GP, Gomes DAY, Maranhão T, Costa LOBF, Reis FMD, Maciel GAR, Damásio LCVDC, Rosa E Silva ACJDS, Lopes VM, Baracat MC, Soares GM, Soares JM, Benetti-Pinto CL. Use of androgens at different stages of life: climacterium. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRICIA : REVISTA DA FEDERACAO BRASILEIRA DAS SOCIEDADES DE GINECOLOGIA E OBSTETRICIA 2022; 44:83-88. [PMID: 35092963 PMCID: PMC9948071 DOI: 10.1055/s-0041-1740936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrea Prestes Nácul
- Unidade de Reprodução Humana, Hospital Fêmina, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | | | | | - Técia Maranhão
- Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | | | | | | | | | | - José Maria Soares
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
72
|
SARS-CoV-2 Exacerbates Beta-Amyloid Neurotoxicity, Inflammation and Oxidative Stress in Alzheimer's Disease Patients. Int J Mol Sci 2021; 22:ijms222413603. [PMID: 34948400 PMCID: PMC8705864 DOI: 10.3390/ijms222413603] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the pandemic Coronavirus Disease 19 (COVID-19), causing millions of deaths. The elderly and those already living with comorbidity are likely to die after SARS-CoV-2 infection. People suffering from Alzheimer’s disease (AD) have a higher risk of becoming infected, because they cannot easily follow health roles. Additionally, those suffering from dementia have a 40% higher risk of dying from COVID-19. Herein, we collected from Gene Expression Omnibus repository the brain samples of AD patients who died of COVID-19 (AD+COVID-19), AD without COVID-19 (AD), COVID-19 without AD (COVID-19) and control individuals. We inspected the transcriptomic and interactomic profiles by comparing the COVID-19 cohort against the control cohort and the AD cohort against the AD+COVID-19 cohort. SARS-CoV-2 in patients without AD mainly activated processes related to immune response and cell cycle. Conversely, 21 key nodes in the interactome are deregulated in AD. Interestingly, some of them are linked to beta-amyloid production and clearance. Thus, we inspected their role, along with their interactors, using the gene ontologies of the biological process that reveals their contribution in brain organization, immune response, oxidative stress and viral replication. We conclude that SARS-CoV-2 worsens the AD condition by increasing neurotoxicity, due to higher levels of beta-amyloid, inflammation and oxidative stress.
Collapse
|
73
|
Jameie SB, Pirasteh A, Naseri A, Jameie MS, Farhadi M, Babaee JF, Elyasi L. β-Amyloid Formation, Memory, and Learning Decline Following Long-term Ovariectomy and Its Inhibition by Systemic Administration of Apigenin and β-Estradiol. Basic Clin Neurosci 2021; 12:383-394. [PMID: 34917297 PMCID: PMC8666925 DOI: 10.32598/bcn.2021.2634.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction: The increasing cases of Alzheimer Disease (AD) has caused numerous problems. The risk of developing AD increases in menopausal women, too. Apigenin and β-estradiol are effective antioxidant and neuroprotective agents. We conducted the present study to explore their combined effects on β-amyloid plaque formation, memory, and learning in ovariectomized rats. Methods: Forty-two Wistar rats were randomly assigned into 6 groups: 1) ovariectomized (OVX), 2) OVX + apigenin, 3) OVX + β-estradiol, 4) OVX + apigenin + β-estradiol, 5 &6) vehicle shams for E2 and API, and 7) surgical sham. Treatment was done with apigenin and β-estradiol. Then, we studied the formation of β-amyloid plaques, neuronal density in the hippocampus area, apoptosis, memory, and learning. Results: Findings showed the significant formation of β-amyloid plaques in the hippocampus of OVX animals and their memory impairment. Apigenin and β-estradiol significantly reduced the number of β-amyloid plaques, as well as the symptoms of memory impairment and learning, and decreased the expression of caspase-3 in treated animals. Conclusion: Accordingly, β-estradiol and apigenin could have more potent therapeutic effects on AD.
Collapse
Affiliation(s)
| | - Abbas Pirasteh
- Department of Psychology, Faculty of Humanities, Firoozabad Branch, Islamic Azad University, Fars, Iran
| | - Ali Naseri
- Department of Psychology, Faculty of Humanities, Firoozabad Branch, Islamic Azad University, Fars, Iran
| | - Melika Sadat Jameie
- Department of Anatomy, Faculty of Medicine, Shahid Behshti University of Medical Sciences, Tehran, Iran
| | - Mona Farhadi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Javad Fahanik Babaee
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Elyasi
- Department of Anatomy, Neuroscience Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
74
|
Erdemli-Köse SB, Yirün A, Balci-Özyurt A, Erkekoğlu P. Modification of the toxic effects of methylmercury and thimerosal by testosterone and estradiol in SH-SY5Y neuroblastoma cell line. J Appl Toxicol 2021; 42:981-994. [PMID: 34874569 DOI: 10.1002/jat.4269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/09/2022]
Abstract
Short-chained alkyl mercury compounds accumulate in particularly in the brain. Exposure to these compounds is associated with various neurotoxic effects. Gender-based differences are observed in neurodevelopmental disorders, and testosterone and estradiol may alter the toxic effect of the compounds. The present study aimed to investigate the toxic effects of methylmercury and thimerosal on SH-SY5Y cells in high testosterone/low estradiol and high estradiol/low testosterone containing cellular environment and estimate whether male and female brains react differently to the toxic effects of methylmercury and thimerosal. Study groups (n = 3) were designed as control: growth medium, thimerosal (T): 1.15-μM thimerosal, methylmercury (M): 2.93-μM methylmercury, high testosterone/low estradiol + thimerosal (TT): 1-μM testosterone + 0.75-μM estradiol + 1.15-μM thimerosal, high estradiol/low testosterone + thimerosal (ET): 0.1-μM testosterone + 7.5-μM estradiol + 1.15-μM thimerosal, high testosterone/low estradiol + methylmercury (TM): 1-μM testosterone + 0.75-μM estradiol + 2.93-μM methylmercury and high estradiol/low testosterone + methylmercury (EM): 0.1-μM testosterone + 7.5-μM estradiol + 2.93-μM methylmercury. While a significant decrease in glutathione levels was observed in M group, it was not seen in EM group. A significant increase in the protein carbonyl levels was detected in T group. A similar increase was observed in the TM and TT groups in which testosterone was dominant. It was determined that methylmercury, but not thimerosal, caused significant DNA damage and in TT group. The results showed that both thimerosal and methylmercury are toxic on SH-SY5Y cells and toxic effects of methylmercury are more severe than thimerosal. It has been determined that testosterone and estradiol alter the toxic effects of thimerosal and methylmercury.
Collapse
Affiliation(s)
- Selinay Başak Erdemli-Köse
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey.,Faculty of Arts and Sciences, Department of Chemistry, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Anıl Yirün
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey.,Department of Pharmaceutical Toxicology, Çukurova University Faculty of Pharmacy, Adana, Turkey
| | - Aylin Balci-Özyurt
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey.,Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| |
Collapse
|
75
|
Plata-Bello J, Plata-Bello A, Pérez-Martín Y, López-Curtis D, Acosta-López S, Modroño C, Concepción-Massip T. Changes in resting-state measures of prostate cancer patients exposed to androgen deprivation therapy. Sci Rep 2021; 11:23350. [PMID: 34857811 PMCID: PMC8639725 DOI: 10.1038/s41598-021-02611-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of the present work is to describe the differences in rs-fMRI measures (Amplitude of low frequency fluctuations [ALFF], Regional Homogeneity [ReHo] and Functional Connectivity [FC]) between patients exposed to Androgen deprivation therapy (ADT) and a control group. Forty-nine ADT patients and fifteen PC-non-ADT patients (Controls) were included in the study. A neuropsychological evaluation and a resting-state fMRI was performed to evaluate differences in ALFF and ReHo. Region of interest (ROI) analysis was also performed. ROIs were selected among those whose androgen receptor expression (at RNA-level) was the highest. FC analysis was performed using the same ROIs. Higher ALFF in frontal regions and temporal regions was identified in Controls than in ADT patients. In the ROI analysis, higher activity for Controls than ADT patients was shown in the left inferior frontal gyrus and in the left precentral gyrus. Lower ALFF in the right hippocampus and the lateral geniculate nucleus of the right thalamus was identified for Controls than ADT patients. Higher ReHo was observed in Controls in the left parietal-occipital area. Finally, ADT patients presented an increase of FC in more regions than Controls. These differences may reflect an impairment in brain functioning in ADT users.
Collapse
Affiliation(s)
- Julio Plata-Bello
- Department of Neurosurgery, Hospital Universitario de Canarias, CP 38320, S/C de Tenerife, Spain.
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain.
- Neuroscience Department, Hospital Universitario de Canarias, Calle Ofra s/n La Cuesta, La Laguna, CP 38320, S/C de Tenerife, Spain.
| | - Ana Plata-Bello
- Department of Urology, Hospital Universitario de Canarias, CP 38320, S/C de Tenerife, Spain
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain
| | - Yaiza Pérez-Martín
- Department of Neurology, Hospital Universitario de Canarias, CP 38320, S/C de Tenerife, Spain
| | - David López-Curtis
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain
| | - Silvia Acosta-López
- Cognitive Neuroscience Research Group, University of La Laguna, S/C de Tenerife, Spain
| | - Cristián Modroño
- Department of Physiology, Faculty of Medicine, University of La Laguna, CP 38320, S/C de Tenerife, Spain
| | | |
Collapse
|
76
|
Marko KI, Simon JA. Androgen therapy for women after menopause. Best Pract Res Clin Endocrinol Metab 2021; 35:101592. [PMID: 34674962 DOI: 10.1016/j.beem.2021.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Androgens are essential hormones in women. Yet, androgen therapy is understudied and underutilized despite showing improvement in postmenopausal hypoactive sexual desire disorder (HSDD) and the genitourinary syndrome of menopause (GSM). Additionally, regulatory concerns have left a significant gap in commercially available testosterone preparations, formulated specifically for women, in most countries. This has led to off-label use of male formulations and compounded therapies which are under-regulated. Beyond HSDD and GSM, testosterone likely influences the brain, breast, cardiovascular and musculoskeletal systems. These effects are not well studied, and therefore it is difficult to counsel patients on testosterone therapy when used for these endpoints. Ultimately, further study is needed to elucidate these effects, create a fuller picture of the risks and benefits, and encourage product development specifically designed for women.
Collapse
Affiliation(s)
- Kathryn I Marko
- The George Washington University School of Medicine and Health Sciences, USA.
| | - James A Simon
- The George Washington University School of Medicine and Health Sciences, USA.
| |
Collapse
|
77
|
Nutrients, Cognitive Function, and Brain Aging: What We Have Learned from Dogs. Med Sci (Basel) 2021; 9:medsci9040072. [PMID: 34842769 PMCID: PMC8628994 DOI: 10.3390/medsci9040072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/13/2021] [Indexed: 12/29/2022] Open
Abstract
Due to a difference in genetics, environmental factors, and nutrition, just like in people, dogs age at different rates. Brain aging in people and dogs share similar morphological changes including irreversible cortical atrophy, cerebral amyloid angiopathy, and ventricular enlargement. Due to severe and irreversible brain atrophy, some aging dogs develop cognitive dysfunction syndrome (CDS), which is equivalent to dementia or Alzheimer’s disease (AD) in people. The risk factors and causes of CDS in dogs have not been fully investigated, but age, gender, oxidative stress, and deficiency of sex hormones appears to be associated with increased risk of accelerated brain aging and CDS in dogs. Both AD and CDS are incurable diseases at this moment, therefore more efforts should be focused on preventing or reducing brain atrophy and minimizing the risk of AD in people and CDS in dogs. Since brain atrophy leads to irreversible cognitive decline and dementia, an optimal nutritional solution should be able to not only enhance cognitive function during aging but also reduce irreversible brain atrophy. Up to now, only one nutritional intervention has demonstrated both cognition-enhancing benefits and atrophy-reducing benefits.
Collapse
|
78
|
An SSA, Shim KH, Kang S, Kim YK, Subedi L, Cho H, Hong SM, Tan MA, Jeon R, Chang KA, Kim SY. The potential anti-amyloidogenic candidate, SPA1413, for Alzheimer's disease. Br J Pharmacol 2021; 179:1033-1048. [PMID: 34610141 DOI: 10.1111/bph.15691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Recently, isoflavone derivatives have been shown to have neuroprotective effects against neurological disorders. For instance, genistein attenuated the neuroinflammation and amyloid-β accumulation in Alzheimer's disease animal models, suggesting the potential for use to prevent and treat Alzheimer's disease. EXPERIMENTAL APPROACH Here, 50 compounds, including isoflavone derivatives, were constructed and screened for the inhibitory effects on amyloid-β42 fibrilization and oligomerization using the high-throughput screening formats of thioflavin T assay and multimer detection system, respectively. The potential neuroprotective effect of t3-(4-hydroxyphenyl)-2H-chromen-7-ol (SPA1413), also known as dehydroequol, idronoxil or phenoxodiol, was evaluated in cells and in 5xFAD (B6SJL) transgenic mouse, a model of Alzheimer's disease. KEY RESULTS SPA1413 had a potent inhibitory action on both amyloid-β fibrilization and oligomerization. In the cellular assay, SPA1413 prevented amyloid-β-induced cytotoxicity and reduced neuroinflammation. Remarkably, the oral administration of SPA1413 ameliorated cognitive impairment, decreased amyloid-β plaques and activated microglia in the brain of 5xFAD (B6SJL) transgenic mouse. CONCLUSION AND IMPLICATIONS Our results strongly support the repurposing of SPA1413, which has already received fast-track status from the US Food and Drug Administration (FDA) for cancer treatment, for the treatment of Alzheimer's disease due to its potent anti-amyloidogenic and anti-neuroinflammatory actions.
Collapse
Affiliation(s)
- Seong Soo A An
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea.,Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea.,Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Young Kyo Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Lalita Subedi
- Department of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hyewon Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Seong-Min Hong
- Department of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Mario A Tan
- Department of Bionano Technology, Gachon University, Gyeonggi-do, Republic of Korea.,College of Science, University of Santo Tomas, Manila, Philippines
| | - Raok Jeon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea.,Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Sun Yeou Kim
- Department of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
79
|
Fast accurate quantification of salivary cortisol and cortisone in a large-scale clinical stress study by micro-UHPLC-ESI-MS/MS using a surrogate calibrant approach. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1182:122939. [PMID: 34547590 DOI: 10.1016/j.jchromb.2021.122939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022]
Abstract
Cortisol and cortisone are common markers for stress and thus preferentially analyzed in matrices that allow non-invasive sampling such as saliva. Though the major drawback of immunoassays is lack of specificity due to cross reactivities, they are still most commonly used for quantification of steroid hormones. To overcome such problems, sensitive methods based on liquid chromatography-mass spectrometry are becoming more and more accepted as the golden standard for steroid bioanalysis as they achieve accurate quantification at trace levels for multiple analytes in the same run. Along this line, the aim of this study was the development of a new microflow UHPLC-ESI-MS/MS method for the measurement of salivary cortisol and cortisone, which due to its microflow regime provides enhanced sensitivity and is more ecofriendly. The developed method implemented sample preparation by Solid-Phase Extraction (SPE) in a 96-well plate format. Data acquisitions were carried out in MRM (multiple reaction monitoring) mode. The quantitative determination of endogenous compounds in saliva remains a challenge since analyte-free matrix is lacking. Hence, a surrogate calibrant approach with cortisol-d4 andcortisone-13C3 was applied for the target compounds in the presented method. A number of factors were optimized and the method validated. The lower limit of quantitation (LLOQ) was 72 and 62 pg mL-1for cortisol and cortisone, respectively. Linear calibration was achieved in the range from 0.062 to 75.5 ng mL-1for cortisol-d4 and 0.072 to 44 ng mL-1forcortisone-13C3. The performance of the method was also evaluated via proficiency test for salivary cortisol. Finally, it was applied successfully to evaluate cortisol and cortisone concentrations in multiple batches in routine clinical stress study samples (4056 total injections with 1983 study samples). Moreover, the instrument performance (in particular retention time variability) within each batch, between different batches and lot-to-lot of 5 investigated capillary columns over time is described. The work documents that micro-UHPLC-ESI-MS/MS is suitable and robust enough to carry out a full clinical study with greater than 1000s of samples over an extended period if adequate internal standards can be used.
Collapse
|
80
|
Yanguas-Casás N, Torres C, Crespo-Castrillo A, Diaz-Pacheco S, Healy K, Stanton C, Chowen JA, Garcia-Segura LM, Arevalo MA, Cryan JF, de Ceballos ML. High-fat diet alters stress behavior, inflammatory parameters and gut microbiota in Tg APP mice in a sex-specific manner. Neurobiol Dis 2021; 159:105495. [PMID: 34478848 DOI: 10.1016/j.nbd.2021.105495] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long-term high-fat diet (HFD) consumption commonly leads to obesity, a major health concern of western societies and a risk factor for Alzheimer's disease (AD). Both conditions present glial activation and inflammation and show sex differences in their incidence, clinical manifestation, and disease course. HFD intake has an important impact on gut microbiota, the bacteria present in the gut, and microbiota dysbiosis is associated with inflammation and certain mental disorders such as anxiety. In this study, we have analyzed the effects of a prolonged (18 weeks, starting at 7 months of age) HFD on male and female mice, both wild type (WT) and TgAPP mice, a model for AD, investigating the behavioral profile, gut microbiota composition and inflammatory/phagocytosis-related gene expression in hippocampus. In the open-field test, no overt differences in motor activity were observed between male and female or WT and TgAPP mice on a low-fat diet (LFD). However, HFD induced anxiety, as judged by decreased motor activity and increased time in the margins in the open-field, and a trend towards increased immobility time in the tail suspension test, with increased defecation. Intriguingly, female TgAPP mice on HFD showed less immobility and defecation compared to female WT mice on HFD. HFD induced dysbiosis of gut microbiota, resulting in reduced microbiota diversity and abundance compared with LFD fed mice, with some significant differences due to sex and little effect of genotype. Gene expression of pro-inflammatory/phagocytic markers in the hippocampus were not different between male and female WT mice, and in TgAPP mice of both sexes, some cytokines (IL-6 and IFNγ) were higher than in WT mice on LFD, more so in female TgAPP (IL-6). HFD induced few alterations in mRNA expression of inflammatory/phagocytosis-related genes in male mice, whether WT (IL-1β, MHCII), or TgAPP (IL-6). However, in female TgAPP, altered gene expression returned towards control levels following prolonged HFD (IL-6, IL-12β, TNFα, CD36, IRAK4, PYRY6). In summary, we demonstrate that HFD induces anxiogenic symptoms, marked alterations in gut microbiota, and increased expression of inflammatory genes, except for female TgAPP that appear to be resistant to the diet effects. Lifestyle interventions should be introduced to prevent AD onset or exacerbation by reducing inflammation and its associated symptoms; however, our results suggest that the eventual goal of developing prevention and treatment strategies should take sex into consideration.
Collapse
Affiliation(s)
- Natalia Yanguas-Casás
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain; Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Madrid, Spain
| | - Cristina Torres
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Universitat Rovira i Virgili, Biochemistry and Biotechnology Department, 43007 Tarragona, Spain
| | | | | | - Kiera Healy
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Catherine Stanton
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, 28009 Madrid, Spain; Centre for Biomedical Network Research for Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; The Madrid Institute for the advanced study of Food (IMDEA de Alimentación), Madrid, Spain
| | - Luis M Garcia-Segura
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Angeles Arevalo
- Cajal Institute, CSIC, 28002 Madrid, Spain; Centre for Biomedical Network Research for Frailty and Healthy Ageing (CIBERFES) Instituto de Salud Carlos III, Madrid, Spain
| | - John F Cryan
- Dept Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
81
|
Paranjpe MD, Wang JK, Zhou Y. Sex, ApoE4 and Alzheimer's disease: rethinking drug discovery in the era of precision medicine. Neural Regen Res 2021; 16:1764-1765. [PMID: 33510067 PMCID: PMC8328780 DOI: 10.4103/1673-5374.306070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/05/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Manish D. Paranjpe
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Jason K Wang
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Yun Zhou
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
82
|
Buskbjerg CR, Amidi A, Agerbaek M, Gravholt CH, Hosseini SMH, Zachariae R. Cognitive changes and brain connectomes, endocrine status, and risk genotypes in testicular cancer patients-A prospective controlled study. Cancer Med 2021; 10:6249-6260. [PMID: 34390226 PMCID: PMC8446403 DOI: 10.1002/cam4.4165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Previous research has indicated cognitive decline (CD) among testicular cancer patients (TCPs), even in the absence of chemotherapy, but little is known about the underlying pathophysiology. The present study assessed changes in cognitive functions and structural brain connectomes in TCPs and explored the associations between cognitive changes and endocrine status and hypothesized risk genotypes. METHODS Thirty-eight newly orchiectomized TCPs and 21 healthy controls (HCs) comparable to TCPs in terms of age and years of education underwent neuropsychological testing, structural MRI, and a biological assessment at baseline and 6 months later. Cognitive change was assessed with a neuropsychological test battery and determined using a standardized regression-based approach, with substantial change defined as z-scores ≤-1.64 or ≥1.64. MRI scans and graph theory were used to evaluate changes in structural brain connectomes. The associations of cognitive changes with testosterone levels, androgen receptor gene (AR) CAG repeat length, and genotypes (APOE, COMT, and BDNF) were explored. RESULTS Compared with HCs, TCPs showed higher rates of substantial decline on processing speed and visuospatial ability and higher rates of substantial improvement on verbal recall and visuospatial learning (p < 0.05; OR = 8.15-15.84). Brain network analysis indicated bilateral thalamic changes in node degree in HCs, but not in TCPs (p < 0.01). In TCPs, higher baseline testosterone levels predicted decline in verbal memory (p < 0.05). No effects were found for AR CAG repeat length, APOE, COMT, or BDNF. CONCLUSIONS The present study confirms previous findings of domain-specific CD in TCPs following orchiectomy, but also points to domain-specific improvements. The results do not indicate changes in brain connectomes or endocrine status to be the main drivers of CD. Further studies evaluating the mechanisms underlying CD in TCPs, including the possible role of the dynamics of the hypothalamic-pituitary-gonadal axis, are warranted.
Collapse
Affiliation(s)
- Cecilie R. Buskbjerg
- Unit for Psychooncology and Health PsychologyDepartment of Psychology and Behavioral SciencesAarhus UniversityAarhusDenmark
| | - Ali Amidi
- Unit for Psychooncology and Health PsychologyDepartment of Psychology and Behavioral SciencesAarhus UniversityAarhusDenmark
| | - Mads Agerbaek
- Department of OncologyAarhus University HospitalAarhusDenmark
| | - Claus H. Gravholt
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
- Department of Molecular MedicineAarhus University HospitalAarhusDenmark
| | - SM Hadi Hosseini
- Department of Psychiatry and Behavioral SciencesSchool of MedicineStanford UniversityStanfordCaliforniaUSA
| | - Robert Zachariae
- Unit for Psychooncology and Health PsychologyDepartment of Psychology and Behavioral SciencesAarhus UniversityAarhusDenmark
- Department of OncologyAarhus University HospitalAarhusDenmark
| |
Collapse
|
83
|
Cognitive impairment and associations with structural brain networks, endocrine status, and risk genotypes in newly orchiectomized testicular cancer patients. Brain Imaging Behav 2021; 16:199-210. [PMID: 34392471 DOI: 10.1007/s11682-021-00492-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 01/16/2023]
Abstract
A higher incidence of cognitive impairment (CI) has previously been reported among orchiectomized testicular cancer patients (TCPs), but little is known about the underlying pathophysiology. The present study assessed CI in newly orchiectomized TCPs and explored the structural brain networks, endocrine status, and selected genotypes. Forty TCPs and 22 healthy controls (HCs) underwent neuropsychological testing and magnetic resonance imaging, and provided a blood sample. CI was defined as a z-score ≤ -2 on one neuropsychological test or ≤ -1.5 on two neuropsychological tests, and structural brain networks were investigated using graph theory. Associations of cognitive performance with brain networks, endocrine status (including testosterone levels and androgen receptor CAG repeat length), and genotypes (APOE, BDNF, COMT) were explored. Compared with HCs, TCPs performed poorer on 6 out of 15 neuropsychological tests, of which three tests remained statistically significant when adjusted for relevant between-group differences (p < 0.05). TCPs also demonstrated more CI than HCs (65% vs. 36%; p = 0.04). While global brain network analysis revealed no between-group differences, regional analysis indicated differences in node degree and betweenness centrality in several regions (p < 0.05), which was inconsistently associated with cognitive performance. In TCPs, CAG repeat length was positively correlated with delayed memory performance (r = 0.36; p = 0.02). A COMT group × genotype interaction effect was found for overall cognitive performance in TCPs, with risk carriers performing worse (p = 0.01). No effects were found for APOE, BDNF, or testosterone levels. In conclusion, our results support previous findings of a high incidence of CI in newly orchiectomized TCPs and provide novel insights into possible mechanisms.
Collapse
|
84
|
Knight AC, Varlow C, Tong J, Vasdev N. In Vitro and In Vivo Evaluation of GSK-3 Radioligands in Alzheimer's Disease: Preliminary Evidence of Sex Differences. ACS Pharmacol Transl Sci 2021; 4:1287-1294. [PMID: 34423266 DOI: 10.1021/acsptsci.1c00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a positron emission tomography (PET) imaging target with implications in the pathogenesis of Alzheimer's disease (AD). This preliminary study evaluates human AD and transgenic P301L mouse brain tissues using the GSK-3-targeting radiotracers [3H]PF-367 and [3H]OCM-44 in radioligand binding assays. A saturation analysis showed decreased GSK-3 density in female human AD compared to a normal healthy brain. Equivalence in density (B max), affinity (K d), and apparent affinity (K i) of both radiotracers was demonstrated to enable their interchangeability for in vitro evaluations of GSK-3 expression. An evaluation of P301L mouse brain by [3H]/[11C]OCM-44 delineated differences in the B max of GSK-3 between the control and transgenic mice within male subjects. PET imaging showed similar trends to those observed in vitro. Sex differences are revealed as a potential parameter to consider in the development of GSK-3-targeted diagnostics and therapeutics and could guide recruitment for clinical studies.
Collapse
Affiliation(s)
- Ashley C Knight
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.,Institute of Medical Science & Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.,Institute of Medical Science & Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada.,Institute of Medical Science & Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
85
|
Gregori G, Celli A, Barnouin Y, Paudyal A, Armamento-Villareal R, Napoli N, Qualls C, Villareal DT. Cognitive response to testosterone replacement added to intensive lifestyle intervention in older men with obesity and hypogonadism: prespecified secondary analyses of a randomized clinical trial. Am J Clin Nutr 2021; 114:1590-1599. [PMID: 34375393 PMCID: PMC8588849 DOI: 10.1093/ajcn/nqab253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/09/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Both obesity and hypogonadism are common in older men which could additively exacerbate age-related declines in cognitive function. However, little is known about the effects of lifestyle intervention plus testosterone replacement therapy in this population. OBJECTIVES In this secondary analysis of the LITROS (Lifestyle Intervention and Testosterone Replacement in Obese Seniors) trial, we examined whether testosterone replacement therapy would improve cognitive function when added to intensive lifestyle intervention in older men with obesity and hypogonadism. METHODS Eighty-three older, obese hypogonadal men with frailty were randomly assigned to lifestyle therapy (weight management and exercise training) plus testosterone (LT + Test) or lifestyle therapy plus placebo (LT + Pbo) for 6 mo. For this report, the primary outcome was change in the global cognition composite z score. Secondary outcomes included changes in z score subcomponents: attention/information processing, memory, executive function, and language. Changes between groups were analyzed using mixed-model repeated-measures ANCOVAs following the intention-to-treat principle. RESULTS Global cognition z score increased more in the LT + Test than in the LT + Pbo group (mean change: 0.49 compared with 0.21; between-group difference: -0.28; 95% CI: -0.45, -0.11; Cohen's d = 0.74). Moreover, attention/information z score and memory z score increased more in the LT + Test than in the LT + Pbo group (mean change: 0.55 compared with 0.23; between-group difference: -0.32; 95% CI: -0.55, -0.09; Cohen's d = 0.49 and mean change: 0.90 compared with 0.37; between-group difference: -0.53; 95% CI: -0.93, -0.13; Cohen's d = 1.43, respectively). Multiple regression analyses showed that changes in peak oxygen consumption, strength, total testosterone, and luteinizing hormone were independent predictors of the improvement in global cognition (R2 = 0.38; P < 0.001). CONCLUSIONS These findings suggest that in the high-risk population of older men with obesity and hypogonadism, testosterone replacement may improve cognitive function with lifestyle behaviors controlled via lifestyle intervention therapy.This trial was registered at clinicaltrials.gov as NCT02367105.
Collapse
Affiliation(s)
- Giulia Gregori
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, TX, USA,Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Alessandra Celli
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, TX, USA,Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Yoann Barnouin
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, TX, USA,Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Arjun Paudyal
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, TX, USA,Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Reina Armamento-Villareal
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, TX, USA,Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Nicola Napoli
- Division of Endocrinology and Metabolism, Washington University School of Medicine, St Louis, MO, USA
| | - Clifford Qualls
- Department of Mathematics and Statistics, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | |
Collapse
|
86
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
87
|
Bianchi VE, Bresciani E, Meanti R, Rizzi L, Omeljaniuk RJ, Torsello A. The role of androgens in women's health and wellbeing. Pharmacol Res 2021; 171:105758. [PMID: 34242799 DOI: 10.1016/j.phrs.2021.105758] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022]
Abstract
Androgens in women, as well as in men, are intrinsic to maintenance of (i) reproductive competency, (ii) cardiac health, (iii) appropriate bone remodeling and mass retention, (iii) muscle tone and mass, and (iv) brain function, in part, through their mitigation of neurodegenerative disease effects. In recognition of the pluripotency of endogenous androgens, exogenous androgens, and selected congeners, have been prescribed off-label for several decades to treat low libido and sexual dysfunction in menopausal women, as well as, to improve physical performance. However, long-term safety and efficacy of androgen administration has yet to be fully elucidated. Side effects often observed include (i) hirsutism, (ii) acne, (iii) deepening of the voice, and (iv) weight gain but are associated most frequently with supra-physiological doses. By contrast, short-term clinical trials suggest that the use of low-dose testosterone therapy in women appears to be effective, safe and economical. There are, however, few clinical studies, which have focused on effects of androgen therapy on pre- and post-menopausal women; moreover, androgen mechanisms of action have not yet been thoroughly explained in these subjects. This review considers clinical effects of androgens on women's health in order to prevent chronic diseases and reduce cancer risk in gynecological tissues.
Collapse
Affiliation(s)
- Vittorio E Bianchi
- Endocrinology and Metabolism, Clinical Center Stella Maris, Strada Rovereta 42, Falciano 47891, San Marino.
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Robert J Omeljaniuk
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| |
Collapse
|
88
|
Qi X, Nizamutdinov D, Berman MH, Dougal G, Chazot PL, Wu E, Stevens AB, Yi SS, Huang JH. Gender Differences of Dementia in Response to Intensive Self-Administered Transcranial and Intraocular Near-Infrared Stimulation. Cureus 2021; 13:e16188. [PMID: 34262831 PMCID: PMC8260213 DOI: 10.7759/cureus.16188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background Transcranial near-infrared (tNIR) stimulation was proven to be a safe, reliable, and effective treatment for cognitive and behavioral symptoms of dementia. Dementia patients of different genders differ in terms of gross anatomy, biochemistry, genetic profile, clinical presentations, and socio-psychological status. Studies of the tNIR effect on dementia have thus far been gender-neutral, with dementia subjects being grouped based on diagnoses or dementia severity. This trial hereby investigated how dementia subjects of different sex respond to tNIR treatment. Methods A total of 60 patient-caregiver dyads were enrolled and randomized to this double-blind, sham-controlled clinical trial. The tNIR light has a wavelength of 1,060 nm to 1,080 nm and was delivered via a photobiomodulation (PBM) unit. The active PBM unit emits near-infrared (NIR) light while the sham unit does not. The treatment consists of a six-minute tNIR light stimulation session twice daily for eight weeks. Neuropsychological assessments conducted at baseline (week 0) and endline (week 8) were compared within the female and male group and between different sex, respectively. Results Over the course of treatment, active-arm female subjects had a 20.2% improvement in Mini‐Mental State Exam (MMSE) (mean 4.8 points increase, p < 0.001) and active-arm male cohort had 19.3% improvement (p < 0.001). Control-arm female subjects had a 6.5% improvement in MMSE (mean 1.5 points increase, p < 0.03) and control-arm male subjects had 5.9% improvement (p = 0.35) with no significant differences in the mean MMSE between female and male subjects in both arms respectively. Other comparison of assessments including Clock Copying and Drawing Test, Logical Memory Test - immediate and delayed recall yielded nominal but not statistically significant differences. No significant differences were observed in the mean MMSE between female and male subjects in both arms respectively before treatment implementation (active arm, p = 0.12; control arm, p = 0.50) at week 0, or after treatment completion (active arm, p = 0.11; control arm, p = 0.74) at week 8. Conclusion Despite differences between female and male dementia subjects, the response to tNIR light stimulation does not demonstrate gender-based differences. Further studies are warranted to refine the tNIR treatment protocol for subjects suffering from dementia or dementia-related symptoms.
Collapse
Affiliation(s)
- Xiaoming Qi
- Neurosurgery, Baylor Scott & White Health, Temple, USA
| | | | | | - Gordon Dougal
- Chief Executive Officer, Maculume Limited, Spennymoor, GBR
| | | | - Erxi Wu
- Neurosurgery, Baylor Scott & White Health, Temple, USA
| | - Alan B Stevens
- Gerontology, Baylor Scott & White Health Research Institute, Temple, USA
| | - S Stephen Yi
- Oncology, The University of Texas at Austin, Dell Medical School, Austin, USA
| | - Jason H Huang
- Neurosurgery, Baylor Scott & White Medical Center, Temple, USA
| |
Collapse
|
89
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
90
|
Abd El-Fatah IM, Abdelrazek HMA, Ibrahim SM, Abdallah DM, El-Abhar HS. Dimethyl fumarate abridged tauo-/amyloidopathy in a D-Galactose/ovariectomy-induced Alzheimer's-like disease: Modulation of AMPK/SIRT-1, AKT/CREB/BDNF, AKT/GSK-3β, adiponectin/Adipo1R, and NF-κB/IL-1β/ROS trajectories. Neurochem Int 2021; 148:105082. [PMID: 34052296 DOI: 10.1016/j.neuint.2021.105082] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/30/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Since the role of estrogen in postmenauposal-associated dementia is still debatable, this issue urges the search for other medications. Dimethyl fumarate (DMF) is a drug used for the treatment of multiple sclerosis and has shown a neuroprotective effect against other neurodegenerative diseases. Accordingly, the present study aimed to evaluate the effect of DMF on an experimental model of Alzheimer disease (AD) using D-galactose (D-Gal) administered to ovariectomized (OVX) rats, resembling a postmenopausal dementia paradigm. Adult 18-month old female Wistar rats were allocated into sham-operated and OVX/D-Gal groups that were either left untreated or treated with DMF for 56 days starting three weeks after sham-operation or ovariectomy. DMF succeeded to ameliorate cognitive (learning/short- and long-term memory) deficits and to enhance the dampened overall activity (NOR, Barnes-/Y-maze tests). These behavioral upturns were associated with increased intact neurons (Nissl stain) and a reduction in OVX/D-Gal-mediated hippocampal CA1 neurodegeneration and astrocyte activation assessed as GFAP immunoreactivity. Mechanistically, DMF suppressed the hippocampal contents of AD-surrogate markers; viz., apolipoprotein (APO)-E1, BACE1, Aβ42, and hyperphosphorylated Tau. Additionally, DMF has augmented the neuroprotective parameters p-AKT, its downstream target CREB and BDNF. Besides, it activated AMPK, and enhanced SIRT-1, as well as antioxidant defenses (SOD, GSH). On the other hand, DMF inhibited the transcription factor NF-κB, IL-1β, adiponectin/adiponectin receptor type (AdipoR)1, GSK-3β, and MDA. Accordingly, in this postmenopausal AD model, DMF treatment by pursuing the adiponectin/AdipoR1, AMPK/SIRT-1, AKT/CREB/BDNF, AKT/GSK-3β, and APO-E1 quartet hampered the associated tauo-/amyloidopathy and NF-κB-mediated oxidative/inflammatory responses to advance insights into its anti-amnesic effect.
Collapse
Affiliation(s)
- Israa M Abd El-Fatah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str, 11562, Cairo, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Sherehan M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str, 11562, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str, 11562, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str, 11562, Cairo, Egypt
| |
Collapse
|
91
|
Feng Y, Tian X, Zhang M, Lou S. Treadmill Exercise Reverses the Change of Dendritic Morphology and Activates BNDF-mTOR Signaling Pathway in the Hippocampus and Cerebral Cortex of Ovariectomized Mice. J Mol Neurosci 2021; 71:1849-1862. [PMID: 34041687 DOI: 10.1007/s12031-021-01848-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
A decline of estrogen level leads to spatial learning and memory impairments, which mediated by hippocampus and cortex. Accumulating evidences demonstrated that aerobic exercise improved memory of postmenopausal women and ovariectomized (OVX) mice. However, the molecular mechanisms for this protection of exercise are not completely clear. Accordingly, the present study was designed to examine the effect of aerobic exercise on the dendritic morphology in the hippocampus and cerebral cortex, as well as the BNDF-mTOR signaling pathway of OVX mice. Adult female C57BL/6 mice were divided into four groups (n = 10/group): sham-operated (SHAM/CON), sham-operated with 8-week treadmill exercise (SHAM/EX), ovariectomized operated (OVX/CON), and ovariectomized operated with exercise (OVX/EX). Aerobic exercise improved the impairment of dendritic morphology significantly induced by OVX that was tested by Golgi staining, and it also upregulated the synaptic plasticity-related protein expression of PSD95 and GluR1 as well as activated BDNF-mTOR signaling pathway in the hippocampus and cerebral cortex. In conclusion, aerobic exercise reversed the change of dendritic morphology and increased the synaptic plasticity-related protein expression in the hippocampus and cerebral cortex of OVX mice. The positive effects induced by exercise might be mediated through the BDNF-mTOR signaling pathway.
Collapse
Affiliation(s)
- Yu Feng
- Shanghai University of Sport, Kinesiology, Shanghai, China
| | - Xu Tian
- Shanghai University of Sport, Kinesiology, Shanghai, China
| | - Miao Zhang
- Shanghai University of Sport, Kinesiology, Shanghai, China
| | - Shujie Lou
- Shanghai University of Sport, Kinesiology, Shanghai, China.
| |
Collapse
|
92
|
Long SE, Kahn LG, Trasande L, Jacobson MH. Urinary phthalate metabolites and alternatives and serum sex steroid hormones among pre- and postmenopausal women from NHANES, 2013-16. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144560. [PMID: 33493905 PMCID: PMC7969426 DOI: 10.1016/j.scitotenv.2020.144560] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exposure to phthalates is ubiquitous across the United States. While phthalates have anti-androgenic effects in men, there is little research on their potential impacts on sex hormone concentrations in women and that also take into account menopausal status. METHODS Cross-sectional data on urinary phthalate metabolites, serum sex hormones, and relevant covariates were obtained from the National Health and Nutrition Examination Survey 2013-14 and 2015-16. Women over the age of 20 who were not pregnant or breastfeeding and had not undergone oophorectomy were included (n = 698 premenopausal, n = 557 postmenopausal). Weighted multivariable linear and Tobit regression models stratified by menopausal status were fit with natural log-transformed phthalate concentrations and sex hormone outcomes adjusting for relevant covariates. RESULTS Phthalate metabolites were associated with differences in sex hormone concentrations among postmenopausal women only. Di-2-ethylhexyl phthalate (DEHP) was associated with lower serum estradiol and bioavailable testosterone concentrations. Specifically, a doubling of DEHP concentrations was associated with 5.9% (95% Confidence Interval (CI): 0.2%, 11.3%) lower estradiol and 6.2% (95% CI: 0.0%, 12.1%) lower bioavailable testosterone concentrations. In contrast, 1,2-cyclohexane dicarboxylic acid di-isononyl ester (DINCH) was associated with higher free testosterone, bioavailable testosterone, and free androgen index. Finally, di-2-ethylhexyl terephthalate (DEHTP) was associated with a higher testosterone-to-estradiol ratio. None of these results retained statistical significance when adjusted for multiple comparisons. CONCLUSIONS DEHP, DINCH, and DEHTP were associated with differences in serum sex hormone concentrations among postmenopausal women, highlighting the need for further research into the safety of these chemicals.
Collapse
Affiliation(s)
- Sara E Long
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY, USA
| | - Linda G Kahn
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY, USA
| | - Leonardo Trasande
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY, USA; Departments of Population Health and Environmental Medicine, NYU Langone Medical Center, New York, NY, USA; NYU Wagner School of Public Service, New York, NY, USA; NYU College of Global Public Health, New York, NY, USA
| | - Melanie H Jacobson
- Department of Pediatrics, Division of Environmental Pediatrics, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
93
|
Pentkowski NS, Rogge-Obando KK, Donaldson TN, Bouquin SJ, Clark BJ. Anxiety and Alzheimer's disease: Behavioral analysis and neural basis in rodent models of Alzheimer's-related neuropathology. Neurosci Biobehav Rev 2021; 127:647-658. [PMID: 33979573 DOI: 10.1016/j.neubiorev.2021.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) pathology is commonly associated with cognitive decline but is also composed of neuropsychiatric symptoms including psychological distress and alterations in mood, including anxiety and depression. Emotional dysfunction in AD is frequently modeled using tests of anxiety-like behavior in transgenic rodents. These tests often include the elevated plus-maze, light/dark test and open field test. In this review, we describe prototypical behavioral paradigms used to examine emotional dysfunction in transgenic models of AD, specifically anxiety-like behavior. Next, we summarize the results of studies examining anxiety-like behavior in transgenic rodents, noting that the behavioral outcomes using these paradigms have produced inconsistent results. We suggest that future research will benefit from using a battery of tests to examine emotional behavior in transgenic AD models. We conclude by discussing putative, overlapping neurobiological mechanisms underlying AD-related neuropathology, stress and anxiety-like behavior reported in AD models.
Collapse
Affiliation(s)
- Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| | | | - Tia N Donaldson
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Samuel J Bouquin
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| |
Collapse
|
94
|
Tan S, Porter T, Bucks RS, Weinborn M, Milicic L, Brown A, Rainey-Smith SR, Taddei K, Ames D, Masters CL, Maruff P, Savage G, Rowe CC, Villemagne VL, Brown B, Sohrabi HR, Laws SM, Martins RN. Androgen receptor CAG repeat length as a moderator of the relationship between free testosterone levels and cognition. Horm Behav 2021; 131:104966. [PMID: 33714752 DOI: 10.1016/j.yhbeh.2021.104966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022]
Abstract
Age-related decrease in testosterone levels is a potential risk factor for cognitive decline in older men. However, observational studies and clinical trials have reported inconsistent results on the effects of testosterone on individual cognitive domains. Null findings may be attributed to factors that studies have yet to consider. In particular, individual variations in polyglutamine (CAG) length in the androgen receptor (AR) gene could alter androgenic activity in brain regions associated with cognitive processes including memory and executive functions. However, the role of AR CAG repeat length as a moderator of the relationship between testosterone levels and cognition has not been investigated. Therefore, we aimed to examine the relationship between baseline calculated free testosterone (cFT) levels, change in cFT levels over 18 months and CAG repeat length on cognitive performance in memory, executive function, language, attention and processing speed domains. These relationships were examined in 304 cognitively normal older male participants of the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Ageing. In the attention and processing speed domain, a short CAG repeat length appears to exacerbate the effects of low baseline cFT levels that are also lower than expected at follow-up. These results highlight that individual variations in AR CAG repeat length should be considered in future studies and clinical trials that examine the complex relationship between testosterone and cognition.
Collapse
Affiliation(s)
- Sherilyn Tan
- Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; School of Psychological Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Tenielle Porter
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia; School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Romola S Bucks
- School of Psychological Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Michael Weinborn
- Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; School of Psychological Science, University of Western Australia, Nedlands, Western Australia, Australia
| | - Lidija Milicic
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Ailsa Brown
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Stephanie R Rainey-Smith
- Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; School of Psychological Science, University of Western Australia, Nedlands, Western Australia, Australia; Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kevin Taddei
- Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - David Ames
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Academic Unit for Psychiatry of Old Age, Parkville, Victoria, Australia; National Ageing Research Institute (NARI), Parkville, Victoria, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Cooperative Research Centre for Mental Health, Carlton, Victoria, Australia
| | - Paul Maruff
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; CogState Ltd, Melbourne, Victoria, Australia
| | - Greg Savage
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie University, Sydney, New South Wales, Australia
| | - Christopher C Rowe
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Nuclear Medicine & Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Victor L Villemagne
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Nuclear Medicine & Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Belinda Brown
- Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia; Centre for Healthy Ageing, College of Science, Health, Engineering and Education (SHEE), Murdoch University, Murdoch, Western Australia, Australia
| | - Hamid R Sohrabi
- Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Centre for Healthy Ageing, College of Science, Health, Engineering and Education (SHEE), Murdoch University, Murdoch, Western Australia, Australia; Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie University, Sydney, New South Wales, Australia.
| | - Simon M Laws
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia; School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia.
| | - Ralph N Martins
- Australian Alzheimer's Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia; Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Cooperative Research Centre for Mental Health, Carlton, Victoria, Australia; Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie University, Sydney, New South Wales, Australia.
| | | |
Collapse
|
95
|
Means JC, Lopez AA, Koulen P. Estrogen Protects Optic Nerve Head Astrocytes Against Oxidative Stress by Preventing Caspase-3 Activation, Tau Dephosphorylation at Ser 422 and the Formation of Tau Protein Aggregates. Cell Mol Neurobiol 2021; 41:449-458. [PMID: 32385548 PMCID: PMC7648721 DOI: 10.1007/s10571-020-00859-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Glaucoma is a neurodegenerative disorder that leads to the slow degeneration of retinal ganglion cells, and results in damage to the optic nerve and concomitant vision loss. As in other disorders affecting the viability of central nervous system neurons, neurons affected by glaucoma do not have the ability to regenerate after injury. Recent studies indicate a critical role for optic nerve head astrocytes (ONHAs) in this process of retinal ganglion cell degeneration. Cleavage of tau, a microtubule stabilizing protein and constituent of neurofibrillary tangles (NFT), plays a major part in the mechanisms that lead to toxicity in CNS neurons and astrocytes. Here, we tested the hypothesis that estrogen, a pleiotropic neuro- and cytoprotectant with high efficacy in the CNS, prevents tau cleavage, and hence, protects ONHAs against cell damage caused by oxidative stress. Our results indicate that estrogen prevents caspase-3 mediated tau cleavage, and thereby decreases the levels of the resulting form of proteolytically cleaved tau protein, which leads to a decrease in NFT formation, which requires proteolytically cleaved tau protein. Overall, our data propose that by stopping the reduction of estrogen levels involved with aging the sensitivity of the optic nerve to glaucomatous damage might be reduced. Furthermore, our data suggest that therapeutic use of estrogen may be beneficial in slowing or preventing the onset or severity of neurodegenerative diseases such as glaucoma and potentially also other degenerative diseases of the CNS through direct control of posttranslational modifications of tau protein.
Collapse
Affiliation(s)
- John C Means
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
| | - Adam A Lopez
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA
| | - Peter Koulen
- Department of Ophthalmology, School of Medicine, Vision Research Center, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO, 64108, USA.
- Department of Biomedical Sciences, School of Medicine, University of Missouri - Kansas City, 2411 Holmes St., Kansas City, MO, USA.
| |
Collapse
|
96
|
Hart LA, Hart BL. An Ancient Practice but a New Paradigm: Personal Choice for the Age to Spay or Neuter a Dog. Front Vet Sci 2021; 8:603257. [PMID: 33816584 PMCID: PMC8017224 DOI: 10.3389/fvets.2021.603257] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Extensive practice and knowledge of the methods and effects of castration of male livestock and even humans has been widespread since ancient times, but only a few decades ago did neutering (including spaying) become a routine part of canine husbandry. In the US, the 6-month neuter became standard practice. Only recently, however, have some of the consequences of this major physiological alteration become evident. As the data-based study on 35 breeds reveals, there are major breed differences associated with effects of neutering, especially with early neutering, including increased risks of joint disorders and some cancers. The study of mixed-breed dogs reveals that the risk of joint disorders is increased in the large dogs. Implications of breed-specific and sex-specific effects for age of neutering have prompted the consideration of a new paradigm with regard to this practice. This involves focusing on each individual dog when deciding upon the appropriate age of neutering to avoid increasing the risk of a joint disorder or cancer above that inherent for the breed. For many breeds, particularly the smaller dogs, no effects were found for the age of neutering on joint disorders and the cancers followed. In these cases, the caregiver has a wide range of choice for neutering without increasing the dog's risk for these diseases. In the future, additional research may reveal more about other increased risks for age-related cognitive dysfunction or elevated levels of luteinizing hormone caused by gonad removal, and lead to revised guidelines.
Collapse
Affiliation(s)
- Lynette A Hart
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Benjamin L Hart
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
97
|
Zhou Y, Xu B, Yu H, Zhao W, Song X, Liu Y, Wang K, Peacher N, Zhao X, Zhang HT. Biochanin A Attenuates Ovariectomy-Induced Cognition Deficit via Antioxidant Effects in Female Rats. Front Pharmacol 2021; 12:603316. [PMID: 33815102 PMCID: PMC8010695 DOI: 10.3389/fphar.2021.603316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Impairment of memory and cognition is one of the major symptoms in women with postmenopausal disorders due to estrogen deficiency, which accounts for the much higher prevalence of Alzheimer’s disease in females. Biochanin A (BCA), a natural phytoestrogen, has been reported to protect neurons against ischemic brain injury. However, the neuroprotective effects of BCA in the postmenopausal-like model of ovariectomized (OVX) rats remain to be investigated. Methods: All the rats except for the sham group underwent the resection of bilateral ovaries. Seven days after the OVX surgery, rats were randomly divided into six groups: sham, OVX, OVX + BCA (5 mg/kg), OVX + BCA (20 mg/kg), OVX + BCA (60 mg/kg), and OVX + estradiol (E2; 0.35 mg/kg), which were administrated daily by gavage for 12 weeks. Learning and memory were examined using the Morris water-maze test before the end of the experiment. Morphological changes of the rat hippocampus were observed by HE staining and electron microscopy. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in the hippocampus were measured. The effect of BCA on cell viability was measured in the presence of hydrogen peroxide (H2O2) using CCK8. Flow cytometry was used to measure neuronal apoptosis and reactive oxygen species (ROS) induced by H2O2. Expression of Bcl-2, Bax, and Caspase-3 was determined by Western blotting using hippocampal tissues and primary cultures of hippocampal neurons. Results: Chronic treatment with BCA mimicked the ability of E2 to reverse the deficit of learning and memory in the Morris water-maze test in OVX rats. BCA normalized OVX-induced morphological changes as revealed by HE staining and electron microscopy. In addition, BCA significantly decreased the levels of MDA, the biomarker of oxidative damage, and increased the activity of the intracellular antioxidant enzymes SOD and GSH-Px in OVX rats. Further, in primary cultures of hippocampal neurons, BCA reversed H2O2-induced decreases in cell viability and accumulation of ROS. Finally, BCA reversed OVX- or H2O2-induced increases in Bax and Caspase-3 and decreases in Bcl-2 in the hippocampus and primary cultures of hippocampal neurons. Conclusion: These results suggest that BCA improves memory through its neuroprotective properties in the brain under the circumstance of estrogen deficiency and can be used for treatment of memory loss in postmenopausal women.
Collapse
Affiliation(s)
- Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Bingbing Xu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Haiyang Yu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Wei Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Xinxin Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yan Liu
- The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Kainan Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Nikoli Peacher
- Departments of Neuroscience and Behavioral Medicine and Psychiatry, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Xiaomin Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine and Psychiatry, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
98
|
Bustamante-Barrientos FA, Méndez-Ruette M, Ortloff A, Luz-Crawford P, Rivera FJ, Figueroa CD, Molina L, Bátiz LF. The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Front Cell Neurosci 2021; 15:636176. [PMID: 33762910 PMCID: PMC7984366 DOI: 10.3389/fncel.2021.636176] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERβ) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen receptors are ubiquitously distributed, they can modulate cell proliferation, differentiation, and survival in several tissues and organs, including the central nervous system (CNS). Estrogens can exert neuroprotective roles by acting as anti-oxidants, promoting DNA repair, inducing the expression of growth factors, and modulating cerebral blood flow. Additionally, estrogen-dependent signaling pathways are involved in regulating the balance between proliferation and differentiation of neural stem/progenitor cells (NSPCs), thus influencing neurogenic processes. Since several estrogen-based therapies are used nowadays and estrogen-like molecules, including phytoestrogens and xenoestrogens, are omnipresent in our environment, estrogen-dependent changes in cell biology and tissue homeostasis have gained attention in human health and disease. This article provides a comprehensive literature review on the current knowledge of estrogen and estrogen-like molecules and their impact on cell survival and neurodegeneration, as well as their role in NSPCs proliferation/differentiation balance and neurogenesis.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Maxs Méndez-Ruette
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricia Luz-Crawford
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisco J Rivera
- Laboratory of Stem Cells and Neuroregeneration, Faculty of Medicine, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Carlos D Figueroa
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Luis Federico Bátiz
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
99
|
Zeydan B, Lowe VJ, Tosakulwong N, Lesnick TG, Senjem ML, Jack CR, Fields JA, James TT, Gleason CE, Dowling NM, Miller VM, Kantarci K. Sleep quality and cortical amyloid-β deposition in postmenopausal women of the Kronos early estrogen prevention study. Neuroreport 2021; 32:326-331. [PMID: 33470769 PMCID: PMC7878341 DOI: 10.1097/wnr.0000000000001592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hormone therapy improves sleep in menopausal women and recent data suggest that transdermal 17β-estradiol may reduce the accumulation of cortical amyloid-β. However, how menopausal hormone therapies modify the associations of amyloid-β accumulation with sleep quality is not known. In this study, associations of sleep quality with cortical amyloid-β deposition and cognitive function were assessed in a subset of women who had participated in the Kronos early estrogen prevention study. It was a randomized, placebo-controlled trial in which recently menopausal women (age, 42-58; 5-36 months past menopause) were randomized to (1) oral conjugated equine estrogen (n = 19); (2) transdermal 17β-estradiol (tE2, n = 21); (3) placebo pills and patch (n = 32) for 4 years. Global sleep quality score was calculated using Pittsburgh sleep quality index, cortical amyloid-β deposition was measured with Pittsburgh compound-B positron emission tomography standard uptake value ratio and cognitive function was assessed in four cognitive domains 3 years after completion of trial treatments. Lower global sleep quality score (i.e., better sleep quality) correlated with lower cortical Pittsburgh compound-B standard uptake value ratio only in the tE2 group (r = 0.45, P = 0.047). Better global sleep quality also correlated with higher visual attention and executive function scores in the tE2 group (r = -0.54, P = 0.02) and in the oral conjugated equine estrogen group (r = -0.65, P = 0.005). Menopausal hormone therapies may influence the effects of sleep on cognitive function, specifically, visual attention and executive function. There also appears to be a complex relationship between sleep, menopausal hormone therapies, cortical amyloid-β accumulation and cognitive function, and tE2 formulation may modify the relationship between sleep and amyloid-β accumulation.
Collapse
Affiliation(s)
- Burcu Zeydan
- Department of Radiology, Mayo Clinic Rochester MN
- Department of Neurology, Mayo Clinic Rochester MN
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic Rochester MN
| | | | | | - Matthew L. Senjem
- Department of Radiology, Mayo Clinic Rochester MN
- Department of Information Technology, Mayo Clinic Rochester MN
| | | | | | - Taryn T. James
- Division of Geriatrics, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Carey E. Gleason
- Division of Geriatrics, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI
- Geriatric Research, Education and Clinical Center, William S. Middleton Memorial, Veterans Hospital, Madison, WI
| | - N. Maritza Dowling
- Department of Acute & Chronic Care, School of Nursing, Department of Epidemiology & Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC
| | - Virginia M. Miller
- Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester MN
- Department of Surgery, Mayo Clinic Rochester MN
| | | |
Collapse
|
100
|
Davis SR. Use of Testosterone in Postmenopausal Women. Endocrinol Metab Clin North Am 2021; 50:113-124. [PMID: 33518180 DOI: 10.1016/j.ecl.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of testosterone in women and its potential as a therapeutic agent continue to attract controversy. The clinical trials of testosterone therapy for women primarily have focused on treatment of female sexual dysfunction, with the largest placebo-controlled studies being of transdermal testosterone in postmenopausal women. Based on the cumulative data from these studies, loss of sexual desire with associated personal distress currently is the only agreed-on indication for judicious testosterone supplementation for postmenopausal women. This article reviews the physiology of testosterone in women, summarizes the findings from observational studies and clinical trials, and considers indications for testosterone use.
Collapse
Affiliation(s)
- Susan R Davis
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, Victoria 3004, Australia.
| |
Collapse
|