51
|
Van Scyoc S, Farris AR, Roy M, Nunnery D. Nutrition Practitioner Perceptions of Nutrition Education with Pregnant Clients. JOURNAL OF NUTRITION EDUCATION AND BEHAVIOR 2021; 53:938-943. [PMID: 34538566 DOI: 10.1016/j.jneb.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Nutrition education during pregnancy is associated with improved maternal and fetal outcomes. This study explored nutrition practitioner perceptions of providing nutrition education to this population and examined gaps in current practices. METHODS North Carolina nutrition practitioners (n = 73) working with pregnant women were asked to complete a survey about their provision of nutrition services to pregnant clients. Data were analyzed for descriptive statistics. RESULTS Cost (91%) and lack of time to cook (83%) were perceived as the largest barriers for clients to making dietary changes. Topics most requested by clients paralleled those practitioners identified as needs: weight gain (69%), lactation (63%), and general nutrition information (57%). Pamphlets (97%), posters (66%), telehealth (42%), and texting (38%) were accepted education methods. CONCLUSIONS AND IMPLICATIONS Evidence-based education on weight, lactation, and general nutrition, using time and cost-efficient approaches, and embracing technology were desired by pregnant clients when receiving nutrition education from nutrition and other health care practitioners and may result in improved maternal and fetal outcomes.
Collapse
Affiliation(s)
- Sydney Van Scyoc
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC
| | - Alisha R Farris
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC.
| | - Manan Roy
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC
| | - Danielle Nunnery
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC
| |
Collapse
|
52
|
Jašarević E, Hill EM, Kane PJ, Rutt L, Gyles T, Folts L, Rock KD, Howard CD, Morrison KE, Ravel J, Bale TL. The composition of human vaginal microbiota transferred at birth affects offspring health in a mouse model. Nat Commun 2021; 12:6289. [PMID: 34725359 PMCID: PMC8560944 DOI: 10.1038/s41467-021-26634-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Newborns are colonized by maternal microbiota that is essential for offspring health and development. The composition of these pioneer communities exhibits individual differences, but the importance of this early-life heterogeneity to health outcomes is not understood. Here we validate a human microbiota-associated model in which fetal mice are cesarean delivered and gavaged with defined human vaginal microbial communities. This model replicates the inoculation that occurs during vaginal birth and reveals lasting effects on offspring metabolism, immunity, and the brain in a community-specific manner. This microbial effect is amplified by prior gestation in a maternal obesogenic or vaginal dysbiotic environment where placental and fetal ileum development are altered, and an augmented immune response increases rates of offspring mortality. Collectively, we describe a translationally relevant model to examine the defined role of specific human microbial communities on offspring health outcomes, and demonstrate that the prenatal environment dramatically shapes the postnatal response to inoculation.
Collapse
Affiliation(s)
- Eldin Jašarević
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Elizabeth M Hill
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Patrick J Kane
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lindsay Rutt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Trevonn Gyles
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lillian Folts
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kylie D Rock
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christopher D Howard
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kathleen E Morrison
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tracy L Bale
- Center for Epigenetic Research in Child Health and Brain Development, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
53
|
Christians JK. The Placenta's Role in Sexually Dimorphic Fetal Growth Strategies. Reprod Sci 2021; 29:1895-1907. [PMID: 34699045 DOI: 10.1007/s43032-021-00780-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022]
Abstract
Fetal sex affects the risk of pregnancy complications and the long-term effects of prenatal environment on health. Some have hypothesized that growth strategies differ between the sexes, whereby males prioritize growth whereas females are more responsive to their environment. This review evaluates the role of the placenta in such strategies, focusing on (1) mechanisms underlying sexual dimorphism in gene expression, (2) the nature and extent of sexual dimorphism in placental gene expression, (3) sexually dimorphic responses to nutrient supply, and (4) sexual dimorphism in morphology and histopathology. The sex chromosomes contribute to sex differences in placental gene expression, and fetal hormones may play a role later in development. Sexually dimorphic placental gene expression may contribute to differences in the prevalence of complications such as preeclampsia, although this link is not clear. Placental responses to nutrient supply frequently show sexual dimorphism, but there is no consistent pattern where one sex is more responsive. There are sex differences in the prevalence of placental histopathologies, and placental changes in pregnancy complications, but also many similarities. Overall, no clear patterns support the hypothesis that females are more responsive to the maternal environment, or that males prioritize growth. While male fetuses are at greater risk of a variety of complications, total prenatal mortality is higher in females, such that males exposed to early insults may be more likely to survive and be observed in studies of adverse outcomes. Going forward, robust statistical approaches to test for sex-dependent effects must be more widely adopted to reduce the incidence of spurious results.
Collapse
Affiliation(s)
- Julian K Christians
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada. .,British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada. .,Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, BC, Canada.
| |
Collapse
|
54
|
Yao Y, Cai X, Ye Y, Wang F, Chen F, Zheng C. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Front Immunol 2021; 12:708472. [PMID: 34691021 PMCID: PMC8529064 DOI: 10.3389/fimmu.2021.708472] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
From early life to adulthood, the microbiota play a crucial role in the health of the infant. The microbiota in early life are not only a key regulator of infant health but also associated with long-term health. Pregnancy to early life is the golden time for the establishment of the infant microbiota, which is affected by both environmental and genetic factors. Recently, there is an explosion of the studies on the role of microbiota in human diseases, but the application to disease or health is relatively limited because many aspects of human microbiota remain controversial, especially about the infant microbiota. Therefore, a critical and conclusive review is necessary to understand fully the relationship between the microbiota and the health of infant. In this article, we introduce in detail the role of microbiota in the infant from pregnancy to early life to long-term health. The main contents of this article include the relationship between the maternal microbiota and adverse pregnancy outcomes, the establishment of the neonatal microbiota during perinatal period and early life, the composition of the infant gut microbiota, the prediction of the microbiota for long-term health, and the future study directions of microbiota.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fengying Chen
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
55
|
Bozack AK, Colicino E, Just AC, Wright RO, Baccarelli AA, Wright RJ, Lee AG. Associations between infant sex and DNA methylation across umbilical cord blood, artery, and placenta samples. Epigenetics 2021; 17:1080-1097. [PMID: 34569420 PMCID: PMC9542631 DOI: 10.1080/15592294.2021.1985300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
DNA methylation (DNAm) is vulnerable to dysregulation by environmental exposures during epigenetic reprogramming that occurs in embryogenesis. Sexual dimorphism in environmentally induced DNAm dysregulation has been identified and therefore it is important to understand sex-specific DNAm patterns. DNAm at several autosomal sites has been consistently associated with sex in cord blood and placental foetal tissues. However, there is limited research comparing sex-specific DNAm across tissues, particularly differentially methylated regions (DMRs). This study leverages DNAm data measured using the Illumina HumanMethylation450 BeadChip in cord blood (N = 179), placenta (N = 229), and umbilical artery samples (N = 229) in the PRogramming of Intergenerational Stress Mechanisms (PRISM) cohort to identify autosomal DMRs and differentially methylated positions (DMPs). A replication analyses was conducted in an independent cohort (GEO Accession GSE129841). We identified 183, 257, and 419 DMRs and 2119, 2281, and 3405 DMPs (pBonferroni < 0.05) in cord blood, placenta, and artery samples, respectively. Thirty-nine DMRs overlapped in all three tissues, overlapping with genes involved in spermatogenesis (NKAPL, PIWIL2 and AURKC) and X-inactivation (LRIF1). In replication analysis, 85% of DMRs overlapped with those identified in PRISM. Overall, DMRs and DMPs had higher methylation levels among females in cord blood and artery samples, but higher methylation levels among males in placenta samples. Further research is necessary to understand biological mechanisms that contribute to differences in sex-specific DNAm signatures across tissues, as well as to determine if sexual dimorphism in the epigenome impacts response to environmental stressors.
Collapse
Affiliation(s)
- Anne K Bozack
- Division of Pulmonary Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Departments of Environmental Health Sciences and Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison G Lee
- Division of Pulmonary Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
56
|
Cerritelli F, Frasch MG, Antonelli MC, Viglione C, Vecchi S, Chiera M, Manzotti A. A Review on the Vagus Nerve and Autonomic Nervous System During Fetal Development: Searching for Critical Windows. Front Neurosci 2021; 15:721605. [PMID: 34616274 PMCID: PMC8488382 DOI: 10.3389/fnins.2021.721605] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
Abstract
The autonomic nervous system (ANS) is one of the main biological systems that regulates the body's physiology. Autonomic nervous system regulatory capacity begins before birth as the sympathetic and parasympathetic activity contributes significantly to the fetus' development. In particular, several studies have shown how vagus nerve is involved in many vital processes during fetal, perinatal, and postnatal life: from the regulation of inflammation through the anti-inflammatory cholinergic pathway, which may affect the functioning of each organ, to the production of hormones involved in bioenergetic metabolism. In addition, the vagus nerve has been recognized as the primary afferent pathway capable of transmitting information to the brain from every organ of the body. Therefore, this hypothesis paper aims to review the development of ANS during fetal and perinatal life, focusing particularly on the vagus nerve, to identify possible "critical windows" that could impact its maturation. These "critical windows" could help clinicians know when to monitor fetuses to effectively assess the developmental status of both ANS and specifically the vagus nerve. In addition, this paper will focus on which factors-i.e., fetal characteristics and behaviors, maternal lifestyle and pathologies, placental health and dysfunction, labor, incubator conditions, and drug exposure-may have an impact on the development of the vagus during the above-mentioned "critical window" and how. This analysis could help clinicians and stakeholders define precise guidelines for improving the management of fetuses and newborns, particularly to reduce the potential adverse environmental impacts on ANS development that may lead to persistent long-term consequences. Since the development of ANS and the vagus influence have been shown to be reflected in cardiac variability, this paper will rely in particular on studies using fetal heart rate variability (fHRV) to monitor the continued growth and health of both animal and human fetuses. In fact, fHRV is a non-invasive marker whose changes have been associated with ANS development, vagal modulation, systemic and neurological inflammatory reactions, and even fetal distress during labor.
Collapse
Affiliation(s)
- Francesco Cerritelli
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Martin G. Frasch
- Department of Obstetrics and Gynecology and Center on Human Development and Disability, University of Washington, Seattle, WA, United States
| | - Marta C. Antonelli
- Facultad de Medicina, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Universidad de Buenos Aires, Buenos Aires, Argentina
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Chiara Viglione
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Stefano Vecchi
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Marco Chiera
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Andrea Manzotti
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
- Department of Pediatrics, Division of Neonatology, “V. Buzzi” Children's Hospital, Azienda Socio-Sanitaria Territoriale Fatebenefratelli Sacco, Milan, Italy
- Research Department, Istituto Osteopatia Milano, Milan, Italy
| |
Collapse
|
57
|
Czamara D, Dieckmann L, Röh S, Kraemer S, Rancourt RC, Sammallahti S, Kajantie E, Laivuori H, Eriksson JG, Räikkönen K, Henrich W, Plagemann A, Binder EB, Braun T, Entringer S. Betamethasone administration during pregnancy is associated with placental epigenetic changes with implications for inflammation. Clin Epigenetics 2021; 13:165. [PMID: 34446099 PMCID: PMC8393766 DOI: 10.1186/s13148-021-01153-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Glucocorticoids (GCs) play a pivotal role in fetal programming. Antenatal treatment with synthetic GCs (sGCs) in individuals in danger of preterm labor is common practice. Adverse short- and long-term effects of antenatal sGCs have been reported, but their effects on placental epigenetic characteristics have never been systematically studied in humans. RESULTS We tested the association between exposure to the sGC betamethasone (BET) and placental DNA methylation (DNAm) in 52 exposed cases and 84 gestational-age-matched controls. We fine-mapped associated loci using targeted bisulfite sequencing. The association of placental DNAm with gene expression and co-expression analysis on implicated genes was performed in an independent cohort including 494 placentas. Exposure to BET was significantly associated with lower placenta DNAm at an enhancer of FKBP5. FKBP5 (FK506-binding protein 51) is a co-chaperone that modulates glucocorticoid receptor activity. Lower DNAm at this enhancer site was associated with higher expression of FKBP5 and a co-expressed gene module. This module is enriched for genes associated with preeclampsia and involved in inflammation and immune response. CONCLUSIONS Our findings suggest that BET exposure during pregnancy associates with few but lasting changes in placental DNAm and may promote a gene expression profile associated with placental dysfunction and increased inflammation. This may represent a pathway mediating GC-associated negative long-term consequences and health outcomes in offspring.
Collapse
Affiliation(s)
- Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, 80804 Munich, Germany
| | - Linda Dieckmann
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry, München, Germany
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, 80804 Munich, Germany
| | - Sarah Kraemer
- Institute of Medical Psychology, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Luisenstr. 57, 10117 Berlin, Germany
| | - Rebecca C. Rancourt
- Department of Experimental Obstetrics, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sara Sammallahti
- Department of Child and Adolescent Psychiatry, Erasmus MC, Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Eero Kajantie
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Faculty of Medicine, PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hannele Laivuori
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Johan G. Eriksson
- Department of General Practice and Primary Care, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Obstetrics and Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wolfgang Henrich
- Department of Obstetrics, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andreas Plagemann
- Department of Experimental Obstetrics, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Obstetrics, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329 USA
| | - Thorsten Braun
- Department of Experimental Obstetrics, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Obstetrics, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sonja Entringer
- Institute of Medical Psychology, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Luisenstr. 57, 10117 Berlin, Germany
- Development, Health, and Disease Research Program, University of California, Irvine, Orange, CA USA
| |
Collapse
|
58
|
Chan K, Li X. Current Epigenetic Insights in Kidney Development. Genes (Basel) 2021; 12:genes12081281. [PMID: 34440455 PMCID: PMC8391601 DOI: 10.3390/genes12081281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
The kidney is among the best characterized developing tissues, with the genes and signaling pathways that regulate embryonic and adult kidney patterning and development having been extensively identified. It is now widely understood that DNA methylation and histone modification patterns are imprinted during embryonic development and must be maintained in adult cells for appropriate gene transcription and phenotypic stability. A compelling question then is how these epigenetic mechanisms play a role in kidney development. In this review, we describe the major genes and pathways that have been linked to epigenetic mechanisms in kidney development. We also discuss recent applications of single-cell RNA sequencing (scRNA-seq) techniques in the study of kidney development. Additionally, we summarize the techniques of single-cell epigenomics, which can potentially be used to characterize epigenomes at single-cell resolution in embryonic and adult kidneys. The combination of scRNA-seq and single-cell epigenomics will help facilitate the further understanding of early cell lineage specification at the level of epigenetic modifications in embryonic and adult kidney development, which may also be used to investigate epigenetic mechanisms in kidney diseases.
Collapse
Affiliation(s)
- Katrina Chan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
| | - Xiaogang Li
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-266-0110
| |
Collapse
|
59
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
60
|
Breach MR, Dye CN, Joshi A, Platko S, Gilfarb RA, Krug AR, Franceschelli DV, Galan A, Dodson CM, Lenz KM. Maternal allergic inflammation in rats impacts the offspring perinatal neuroimmune milieu and the development of social play, locomotor behavior, and cognitive flexibility. Brain Behav Immun 2021; 95:269-286. [PMID: 33798637 PMCID: PMC8187275 DOI: 10.1016/j.bbi.2021.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/07/2023] Open
Abstract
Maternal systemic inflammation increases risk for neurodevelopmental disorders like autism, ADHD, and schizophrenia in offspring. Notably, these disorders are male-biased. Studies have implicated immune system dysfunction in the etiology of these disorders, and rodent models of maternal immune activation provide useful tools to examine mechanisms of sex-dependent effects on brain development, immunity, and behavior. Here, we employed an allergen-induced model of maternal inflammation in rats to characterize levels of mast cells and microglia in the perinatal period in male and female offspring, as well as social, emotional, and cognitive behaviors throughout the lifespan. Adult female rats were sensitized to ovalbumin (OVA), bred, and challenged intranasally on gestational day 15 of pregnancy with OVA or saline. Allergic inflammation upregulated microglia in the fetal brain, increased mast cell number in the hippocampus on the day of birth, and conferred region-, time- and sex- specific changes in microglia measures. Additionally, offspring of OVA-exposed mothers subsequently exhibited abnormal social behavior, hyperlocomotion, and reduced cognitive flexibility. These data demonstrate the long-term effects of maternal allergic challenge on offspring development and provide a basis for understanding neurodevelopmental disorders linked to maternal systemic inflammation in humans.
Collapse
Affiliation(s)
- Michaela R. Breach
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Courtney N. Dye
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Aarohi Joshi
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Steven Platko
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Rachel A. Gilfarb
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Annemarie R. Krug
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Claire M. Dodson
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Kathryn M. Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
61
|
Disruption of O-Linked N-Acetylglucosamine Signaling in Placenta Induces Insulin Sensitivity in Female Offspring. Int J Mol Sci 2021; 22:ijms22136918. [PMID: 34203166 PMCID: PMC8267851 DOI: 10.3390/ijms22136918] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022] Open
Abstract
Placental dysfunction can lead to fetal growth restriction which is associated with perinatal morbidity and mortality. Fetal growth restriction increases the risk of obesity and diabetes later in life. Placental O-GlcNAc transferase (OGT) has been identified as a marker and a mediator of placental insufficiency in the setting of prenatal stress, however, its role in the fetal programming of metabolism and glucose homeostasis remains unknown. We aim to determine the long-term metabolic outcomes of offspring with a reduction in placental OGT. Mice with a partial reduction and a full knockout of placenta-specific OGT were generated utilizing the Cre-Lox system. Glucose homeostasis and metabolic parameters were assessed on a normal chow and a high-fat diet in both male and female adult offspring. A reduction in placental OGT did not demonstrate differences in the metabolic parameters or glucose homeostasis compared to the controls on a standard chow. The high-fat diet provided a metabolic challenge that revealed a decrease in body weight gain (p = 0.02) and an improved insulin tolerance (p = 0.03) for offspring with a partially reduced placental OGT but not when OGT was fully knocked out. Changes in body weight were not associated with changes in energy homeostasis. Offspring with a partial reduction in placental OGT demonstrated increased hepatic Akt phosphorylation in response to insulin treatment (p = 0.02). A partial reduction in placental OGT was protective from weight gain and insulin intolerance when faced with the metabolic challenge of a high-fat diet. This appears to be, in part, due to increased hepatic insulin signaling. The findings of this study contribute to the greater understanding of fetal metabolic programming and the effect of placental OGT on peripheral insulin sensitivity and provides a target for future investigation and clinical applications.
Collapse
|
62
|
Bermudez LG, Madariaga I, Zuñiga MI, Olaya M, Cañas A, Rodriguez LS, Moreno OM, Rojas A. RUNX1 gene expression changes in the placentas of women smokers. Exp Ther Med 2021; 22:902. [PMID: 34257715 PMCID: PMC8243315 DOI: 10.3892/etm.2021.10334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/21/2021] [Indexed: 11/28/2022] Open
Abstract
The placenta can be affected by environmental factors, such as exposure to cigarette smoke. This exposure in the fetal context is considered a risk factor for the development of short-term postnatal diseases, such as asthma. Asthma is an inflammatory disease characterized by predominant acquisition of CD4 T lymphocytes (TLs) of the Th2 type. Transcription factors such as GATA binding protein 3 (GATA3) and STAT6 actively participate in the differentiation of virgin TLs towards the Th2 profile, while transcription factors such as STAT1, T-Box transcription factor 21 (T-BET), RUNX1 and RUNX3 participate in their differentiation towards the Th1 profile. The objective of the current study was to evaluate the impact of exposure to cigarette smoke on the gene expression of STAT1, T-BET, GATA3, IL-4, RUNX1 and RUNX3 during the gestation period, and to determine whether the expression levels of these genes are associated with changes in global methylation. STAT1, GATA3, RUNX1 and RUNX3 protein and mRNA expression levels in the placental tissue of women smokers and non-smoking women were determined via immunohistochemistry and quantitative PCR (qPCR) respectively. Additionally, T-BET and IL-4 mRNA expression levels were determined by qPCR. On the other hand, global methylation was determined via ELISA. In the present study, significant increases were observed in RUNX1 transcription factor expression in placentas from women smokers when compared with placentas of non-smoking women. Similarly, significant increases in the expression of GATA3, IL-4 and RUNX3 mRNA were observed. The changes in gene expression were not associated with changes in the global methylation levels. Finally, a higher frequency of low-birth-weight infants were identified in cases of exposure to cigarette smoke during pregnancy when compared with infants not exposed to cigarette smoke during pregnancy. Thus, the data of the present study contributed to the understanding of the genetic and clinical impacts of exposure to cigarette smoke during pregnancy and its importance in maternal and fetal health.
Collapse
Affiliation(s)
- Litzy Gisella Bermudez
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ithzayana Madariaga
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Maria Isabel Zuñiga
- Department of Pathology, School of Medicine, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Mercedes Olaya
- Department of Pathology, School of Medicine, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Alejandra Cañas
- Department of Internal Medicine, School of Medicine, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Luz-Stella Rodriguez
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Olga Maria Moreno
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Adriana Rojas
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
63
|
Deegan DF, Nigam P, Engel N. Sexual Dimorphism of the Heart: Genetics, Epigenetics, and Development. Front Cardiovasc Med 2021; 8:668252. [PMID: 34124200 PMCID: PMC8189176 DOI: 10.3389/fcvm.2021.668252] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The democratization of genomic technologies has revealed profound sex biases in expression patterns in every adult tissue, even in organs with no conspicuous differences, such as the heart. With the increasing awareness of the disparities in cardiac pathophysiology between males and females, there are exciting opportunities to explore how sex differences in the heart are established developmentally. Although sexual dimorphism is traditionally attributed to hormonal influence, expression and epigenetic sex biases observed in early cardiac development can only be accounted for by the difference in sex chromosome composition, i.e., XX in females and XY in males. In fact, genes linked to the X and Y chromosomes, many of which encode regulatory factors, are expressed in cardiac progenitor cells and at every subsequent developmental stage. The effect of the sex chromosome composition may explain why many congenital heart defects originating before gonad formation exhibit sex biases in presentation, mortality, and morbidity. Some transcriptional and epigenetic sex biases established soon after fertilization persist in cardiac lineages, suggesting that early epigenetic events are perpetuated beyond early embryogenesis. Importantly, when sex hormones begin to circulate, they encounter a cardiac genome that is already functionally distinct between the sexes. Although there is a wealth of knowledge on the effects of sex hormones on cardiac function, we propose that sex chromosome-linked genes and their downstream targets also contribute to the differences between male and female hearts. Moreover, identifying how hormones influence sex chromosome effects, whether antagonistically or synergistically, will enhance our understanding of how sex disparities are established. We also explore the possibility that sexual dimorphism of the developing heart predicts sex-specific responses to environmental signals and foreshadows sex-biased health-related outcomes after birth.
Collapse
Affiliation(s)
| | | | - Nora Engel
- Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, Philadelphia, PA, United States
| |
Collapse
|
64
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
65
|
Zhang H, Li Z, Wang Y, Kong Y. O-GlcNAcylation is a key regulator of multiple cellular metabolic pathways. PeerJ 2021. [DOI: 10.7717/peerj.11443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
O-GlcNAcylation modifies proteins in serine or threonine residues in the nucleus, cytoplasm, and mitochondria. It regulates a variety of cellular biological processes and abnormal O-GlcNAcylation is associated with diabetes, cancer, cardiovascular disease, and neurodegenerative diseases. Recent evidence has suggested that O-GlcNAcylation acts as a nutrient sensor and signal integrator to regulate metabolic signaling, and that dysregulation of its metabolism may be an important indicator of pathogenesis in disease. Here, we review the literature focusing on O-GlcNAcylation regulation in major metabolic processes, such as glucose metabolism, mitochondrial oxidation, lipid metabolism, and amino acid metabolism. We discuss its role in physiological processes, such as cellular nutrient sensing and homeostasis maintenance. O-GlcNAcylation acts as a key regulator in multiple metabolic processes and pathways. Our review will provide a better understanding of how O-GlcNAcylation coordinates metabolism and integrates molecular networks.
Collapse
|
66
|
Lodefalk M, Allbrand M, Montgomery S. Duration of the pushing phase of labor is inversely associated with expression of TNF, IL6, IGF1 and IGF2 in human placenta. J Matern Fetal Neonatal Med 2021; 35:6476-6482. [PMID: 33910460 DOI: 10.1080/14767058.2021.1916459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Gene expression in placenta differs between vaginal and cesarean deliveries, but the influence of the duration of labor on placental gene expression is incompletely known. Our aim was to investigate associations between duration of labor and expression of some genes involved in growth or inflammation in human placental tissue. METHODS Placenta samples (n = 126) were collected after an uncomplicated, singleton pregnancy and term vaginal delivery at Örebro University Hospital, Sweden. Duration of labor was recorded by the midwife in the delivery room. The expression of the following genes was analyzed by RT-qPCR: tumor necrosis factor (TNF), interleukin-6 (IL6), C-X-C motif chemokine ligand 8, toll-like receptor (TLR) 2, TLR4, insulin receptor, insulin-like growth factor (IGF) 1, IGF2, leptin, hepatocyte growth factor (HGF) and HGF receptor (MET). Multivariable linear regression models were used for the evaluation of associations with labor duration adjusting for potential confounding factors. The Benjamini-Hoschberg method was used to correct for multiple testing. RESULTS The expression of TNF, IL6, IGF1 and IGF2 was inversely associated with the duration of the pushing phase of labor (B coefficients (95% confidence interval) = -0.150 (-0.277 to -0.023), -0.159 (-0.289 to -0.029), -0.099 (-0.176 to -0.021), and -0.081 (-0.145 to -0.017), respectively). CONCLUSIONS Longer duration of pushing is associated with downregulation of the expression of genes in placenta from vaginal deliveries. Future research on gene expression in labored placenta should take into account associations with labor duration and especially the pushing phase. Potential impact of these associations on the mother, the fetus and the new-born infant should also be explored.
Collapse
Affiliation(s)
- Maria Lodefalk
- Department of Pediatrics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marianne Allbrand
- Department of Women's Health, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Scott Montgomery
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden.,Clinical Epidemiology Division, Department of Medicine, Karolinska Institutet, Solna, Sweden.,Department of Epidemiology and Public Health, University College London, London, UK
| |
Collapse
|
67
|
Inhibition of mechanistic target of rapamycin signaling decreases levels of O-GlcNAc transferase and increases serotonin release in the human placenta. Clin Sci (Lond) 2021; 134:3123-3136. [PMID: 33215629 DOI: 10.1042/cs20201050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Changes in placental function, in particular down-regulation of placental O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) in response to maternal stress and increased placental secretion of serotonin into the fetal circulation following maternal infection, have been mechanistically linked to adverse neurodevelopment in mice. We hypothesized that mechanistic target of rapamycin (mTOR) signaling is a key regulator of trophoblast serotonin synthesis and OGT protein expression and that serotonin is secreted by the human placenta into the fetal circulation. Placental homogenates (n=46) from elective terminations at 8-22 weeks of gestation and from healthy-term women were sexed and the protein levels of OGT and enzymes involved in serotonin synthesis was determined. Primary human trophoblast (PHT) cells were isolated from normal term placenta (n=27), cultured and transfected (n=8) with siRNA targeting a scramble sequence (control), raptor (inhibits mTOR Complex 1 (mTORC1)), or rictor (inhibits mTOR Complex 2 (mTORC2)). Subsequently, conditioned media and PHT cell lysates were collected. Free serotonin concentration was measured using ELISA in cell culture media and in platelet-depleted normal term umbilical vein and artery plasma (n=38). Both mTORC1 and mTORC2 inhibition down-regulated OGT levels in PHT cells. The level of serotonin synthesis enzyme tryptophan hydroxylase (TPH-1) was higher in early gestation female placentas and at term serotonin concentration was three-fold higher in the umbilical vein than in the umbilical artery. Inhibition of mTORC2, but not mTORC1, increased cultured PHT cell serotonin secretion. Our data are consistent with the model that mTOR signaling is a key regulator of trophoblast serotonin synthesis and OGT protein expression.
Collapse
|
68
|
Słabuszewska-Jóźwiak A, Malinowska M, Kloska A, Jakóbkiewicz-Banecka J, Gujski M, Bojar I, Raczkiewicz D, Jakiel G. Global Changes of 5-mC/5h-mC Ratio and Methylation of Adiponectin and Leptin Gene in Placenta Depending on Mode of Delivery. Int J Mol Sci 2021; 22:3195. [PMID: 33801130 PMCID: PMC8004251 DOI: 10.3390/ijms22063195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023] Open
Abstract
It was suggested that the epigenetic alterations of the placenta are associated with obesity, as well as the delivery mode. This study aimed to assess the effect of maternal outcome and delivery procedure on global placental DNA methylation status, as well as selected 5'-Cytosine-phosphate-Guanine-3' (CpG) sites in ADIPOQ and LEP genes. Global DNA methylation profile in the placenta was assessed using the 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) ratio evaluated with the ELISA, followed by target gene methylation patterns at selected gene regions which were determined using methylation-specific qPCR in 70 placentas from healthy, pregnant women with single pregnancy. We found no statistically significant differences in 5-mC/5-hmC ratio between intrapartum cesarean sections (CS) and vaginal deliveries (p = 0.214), as well as between elective cesarean sections and vaginal deliveries (p = 0.221). In intrapartum cesarean sections, the ADIPOQ demethylation index was significantly higher (the average: 1.75) compared to elective cesarean section (the average: 1.23, p = 0.010) and vaginal deliveries (the average: 1.23, p = 0.011). The LEP demethylation index did not significantly differ among elective CS, intrapartum CS, and vaginal delivery groups. The demethylation index of ADIPOQ correlated negatively with LEP in the placenta in the vaginal delivery group (r = -0.456, p = 0.017), but not with the global methylation. The methylation of a singular locus might be different depending on the mode of delivery and uterine contractions. Further studies should be conducted with locus-specific analysis of the whole genome to detect the methylation index of specific genes involved in metabolism.
Collapse
Affiliation(s)
- Aneta Słabuszewska-Jóźwiak
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90, 01-004 Warsaw, Poland;
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.M.); (A.K.); (J.J.-B.)
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.M.); (A.K.); (J.J.-B.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.M.); (A.K.); (J.J.-B.)
| | - Mariusz Gujski
- Department of Public Health, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland;
| | - Iwona Bojar
- Department of Women’s Health, Institute of Rural Health in Lublin, Jaczewskiego 2, 20-950 Lublin, Poland;
| | - Dorota Raczkiewicz
- Department of Medical Statistics, School of Public Health, Center of Postgraduate Medical Education, Kleczewska 61/63, 01-826 Warsaw, Poland;
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90, 01-004 Warsaw, Poland;
| |
Collapse
|
69
|
Brunst KJ, Zhang L, Zhang X, Baccarelli AA, Bloomquist T, Wright RJ. Associations Between Maternal Lifetime Stress and Placental Mitochondrial DNA Mutations in an Urban Multiethnic Cohort. Biol Psychiatry 2021; 89:570-578. [PMID: 33229036 PMCID: PMC7889635 DOI: 10.1016/j.biopsych.2020.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disrupted placental functioning due to stress can have lifelong implications. Cumulative stress and trauma are likely to have lasting impacts on maternal physiological functioning and offspring development, resulting in increased risk for later-life complex disorders for which racial disparities exist. METHODS This study examined the association between maternal lifetime stress and placental mitochondrial DNA mutational load in an urban multiethnic cohort. Maternal lifetime exposure to stressful events was assessed using the validated Life Stressor Checklist-Revised. Whole mitochondrial DNA sequencing was performed and mutations were determined for 365 placenta samples with complete exposure and covariate data. Multivariable regression was used to model maternal lifetime stress in relation to placental mitochondrial DNA mutational load. Racial/ethnic differences were examined by cross-product terms and contrast statements. Gene-wise analyses were conducted. RESULTS We identified 13,189 heteroplasmies (Phred score > 10,000, minor allele frequency < 0.5, number of mutant reads > 1). Women experiencing increased psychosocial stress over their lifetime exhibited a higher number of total placental mitochondrial mutations (β = .23, 95% confidence interval = .03 to .42) and heteroplasmic mutations (β = .18, 95% confidence interval = .05 to .31) but not homoplasmic mutations (β = -.008, 95% confidence interval = -.03 to .01); the strongest associations were observed among Black women and genes coding for NADH dehydrogenase and cytochrome c oxidase subunits. CONCLUSIONS Cumulative maternal lifetime stress is associated with a greater mitochondrial mutational load, particularly among Black women. The impact of racial/ethnic differences in mutational load on placental function directly affecting offspring development and/or leading to chronic disease disparities warrants further investigation.
Collapse
Affiliation(s)
- Kelly J. Brunst
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Li Zhang
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Xiang Zhang
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, 160 Panzeca Way, Cincinnati, OH 45267
| | - Andrea A. Baccarelli
- Columbia University, Mailman School of Public Health, Department of Environmental Health Sciences, 722 West 168 Street, New York, NY 10032
| | - Tessa Bloomquist
- Columbia University, Mailman School of Public Health, Department of Environmental Health Sciences, 722 West 168 Street, New York, NY 10032
| | - Rosalind J. Wright
- Icahn School of Medicine at Mount Sinai, Department of Pediatrics and Department of Environmental Medicine & Public Health, 1 Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
70
|
Bacon ER, Brinton RD. Epigenetics of the developing and aging brain: Mechanisms that regulate onset and outcomes of brain reorganization. Neurosci Biobehav Rev 2021; 125:503-516. [PMID: 33657435 DOI: 10.1016/j.neubiorev.2021.02.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Brain development is a life-long process that encompasses several critical periods of transition, during which significant cognitive changes occur. Embryonic development, puberty, and reproductive senescence are all periods of transition that are hypersensitive to environmental factors. Rather than isolated episodes, each transition builds upon the last and is influenced by consequential changes that occur in the transition before it. Epigenetic marks, such as DNA methylation and histone modifications, provide mechanisms by which early events can influence development, cognition, and health outcomes. For example, parental environment influences imprinting patterns in gamete cells, which ultimately impacts gene expression in the embryo which may result in hypersensitivity to poor maternal nutrition during pregnancy, raising the risks for cognitive impairment later in life. This review explores how epigenetics induce and regulate critical periods, and also discusses how early environmental interactions prime a system towards a particular health outcome and influence susceptibility to disease or cognitive impairment throughout life.
Collapse
Affiliation(s)
- Eliza R Bacon
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; The Center for Precision Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Roberta Diaz Brinton
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Center for Innovation in Brain Science, School of Medicine, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
71
|
Diekhof EK, Richter A, Brodmann K, Gruber O. Dopamine multilocus genetic profiles predict sex differences in reactivity of the human reward system. Brain Struct Funct 2021; 226:1099-1114. [PMID: 33580321 DOI: 10.1007/s00429-021-02227-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/21/2021] [Indexed: 11/30/2022]
Abstract
Sex differences in the neural processing of decision-making are of high interest as they may have pronounced effects on reward- and addiction-related processes. In these, the neurotransmitter dopamine plays a central role by modulating the responsiveness of the reward circuitry. The present functional magnetic resonance imaging study aimed to explore sex and dopamine transmission interactions in decision-making. 172 subjects (111 women) performed a behavioral self-control task assessing reward-related activation during acceptance and rejection of conditioned rewards. Participants were genotyped for six key genetic polymorphisms in the dopamine system that have previously been associated with individual differences in reward sensitivity or dopaminergic transmission in the human striatum, such as rs7118900 (dopamine receptor D2 (DRD2) Taq1A), rs1554929 (DRD2 C957T), rs907094 (DARPP-32), rs12364283 (DRD2), rs6278 (DRD2), and rs107656 (DRD2). The selected polymorphisms were combined in a so-called multilocus genetic composite (MGC) score reflecting the additive effect of different alleles conferring relative increased dopamine transmission in every individual. We successfully demonstrated that reward-related activation in the ventral striatum and ventral tegmental area (VTA) was significantly modulated by biologically informed MGC profiles and sex. When comparing men and women with low MGC profiles that may indicate lower dopamine transmission, only women displayed a reduced down-regulation of activation in the mesolimbic system during reward rejection and additionally, a significant non-linear u-shape relationship between MGC score and VTA activation. Taken together, by integrating neuroimaging and genetics, the present findings contribute to a better understanding of the effects of sex differences on the human brain.
Collapse
Affiliation(s)
- Esther K Diekhof
- Section for Neuroendocrinology, Department of Biology, University of Hamburg, Hamburg, Germany.,Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Anja Richter
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany. .,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Katja Brodmann
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Oliver Gruber
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
72
|
Yuniati T, Judistiani RTD, Natalia YA, Irianti S, Madjid TH, Ghozali M, Sribudiani Y, Indrati AR, Abdulah R, Setiabudiawan B. First trimester maternal vitamin D, ferritin, hemoglobin level and their associations with neonatal birthweight: Result from cohort study on vitamin D status and its impact during pregnancy and childhood in Indonesia. J Neonatal Perinatal Med 2021; 13:63-69. [PMID: 31609704 DOI: 10.3233/npm-180043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Vitamin D deficiency and anemia are examples of nutritional problems of global health significance. When these health issues effect pregnant women, they may become a threat to the fetus' potention for intrauterine growth. It has been known that the first trimester is the golden period of fetal programming which influences the fetuses and their life after birth. This study was aiming to analyze the association between first trimester maternal vitamin D, serum ferritin, hemoglobin level and neonatal birth weight. METHODS From July 2016 a prospective cohort of pregnant women had been observed in four cities in West Java, Indonesia. Two hundred ninety four pregnant women were recuited in the first trimester and 203 of them had complete follow up until delivery. Collected data included maternal demography, blood analysis for ferritin, 25(OH) vitamin D in the first trimester of pregnancy and the birth weight of neonates. Associations were analyzed with multiple regression models. RESULTS Vitamin D deficiency was highly prevalent among pregnant women in this study (approximately 75%) while anemia was found in 7.5 %, a little above the target of 5 %. However, no significant association was found between maternal serum vitamin D, serum ferritin, hemoglobin level in the first trimester and birth weight of the neonates, before and after adjustment for maternal age, pre-pregnancy body mass index, and parity. CONCLUSION There were no associations found between vitamin D, ferritin, and hemoglobin level in the first trimester and neonatal birth weight. The negative results in this study should not diminish the benefit of nutritional supplementation during pregnancy. The possibility of other explanatory variables that influence these associations warrants further studies.
Collapse
Affiliation(s)
- T Yuniati
- Department of Child Health, Faculty of Medicine Universitas Padjadjaran, Sumedang, Indonesia /dr Hasan Sadikin Hospital, Bandung, Indonesia
| | - R T Dewi Judistiani
- Public Health Department-Centre for Immunology Studies, Faculty of Medicine Universitas Padjadjaran, Sumedang, Indonesia
| | - Y Adelwin Natalia
- Public Health Department-Centre for Immunology Studies, Faculty of Medicine Universitas Padjadjaran, Sumedang, Indonesia
| | - S Irianti
- Obstetric and Gynecology Department, Faculty of Medicine Universitas Padjadjaran, Sumedang, Indonesia/dr Hasan Sadikin Hospital, Bandung, Indonesia
| | - T Husnitawati Madjid
- Obstetric and Gynecology Department, Faculty of Medicine Universitas Padjadjaran, Sumedang, Indonesia/dr Hasan Sadikin Hospital, Bandung, Indonesia
| | - M Ghozali
- Department of Biomedical Sciences, Faculty of Medicine Universitas Padjadjaran, Sumedang, Indonesia
| | - Y Sribudiani
- Department of Biomedical Sciences, Faculty of Medicine Universitas Padjadjaran, Sumedang, Indonesia
| | - A Rengga Indrati
- Clinical Pathology Department, Faculty of Medicine Universitas Padjadjaran, Sumedang, Indonesia/dr Hasan Sadikin Hospital, Bandung, Indonesia
| | - R Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy Universitas Padjadjaran, Sumedang, Indonesia
| | - Budi Setiabudiawan
- Department of Child Health, Faculty of Medicine Universitas Padjadjaran, Sumedang, Indonesia /dr Hasan Sadikin Hospital, Bandung, Indonesia
| |
Collapse
|
73
|
Panisi C, Guerini FR, Abruzzo PM, Balzola F, Biava PM, Bolotta A, Brunero M, Burgio E, Chiara A, Clerici M, Croce L, Ferreri C, Giovannini N, Ghezzo A, Grossi E, Keller R, Manzotti A, Marini M, Migliore L, Moderato L, Moscone D, Mussap M, Parmeggiani A, Pasin V, Perotti M, Piras C, Saresella M, Stoccoro A, Toso T, Vacca RA, Vagni D, Vendemmia S, Villa L, Politi P, Fanos V. Autism Spectrum Disorder from the Womb to Adulthood: Suggestions for a Paradigm Shift. J Pers Med 2021; 11:70. [PMID: 33504019 PMCID: PMC7912683 DOI: 10.3390/jpm11020070] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The wide spectrum of unique needs and strengths of Autism Spectrum Disorders (ASD) is a challenge for the worldwide healthcare system. With the plethora of information from research, a common thread is required to conceptualize an exhaustive pathogenetic paradigm. The epidemiological and clinical findings in ASD cannot be explained by the traditional linear genetic model, hence the need to move towards a more fluid conception, integrating genetics, environment, and epigenetics as a whole. The embryo-fetal period and the first two years of life (the so-called 'First 1000 Days') are the crucial time window for neurodevelopment. In particular, the interplay and the vicious loop between immune activation, gut dysbiosis, and mitochondrial impairment/oxidative stress significantly affects neurodevelopment during pregnancy and undermines the health of ASD people throughout life. Consequently, the most effective intervention in ASD is expected by primary prevention aimed at pregnancy and at early control of the main effector molecular pathways. We will reason here on a comprehensive and exhaustive pathogenetic paradigm in ASD, viewed not just as a theoretical issue, but as a tool to provide suggestions for effective preventive strategies and personalized, dynamic (from womb to adulthood), systemic, and interdisciplinary healthcare approach.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | | | - Federico Balzola
- Division of Gastroenterology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Turin, 10126 Turin, Italy;
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, 20138 Milan, Italy;
| | - Alessandra Bolotta
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Marco Brunero
- Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Ernesto Burgio
- ECERI—European Cancer and Environment Research Institute, Square de Meeus 38-40, 1000 Bruxelles, Belgium;
| | - Alberto Chiara
- Dipartimento Materno Infantile ASST, 27100 Pavia, Italy;
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Luigi Croce
- Centro Domino per l’Autismo, Universita’ Cattolica Brescia, 20139 Milan, Italy;
| | - Carla Ferreri
- National Research Council of Italy, Institute of Organic Synthesis and Photoreactivity (ISOF), 40129 Bologna, Italy;
| | - Niccolò Giovannini
- Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Alessandro Ghezzo
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Enzo Grossi
- Autism Research Unit, Villa Santa Maria Foundation, 22038 Tavernerio, Italy;
| | - Roberto Keller
- Adult Autism Centre DSM ASL Città di Torino, 10138 Turin, Italy;
| | - Andrea Manzotti
- RAISE Lab, Foundation COME Collaboration, 65121 Pescara, Italy;
| | - Marina Marini
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Lucia Migliore
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Lucio Moderato
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
| | - Davide Moscone
- Associazione Spazio Asperger ONLUS, Centro Clinico CuoreMenteLab, 00141 Rome, Italy;
| | - Michele Mussap
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
| | - Antonia Parmeggiani
- Child Neurology and Psychiatry Unit, IRCCS ISNB, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Valentina Pasin
- Milan Institute for health Care and Advanced Learning, 20124 Milano, Italy;
| | | | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | - Andrea Stoccoro
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Tiziana Toso
- Unione Italiana Lotta alla Distrofia Muscolare UILDM, 35100 Padova, Italy;
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy, 70126 Bari, Italy;
| | - David Vagni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, 98164 Messina, Italy;
| | | | - Laura Villa
- Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy;
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria, 09042 Cagliari, Italy
| |
Collapse
|
74
|
Jašarević E, Hecht PM, Fritsche KL, Geary DC, Rivera RM, Beversdorf DQ. Maternal DHA supplementation influences sex-specific disruption of placental gene expression following early prenatal stress. Biol Sex Differ 2021; 12:10. [PMID: 33422127 PMCID: PMC7797134 DOI: 10.1186/s13293-020-00356-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/26/2020] [Indexed: 01/06/2023] Open
Abstract
Early life adversity is widely recognized as a key risk factor for early developmental perturbations and contributes to the presentation of neuropsychiatric disorders in adulthood. Neurodevelopmental disorders exhibit a strong sex bias in susceptibility, presentation, onset, and severity, although the underlying mechanisms conferring vulnerability are not well understood. Environmental perturbations during pregnancy, such as malnutrition or stress, have been associated with sex-specific reprogramming that contribute to increased disease risk in adulthood, whereby stress and nutritional insufficiency may be additive and further exacerbate poor offspring outcomes. To determine whether maternal supplementation of docosahexanoic acid (DHA) exerts an effect on offspring outcome following exposure to early prenatal stress (EPS), dams were fed a purified 10:1 omega-6/omega-3 diet supplemented with either 1.0% preformed DHA/kg feed weight (DHA-enriched) or no additional DHA (denoted as the control diet, CTL). Dams were administered chronic variable stress during the first week of pregnancy (embryonic day, E0.5–7.5), and developmental milestones were assessed at E 12.5. Exposure to early prenatal stress (EPS) decreased placenta and embryo weight in males, but not females, exposed to the CTL diet. DHA enrichment reversed the sex-specific decrease in placenta and embryo weight following EPS. Early prenatal exposure upregulated expression of genes associated with oxygen and nutrient transport, including hypoxia inducible factor 3α (HIF3α), peroxisome proliferator-activated receptor alpha (PPARα), and insulin-like growth binding factor 1 (IGFBP1), in the placenta of CTL diet males exposed to EPS. DHA enrichment in EPS-exposed animals abrogated the male-specific upregulation of PPARα, HIF3α, and IGFBP1. Taken together, these studies suggest that maternal dietary DHA enrichment may buffer against maternal stress programming of sex-specific outcomes during early development.
Collapse
Affiliation(s)
- Eldin Jašarević
- Interdisciplinary Neuroscience Program, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA.,Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA
| | - Patrick M Hecht
- Interdisciplinary Neuroscience Program, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA.,Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA
| | - David C Geary
- Interdisciplinary Neuroscience Program, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA.,Department of Psychological Sciences, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA
| | - Rocío M Rivera
- Division of Animal Sciences, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA
| | - David Q Beversdorf
- Interdisciplinary Neuroscience Program, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA. .,Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA. .,Department of Psychological Sciences, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA. .,Department of Radiology, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA. .,Department of Neurology, University of Missouri, One Hospital Drive, DC069.10, Columbia, MO, 65211, USA.
| |
Collapse
|
75
|
Konzman D, Abramowitz LK, Steenackers A, Mukherjee MM, Na HJ, Hanover JA. O-GlcNAc: Regulator of Signaling and Epigenetics Linked to X-linked Intellectual Disability. Front Genet 2020; 11:605263. [PMID: 33329753 PMCID: PMC7719714 DOI: 10.3389/fgene.2020.605263] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular identity in multicellular organisms is maintained by characteristic transcriptional networks, nutrient consumption, energy production and metabolite utilization. Integrating these cell-specific programs are epigenetic modifiers, whose activity is often dependent on nutrients and their metabolites to function as substrates and co-factors. Emerging data has highlighted the role of the nutrient-sensing enzyme O-GlcNAc transferase (OGT) as an epigenetic modifier essential in coordinating cellular transcriptional programs and metabolic homeostasis. OGT utilizes the end-product of the hexosamine biosynthetic pathway to modify proteins with O-linked β-D-N-acetylglucosamine (O-GlcNAc). The levels of the modification are held in check by the O-GlcNAcase (OGA). Studies from model organisms and human disease underscore the conserved function these two enzymes of O-GlcNAc cycling play in transcriptional regulation, cellular plasticity and mitochondrial reprogramming. Here, we review these findings and present an integrated view of how O-GlcNAc cycling may contribute to cellular memory and transgenerational inheritance of responses to parental stress. We focus on a rare human genetic disorder where mutant forms of OGT are inherited or acquired de novo. Ongoing analysis of this disorder, OGT- X-linked intellectual disability (OGT-XLID), provides a window into how epigenetic factors linked to O-GlcNAc cycling may influence neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | | | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
76
|
Epigenetics, pregnancy and autoimmune rheumatic diseases. Autoimmun Rev 2020; 19:102685. [PMID: 33115633 DOI: 10.1016/j.autrev.2020.102685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
Autoimmune rheumatic diseases (ARDs) are chronic conditions with a striking female predominance, frequently affecting women of childbearing age. Sex hormones and gender dimorphism of immune response are major determinants in the multifactorial pathogenesis of ARDs, with significant implications throughout reproductive life. Particularly, pregnancy represents a challenging condition in the context of autoimmunity, baring profound hormonal and immunologic changes, which are responsible for the bi-directional interaction between ARDs outcome and pregnancy course. In the latest years epigenetics has proven to be an important player in ARDs pathogenesis, finely modulating major immune functions and variably tuning the significant gender effects in autoimmunity. Additionally, epigenetics is a recognised influencer of the physiological dynamic modifications occurring during pregnancy. Still, there is currently little evidence on the pregnancy-related epigenetic modulation of immune response in ARDs patients. This review aims to overview the current knowledge of the role of epigenetics in the context of autoimmunity, as well as during physiologic and pathologic pregnancy, discussing under-regarded aspects in the interplay between ARDs and pregnancy pathology. The outline of a new ongoing European project will be presented.
Collapse
|
77
|
Dai Y, Huo X, Cheng Z, Faas MM, Xu X. Early-life exposure to widespread environmental toxicants and maternal-fetal health risk: A focus on metabolomic biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139626. [PMID: 32535459 DOI: 10.1016/j.scitotenv.2020.139626] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
Prenatal exposure to widespread environmental toxicants is detrimental to maternal health and fetal development. The effects of environmental toxicants on maternal and fetal metabolic profile changes have not yet been summarized. This systematic review aims to summarize the current studies exploring the association between prenatal exposure to environmental toxicants and metabolic profile alterations in mother and fetus. We searched the MEDLINE (PubMed) electronic database for relevant literature conducted up to September 18, 2019 with some key terms. From the initial 155 articles, 15 articles met the inclusion and exclusion criteria, and consist of highly heterogeneous research methods. Seven studies assessed the effects of multiple environmental pollutants (metals, organic pollutants, nicotine, air pollutants) on the maternal urine and blood metabolomic profile; five studies evaluated the effects of arsenic, polychlorinated biphenyls (PCBs), nicotine, and ambient fine particulate matter (PM2.5) on the cord blood metabolomic profile; and one study assessed the effects of smoking exposure on the amniotic fluid metabolomic profile. The alteration of metabolic pathways in these studies mainly involve energy metabolism, hormone metabolism, oxidative stress and inflammation. No population study investigated the association between environmental toxicants and placental metabolomics. This systematic review provides evidence that prenatal exposure to a variety of environmental pollutants can affect maternal and fetal metabolomic characteristics. Integration of environmental toxicant exposure and metabolomics data in maternal-fetal samples is helpful to understand the interaction between toxicants and metabolites, so as to reveal the pathogenesis of fetal disease or diseases of fetal origin.
Collapse
Affiliation(s)
- Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
78
|
Marrocco J, Einhorn NR, McEwen BS. Environmental epigenetics of sex differences in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:209-220. [PMID: 33008526 DOI: 10.1016/b978-0-444-64123-6.00015-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Experiences throughout the life course lead to unique phenotypes even among those with the same genotype. Genotype sets the substrate on which physiologic processes, which communicate with the brain, mediate the effects of life experiences via epigenetics. Epigenetics modify the expression of genes in the brain and body in response to circulating hormones and other mediators, which are activated to facilitate survival responses through a process called allostasis. Epigenetic signatures can even be inherited, resulting in transgenerational effects. This chapter addresses epigenetics in the context of sex differences, discussing the intersection between genetics and gonadal hormones and their effect in the brain at discrete developmental periods.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States.
| | - Nathan R Einhorn
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| |
Collapse
|
79
|
Easton ZJW, Regnault TRH. The Impact of Maternal Body Composition and Dietary Fat Consumption upon Placental Lipid Processing and Offspring Metabolic Health. Nutrients 2020; 12:nu12103031. [PMID: 33022934 PMCID: PMC7601624 DOI: 10.3390/nu12103031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
The proportion of women of reproductive age who are overweight or obese is increasing globally. Gestational obesity is strongly associated in both human studies and animal models with early-onset development of adult-associated metabolic diseases including metabolic syndrome in the exposed offspring. However, animal model studies have suggested that gestational diet in obese pregnancies is an independent but underappreciated mediator of offspring risk for later life metabolic disease, and human diet consumption data have highlighted that many women do not follow nutritional guidelines prior to and during pregnancy. Thus, this review will highlight how maternal diet independent from maternal body composition impacts the risk for later-life metabolic disease in obesity-exposed offspring. A poor maternal diet, in combination with the obese metabolic state, are understood to facilitate pathological in utero programming, specifically through changes in lipid handling processes in the villous trophoblast layer of the placenta that promote an environment associated with the development of metabolic disease in the offspring. This review will additionally highlight how maternal obesity modulates villous trophoblast lipid processing functions including fatty acid transport, esterification and beta-oxidation. Further, this review will discuss how altering maternal gestational diet may ameliorate these functional changes in lipid metabolic processes in the obese placenta.
Collapse
Affiliation(s)
- Zachary J. W. Easton
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada;
- Correspondence: ; Tel.: +1-(519)-661-2111 (ext. 82869)
| | - Timothy R. H. Regnault
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada;
- Department of Obstetrics and Gynaecology, London Health Science Centre-Victoria Hospital, B2-401, London, ON N6H 5W9, Canada
- Children’s Health Research Institute, 800 Commissioners Road East, London, ON N6C 2V5, Canada
- Lawson Health Research Institute, 750 Base Line Rd E, London, ON N6C 2R5, Canada
| |
Collapse
|
80
|
Blake BE, Fenton SE. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology 2020; 443:152565. [PMID: 32861749 PMCID: PMC7530144 DOI: 10.1016/j.tox.2020.152565] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous drinking water contaminants of concern due to mounting evidence implicating adverse health outcomes associated with exposure, including reduced kidney function, metabolic syndrome, thyroid disruption, and adverse pregnancy outcomes. PFAS have been produced in the U.S. since the 1940s and now encompass a growing chemical family comprised of diverse chemical moieties, yet the toxicological effects have been studied for relatively few compounds. Critically, exposures to some PFAS in utero are associated with adverse outcomes for both mother and offspring, such as hypertensive disorders of pregnancy (HDP), including preeclampsia, and low birth weight. Given the relationship between HDP, placental dysfunction, adverse health outcomes, and increased risk for chronic diseases in adulthood, the role of both developmental and lifelong exposure to PFAS likely contributes to disease risk in complex ways. Here, evidence for the role of some PFAS in disrupted thyroid function, kidney disease, and metabolic syndrome is synthesized with an emphasis on the placenta as a critical yet understudied target of PFAS and programming agent of adult disease. Future research efforts must continue to fill the knowledge gap between placental susceptibility to environmental exposures like PFAS, subsequent perinatal health risks for both mother and child, and latent health effects in adult offspring.
Collapse
Affiliation(s)
- Bevin E Blake
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of the National Toxicology Program (DNTP), NTP Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), Research Triangle Park, NC, USA.
| | - Suzanne E Fenton
- Division of the National Toxicology Program (DNTP), NTP Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), Research Triangle Park, NC, USA
| |
Collapse
|
81
|
Morrison KE. Animal models built for women's brain health: Progress and potential. Front Neuroendocrinol 2020; 59:100872. [PMID: 32961121 PMCID: PMC7669558 DOI: 10.1016/j.yfrne.2020.100872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/29/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Women and men have different levels of risk for a variety of brain disorders. Despite this well-known epidemiological finding, preclinical work utilizing animal models has historically only included male animals. The policies of funders to require consideration of sex as a biological variable has shifted the momentum to include female animals in preclinical neuroscience and to report findings by sex. However, there are many biological questions related to brain health that go beyond sex differences and are indeed specific to women. Here, the focus is on why animal models should be utilized in the pursuit of understanding women's brain health, a brief overview of what they have provided thus far, and why they still hold tremendous promise. This review concludes with a set of suggestions for how to begin to pursue translational animal models in a way that facilitates rapid success and harnesses the most powerful aspects of animal models.
Collapse
|
82
|
Wilson HA, Creighton C, Scharfman H, Choleris E, MacLusky NJ. Endocrine Insights into the Pathophysiology of Autism Spectrum Disorder. Neuroscientist 2020; 27:650-667. [PMID: 32912048 DOI: 10.1177/1073858420952046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders that affects males more frequently than females. Numerous genetic and environmental risk factors have been suggested to contribute to the development of ASD. However, no one factor can adequately explain either the frequency of the disorder or the male bias in its prevalence. Gonadal, thyroid, and glucocorticoid hormones all contribute to normal development of the brain, hence perturbations in either their patterns of secretion or their actions may constitute risk factors for ASD. Environmental factors may contribute to ASD etiology by influencing the development of neuroendocrine and neuroimmune systems during early life. Emerging evidence suggests that the placenta may be particularly important as a mediator of the actions of environmental and endocrine risk factors on the developing brain, with the male being particularly sensitive to these effects. Understanding how various risk factors integrate to influence neural development may facilitate a clearer understanding of the etiology of ASD.
Collapse
Affiliation(s)
- Hayley A Wilson
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Carolyn Creighton
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Helen Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, New York University Langone Health, New York, NY, USA.,Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Neil J MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
83
|
Arumugasaamy N, Rock KD, Kuo CY, Bale TL, Fisher JP. Microphysiological systems of the placental barrier. Adv Drug Deliv Rev 2020; 161-162:161-175. [PMID: 32858104 DOI: 10.1016/j.addr.2020.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Methods to evaluate maternal-fetal transport across the placental barrier have generally involved clinical observations after-the-fact, ex vivo perfused placenta studies, or in vitro Transwell assays. Given the ethical and technical limitations in these approaches, and the drive to understand fetal development through the lens of transport-induced injury, such as with the examples of thalidomide and Zika Virus, efforts to develop novel approaches to study these phenomena have expanded in recent years. Notably, within the past 10 years, placental barrier models have been developed using hydrogel, bioreactor, organ-on-a-chip, and bioprinting approaches. In this review, we discuss the biology of the placental barrier and endeavors to recapitulate this barrier in vitro using these approaches. We also provide analysis of current limitations to drug discovery in this context, and end with a future outlook.
Collapse
|
84
|
Addo KA, Palakodety N, Hartwell HJ, Tingare A, Fry RC. Placental microRNAs: Responders to environmental chemicals and mediators of pathophysiology of the human placenta. Toxicol Rep 2020; 7:1046-1056. [PMID: 32913718 PMCID: PMC7472806 DOI: 10.1016/j.toxrep.2020.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are epigenetic modifiers that play an important role in the regulation of the expression of genes across the genome. miRNAs are expressed in the placenta as well as other organs, and are involved in several biological processes including the regulation of trophoblast differentiation, migration, invasion, proliferation, apoptosis, angiogenesis and cellular metabolism. Related to their role in disease process, miRNAs have been shown to be differentially expressed between normal placentas and placentas obtained from women with pregnancy/health complications such as preeclampsia, gestational diabetes mellitus, and obesity. This dysregulation indicates that miRNAs in the placenta likely play important roles in the pathogenesis of diseases during pregnancy. Furthermore, miRNAs in the placenta are susceptible to altered expression in relation to exposure to environmental toxicants. With relevance to the placenta, the dysregulation of miRNAs in both placenta and blood has been associated with maternal exposures to several toxicants. In this review, we provide a summary of miRNAs that have been assessed in the context of human pregnancy-related diseases and in relation to exposure to environmental toxicants in the placenta. Where data are available, miRNAs are discussed in their context as biomarkers of exposure and/or disease, with comparisons made across-tissue types, and conservation across studies detailed.
Collapse
Affiliation(s)
- Kezia A. Addo
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Niharika Palakodety
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Hadley J. Hartwell
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Aishani Tingare
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
85
|
Hammond BR, Buch J. Individual differences in visual function. Exp Eye Res 2020; 199:108186. [PMID: 32781197 DOI: 10.1016/j.exer.2020.108186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022]
Abstract
A significant proportion of research on the visual system focuses on general principles that apply to samples and/or populations. Many questions, however, are more suited to the specific characteristics of an individual. The visual system, like most systems of the body, is extremely variable with respect to function and susceptibility to disease. Understanding this variation is an important avenue to better measurement, disease prevention and treatment.
Collapse
Affiliation(s)
- Billy R Hammond
- Vision Sciences Laboratory, Behavioral and Brain Sciences Program, Department of Psychology, The University of Georgia, United States.
| | - John Buch
- Johnson and Johnson Vision Care, Inc, United States
| |
Collapse
|
86
|
Navarro VM. Metabolic regulation of kisspeptin - the link between energy balance and reproduction. Nat Rev Endocrinol 2020; 16:407-420. [PMID: 32427949 PMCID: PMC8852368 DOI: 10.1038/s41574-020-0363-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 12/17/2022]
Abstract
Hypothalamic kisspeptin neurons serve as the nodal regulatory centre of reproductive function. These neurons are subjected to a plethora of regulatory factors that ultimately affect the release of kisspeptin, which modulates gonadotropin-releasing hormone (GnRH) release from GnRH neurons to control the reproductive axis. The presence of sufficient energy reserves is critical to achieve successful reproduction. Consequently, metabolic factors impose a very tight control over kisspeptin synthesis and release. This Review offers a synoptic overview of the different steps in which kisspeptin neurons are subjected to metabolic regulation, from early developmental stages to adulthood. We cover an ample array of known mechanisms that underlie the metabolic regulation of KISS1 expression and kisspeptin release. Furthermore, the novel role of kisspeptin neurons as active players within the neuronal circuits that govern energy balance is discussed, offering evidence of a bidirectional role of these neurons as a nexus between metabolism and reproduction.
Collapse
Affiliation(s)
- Víctor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Graduate Program in Neuroscience, Boston, MA, USA.
| |
Collapse
|
87
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
88
|
Cissé YM, Chan JC, Nugent BM, Banducci C, Bale TL. Brain and placental transcriptional responses as a readout of maternal and paternal preconception stress are fetal sex specific. Placenta 2020; 100:164-170. [PMID: 32980048 DOI: 10.1016/j.placenta.2020.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Despite a wealth of epidemiological evidence that cumulative parental lifetime stress experiences prior to conception are determinant of offspring developmental trajectories, there is a lack of insight on how these previous stress experiences are stored and communicated intergenerationally. Preconception experiences may impact offspring development through alterations in transcriptional regulation of the placenta, a major determinant of offspring growth and sex-specific developmental outcomes. We evaluated the lasting influence of maternal and paternal preconception stress (PCS) on the mid-gestation placenta and fetal brain, utilizing their transcriptomes as proximate readouts of intergenerational impact. METHODS To assess the combined vs. dominant influence of maternal and paternal preconception environment on sex-specific fetal development, we compared transcriptional outcomes using a breeding scheme of one stressed parent, both stressed parents, or no stressed parents as controls. RESULTS Interestingly, offspring sex affected the directionality of transcriptional changes in response to PCS, where male tissues showed a predominant downregulation, and female tissues showed an upregulation. There was also an intriguing effect of parental sex on placental programming where paternal PCS drove more effects in female placentas, while maternal PCS produced more transcriptional changes in male placentas. However, in the fetal brain, maternal PCS produced overall more changes in gene expression than paternal PCS, supporting the idea that the intrauterine environment may have a larger overall influence on the developing brain than it does on shaping the placenta. DISCUSSION Preconception experiences drive changes in the placental and the fetal brain transcriptome at a critical developmental timepoint. While not determinant, these altered transcriptional states may underlie sex-biased risk or resilience to stressful experiences later in life.
Collapse
Affiliation(s)
- Yasmine M Cissé
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Jennifer C Chan
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Bridget M Nugent
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Caitlin Banducci
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Tracy L Bale
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, United States.
| |
Collapse
|
89
|
Rock KD, St Armour G, Horman B, Phillips A, Ruis M, Stewart AK, Jima D, Muddiman DC, Stapleton HM, Patisaul HB. Effects of Prenatal Exposure to a Mixture of Organophosphate Flame Retardants on Placental Gene Expression and Serotonergic Innervation in the Fetal Rat Brain. Toxicol Sci 2020; 176:203-223. [PMID: 32243540 PMCID: PMC7357193 DOI: 10.1093/toxsci/kfaa046] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is a growing need to understand the potential neurotoxicity of organophosphate flame retardants (OPFRs) and plasticizers because use and, consequently, human exposure, is rapidly expanding. We have previously shown in rats that developmental exposure to the commercial flame retardant mixture Firemaster 550 (FM 550), which contains OPFRs, results in sex-specific behavioral effects, and identified the placenta as a potential target of toxicity. The placenta is a critical coordinator of fetal growth and neurodevelopment, and a source of neurotransmitters for the developing brain. We have shown in rats and humans that flame retardants accumulate in placental tissue, and induce functional changes, including altered neurotransmitter production. Here, we sought to establish if OPFRs (triphenyl phosphate and a mixture of isopropylated triarylphosphate isomers) alter placental function and fetal forebrain development, with disruption of tryptophan metabolism as a primary pathway of interest. Wistar rat dams were orally exposed to OPFRs (0, 500, 1000, or 2000 μg/day) or a serotonin (5-HT) agonist 5-methoxytryptamine for 14 days during gestation and placenta and fetal forebrain tissues collected for analysis by transcriptomics and metabolomics. Relative abundance of genes responsible for the transport and synthesis of placental 5-HT were disrupted, and multiple neuroactive metabolites in the 5-HT and kynurenine metabolic pathways were upregulated. In addition, 5-HTergic projections were significantly longer in the fetal forebrains of exposed males. These findings suggest that OPFRs have the potential to impact the 5-HTergic system in the fetal forebrain by disrupting placental tryptophan metabolism.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
| | - Genevieve St Armour
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
| | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
| | - Allison Phillips
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Matthew Ruis
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Allison K Stewart
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695
| | - Dereje Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695
| | - David C Muddiman
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27619
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
90
|
Tekola-Ayele F, Zeng X, Ouidir M, Workalemahu T, Zhang C, Delahaye F, Wapner R. DNA methylation loci in placenta associated with birthweight and expression of genes relevant for early development and adult diseases. Clin Epigenetics 2020; 12:78. [PMID: 32493484 PMCID: PMC7268466 DOI: 10.1186/s13148-020-00873-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/21/2020] [Indexed: 02/03/2023] Open
Abstract
Background Birthweight marks an important milestone of health across the lifespan, including cardiometabolic disease risk in later life. The placenta, a transient organ at the maternal-fetal interface, regulates fetal growth. Identifying genetic loci where DNA methylation in placenta is associated with birthweight can unravel genomic pathways that are dysregulated in aberrant fetal growth and cardiometabolic diseases in later life. Results We performed placental epigenome-wide association study (EWAS) of birthweight in an ethnic diverse cohort of pregnant women (n = 301). Methylation at 15 cytosine-(phosphate)-guanine sites (CpGs) was associated with birthweight (false discovery rate (FDR) < 0.05). Methylation at four (26.7%) CpG sites was associated with placental transcript levels of 15 genes (FDR < 0.05), including genes known to be associated with adult lipid traits, inflammation and oxidative stress. Increased methylation at cg06155341 was associated with higher birthweight and lower FOSL1 expression, and lower FOSL1 expression was correlated with higher birthweight. Given the role of the FOSL1 transcription factor in regulating developmental processes at the maternal-fetal interface, epigenetic mechanisms at this locus may regulate fetal development. We demonstrated trans-tissue portability of methylation at four genes (MLLT1, PDE9A, ASAP2, and SLC20A2) implicated in birthweight by a previous study in cord blood. We also found that methylation changes known to be related to maternal underweight, preeclampsia and adult type 2 diabetes were associated with lower birthweight in placenta. Conclusion We identified novel placental DNA methylation changes associated with birthweight. Placental epigenetic mechanisms may underlie dysregulated fetal development and early origins of adult cardiometabolic diseases. Clinical trial registration ClinicalTrials.gov, NCT00912132
Collapse
Affiliation(s)
- Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, room 3204, Bethesda, MD, 20892, USA.
| | - Xuehuo Zeng
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, room 3204, Bethesda, MD, 20892, USA
| | - Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, room 3204, Bethesda, MD, 20892, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Rockledge Dr, room 3204, Bethesda, MD, 20892, USA
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,UMR 1283, Institut Pasteur de Lille, Lille, France
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| |
Collapse
|
91
|
Puttabyatappa M, Sargis RM, Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol 2020; 245:R23-R48. [PMID: 32240982 PMCID: PMC7219571 DOI: 10.1530/joe-20-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of many metabolic disorders. The dramatic rise in the incidence of insulin resistance over the past decade has enhanced focus on its developmental origins. Since various developmental insults ranging from maternal disease, stress, over/undernutrition, and exposure to environmental chemicals can all program the development of insulin resistance, common mechanisms may be involved. This review discusses the possibility that increases in maternal androgens associated with these various insults are key mediators in programming insulin resistance. Additionally, the intermediaries through which androgens misprogram tissue insulin sensitivity, such as changes in inflammatory, oxidative, and lipotoxic states, epigenetic, gut microbiome and insulin, as well as data gaps to be filled are also discussed.
Collapse
Affiliation(s)
| | - Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | | |
Collapse
|
92
|
Galbally M, Watson SJ, van IJzendoorn M, Saffery R, Ryan J, de Kloet ER, Oberlander TF, Lappas M, Lewis AJ. The role of glucocorticoid and mineralocorticoid receptor DNA methylation in antenatal depression and infant stress regulation. Psychoneuroendocrinology 2020; 115:104611. [PMID: 32087522 DOI: 10.1016/j.psyneuen.2020.104611] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 12/02/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Understanding fetal programming pathways that underpin the relationship between maternal and offspring mental health necessitates an exploration of potential role of epigenetic variation in early development. Two genes involved in stress response regulation, the glucocorticoid and mineralocorticoid receptors (NR3C1 and NR3C2) have been a focus in understanding stressful exposures and mental health outcomes. Data were obtained from 236 pregnant women from the Mercy Pregnancy Emotional Wellbeing Study (MPEWS), a selected pregnancy cohort, recruited in early pregnancy. Depression was measured using the Structured Clinical Interview for DSM-IV (SCID-IV) and repeated measures of the Edinburgh Postnatal Depression Scale (EPDS). Antidepressant use, stressful events and anxiety symptoms were measured. NR3C1 and NR3C2 DNA methylation was measured in placental and infant buccal samples. Infant cortisol was measured in repeat saliva samples across a task. This study found maternal early pregnancy depressive disorder and symptoms were associated with lower DNA methylation at NR3C2 CpG_24 in placental tissue. There were no significant differences for depression or antidepressant use for DNA methylation of NR3C1. Antenatal depression was associated with lower infant cortisol reactivity at 12 months. DNA methylation in CpG_24 site in NR3C2 in placental samples suppressed the relationship between early maternal depressive symptoms and infant cortisol reactivity. These findings show a relationship between antenatal depression, NR3C2 DNA methylation and infant cortisol response providing support for a specific fetal programming pathway. Further research is required to examine the stability of this epigenetic mark across childhood and long-term mental health outcomes.
Collapse
Affiliation(s)
- Megan Galbally
- School of Psychology and Exercise Science, Murdoch University, Australia; School of Medicine, University of Notre Dame, Australia; King Edward Memorial Hospital, Australia.
| | - Stuart J Watson
- School of Psychology and Exercise Science, Murdoch University, Australia; School of Medicine, University of Notre Dame, Australia
| | - Marinus van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Netherlands
| | - Richard Saffery
- Murdoch Children's Research Institute & Department of Paediatrics, The University of Melbourne, Australia
| | - Joanne Ryan
- Murdoch Children's Research Institute & Department of Paediatrics, The University of Melbourne, Australia; Department of Epidemiology & Preventive Medicine, Monash University, Australia
| | | | - Tim F Oberlander
- Department of Pediatrics and School of Population and Public Health, Univeristy of British Columbia, Vancouver, BC, Canada
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Andrew J Lewis
- School of Psychology and Exercise Science, Murdoch University, Australia
| |
Collapse
|
93
|
Bauer I, Hartkopf J, Kullmann S, Schleger F, Hallschmid M, Pauluschke-Fröhlich J, Fritsche A, Preissl H. Spotlight on the fetus: how physical activity during pregnancy influences fetal health: a narrative review. BMJ Open Sport Exerc Med 2020; 6:e000658. [PMID: 32206341 PMCID: PMC7078670 DOI: 10.1136/bmjsem-2019-000658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
Before and during pregnancy, women often aim to improve their lifestyle so as to provide a healthier environment for their developing child. It remains unresolved, however, as to whether physical activity (PA) during pregnancy poses a possible risk or whether it might even have beneficial effects on the developing child. There is increasing evidence that PA during pregnancy is indeed beneficial to maternal physiological and psychological health and that it is generally not detrimental to the fetal cardiovascular system and neuronal function in the developing child. This also led to international recommendations for PAs during pregnancy. In the current review, we aimed to comprehensively assess the evidence of beneficial and harmful effects of maternal PA, including high-performance sports, on fetal development. The different mental and body-based relaxation techniques presented here are frequently performed during pregnancy. We found a considerable number of studies addressing these issues. In general, neither low key, moderate maternal PA nor relaxation techniques were observed to have a harmful effect on the developing child. However, we identified some forms of PA which could have at least a transient unfavourable effect. Notably, the literature currently available does not provide enough evidence to enable us to make a general conclusive statement on this subject. This is due to the lack of longitudinal studies on the metabolic and cognitive effects of regular PA during pregnancy and the wide diversity of methods used. In particular, the kind of PA investigated in each study differed from study to study.
Collapse
Affiliation(s)
- Ilena Bauer
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen/fMEG Center, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), University of Tübingen, Tübingen, Germany
| | - Julia Hartkopf
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen/fMEG Center, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), University of Tübingen, Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen/fMEG Center, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), University of Tübingen, Tübingen, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Franziska Schleger
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen/fMEG Center, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), University of Tübingen, Tübingen, Germany
| | - Manfred Hallschmid
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen/fMEG Center, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), University of Tübingen, Tübingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen/fMEG Center, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), University of Tübingen, Tübingen, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen/fMEG Center, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), University of Tübingen, Tübingen, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences; Interfaculty Centre for Pharmacogenomics and Pharma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
94
|
Barra R, Morgan C, Sáez-Briones P, Reyes-Parada M, Burgos H, Morales B, Hernández A. Facts and hypotheses about the programming of neuroplastic deficits by prenatal malnutrition. Nutr Rev 2020; 77:65-80. [PMID: 30445479 DOI: 10.1093/nutrit/nuy047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Studies in rats have shown that a decrease in either protein content or total dietary calories results in molecular, structural, and functional changes in the cerebral cortex and hippocampus, among other brain regions, which lead to behavioral disturbances, including learning and memory deficits. The neurobiological bases underlying those effects depend at least in part on fetal programming of the developing brain, which in turn relies on epigenetic regulation of specific genes via stable and heritable modifications of chromatin. Prenatal malnutrition also leads to epigenetic programming of obesity, and obesity on its own can lead to poor cognitive performance in humans and experimental animals, complicating understanding of the factors involved in the fetal programming of neuroplasticity deficits. This review focuses on the role of epigenetic mechanisms involved in prenatal malnutrition-induced brain disturbances, which are apparent at a later postnatal age, through either a direct effect of fetal programming on brain plasticity or an indirect effect on the brain mediated by the postnatal development of obesity.
Collapse
Affiliation(s)
- Rafael Barra
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Carlos Morgan
- Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Patricio Sáez-Briones
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Miguel Reyes-Parada
- School of Medicine, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile.,Facultad de Ciencias de la Salud Universidad Autónoma de Chile, Talca, Chile
| | - Héctor Burgos
- Núcleo Disciplinar Psicología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Center of Innovation on Information Technologies for Social Applications (CITIAPS), University of Santiago de Chile, Santiago, Chile
| | - Bernardo Morales
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Alejandro Hernández
- Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| |
Collapse
|
95
|
Song W, Puttabyatappa M, Zeng L, Vazquez D, Pennathur S, Padmanabhan V. Developmental programming: Prenatal bisphenol A treatment disrupts mediators of placental function in sheep. CHEMOSPHERE 2020; 243:125301. [PMID: 31726260 PMCID: PMC7243413 DOI: 10.1016/j.chemosphere.2019.125301] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 05/09/2023]
Abstract
Gestational Bisphenol A (BPA) exposure is associated with low birth weight. We hypothesized that the low birth weight is the consequence of reduced placental efficiency and a function of BPA-induced inflammatory, oxidative, lipotoxic, angiogenic, steroidal and fibrotic changes involving epigenetic alterations. Placentomes were collected during early (day 65) and mid (day 90) gestation (term ∼147 days) from control and BPA (gestational day 30-90)-treated pregnant sheep. BPA treatment: reduced placental efficiency and fetal weight; increased interleukin 8, lipid peroxidation marker, antioxidants, aromatase, 17 alpha-hydroxylase, estrogen receptor 2, insulin like growth factor (IGF) 2 receptor and IGF binding proteins (IGFBP), and histone deacetylase 1 and 2; reduced tumor necrosis factor alpha and IGF1 receptor at early gestation (Day 65). Gestational BPA-induced mid-gestational changes include: reduced angiogenic factor hypoxia inducible factor 1 alpha; increased IL1beta, oxidative stress markers, triglyceride, 17alpha hydroxylase, IGFBP 1, DNA methyltransferase 3 A and histone deacetylase 1. These findings indicate that gestational BPA, either acting directly or by altering steroidal input, produces early/mid-gestational-specific epigenetic changes culminating in placental disruptions at several levels, in keeping with time-specific/time-lagged pregnancy-associated changes in placental efficiency and fetal weight. The reduced early-gestational placental efficiency may be a function of increased inflammation/oxidative stress and reduced IGF bioavailability with the mid-gestational restoration of placental efficiency likely driven by improved IGF bioavailability and the time-lagged response to antioxidant increase. This compensation, the result of time-lagged response to increases in negative mediators of placental function must have failed with pregnancy advancement to explain the low birthweight outcome.
Collapse
Affiliation(s)
- Wenhui Song
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050011, PR China; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Lixia Zeng
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Delia Vazquez
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
96
|
Smith AL, Paul E, McGee D, Sinniah R, Flom E, Jackson-Humbles D, Harkema J, Racicot KE. Chronic, Elevated Maternal Corticosterone During Pregnancy in the Mouse Increases Allergic Airway Inflammation in Offspring. Front Immunol 2020; 10:3134. [PMID: 32038643 PMCID: PMC6985541 DOI: 10.3389/fimmu.2019.03134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Allergic asthma is a chronic pulmonary disorder fundamentally linked to immune dysfunction. Since the immune system begins developing in utero, prenatal exposures can affect immune programming and increase risk for diseases such as allergic asthma. Chronic psychosocial stress during pregnancy is one such risk factor, having been associated with increased risk for atopic diseases including allergic asthma in children. To begin to define the underlying causes of the association between maternal stress and allergic airway inflammation in offspring, we developed a mouse model of chronic heightened stress hormone during pregnancy. Continuous oral administration of corticosterone (CORT) to pregnant mice throughout the second half of pregnancy resulted in an ~2-fold increase in circulating hormone in dams with no concomitant increase in fetal circulation, similar to the human condition. To determine how prolonged heightened stress hormone affected allergic immunity in offspring, we induced allergic asthma with house dust mite (HDM) and examined the airway immune response to allergen. Female mice responded to HDM more frequently and had a more robust immune cell response compared to their male counterparts, irrespective of maternal treatment. Male offspring from CORT-treated dams had a greater number of inflammatory cells in the lung in response to HDM compared to males from control dams, while maternal treatment did not affect immune cell numbers in females. Alternatively, maternal CORT caused enhanced goblet cell hyperplasia in female offspring following HDM, an effect that was not observed in male offspring. In summary, prenatal exposure to mild, prolonged heightened stress hormone had sexually dimorphic effects on allergic inflammation in airways of adult offspring.
Collapse
Affiliation(s)
- Arianna L Smith
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Emmanuel Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Devin McGee
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Ranuka Sinniah
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Emily Flom
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Devan Jackson-Humbles
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Jack Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Karen E Racicot
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
97
|
Lambert K, Hunter RG, Bartlett AA, Lapp HE, Kent M. In search of optimal resilience ratios: Differential influences of neurobehavioral factors contributing to stress-resilience spectra. Front Neuroendocrinol 2020; 56:100802. [PMID: 31738947 DOI: 10.1016/j.yfrne.2019.100802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/07/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
The ability to adapt to stressful circumstances, known as emotional resilience, is a key factor in the maintenance of mental health. Several individual biomarkers of the stress response (e.g., corticosterone) that influence an animal's position along the continuum that ranges from adaptive allostasis to maladaptive allostatic load have been identified. Extending beyond specific biomarkers of stress responses, however, it is also important to consider stress-related responses relative to other relevant responses for a thorough understanding of the underpinnings of adaptive allostasis. In this review, behavioral, neurobiological, developmental and genomic variables are considered in the context of emotional resilience [e.g., explore/exploit behavioral tendencies; DHEA/CORT ratios and relative proportions of protein-coding/nonprotein-coding (transposable) genomic elements]. As complex and multifaceted relationships between pertinent allostasis biomediators are identified, translational applications for optimal resilience are more likely to emerge as effective therapeutic strategies.
Collapse
Affiliation(s)
- Kelly Lambert
- Dept of Psychology, B326 Gottwald Science Center, University of Richmond, VA 23173, United States.
| | - Richard G Hunter
- Dept of Psychology, University of Massachusetts-Boston, 100 Morrissey Blvd., Boston, MA 00252, United States
| | - Andrew A Bartlett
- Dept of Psychology, University of Massachusetts-Boston, 100 Morrissey Blvd., Boston, MA 00252, United States
| | - Hannah E Lapp
- Dept of Psychology, University of Massachusetts-Boston, 100 Morrissey Blvd., Boston, MA 00252, United States
| | - Molly Kent
- Dept of Psychology, B326 Gottwald Science Center, University of Richmond, VA 23173, United States
| |
Collapse
|
98
|
Ramírez-Alarcón K, Sánchez-Agurto Á, Lamperti L, Martorell M. Epigenetics, Maternal Diet and Metabolic Programming. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874196701907010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
The maternal environment influences embryonic and fetal life. Nutritional deficits or excesses alter the trajectory of fetus/offspring’s development. The concept of “developmental programming” and “developmental origins of health and disease” consists of the idea that maternal diet may remodel the genome and lead to epigenetic changes. These changes are induced during early life, permanently altering the phenotype in the posterior adult stage, favoring the development of metabolic diseases such as obesity, dyslipidemia, hypertension, hyperinsulinemia, and metabolic syndrome. In this review, it is aimed to overview epigenetics, maternal diet and metabolic programming factors and determine which of these might affect future generations.
Scope and Approach:
Nutrients interfere with the epigenome by influencing the supply and use of methyl groups through DNA transmethylation and demethylation mechanisms. They also influence the remodeling of chromatin and arginine or lysine residues at the N-terminal tails of histone, thus altering miRNA expression. Fats, proteins, B vitamins and folates act as important cofactors in methylation processes. The metabolism of carbon in the methyl groups of choline, folic acid and methionine to S-Adenosyl Methionine (SAM), acts as methyl donors to methyl DNA, RNA, and proteins. B-complex vitamins are important since they act as coenzymes during this process.
Key Findings and Conclusion:
Nutrients, during pregnancy, potentially influence susceptibility to diseases in adulthood. Additionally, the deficit or excess of nutrients alter the epigenetic machinery, affecting genes and influencing the genome of the offspring and therefore, predisposing the development of chronic diseases in adults.
Collapse
|
99
|
Prenatal and postnatal contributions of the maternal microbiome on offspring programming. Front Neuroendocrinol 2019; 55:100797. [PMID: 31574280 DOI: 10.1016/j.yfrne.2019.100797] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/15/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The maternal microbiota is positioned to regulate the development of offspring immunity, metabolism, as well as brain function and behavior. The mechanisms by which maternal microbial signals drive these processes are beginning to be elucidated. In this review, we provide a brief overview on the importance of the microbiome in brain function and behavior, define the maternal vaginal and gut microbiota as distinct influences on offspring development, and outline current concepts in microbial origins of offspring health outcomes. We propose that the maternal microbiota influences prenatal and early postnatal offspring development and health outcomes through two overlapping processes. First, during pregnancy maternal gut microbiota provide metabolites and substrates essential for fetal growth through metabolic provisioning, driving expansion and maturation of central and peripheral immune cells, and formation of neural circuits. Second, vertical transmission of maternal microbiota during birth and in the early postnatal window elicits a potent immunostimulatory effect in offspring that induces metabolic and developmental transcriptional programs, primes the immune system for subsequent microbial exposure, and provides substrates for brain metabolism. Finally, we explore the possibility that environmental factors, such as malnutrition, stress and infection, may exert programmatic effects by disrupting the functional contributions of the maternal microbiome during prenatal and postnatal development to influence offspring outcomes across the lifespan.
Collapse
|
100
|
Abbott DH, Kraynak M, Dumesic DA, Levine JE. In utero Androgen Excess: A Developmental Commonality Preceding Polycystic Ovary Syndrome? FRONTIERS OF HORMONE RESEARCH 2019; 53:1-17. [PMID: 31499494 DOI: 10.1159/000494899] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In utero androgen excess reliably induces polycystic ovary syndrome (PCOS)-like reproductive and metabolic traits in female monkeys, sheep, rats, and mice. In humans, however, substantial technical and ethical constraints on fetal sampling have curtailed safe, pathogenic exploration during gestation. Evidence consistent with in utero origins for PCOS in humans has thus been slow to amass, but the balance now leans toward developmental fetal origins. Given that PCOS is familial and highly heritable, difficulties encountered in discerning genetic contributions to PCOS pathogenesis are puzzling and, to date, accounts for <10% of PCOS presentations. Unaccounted heritability notwithstanding, molecular commonality in pathogenic mechanisms is emerging, suggested by co-occurrence at the same gene loci of (1) PCOS genetic variants (PCOS women), (2) epigenetic alterations in DNA methylation (PCOS women), and (3) bioinformatics, gene networks-identified, epigenetic alterations in DNA methylation (female rhesus monkeys exposed to testosterone (T) in utero). In addition, naturally occurring hyperandrogenism in female monkeys singles out individuals with PCOS-like reproductive and metabolic traits accompanied by somatic biomarkers of in utero T exposure. Such phenotypic and molecular convergence between highly related species suggests not only dual genetic and epigenetic contributions to a developmental origin of PCOS but also common molecular pathogenesis extending beyond humans.
Collapse
Affiliation(s)
- David H Abbott
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA, .,Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin, USA, .,Endocrinology-Reproductive Physiology Training Program, University of Wisconsin, Madison, Wisconsin, USA,
| | - Marissa Kraynak
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Endocrinology-Reproductive Physiology Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Daniel A Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jon E Levine
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA.,Endocrinology-Reproductive Physiology Training Program, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|