51
|
Weber A, Pfaff M, Schöttler F, Schmidt V, Lichtenberg A, Akhyari P. Reproducible In Vitro Tissue Culture Model to Study Basic Mechanisms of Calcific Aortic Valve Disease: Comparative Analysis to Valvular Interstitials Cells. Biomedicines 2021; 9:biomedicines9050474. [PMID: 33925890 PMCID: PMC8146785 DOI: 10.3390/biomedicines9050474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
The hallmarks of calcific aortic valve disease (CAVD), an active and regulated process involving the creation of calcium nodules, lipoprotein accumulation, and chronic inflammation, are the significant changes that occur in the composition, organization, and mechanical properties of the extracellular matrix (ECM) of the aortic valve (AV). Most research regarding CAVD is based on experiments using two-dimensional (2D) cell culture or artificially created three-dimensional (3D) environments of valvular interstitial cells (VICs). Because the valvular ECM has a powerful influence in regulating pathological events, we developed an in vitro AV tissue culture model, which is more closely able to mimic natural conditions to study cellular responses underlying CAVD. AV leaflets, isolated from the hearts of 6-8-month-old sheep, were fixed with needles on silicon rubber rings to achieve passive tension and treated in vitro under pro-degenerative and pro-calcifying conditions. The degeneration of AV leaflets progressed over time, commencing with the first visible calcified domains after 14 d and winding up with the distinct formation of calcium nodules, heightened stiffness, and clear disruption of the ECM after 56 d. Both the expression of pro-degenerative genes and the myofibroblastic differentiation of VICs were altered in AV leaflets compared to that in VIC cultures. In this study, we have established an easily applicable, reproducible, and cost-effective in vitro AV tissue culture model to study pathological mechanisms underlying CAVD. The valvular ECM and realistic VIC-VEC interactions mimic natural conditions more closely than VIC cultures or 3D environments. The application of various culture conditions enables the examination of different pathological mechanisms underlying CAVD and could lead to a better understanding of the molecular mechanisms that lead to VIC degeneration and AS. Our model provides a valuable tool to study the complex pathobiology of CAVD and can be used to identify potential therapeutic targets for slowing disease progression.
Collapse
|
52
|
Mirani B, Parvin Nejad S, Simmons CA. Recent Progress Toward Clinical Translation of Tissue-Engineered Heart Valves. Can J Cardiol 2021; 37:1064-1077. [PMID: 33839245 DOI: 10.1016/j.cjca.2021.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 01/02/2023] Open
Abstract
Surgical replacement remains the primary option to treat the rapidly growing number of patients with severe valvular heart disease. Although current valve replacements-mechanical, bioprosthetic, and cryopreserved homograft valves-enhance survival and quality of life for many patients, the ideal prosthetic heart valve that is abundantly available, immunocompatible, and capable of growth, self-repair, and life-long performance has yet to be developed. These features are essential for pediatric patients with congenital defects, children and young adult patients with rheumatic fever, and active adult patients with valve disease. Heart valve tissue engineering promises to address these needs by providing living valve replacements that function similarly to their native counterparts. This is best evidenced by the long-term clinical success of decellularised pulmonary and aortic homografts, but the supply of homografts cannot meet the demand for replacement valves. A more abundant and consistent source of replacement valves may come from cellularised valves grown in vitro or acellular off-the-shelf biomaterial/tissue constructs that recellularise in situ, but neither tissue engineering approach has yet achieved long-term success in preclinical testing. Beyond the technical challenges, heart valve tissue engineering faces logistical, economic, and regulatory challenges. In this review, we summarise recent progress in heart valve tissue engineering, highlight important outcomes from preclinical and clinical testing, and discuss challenges and future directions toward clinical translation.
Collapse
Affiliation(s)
- Bahram Mirani
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Shouka Parvin Nejad
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Craig A Simmons
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
53
|
Majumdar U, Yasuhara J, Garg V. In Vivo and In Vitro Genetic Models of Congenital Heart Disease. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a036764. [PMID: 31818859 DOI: 10.1101/cshperspect.a036764] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital cardiovascular malformations represent the most common type of birth defect and encompass a spectrum of anomalies that range from mild to severe. The etiology of congenital heart disease (CHD) is becoming increasingly defined based on prior epidemiologic studies that supported the importance of genetic contributors and technological advances in human genome analysis. These have led to the discovery of a growing number of disease-contributing genetic abnormalities in individuals affected by CHD. The ever-growing population of adult CHD survivors, which are the result of reductions in mortality from CHD during childhood, and this newfound genetic knowledge have led to important questions regarding recurrence risks, the mechanisms by which these defects occur, the potential for novel approaches for prevention, and the prediction of long-term cardiovascular morbidity in adult CHD survivors. Here, we will review the current status of genetic models that accurately model human CHD as they provide an important tool to answer these questions and test novel therapeutic strategies.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jun Yasuhara
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43205, USA
| |
Collapse
|
54
|
Majumdar U, Manivannan S, Basu M, Ueyama Y, Blaser MC, Cameron E, McDermott MR, Lincoln J, Cole SE, Wood S, Aikawa E, Lilly B, Garg V. Nitric oxide prevents aortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling. SCIENCE ADVANCES 2021; 7:7/6/eabe3706. [PMID: 33547080 PMCID: PMC7864581 DOI: 10.1126/sciadv.abe3706] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/18/2020] [Indexed: 05/22/2023]
Abstract
Calcific aortic valve disease (CAVD) is an increasingly prevalent condition, and endothelial dysfunction is implicated in its etiology. We previously identified nitric oxide (NO) as a calcification inhibitor by its activation of NOTCH1, which is genetically linked to human CAVD. Here, we show NO rescues calcification by an S-nitrosylation-mediated mechanism in porcine aortic valve interstitial cells and single-cell RNA-seq demonstrated NO regulates the NOTCH pathway. An unbiased proteomic approach to identify S-nitrosylated proteins in valve cells found enrichment of the ubiquitin-proteasome pathway and implicated S-nitrosylation of USP9X (ubiquitin specific peptidase 9, X-linked) in NOTCH regulation during calcification. Furthermore, S-nitrosylated USP9X was shown to deubiquitinate and stabilize MIB1 for NOTCH1 activation. Consistent with this, genetic deletion of Usp9x in mice demonstrated CAVD and human calcified aortic valves displayed reduced S-nitrosylation of USP9X. These results demonstrate a previously unidentified mechanism by which S-nitrosylation-dependent regulation of a ubiquitin-associated pathway prevents CAVD.
Collapse
Affiliation(s)
- Uddalak Majumdar
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sathiyanarayanan Manivannan
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Madhumita Basu
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yukie Ueyama
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mark C Blaser
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Cameron
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michael R McDermott
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Herma Heart Institute, Division of Pediatric Cardiology, Children's Wisconsin, Milwaukee, WI, USA
| | - Susan E Cole
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Stephen Wood
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Center of Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brenda Lilly
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, OH, USA.
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
55
|
Lin H, McBride KL, Garg V, Zhao MT. Decoding Genetics of Congenital Heart Disease Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Front Cell Dev Biol 2021; 9:630069. [PMID: 33585486 PMCID: PMC7873857 DOI: 10.3389/fcell.2021.630069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Congenital heart disease (CHD) is the most common cause of infant death associated with birth defects. Recent next-generation genome sequencing has uncovered novel genetic etiologies of CHD, from inherited and de novo variants to non-coding genetic variants. The next phase of understanding the genetic contributors of CHD will be the functional illustration and validation of this genome sequencing data in cellular and animal model systems. Human induced pluripotent stem cells (iPSCs) have opened up new horizons to investigate genetic mechanisms of CHD using clinically relevant and patient-specific cardiac cells such as cardiomyocytes, endothelial/endocardial cells, cardiac fibroblasts and vascular smooth muscle cells. Using cutting-edge CRISPR/Cas9 genome editing tools, a given genetic variant can be corrected in diseased iPSCs and introduced to healthy iPSCs to define the pathogenicity of the variant and molecular basis of CHD. In this review, we discuss the recent progress in genetics of CHD deciphered by large-scale genome sequencing and explore how genome-edited patient iPSCs are poised to decode the genetic etiologies of CHD by coupling with single-cell genomics and organoid technologies.
Collapse
Affiliation(s)
- Hui Lin
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Kim L McBride
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
56
|
Aikawa E, Blaser MC. 2020 Jeffrey M. Hoeg Award Lecture: Calcifying Extracellular Vesicles as Building Blocks of Microcalcifications in Cardiovascular Disorders. Arterioscler Thromb Vasc Biol 2021; 41:117-127. [PMID: 33115271 PMCID: PMC7832175 DOI: 10.1161/atvbaha.120.314704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022]
Abstract
Cardiovascular calcification is an insidious form of ectopic tissue mineralization that presents as a frequent comorbidity of atherosclerosis, aortic valve stenosis, diabetes, renal failure, and chronic inflammation. Calcification of the vasculature and heart valves contributes to mortality in these diseases. An inability to clinically image or detect early microcalcification coupled with an utter lack of pharmaceutical therapies capable of inhibiting or regressing entrenched and detectable macrocalcification has led to a prominent and deadly gap in care for a growing portion of our rapidly aging population. Recognition of this mounting concern has arisen over the past decade and led to a series of revolutionary works that has begun to pull back the curtain on the pathogenesis, mechanistic basis, and causative drivers of cardiovascular calcification. Central to this progress is the discovery that calcifying extracellular vesicles act as active precursors of cardiovascular microcalcification in diverse vascular beds. More recently, the omics revolution has resulted in the collection and quantification of vast amounts of molecular-level data. As the field has become poised to leverage these resources for drug discovery, new means of deriving relevant biological insights from these rich and complex datasets have come into focus through the careful application of systems biology and network medicine approaches. As we look onward toward the next decade, we envision a growing need to standardize approaches to study this complex and multifaceted clinical problem and expect that a push to translate mechanistic findings into therapeutics will begin to finally provide relief for those impacted by this disease.
Collapse
Affiliation(s)
- Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark C. Blaser
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
57
|
Biology and Biomechanics of the Heart Valve Extracellular Matrix. J Cardiovasc Dev Dis 2020; 7:jcdd7040057. [PMID: 33339213 PMCID: PMC7765611 DOI: 10.3390/jcdd7040057] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
Heart valves are dynamic structures that, in the average human, open and close over 100,000 times per day, and 3 × 109 times per lifetime to maintain unidirectional blood flow. Efficient, coordinated movement of the valve structures during the cardiac cycle is mediated by the intricate and sophisticated network of extracellular matrix (ECM) components that provide the necessary biomechanical properties to meet these mechanical demands. Organized in layers that accommodate passive functional movements of the valve leaflets, heart valve ECM is synthesized during embryonic development, and remodeled and maintained by resident cells throughout life. The failure of ECM organization compromises biomechanical function, and may lead to obstruction or leaking, which if left untreated can lead to heart failure. At present, effective treatment for heart valve dysfunction is limited and frequently ends with surgical repair or replacement, which comes with insuperable complications for many high-risk patients including aged and pediatric populations. Therefore, there is a critical need to fully appreciate the pathobiology of biomechanical valve failure in order to develop better, alternative therapies. To date, the majority of studies have focused on delineating valve disease mechanisms at the cellular level, namely the interstitial and endothelial lineages. However, less focus has been on the ECM, shown previously in other systems, to be a promising mechanism-inspired therapeutic target. Here, we highlight and review the biology and biomechanical contributions of key components of the heart valve ECM. Furthermore, we discuss how human diseases, including connective tissue disorders lead to aberrations in the abundance, organization and quality of these matrix proteins, resulting in instability of the valve infrastructure and gross functional impairment.
Collapse
|
58
|
Abstract
Endocardial cells are specialized endothelial cells that, during embryogenesis, form a lining on the inside of the developing heart, which is maintained throughout life. Endocardial cells are an essential source for several lineages of the cardiovascular system including coronary endothelium, endocardial cushion mesenchyme, cardiomyocytes, mural cells, fibroblasts, liver vasculature, adipocytes, and hematopoietic cells. Alterations in the differentiation programs that give rise to these lineages has detrimental effects, including premature lethality or significant structural malformations present at birth. Here, we will review the literature pertaining to the contribution of endocardial cells to valvular, and nonvalvular lineages and highlight critical pathways required for these processes. The lineage differentiation potential of embryonic, and possibly adult, endocardial cells has therapeutic potential in the regeneration of damaged cardiac tissue or treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Bailey Dye
- Biomedical Sciences Graduate Program at The Ohio State University, Columbus, Ohio 43210, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
59
|
Joll JE, Clark CR, Peters CS, Raddatz MA, Bersi MR, Merryman WD. Genetic ablation of serotonin receptor 2B improves aortic valve hemodynamics of Notch1 heterozygous mice in a high-cholesterol diet model. PLoS One 2020; 15:e0238407. [PMID: 33237915 PMCID: PMC7688160 DOI: 10.1371/journal.pone.0238407] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/09/2020] [Indexed: 01/20/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is a deadly disease that is rising in prevalence due to population aging. While the disease is complex and poorly understood, one well-documented driver of valvulopathy is serotonin agonism. Both serotonin overexpression, as seen with carcinoid tumors and drug-related agonism, such as with Fenfluramine use, are linked with various diseases of the valves. Thus, the objective of this study was to determine if genetic ablation or pharmacological antagonism of the 5-HT2B serotonin receptor (gene: Htr2b) could improve the hemodynamic and histological progression of calcific aortic valve disease. Htr2b mutant mice were crossed with Notch1+/- mice, an established small animal model of CAVD, to determine if genetic ablation affects CAVD progression. To assess the effect of pharmacological inhibition on CAVD progression, Notch1+/- mice were treated with the 5-HT2B receptor antagonist SB204741. Mice were analyzed using echocardiography, histology, immunofluorescence, and real-time quantitative polymerase chain reaction. Htr2b mutant mice showed lower aortic valve peak velocity and mean pressure gradient-classical hemodynamic indicators of aortic valve stenosis-without concurrent left ventricle change. 5-HT2B receptor antagonism, however, did not affect hemodynamic progression. Leaflet thickness, collagen density, and CAVD-associated transcriptional markers were not significantly different in any group. This study reveals that genetic ablation of Htr2b attenuates hemodynamic development of CAVD in the Notch1+/- mice, but pharmacological antagonism may require high doses or long-term treatment to slow progression.
Collapse
Affiliation(s)
- J. Ethan Joll
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Cynthia R. Clark
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Christine S. Peters
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Michael A. Raddatz
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Matthew R. Bersi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - W. David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
60
|
Donato M, Ferri N, Lupo MG, Faggin E, Rattazzi M. Current Evidence and Future Perspectives on Pharmacological Treatment of Calcific Aortic Valve Stenosis. Int J Mol Sci 2020; 21:ijms21218263. [PMID: 33158204 PMCID: PMC7663524 DOI: 10.3390/ijms21218263] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS), the most common heart valve disease, is characterized by the slow progressive fibro-calcific remodeling of the valve leaflets, leading to progressive obstruction to the blood flow. CAVS is an increasing health care burden and the development of an effective medical treatment is a major medical need. To date, no effective pharmacological therapies have proven to halt or delay its progression to the severe symptomatic stage and aortic valve replacement represents the only available option to improve clinical outcomes and to increase survival. In the present report, the current knowledge and latest advances in the medical management of patients with CAVS are summarized, placing emphasis on lipid-lowering agents, vasoactive drugs, and anti-calcific treatments. In addition, novel potential therapeutic targets recently identified and currently under investigation are reported.
Collapse
Affiliation(s)
- Maristella Donato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (M.D.); (N.F.); (M.G.L.)
| | - Elisabetta Faggin
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
| | - Marcello Rattazzi
- Department of Medicine—DIMED, University of Padova, 35122 Padova, Italy;
- Correspondence: ; Tel.: +39-0498-211-867 or +39-0422-322-207
| |
Collapse
|
61
|
Pedriali G, Morciano G, Patergnani S, Cimaglia P, Morelli C, Mikus E, Ferrari R, Gasbarro V, Giorgi C, Wieckowski MR, Pinton P. Aortic Valve Stenosis and Mitochondrial Dysfunctions: Clinical and Molecular Perspectives. Int J Mol Sci 2020; 21:ijms21144899. [PMID: 32664529 PMCID: PMC7402290 DOI: 10.3390/ijms21144899] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/08/2023] Open
Abstract
Calcific aortic stenosis is a disorder that impacts the physiology of heart valves. Fibrocalcific events progress in conjunction with thickening of the valve leaflets. Over the years, these events promote stenosis and obstruction of blood flow. Known and common risk factors are congenital defects, aging and metabolic syndromes linked to high plasma levels of lipoproteins. Inflammation and oxidative stress are the main molecular mediators of the evolution of aortic stenosis in patients and these mediators regulate both the degradation and remodeling processes. Mitochondrial dysfunction and dysregulation of autophagy also contribute to the disease. A better understanding of these cellular impairments might help to develop new ways to treat patients since, at the moment, there is no effective medical treatment to diminish neither the advancement of valve stenosis nor the left ventricular function impairments, and the current approaches are surgical treatment or transcatheter aortic valve replacement with prosthesis.
Collapse
Affiliation(s)
- Gaia Pedriali
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
| | - Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
| | - Simone Patergnani
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
| | - Paolo Cimaglia
- Cardiovascular Department, Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (P.C.); (E.M.)
| | - Cristina Morelli
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, 44121 Ferrara, Italy;
| | - Elisa Mikus
- Cardiovascular Department, Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (P.C.); (E.M.)
| | - Roberto Ferrari
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, 44121 Ferrara, Italy;
| | - Vincenzo Gasbarro
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland;
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (G.P.); (G.M.); (S.P.); (R.F.)
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (V.G.); (C.G.)
- Correspondence: ; Tel.: +0532-455802
| |
Collapse
|
62
|
Abstract
The valves of the heart are crucial for ensuring that blood flows in one direction from the heart, through the lungs and back to the rest of the body. Heart valve development is regulated by complex interactions between different cardiac cell types and is subject to blood flow-driven forces. Recent work has begun to elucidate the important roles of developmental pathways, valve cell heterogeneity and hemodynamics in determining the structure and function of developing valves. Furthermore, this work has revealed that many key genetic pathways involved in cardiac valve development are also implicated in diseased valves. Here, we review recent discoveries that have furthered our understanding of the molecular, cellular and mechanosensitive mechanisms of valve development, and highlight new insights into congenital and acquired valve disease.
Collapse
Affiliation(s)
- Anna O'Donnell
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Katherine E Yutzey
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
63
|
Soto-Navarrete MT, López-Unzu MÁ, Durán AC, Fernández B. Embryonic development of bicuspid aortic valves. Prog Cardiovasc Dis 2020; 63:407-418. [PMID: 32592706 DOI: 10.1016/j.pcad.2020.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common congenital cardiac malformation, frequently associated with aortopathies and valvulopathies. The congenital origin of BAV is suspected to impact the development of the disease in the adult life. During the last decade, a number of studies dealing with the embryonic development of congenital heart disease have significantly improved our knowledge on BAV etiology. They describe the developmental defects, at the molecular, cellular and morphological levels, leading to congenital cardiac malformations, including BAV, in animal models. These models consist of a spontaneous hamster and several mouse models with different genetic manipulations in genes belonging to a variety of pathways. In this review paper, we aim to gather information on the developmental defects leading to BAV formation in these animal models, in order to tentatively explain the morphogenetic origin of the spectrum of valve morphologies that characterizes human BAV. BAV may be the only defect resulting from gene manipulation in mice, but usually it appears as the less severe defect of a spectrum of malformations, most frequently affecting the cardiac outflow tract. The genes whose alterations cause BAV belong to different genetic pathways, but many of them are direct or indirectly associated with the NOTCH pathway. These molecular alterations affect three basic cellular mechanisms during heart development, i.e., endocardial-to-mesenchymal transformation, cardiac neural crest (CNC) cell behavior and valve cushion mesenchymal cell differentiation. The defective cellular functions affect three possible morphogenetic mechanisms, i.e., outflow tract endocardial cushion formation, outflow tract septation and valve cushion excavation. While endocardial cushion abnormalities usually lead to latero-lateral BAVs and septation defects to antero-posterior BAVs, alterations in cushion excavation may give rise to both BAV types. The severity of the original defect most probably determines the specific aortic valve phenotype, which includes commissural fusions and raphes. Based on current knowledge on the developmental mechanisms of the cardiac outflow tract, we propose a unified hypothesis of BAV formation, based on the inductive role of CNC cells in the three mechanisms of BAV development. Alterations of CNC cell behavior in three possible alternative key valvulogenic processes may lead to the whole spectrum of BAV.
Collapse
Affiliation(s)
- María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Miguel Ángel López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain; CIBERCV Enfermedades Cardiovasculares, Málaga, Spain.
| |
Collapse
|
64
|
l-Arginine prevents inflammatory and pro-calcific differentiation of interstitial aortic valve cells. Atherosclerosis 2020; 298:27-35. [PMID: 32169720 DOI: 10.1016/j.atherosclerosis.2020.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/17/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of calcific aortic stenosis. Herein, we investigated the effects of l-Arginine, the main precursor of NO, on the osteogenic differentiation of aortic interstitial valve cells (VICs). METHODS We isolated a clonal population of bovine VICs that expresses osteogenic markers and induces calcification of collagen matrix after stimulation with endotoxin (LPS 500 ng/mL). VICs were treated in vitro with different combinations of LPS ± l-Arginine (50 or 100 mM) and cell extracts were collected to perform proteomic (iTRAQ) and gene expression (RT-PCR) analysis. RESULTS l-Arginine prevents the over-expression of alkaline phosphatase (ALP, p < 0.001) and reduces matrix calcification (p < 0.05) in VICs treated with LPS. l-Arginine also reduces the over-expression of inflammatory molecules induced by LPS (TNF-alpha, IL-6 and IL-1beta, p < 0.001). The proteomic analysis allowed to identify 49 proteins with an altered expression profile after stimulation with LPS and significantly modified by l-Arginine. These include proteins involved in the redox homeostasis of the cells (i.e. Xanthine Oxidase, Catalase, Aldehyde Oxidase), remodeling of the extracellular matrix (i.e. ADAMTSL4, Basigin, COL3A1) and cellular signaling (i.e. Fibrillin-1, Legumain, S100A13). The RT-PCR analysis confirmed the modifications of Fibrillin-1, ADAMTSL4, Basigin and Xanthine Oxidase, whose expression levels increase after stimulation with LPS and are reduced by l-Arginine (p < 0.05). CONCLUSIONS l-Arginine prevents osteogenic differentiation of VICs and reduces matrix calcification. This effect is achieved through the modulation of proteins involved in the cellular redox system, remodeling of extracellular matrix and inflammatory activation of VICs.
Collapse
|
65
|
Fernández B, Soto-Navarrete MT, López-García A, López-Unzu MÁ, Durán AC, Fernández MC. Bicuspid Aortic Valve in 2 Model Species and Review of the Literature. Vet Pathol 2020; 57:321-331. [DOI: 10.1177/0300985819900018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bicuspid aortic valve (BAV) is the most common human congenital cardiac malformation. Although the etiology is unknown for most patients, formation of the 2 main BAV anatomic types (A and B) has been shown to rely on distinct morphogenetic mechanisms. Animal models of BAV include 2 spontaneous hamster strains and 27 genetically modified mouse strains. To assess the value of these models for extrapolation to humans, we examined the aortic valve anatomy of 4340 hamsters and 1823 mice from 8 and 7 unmodified strains, respectively. In addition, we reviewed the literature describing BAV in nonhuman mammals. The incidences of BAV types A and B were 2.3% and 0.03% in control hamsters and 0% and 0.3% in control mice, respectively. Hamsters from the spontaneous model had BAV type A only, whereas mice from 2 of 27 genetically modified strains had BAV type A, 23 of 27 had BAV type B, and 2 of 27 had both BAV types. In both species, BAV incidence was dependent on genetic background. Unlike mice, hamsters had a wide spectrum of aortic valve morphologies. We showed interspecific differences in the occurrence of BAV between humans, hamsters, and mice that should be considered when studying aortic valve disease using animal models. Our results suggest that genetic modifiers play a significant role in both the morphology and incidence of BAV. We propose that mutations causing anomalies in specific cardiac morphogenetic processes or cell lineages may lead to BAV types A, B, or both, depending on additional genetic, environmental, and epigenetic factors.
Collapse
Affiliation(s)
- Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- CIBERCV Enfermedades Cardiovasculares, Málaga, Spain
| | - María Teresa Soto-Navarrete
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Alejandro López-García
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Miguel Ángel López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ana Carmen Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - M. Carmen Fernández
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
66
|
Yamaguchi K, Yisireyili M, Goto S, Kato K, Cheng XW, Nakayama T, Matsushita T, Niwa T, Murohara T, Takeshita K. Indoxyl Sulfate-induced Vascular Calcification is mediated through Altered Notch Signaling Pathway in Vascular Smooth Muscle Cells. Int J Med Sci 2020; 17:2703-2717. [PMID: 33162798 PMCID: PMC7645353 DOI: 10.7150/ijms.43184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction: The aim of this study was to determine the role of Notch in indoxyl sulfate (IS)-induced vascular calcification (VC). Materials and methods: VC and expression of Notch-related and osteogenic molecules were examined in Dahl salt-sensitive (DS), DS hypertensive (DH), and DH IS-treated rats (DH+IS). The effects of IS on expression of Notch receptors, apoptotic activity, and calcification were examined in cultured aortic smooth muscle cells (SMCs). Results: Medial calcification was noted only in aortas and coronary arteries of DH+IS rats. Notch1, Notch3, and Hes-1 were expressed in aortic SMCs of all rats, but only weakly in the central areas of the media and around the calcified lesions in DH+IS rats. RT-PCR and western blotting of DH+IS rat aortas showed downregulation of Notch ligands, Notch1 and Notch3, downstream transcriptional factors, and SM22, and conversely, overexpression of osteogenic markers. Expression of Notch1 and Notch3 in aortic SMCs was highest in incubation under 500 μM IS for 24hrs, and then decreased time- and dose-dependently. Coupled with this decrease, IS increased caspase 3/7 activity and TUNEL-positive aortic SMCs. In addition, pharmacological Notch signal inhibition with DAPT induced apoptosis in aortic SMCs. ZVAD, a caspase inhibitor abrogated IS-induced and DAPT-induced in vitro vascular calcification. Knockdown of Notch1 and Notch3 cooperatively increased expression of osteogenic transcriptional factors and decreased expression of SM22. Conclusion: Our results suggested that IS-induced VC is mediated through suppression of Notch activity in aortic SMCs, induction of osteogenic differentiation and apoptosis.
Collapse
Affiliation(s)
- Kazutoshi Yamaguchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maimaiti Yisireyili
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sumie Goto
- Biomedical Research Laboratories, Kureha Co., Tokyo, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology/Hypertension and Heart Center, Yanbian University Hospital, Yanji, Jilin, China.,Department of Community Health and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Nakayama
- Department of Blood Transfusion, Aichi Medical University Hospital, Nagakute, Japan
| | - Tadashi Matsushita
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan.,Department of Blood Transfusion, Nagoya University Hospital, Nagoya, Japan
| | | | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan.,Department of Clinical Laboratory, Saitama Medical Centre, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
67
|
Reichrath J, Reichrath S. Notch Pathway and Inherited Diseases: Challenge and Promise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:159-187. [PMID: 32060876 DOI: 10.1007/978-3-030-34436-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evolutionary highly conserved Notch pathway governs many cellular core processes including cell fate decisions. Although it is characterized by a simple molecular design, Notch signaling, which first developed in metazoans, represents one of the most important pathways that govern embryonic development. Consequently, a broad variety of independent inherited diseases linked to defective Notch signaling has now been identified, including Alagille, Adams-Oliver, and Hajdu-Cheney syndromes, CADASIL (cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy), early-onset arteriopathy with cavitating leukodystrophy, lateral meningocele syndrome, and infantile myofibromatosis. In this review, we give a brief overview on molecular pathology and clinical findings in congenital diseases linked to the Notch pathway. Moreover, we discuss future developments in basic science and clinical practice that may emerge from recent progress in our understanding of the role of Notch in health and disease.
Collapse
Affiliation(s)
- Jörg Reichrath
- Department of Dermatology, The Saarland University Hospital, Homburg, Germany.
| | - Sandra Reichrath
- Department of Dermatology, The Saarland University Hospital, Homburg, Germany
| |
Collapse
|
68
|
Odelin G, Faure E, Maurel-Zaffran C, Zaffran S. Krox20 Regulates Endothelial Nitric Oxide Signaling in Aortic Valve Development and Disease. J Cardiovasc Dev Dis 2019; 6:jcdd6040039. [PMID: 31684048 PMCID: PMC6955692 DOI: 10.3390/jcdd6040039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Among the aortic valve diseases, the bicuspid aortic valve (BAV) occurs when the aortic valve has two leaflets (cusps), rather than three, and represents the most common form of congenital cardiac malformation, affecting 1–2% of the population. Despite recent advances, the etiology of BAV is poorly understood. We have recently shown that Krox20 is expressed in endothelial and cardiac neural crest derivatives that normally contribute to aortic valve development and that lack of Krox20 in these cells leads to aortic valve defects including partially penetrant BAV formation. Dysregulated expression of endothelial nitric oxide synthase (Nos3) is associated with BAV. To investigate the relationship between Krox20 and Nos3 during aortic valve development, we performed inter-genetic cross. While single heterozygous mice had normal valve formation, the compound Krox20+/−;Nos3+/− mice had BAV malformations displaying an in vivo genetic interaction between these genes for normal valve morphogenesis. Moreover, in vivo and in vitro experiments demonstrate that Krox20 directly binds to Nos3 proximal promoter to activate its expression. Our data suggests that Krox20 is a regulator of nitric oxide in endothelial-derived cells in the development of the aortic valve and concludes on the interaction of Krox20 and Nos3 in BAV formation.
Collapse
Affiliation(s)
- Gaëlle Odelin
- Aix Marseille University, INSERM, Marseille Medical Genetics, U1251, 13005 Marseille, France.
| | - Emilie Faure
- Aix Marseille University, INSERM, Marseille Medical Genetics, U1251, 13005 Marseille, France.
| | | | - Stéphane Zaffran
- Aix Marseille University, INSERM, Marseille Medical Genetics, U1251, 13005 Marseille, France.
| |
Collapse
|
69
|
Bittle GJ, Morales D, Deatrick KB, Parchment N, Saha P, Mishra R, Sharma S, Pietris N, Vasilenko A, Bor C, Ambastha C, Gunasekaran M, Li D, Kaushal S. Stem Cell Therapy for Hypoplastic Left Heart Syndrome: Mechanism, Clinical Application, and Future Directions. Circ Res 2019; 123:288-300. [PMID: 29976693 DOI: 10.1161/circresaha.117.311206] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypoplastic left heart syndrome is a type of congenital heart disease characterized by underdevelopment of the left ventricle, outflow tract, and aorta. The condition is fatal if aggressive palliative operations are not undertaken, but even after the complete 3-staged surgical palliation, there is significant morbidity because of progressive and ultimately intractable right ventricular failure. For this reason, there is interest in developing novel therapies for the management of right ventricular dysfunction in patients with hypoplastic left heart syndrome. Stem cell therapy may represent one such innovative approach. The field has identified numerous stem cell populations from different tissues (cardiac or bone marrow or umbilical cord blood), different age groups (adult versus neonate-derived), and different donors (autologous versus allogeneic), with preclinical and clinical experience demonstrating the potential utility of each cell type. Preclinical trials in small and large animal models have elucidated several mechanisms by which stem cells affect the injured myocardium. Our current understanding of stem cell activity is undergoing a shift from a paradigm based on cellular engraftment and differentiation to one recognizing a primarily paracrine effect. Recent studies have comprehensively evaluated the individual components of the stem cells' secretomes, shedding new light on the intracellular and extracellular pathways at the center of their therapeutic effects. This research has laid the groundwork for clinical application, and there are now several trials of stem cell therapies in pediatric populations that will provide important insights into the value of this therapeutic strategy in the management of hypoplastic left heart syndrome and other forms of congenital heart disease. This article reviews the many stem cell types applied to congenital heart disease, their preclinical investigation and the mechanisms by which they might affect right ventricular dysfunction in patients with hypoplastic left heart syndrome, and finally, the completed and ongoing clinical trials of stem cell therapy in patients with congenital heart disease.
Collapse
Affiliation(s)
- Gregory J Bittle
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - David Morales
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Kristopher B Deatrick
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Nathaniel Parchment
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Progyaparamita Saha
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Rachana Mishra
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Sudhish Sharma
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Nicholas Pietris
- Division of Cardiology (N. Pietris), University of Maryland School of Medicine, Baltimore
| | - Alexander Vasilenko
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Casey Bor
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Chetan Ambastha
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Muthukumar Gunasekaran
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Deqiang Li
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Sunjay Kaushal
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| |
Collapse
|
70
|
Lee A, Wei S, Schwertani A. A Notch more: Molecular players in bicuspid aortic valve disease. J Mol Cell Cardiol 2019; 134:62-68. [DOI: 10.1016/j.yjmcc.2019.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
|
71
|
Basu M, Garg V. Maternal hyperglycemia and fetal cardiac development: Clinical impact and underlying mechanisms. Birth Defects Res 2019; 110:1504-1516. [PMID: 30576094 DOI: 10.1002/bdr2.1435] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Congenital heart disease (CHD) is the most common type of birth defect and is both a significant pediatric and adult health problem, in light of a growing population of survivors. The etiology of CHD has been considered to be multifactorial with genetic and environmental factors playing important roles. The combination of advances in cardiac developmental biology, which have resulted in the elucidation of molecular pathways regulating normal cardiac morphogenesis, and genome sequencing technology have allowed the discovery of numerous genetic contributors of CHD ranging from chromosomal abnormalities to single gene variants. Conversely, mechanistic details of the contribution of environmental factors to CHD remain unknown. Maternal diabetes mellitus (matDM) is a well-established and increasingly prevalent environmental risk factor for CHD, but the underlying etiologic mechanisms by which pregestational matDM increases the vulnerability of embryos to cardiac malformations remains largely elusive. Here, we will briefly discuss the multifactorial etiology of CHD with a focus on the epidemiologic link between matDM and CHD. We will describe the animal models used to study the underlying mechanisms between matDM and CHD and review the numerous cellular and molecular pathways affected by maternal hyperglycemia in the developing heart. Last, we discuss how this increased understanding may open the door for the development of novel prevention strategies to reduce the incidence of CHD in this high-risk population.
Collapse
Affiliation(s)
- Madhumita Basu
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
72
|
Jeremy RW. Calcific Aortic Valve Disease: Insights Into the Genetics of Vascular Ageing. ACTA ACUST UNITED AC 2019; 10:CIRCGENETICS.117.002012. [PMID: 29242202 DOI: 10.1161/circgenetics.117.002012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richmond W Jeremy
- From the Sydney Medical School, University of Sydney, Newtown, NSW, Australia.
| |
Collapse
|
73
|
Pasipoularides A. Clinical-pathological correlations of BAV and the attendant thoracic aortopathies. Part 2: Pluridisciplinary perspective on their genetic and molecular origins. J Mol Cell Cardiol 2019; 133:233-246. [PMID: 31175858 DOI: 10.1016/j.yjmcc.2019.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022]
Abstract
Bicuspid aortic valve (BAV) arises during valvulogenesis when 2 leaflets/cusps of the aortic valve (AOV) are fused together. Its clinical manifestations pertain to faulty AOV function, the associated aortopathy, and other complications surveyed in Part 1 of the present bipartite-series. Part 2 examines mainly genetic and epigenetic causes of BAV and BAV-associated aortopathies (BAVAs) and disease syndromes (BAVD). Part 1 explored the heterogeneity among subsets of patients with BAV and BAVA/BAVD, and investigated abnormal fluid dynamic stress and strain patterns sustained by the cusps. Specific BAV morphologies engender systolic outflow asymmetries, associated with abnormal aortic regional wall-shear-stress distributions and the expression/localization of BAVAs. Understanding fluid dynamic factors besides the developmental mechanisms and underlying genetics governing these congenital anomalies is necessary to explain patient predisposition to aortopathy and phenotypic heterogeneity. BAV aortopathy entails complex/multifactorial pathophysiology, involving alterations in genetics, epigenetics, hemodynamics, and in cellular and molecular pathways. There is always an interdependence between organismic developmental signals and genes-no systemic signals, no gene-expression; no active gene, no next step. An apposite signal induces the expression of the next developmental gene, which needs be expressed to trigger the next signal, and so on. Hence, embryonic, then post-partum, AOV and thoracic aortic development comprise cascades of developmental genes and their regulation. Interdependencies between them arise, entailing reciprocal/cyclical mutual interactions and adaptive feedback loops, by which developmental morphogenetic processes self-correct responding to environmental inputs/reactions. This Survey can serve as a reference point and driver for further pluridisciplinary BAV/BAVD studies and their clinical translation.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Duke/NSF Center for Emerging Cardiovascular Technologies, Emeritus Faculty of Surgery and of Biomedical Engineering, Duke University School of Medicine and Graduate School, Durham, NC, USA.
| |
Collapse
|
74
|
Hans CP, Sharma N, Sen S, Zeng S, Dev R, Jiang Y, Mahajan A, Joshi T. Transcriptomics Analysis Reveals New Insights into the Roles of Notch1 Signaling on Macrophage Polarization. Sci Rep 2019; 9:7999. [PMID: 31142802 PMCID: PMC6541629 DOI: 10.1038/s41598-019-44266-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/29/2019] [Indexed: 12/24/2022] Open
Abstract
Naïve macrophages (Mφ) polarize in response to various environmental cues to a spectrum of cells that have distinct biological functions. The extreme ends of the spectrum are classified as M1 and M2 macrophages. Previously, we demonstrated that Notch1 deficiency promotes Tgf-β2 dependent M2-polarization in a mouse model of abdominal aortic aneurysm. The present studies aimed to characterize the unique set of genes regulated by Notch1 signaling in macrophage polarization. Bone marrow derived macrophages isolated from WT or Notch1+/- mice (n = 12) were differentiated to Mφ, M1 or M2-phenotypes by 24 h exposure to vehicle, LPS/IFN-γ or IL4/IL13 respectively and total RNA was subjected to RNA-Sequencing (n = 3). Bioinformatics analyses demonstrated that Notch1 haploinsufficiency downregulated the expression of 262 genes at baseline level, 307 genes with LPS/IFN-γ and 254 genes with IL4/IL13 treatment. Among these, the most unique genes downregulated by Notch1 haploinsufficiency included fibromodulin (Fmod), caspase-4, Has1, Col1a1, Alpl and Igf. Pathway analysis demonstrated that extracellular matrix, macrophage polarization and osteogenesis were the major pathways affected by Notch1 haploinsufficiency. Gain and loss-of-function studies established a strong correlation between Notch1 haploinsufficiency and Fmod in regulating Tgf-β signaling. Collectively, our studies suggest that Notch1 haploinsufficiency increases M2 polarization through these newly identified genes.
Collapse
Affiliation(s)
- Chetan P Hans
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA.
- Medical Pharmacology and Physiology, University of Missouri, Columbia, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA.
| | - Neekun Sharma
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Sidharth Sen
- MU Informatics Institute, University of Missouri, Columbia, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Rishabh Dev
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Advitiya Mahajan
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
| | - Trupti Joshi
- MU Informatics Institute, University of Missouri, Columbia, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, USA
| |
Collapse
|
75
|
Development of calcific aortic valve disease: Do we know enough for new clinical trials? J Mol Cell Cardiol 2019; 132:189-209. [PMID: 31136747 DOI: 10.1016/j.yjmcc.2019.05.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/11/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022]
Abstract
Calcific aortic valve disease (CAVD), previously thought to represent a passive degeneration of the valvular extracellular matrix (VECM), is now regarded as an intricate multistage disorder with sequential yet intertangled and interacting underlying processes. Endothelial dysfunction and injury, initiated by disturbed blood flow and metabolic disorders, lead to the deposition of low-density lipoprotein cholesterol in the VECM further provoking macrophage infiltration, oxidative stress, and release of pro-inflammatory cytokines. Such changes in the valvular homeostasis induce differentiation of normally quiescent valvular interstitial cells (VICs) into synthetically active myofibroblasts producing excessive quantities of the VECM and proteins responsible for its remodeling. As a result of constantly ongoing degradation and re-deposition, VECM becomes disorganised and rigid, additionally potentiating myofibroblastic differentiation of VICs and worsening adaptation of the valve to the blood flow. Moreover, disrupted and excessively vascularised VECM is susceptible to the dystrophic calcification caused by calcium and phosphate precipitating on damaged collagen fibers and concurrently accompanied by osteogenic differentiation of VICs. Being combined, passive calcification and biomineralisation synergistically induce ossification of the aortic valve ultimately resulting in its mechanical incompetence requiring surgical replacement. Unfortunately, multiple attempts have failed to find an efficient conservative treatment of CAVD; however, therapeutic regimens and clinical settings have also been far from the optimal. In this review, we focused on interactions and transitions between aforementioned mechanisms demarcating ascending stages of CAVD, suggesting a predisposing condition (bicuspid aortic valve) and drug combination (lipid-lowering drugs combined with angiotensin II antagonists and cytokine inhibitors) for the further testing in both preclinical and clinical trials.
Collapse
|
76
|
Balistreri CR, Forte M, Greco E, Paneni F, Cavarretta E, Frati G, Sciarretta S. An overview of the molecular mechanisms underlying development and progression of bicuspid aortic valve disease. J Mol Cell Cardiol 2019; 132:146-153. [PMID: 31103478 DOI: 10.1016/j.yjmcc.2019.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
Bicuspid aortic valve (BAV) is a common congenital heart malformation frequently associated with the development of aortic valve diseases and severe aortopathy, such as aortic dilatation, aneurysm and dissection. To date, different genetic loci have been identified in syndromic and non- syndromic forms of BAV. Among these, genes involved in the regulation of extracellular matrix remodelling, epithelial to mesenchymal transition and nitric oxide metabolism appear to be the main contributors to BAV pathogenesis. However, no- single gene model explains BAV inheritance, suggesting that more factors are simultaneously involved. In this regard, characteristic epigenetic and immunological profiles have been documented to contradistinguish BAV individuals. In this review, we provide a comprehensive overview addressing molecular mechanisms involved in BAV development and progression.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | | | - Ernesto Greco
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological, and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zurich, Switzerland
| | - Elena Cavarretta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Giacomo Frati
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
77
|
Gomel MA, Lee R, Grande-Allen KJ. Comparing the Role of Mechanical Forces in Vascular and Valvular Calcification Progression. Front Cardiovasc Med 2019; 5:197. [PMID: 30687719 PMCID: PMC6335252 DOI: 10.3389/fcvm.2018.00197] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
Calcification is a prevalent disease in most fully developed countries and is predominantly observed in heart valves and nearby vasculature. Calcification of either tissue leads to deterioration and, ultimately, failure causing poor quality of life and decreased overall life expectancy in patients. In valves, calcification presents as Calcific Aortic Valve Disease (CAVD), in which the aortic valve becomes stenotic when calcific nodules form within the leaflets. The initiation and progression of these calcific nodules is strongly influenced by the varied mechanical forces on the valve. In turn, the addition of calcific nodules creates localized disturbances in the tissue biomechanics, which affects extracellular matrix (ECM) production and cellular activation. In vasculature, atherosclerosis is the most common occurrence of calcification. Atherosclerosis exhibits as calcific plaque formation that forms in juxtaposition to areas of low blood shear stresses. Research in these two manifestations of calcification remain separated, although many similarities persist. Both diseases show that the endothelial layer and its regulation of nitric oxide is crucial to calcification progression. Further, there are similarities between vascular smooth muscle cells and valvular interstitial cells in terms of their roles in ECM overproduction. This review summarizes valvular and vascular tissue in terms of their basic anatomy, their cellular and ECM components and mechanical forces. Calcification is then examined in both tissues in terms of disease prediction, progression, and treatment. Highlighting the similarities and differences between these areas will help target further research toward disease treatment.
Collapse
|
78
|
Gallina D, Lincoln J. Dynamic Expression Profiles of Sox9 in Embryonic, Post Natal, and Adult Heart Valve Cell Populations. Anat Rec (Hoboken) 2018; 302:108-116. [PMID: 30412364 DOI: 10.1002/ar.23913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/19/2018] [Accepted: 03/14/2018] [Indexed: 12/30/2022]
Abstract
Heart valves are dynamic structures and abnormalities during embryonic development can lead to premature lethality or congenital malformations present at birth. The transcription factor Sox9 has been shown to be critical for early and late stages of valve formation, but its defined expression pattern throughout embryonic, post natal, and adult growth and maturation is incomplete. Here we use an antibody to detect 1-100 amino acids of Sox9 and show that in the developing embryo, Sox9 is not detected in valve endothelial cells (VECs) lining the primitive valve structures, but is highly expressed in the endothelial-derived valve interstitial cell population following endothelial-to-mesenchymal transformation. Expression is maintained in this cell population after birth, but is additionally detected in VECs from post natal day 1. Using a specific antibody to detect a phosphorylated form of Sox9 at Serine 181 (pSox9), we note enrichment of pSox9 in VECs at post natal days 1 and 10 and this pattern correlates with the known upstream kinase RockI, and downstream target, Aggrecan. The contribution of Sox9 to post natal growth and maturation of the valve is not known, but this study provides insights for future work examining the differential functions of Sox9 protein in valve cell populations. Anat Rec, 302:108-116, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Donika Gallina
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio
| | - Joy Lincoln
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
79
|
Jover E, Fagnano M, Angelini G, Madeddu P. Cell Sources for Tissue Engineering Strategies to Treat Calcific Valve Disease. Front Cardiovasc Med 2018; 5:155. [PMID: 30460245 PMCID: PMC6232262 DOI: 10.3389/fcvm.2018.00155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular calcification is an independent risk factor and an established predictor of adverse cardiovascular events. Despite concomitant factors leading to atherosclerosis and heart valve disease (VHD), the latter has been identified as an independent pathological entity. Calcific aortic valve stenosis is the most common form of VDH resulting of either congenital malformations or senile “degeneration.” About 2% of the population over 65 years is affected by aortic valve stenosis which represents a major cause of morbidity and mortality in the elderly. A multifactorial, complex and active heterotopic bone-like formation process, including extracellular matrix remodeling, osteogenesis and angiogenesis, drives heart valve “degeneration” and calcification, finally causing left ventricle outflow obstruction. Surgical heart valve replacement is the current therapeutic option for those patients diagnosed with severe VHD representing more than 20% of all cardiac surgeries nowadays. Tissue Engineering of Heart Valves (TEHV) is emerging as a valuable alternative for definitive treatment of VHD and promises to overcome either the chronic oral anticoagulation or the time-dependent deterioration and reintervention of current mechanical or biological prosthesis, respectively. Among the plethora of approaches and stablished techniques for TEHV, utilization of different cell sources may confer of additional properties, desirable and not, which need to be considered before moving from the bench to the bedside. This review aims to provide a critical appraisal of current knowledge about calcific VHD and to discuss the pros and cons of the main cell sources tested in studies addressing in vitro TEHV.
Collapse
Affiliation(s)
- Eva Jover
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Marco Fagnano
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Gianni Angelini
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
80
|
Menon V, Lincoln J. The Genetic Regulation of Aortic Valve Development and Calcific Disease. Front Cardiovasc Med 2018; 5:162. [PMID: 30460247 PMCID: PMC6232166 DOI: 10.3389/fcvm.2018.00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022] Open
Abstract
Heart valves are dynamic, highly organized structures required for unidirectional blood flow through the heart. Over an average lifetime, the valve leaflets or cusps open and close over a billion times, however in over 5 million Americans, leaflet function fails due to biomechanical insufficiency in response to wear-and-tear or pathological stimulus. Calcific aortic valve disease (CAVD) is the most common valve pathology and leads to stiffening of the cusp and narrowing of the aortic orifice leading to stenosis and insufficiency. At the cellular level, CAVD is characterized by valve endothelial cell dysfunction and osteoblast-like differentiation of valve interstitial cells. These processes are associated with dysregulation of several molecular pathways important for valve development including Notch, Sox9, Tgfβ, Bmp, Wnt, as well as additional epigenetic regulators. In this review, we discuss the multifactorial mechanisms that contribute to CAVD pathogenesis and the potential of targeting these for the development of novel, alternative therapeutics beyond surgical intervention.
Collapse
Affiliation(s)
- Vinal Menon
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Joy Lincoln
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, Ohio State University, Columbus, OH, United States
| |
Collapse
|
81
|
Meester J, Verstraeten A, Alaerts M, Schepers D, Van Laer L, Loeys B. Overlapping but distinct roles for NOTCH receptors in human cardiovascular disease. Clin Genet 2018; 95:85-94. [DOI: 10.1111/cge.13382] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Affiliation(s)
- J.A.N. Meester
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - A. Verstraeten
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - M. Alaerts
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - D. Schepers
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - L. Van Laer
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - B.L. Loeys
- Centre of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
- Department of GeneticsRadboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
82
|
Nordquist E, LaHaye S, Nagel C, Lincoln J. Postnatal and Adult Aortic Heart Valves Have Distinctive Transcriptional Profiles Associated With Valve Tissue Growth and Maintenance Respectively. Front Cardiovasc Med 2018; 5:30. [PMID: 29740591 PMCID: PMC5928323 DOI: 10.3389/fcvm.2018.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Heart valves are organized connective tissues of high mechanical demand. They open and close over 100,000 times a day to preserve unidirectional blood flow by maintaining structure-function relationships throughout life. In affected individuals, structural failure compromises function and often leads to regurgitant blood flow and progressive heart failure. This is most common in degenerative valve disease due to age-related wear and tear, or congenital malformations. At present, the only effective treatment of valve disease is surgical repair or replacement and this is often impermanent and requires anti-coagulation therapy throughout life. Therefore, there is a critical need to discover new alternatives. A promising therapeutic area is tissue regeneration and in non-valvular tissues this requires a tightly regulated genetic “growth program” involving cell proliferation. To explore this in heart valves, we performed RNA-seq analysis to compare transcriptional profiles of aortic valve tissue isolated from mice during stages of growth (postnatal day (PND) 2) and adult maintenance (4 months). Data analysis reveals distinct mRNA profiles at each time point and pathway ontology identifies associated changes in biological functions. The PND2 aortic valve is characterized by extensive cell proliferation and expression of mRNAs related to the extracellular matrix (ECM). At 4 months, proliferation is not significant and a differential set of ECM-related genes are expressed. Interestingly there is enrichment of the defense response biological process at this later time point. Together, these data highlight the unique transcriptome of the postnatal valve during stages of growth and maturation, as well as biological functions associated with adult homeostatic valves. These studies create a platform for future work exploring the molecular programs altered in the onset of heart valve disease after birth and provide insights for the development of mechanistic-based therapies.
Collapse
Affiliation(s)
- Emily Nordquist
- Molecular Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States.,Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
| | - Stephanie LaHaye
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, OH, United States
| | - Casey Nagel
- Ocean Ridge Biosciences, Deerfield Beach, FL, United States
| | - Joy Lincoln
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
83
|
Bellasi A, Di Lullo L, Raggi P. Cardiovascular calcification: The emerging role of micronutrients. Atherosclerosis 2018; 273:119-121. [PMID: 29705018 DOI: 10.1016/j.atherosclerosis.2018.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Antonio Bellasi
- Department of Nephrology and Dialysis, Sant'Anna Hospital, ASST-Lariana, Como, Italy
| | - Luca Di Lullo
- Department of Nephrology and Dialysis, Parodi-Delfino Hospital, Colleferro, Italy
| | - Paolo Raggi
- Mazankowski Alberta Heart Hospital, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
84
|
Hulin A, Hego A, Lancellotti P, Oury C. Advances in Pathophysiology of Calcific Aortic Valve Disease Propose Novel Molecular Therapeutic Targets. Front Cardiovasc Med 2018; 5:21. [PMID: 29594151 PMCID: PMC5862098 DOI: 10.3389/fcvm.2018.00021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/26/2018] [Indexed: 01/17/2023] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is the most common heart valve disease and its incidence is expected to rise with aging population. No medical treatment so far has shown slowing progression of CAVD progression. Surgery remains to this day the only way to treat it. Effective drug therapy can only be achieved through a better insight into the pathogenic mechanisms underlying CAVD. The cellular and molecular events leading to leaflets calcification are complex. Upon endothelium cell damage, oxidized LDLs trigger a proinflammatory response disrupting healthy cross-talk between valve endothelial and interstitial cells. Therefore, valve interstitial cells transform into osteoblasts and mineralize the leaflets. Studies have investigated signaling pathways driving and connecting lipid metabolism, inflammation and osteogenesis. This review draws a summary of the recent advances and discusses their exploitation as promising therapeutic targets to treat CAVD and reduce valve replacement.
Collapse
Affiliation(s)
- Alexia Hulin
- GIGA Cardiovascular Sciences, Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Alexandre Hego
- GIGA Cardiovascular Sciences, Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Patrizio Lancellotti
- GIGA Cardiovascular Sciences, Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, University of Liège, CHU Sart Tilman, Liège, Belgium.,GIGA Cardiovascular Sciences, Department of Cardiology, University of Liège Hospital, Heart Valve Clinic, CHU Sart Tilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| | - Cécile Oury
- GIGA Cardiovascular Sciences, Laboratory of Thrombosis and Hemostasis and Valvular Heart Disease, University of Liège, CHU Sart Tilman, Liège, Belgium
| |
Collapse
|
85
|
Abstract
PURPOSE OF REVIEW This review aims to highlight the past and more current literature related to the multifaceted pathogenic programs that contribute to calcific aortic valve disease (CAVD) with a focus on the contribution of developmental programs. RECENT FINDINGS Calcification of the aortic valve is an active process characterized by calcific nodule formation on the aortic surface leading to a less supple and more stiffened cusp, thereby limiting movement and causing clinical stenosis. The mechanisms underlying these pathogenic changes are largely unknown, but emerging studies have suggested that signaling pathways common to valvulogenesis and bone development play significant roles and include Transforming Growth Factor-β (TGF-β), bone morphogenetic protein (BMP), Wnt, Notch, and Sox9. This comprehensive review of the literature highlights the complex nature of CAVD but concurrently identifies key regulators that can be targeted in the development of mechanistic-based therapies beyond surgical intervention to improve patient outcome.
Collapse
|
86
|
Blaser MC, Wei K, Adams RLE, Zhou YQ, Caruso LL, Mirzaei Z, Lam AYL, Tam RKK, Zhang H, Heximer SP, Henkelman RM, Simmons CA. Deficiency of Natriuretic Peptide Receptor 2 Promotes Bicuspid Aortic Valves, Aortic Valve Disease, Left Ventricular Dysfunction, and Ascending Aortic Dilatations in Mice. Circ Res 2017; 122:405-416. [PMID: 29273600 DOI: 10.1161/circresaha.117.311194] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/25/2023]
Abstract
RATIONALE Aortic valve disease is a cell-mediated process without effective pharmacotherapy. CNP (C-type natriuretic peptide) inhibits myofibrogenesis and osteogenesis of cultured valve interstitial cells and is downregulated in stenotic aortic valves. However, it is unknown whether CNP signaling regulates aortic valve health in vivo. OBJECTIVE The aim of this study is to determine whether a deficient CNP signaling axis in mice causes accelerated progression of aortic valve disease. METHODS AND RESULTS In cultured porcine valve interstitial cells, CNP inhibited pathological differentiation via the guanylate cyclase NPR2 (natriuretic peptide receptor 2) and not the G-protein-coupled clearance receptor NPR3 (natriuretic peptide receptor 3). We used Npr2+/- and Npr2+/-;Ldlr-/- mice and wild-type littermate controls to examine the valvular effects of deficient CNP/NPR2 signaling in vivo, in the context of both moderate and advanced aortic valve disease. Myofibrogenesis in cultured Npr2+/- fibroblasts was insensitive to CNP treatment, whereas aged Npr2+/- and Npr2+/-;Ldlr-/- mice developed cardiac dysfunction and ventricular fibrosis. Aortic valve function was significantly impaired in Npr2+/- and Npr2+/-;Ldlr-/- mice versus wild-type littermates, with increased valve thickening, myofibrogenesis, osteogenesis, proteoglycan synthesis, collagen accumulation, and calcification. 9.4% of mice heterozygous for Npr2 had congenital bicuspid aortic valves, with worse aortic valve function, fibrosis, and calcification than those Npr2+/- with typical tricuspid aortic valves or all wild-type littermate controls. Moreover, cGK (cGMP-dependent protein kinase) activity was downregulated in Npr2+/- valves, and CNP triggered synthesis of cGMP and activation of cGK1 (cGMP-dependent protein kinase 1) in cultured porcine valve interstitial cells. Finally, aged Npr2+/-;Ldlr-/- mice developed dilatation of the ascending aortic, with greater aneurysmal progression in Npr2+/- mice with bicuspid aortic valves than those with tricuspid valves. CONCLUSIONS Our data establish CNP/NPR2 signaling as a novel regulator of aortic valve development and disease and elucidate the therapeutic potential of targeting this pathway to arrest disease progression.
Collapse
Affiliation(s)
- Mark C Blaser
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Kuiru Wei
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Rachel L E Adams
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Yu-Qing Zhou
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Laura-Lee Caruso
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Zahra Mirzaei
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Alan Y-L Lam
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Richard K K Tam
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Hangjun Zhang
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Scott P Heximer
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - R Mark Henkelman
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Craig A Simmons
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.).
| |
Collapse
|
87
|
Nachlas ALY, Li S, Davis ME. Developing a Clinically Relevant Tissue Engineered Heart Valve-A Review of Current Approaches. Adv Healthc Mater 2017; 6. [PMID: 29171921 DOI: 10.1002/adhm.201700918] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Indexed: 11/08/2022]
Abstract
Tissue engineered heart valves (TEHVs) have the potential to address the shortcomings of current implants through the combination of cells and bioactive biomaterials that promote growth and proper mechanical function in physiological conditions. The ideal TEHV should be anti-thrombogenic, biocompatible, durable, and resistant to calcification, and should exhibit a physiological hemodynamic profile. In addition, TEHVs may possess the capability to integrate and grow with somatic growth, eliminating the need for multiple surgeries children must undergo. Thus, this review assesses clinically available heart valve prostheses, outlines the design criteria for developing a heart valve, and evaluates three types of biomaterials (decellularized, natural, and synthetic) for tissue engineering heart valves. While significant progress has been made in biomaterials and fabrication techniques, a viable tissue engineered heart valve has yet to be translated into a clinical product. Thus, current strategies and future perspectives are also discussed to facilitate the development of new approaches and considerations for heart valve tissue engineering.
Collapse
Affiliation(s)
- Aline L. Y. Nachlas
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Siyi Li
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Michael E. Davis
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- Children's Heart Research & Outcomes (HeRO) Center Children's Healthcare of Atlanta & Emory University Atlanta GA 30322 USA
| |
Collapse
|
88
|
Lin X, Liu X, Wang L, Jiang J, Sun Y, Zhu Q, Chen Z, He Y, Hu P, Xu Q, Gao F, Lin Y, Jaiswal S, Xiang M, Wang J. Targeted next-generation sequencing identified ADAMTS5 as novel genetic substrate in patients with bicuspid aortic valve. Int J Cardiol 2017; 252:150-155. [PMID: 29162281 DOI: 10.1016/j.ijcard.2017.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/18/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bicuspid Aortic Valve (BAV) is the most common congenital heart disease, affecting >1% of the general population. Up to date, three genes, NOTCH1, GATA5 and SMAD6, have been linked to the isolated form of BAV. However, potential genetic determinants remain largely unknown in most BAV patients. MATERIAL AND METHODS Targeted next-generation sequencing of 7 BAV candidate genes (NOTCH1, GATA5, SMAD6, NOS3, ADAMTS5, Alk2 and SMAD2) was performed in 32 BAV patients. Additional 35 BAV patients and 238 tricuspid aortic valve (TAV) patients, consisting of 107 patients from the transcatheter aortic valve implantation (TAVI) registry and 131 patients from the coronary artery disease (CAD) registry, were selected for further genotyping. RESULTS We found 2 rare non-synonymous variants in 2/7 genes in 3 BAV patients: one was NOTCH1:c.4297G>A and the other one was ADMTS5:c.935C>A that shared by two patients. NOTCH1:c.4297G>A has not been reported previously. ADMTS5:c.935C>A was predicted to be pathogenic by all applied algorithms. Alignment of protein sequences from all available species revealed that ADMTS5:p.Arg312Leu, produced by ADMTS5:c.935C>A, is located in a highly conserved region. The minor allele frequency of ADMTS5:c.935C>A in BAV patients was significantly higher than the matched population in TAV group (0.015 vs. 0, P=0.048). CONCLUSION Our results suggested that ADMTS5:c.935C>A are potentially associated with BAV. Further studies, such as large sample case-control replication test and functional research, are needed to explore the role of this rare variant in the development of BAV.
Collapse
Affiliation(s)
- Xiaoping Lin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Lihan Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jubo Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yinghao Sun
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qifeng Zhu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zexin Chen
- Department of Clinical Epidemiology & Biostatistics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yuxin He
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Po Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qiyuan Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Feng Gao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yan Lin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Sanjay Jaiswal
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Provincial Key Lab of Cardiovascular Research, Hangzhou, Zhejiang 310009, China
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Provincial Key Lab of Cardiovascular Research, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
89
|
Koenig SN, LaHaye S, Feller JD, Rowland P, Hor KN, Trask AJ, Janssen PM, Radtke F, Lilly B, Garg V. Notch1 haploinsufficiency causes ascending aortic aneurysms in mice. JCI Insight 2017; 2:91353. [PMID: 29093270 DOI: 10.1172/jci.insight.91353] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
An ascending aortic aneurysm (AscAA) is a life-threatening disease whose molecular basis is poorly understood. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV), which is associated with AscAA. Here, we describe a potentially novel role for Notch1 in AscAA. We found that Notch1 haploinsufficiency exacerbated the aneurysmal aortic root dilation seen in the Marfan syndrome mouse model and that heterozygous deletion of Notch1 in the second heart field (SHF) lineage recapitulated this exacerbated phenotype. Additionally, Notch1+/- mice in a predominantly 129S6 background develop aortic root dilation, indicating that loss of Notch1 is sufficient to cause AscAA. RNA sequencing analysis of the Notch1.129S6+/- aortic root demonstrated gene expression changes consistent with AscAA. These findings are the first to our knowledge to demonstrate an SHF lineage-specific role for Notch1 in AscAA and suggest that genes linked to the development of BAV may also contribute to the associated aortopathy.
Collapse
Affiliation(s)
- Sara N Koenig
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Dorothy M. Davis Heart and Lung Research Institute
| | - Stephanie LaHaye
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Molecular Genetics
| | - James D Feller
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Patrick Rowland
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kan N Hor
- The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, and
| | - Aaron J Trask
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, and
| | - Paul Ml Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Brenda Lilly
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Molecular Genetics
| | - Vidu Garg
- Center for Cardiovascular Research and.,The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Dorothy M. Davis Heart and Lung Research Institute.,Department of Molecular Genetics.,Department of Pediatrics, and
| |
Collapse
|
90
|
Anstine LJ, Horne TE, Horwitz EM, Lincoln J. Contribution of Extra-Cardiac Cells in Murine Heart Valves is Age-Dependent. J Am Heart Assoc 2017; 6:e007097. [PMID: 29054843 PMCID: PMC5721893 DOI: 10.1161/jaha.117.007097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Heart valves are dynamic structures that open and close over 100 000 times a day to maintain unidirectional blood flow during the cardiac cycle. Function is largely achieved by highly organized layers of extracellular matrix that provide the necessary biomechanical properties. Homeostasis of valve extracellular matrix is mediated by valve endothelial and interstitial cell populations, and although the embryonic origins of these cells are known, it is not clear how they are maintained after birth. The goal of this study is to examine the contribution of extracardiac cells to the aortic valve structure with aging using lineage tracing and bone marrow transplantation approaches. METHODS AND RESULTS Immunohistochemistry and fate mapping studies using CD45-Cre mice show that the contribution of hematopoietic-derived cells to heart valve structures begins during embryogenesis and increases with age. Short-term (6 weeks), CD45-derived cells maintain CD45 expression and the majority coexpress monocyte markers (CD11b), whereas coexpression with valve endothelial (CD31) and interstitial (Vimentin) cell markers were infrequent. Similar molecular phenotypes are observed in heart valves of irradiated donor mice following transplantation of whole bone marrow cells, and engraftment efficiency in this tissue is age-dependent. CONCLUSIONS Findings from this study demonstrate that the percentage of CD45-positive extracardiac cells reside within endothelial and interstitial regions of heart valve structures increases with age. In addition, bone transplantation studies show that engraftment is dependent on the age of the donor and age of the tissue environment of the recipient. These studies create a foundation for further work defining the role of extracardiac cells in homeostatic and diseased heart valves.
Collapse
Affiliation(s)
- Lindsey J Anstine
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
- The Heart Center, Nationwide Children's Hospital, Columbus, OH
| | - Tori E Horne
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
- The Heart Center, Nationwide Children's Hospital, Columbus, OH
| | - Edwin M Horwitz
- Department of Pediatrics, The Ohio State University, Columbus, OH
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH
- Division of Hematology/Oncology/BMT, Nationwide Children's Hospital, Columbus, OH
| | - Joy Lincoln
- Department of Pediatrics, The Ohio State University, Columbus, OH
- Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
- The Heart Center, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
91
|
Basu M, Zhu JY, LaHaye S, Majumdar U, Jiao K, Han Z, Garg V. Epigenetic mechanisms underlying maternal diabetes-associated risk of congenital heart disease. JCI Insight 2017; 2:95085. [PMID: 29046480 DOI: 10.1172/jci.insight.95085] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Birth defects are the leading cause of infant mortality, and they are caused by a combination of genetic and environmental factors. Environmental risk factors may contribute to birth defects in genetically susceptible infants by altering critical molecular pathways during embryogenesis, but experimental evidence for gene-environment interactions is limited. Fetal hyperglycemia associated with maternal diabetes results in a 5-fold increased risk of congenital heart disease (CHD), but the molecular basis for this correlation is unknown. Here, we show that the effects of maternal hyperglycemia on cardiac development are sensitized by haploinsufficiency of Notch1, a key transcriptional regulator known to cause CHD. Using ATAC-seq, we found that hyperglycemia decreased chromatin accessibility at the endothelial NO synthase (Nos3) locus, resulting in reduced NO synthesis. Transcription of Jarid2, a regulator of histone methyltransferase complexes, was increased in response to reduced NO, and this upregulation directly resulted in inhibition of Notch1 expression to levels below a threshold necessary for normal heart development. We extended these findings using a Drosophila maternal diabetic model that revealed the evolutionary conservation of this interaction and the Jarid2-mediated mechanism. These findings identify a gene-environment interaction between maternal hyperglycemia and Notch signaling and support a model in which environmental factors cause birth defects in genetically susceptible infants.
Collapse
Affiliation(s)
- Madhumita Basu
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jun-Yi Zhu
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA
| | - Stephanie LaHaye
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhe Han
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, USA
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
92
|
Olkowicz M, Debski J, Jablonska P, Dadlez M, Smolenski RT. Application of a new procedure for liquid chromatography/mass spectrometry profiling of plasma amino acid-related metabolites and untargeted shotgun proteomics to identify mechanisms and biomarkers of calcific aortic stenosis. J Chromatogr A 2017; 1517:66-78. [DOI: 10.1016/j.chroma.2017.08.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/26/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
|
93
|
Yang C, Xu Y, Yu M, Lee D, Alharti S, Hellen N, Ahmad Shaik N, Banaganapalli B, Sheikh Ali Mohamoud H, Elango R, Przyborski S, Tenin G, Williams S, O’Sullivan J, Al-Radi OO, Atta J, Harding SE, Keavney B, Lako M, Armstrong L. Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet 2017; 26:3031-3045. [PMID: 28521042 PMCID: PMC5886295 DOI: 10.1093/hmg/ddx140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is among the most severe forms of congenital heart disease. Although the consensus view is that reduced flow through the left heart during development is a key factor in the development of the condition, the molecular mechanisms leading to hypoplasia of left heart structures are unknown. We have generated induced pluripotent stem cells (iPSC) from five HLHS patients and two unaffected controls, differentiated these to cardiomyocytes and identified reproducible in vitro cellular and functional correlates of the HLHS phenotype. Our data indicate that HLHS-iPSC have a reduced ability to give rise to mesodermal, cardiac progenitors and mature cardiomyocytes and an enhanced ability to differentiate to smooth muscle cells. HLHS-iPSC-derived cardiomyocytes are characterised by a lower beating rate, disorganised sarcomeres and sarcoplasmic reticulum and a blunted response to isoprenaline. Whole exome sequencing of HLHS fibroblasts identified deleterious variants in NOTCH receptors and other genes involved in the NOTCH signalling pathway. Our data indicate that the expression of NOTCH receptors was significantly downregulated in HLHS-iPSC-derived cardiomyocytes alongside NOTCH target genes confirming downregulation of NOTCH signalling activity. Activation of NOTCH signalling via addition of Jagged peptide ligand during the differentiation of HLHS-iPSC restored their cardiomyocyte differentiation capacity and beating rate and suppressed the smooth muscle cell formation. Together, our data provide firm evidence for involvement of NOTCH signalling in HLHS pathogenesis, reveal novel genetic insights important for HLHS pathology and shed new insights into the role of this pathway during human cardiac development.
Collapse
Affiliation(s)
- Chunbo Yang
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Min Yu
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - David Lee
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Sameer Alharti
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Nicola Hellen
- NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Noor Ahmad Shaik
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Hussein Sheikh Ali Mohamoud
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | - Ramu Elango
- Princess Al Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Saudi Arabia
| | | | - Gennadiy Tenin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Simon Williams
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Osman O Al-Radi
- Department of Surgery, King Abdulaziz University, Saudi Arabia
| | - Jameel Atta
- Department of Surgery, King Abdulaziz University, Saudi Arabia
| | - Sian E. Harding
- NHLI, Faculty of Medicine, Imperial College London, London, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| |
Collapse
|
94
|
Gillis E, Kumar AA, Luyckx I, Preuss C, Cannaerts E, van de Beek G, Wieschendorf B, Alaerts M, Bolar N, Vandeweyer G, Meester J, Wünnemann F, Gould RA, Zhurayev R, Zerbino D, Mohamed SA, Mital S, Mertens L, Björck HM, Franco-Cereceda A, McCallion AS, Van Laer L, Verhagen JMA, van de Laar IMBH, Wessels MW, Messas E, Goudot G, Nemcikova M, Krebsova A, Kempers M, Salemink S, Duijnhouwer T, Jeunemaitre X, Albuisson J, Eriksson P, Andelfinger G, Dietz HC, Verstraeten A, Loeys BL. Candidate Gene Resequencing in a Large Bicuspid Aortic Valve-Associated Thoracic Aortic Aneurysm Cohort: SMAD6 as an Important Contributor. Front Physiol 2017; 8:400. [PMID: 28659821 PMCID: PMC5469151 DOI: 10.3389/fphys.2017.00400] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter ≥ 4.0 cm in adults, or a Z-score ≥ 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype.
Collapse
Affiliation(s)
- Elisabeth Gillis
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Ajay A Kumar
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Ilse Luyckx
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Christoph Preuss
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Elyssa Cannaerts
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Gerarda van de Beek
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Björn Wieschendorf
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium.,Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-HolsteinLübeck, Germany
| | - Maaike Alaerts
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Nikhita Bolar
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Geert Vandeweyer
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Josephina Meester
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Florian Wünnemann
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States
| | - Rustam Zhurayev
- Department of Clinical pathology, Lviv National Medical University after Danylo HalytskyLviv, Ukraine
| | - Dmytro Zerbino
- Department of Clinical pathology, Lviv National Medical University after Danylo HalytskyLviv, Ukraine
| | - Salah A Mohamed
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-HolsteinLübeck, Germany
| | - Seema Mital
- Cardiovascular Research, SickKids University HospitalToronto, ON, Canada
| | - Luc Mertens
- Cardiovascular Research, SickKids University HospitalToronto, ON, Canada
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska InstituteStockholm, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska InstituteStockholm, Sweden
| | - Andrew S McCallion
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States
| | - Lut Van Laer
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus University Medical CenterRotterdam, Netherlands
| | | | - Marja W Wessels
- Department of Clinical Genetics, Erasmus University Medical CenterRotterdam, Netherlands
| | - Emmanuel Messas
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Guillaume Goudot
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Michaela Nemcikova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine-Charles University and Motol University HospitalPrague, Czechia
| | - Alice Krebsova
- Institute of Clinical and Experimental MedicinePrague, Czechia
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Simone Salemink
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Toon Duijnhouwer
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Xavier Jeunemaitre
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Juliette Albuisson
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska InstituteStockholm, Sweden
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States.,Howard Hughes Medical InstituteBaltimore, MD, United States
| | - Aline Verstraeten
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Bart L Loeys
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium.,Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | | |
Collapse
|
95
|
Sachdeva J, Mahajan A, Cheng J, Baeten JT, Lilly B, Kuivaniemi H, Hans CP. Smooth muscle cell-specific Notch1 haploinsufficiency restricts the progression of abdominal aortic aneurysm by modulating CTGF expression. PLoS One 2017; 12:e0178538. [PMID: 28562688 PMCID: PMC5451061 DOI: 10.1371/journal.pone.0178538] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Aims Infiltration of macrophages and apoptosis of vascular smooth muscle cells (VSMCs) promote the development of abdominal aortic aneurysm (AAA). Previously, we demonstrated that global Notch1 deficiency prevents the formation of AAA in a mouse model. Herein, we sought to explore the cell-specific roles of Notch1 in AAA development. Methods and results Cell-specific Notch1 haploinsufficient mice, generated on Apoe-/- background using Cre-lox technology, were infused with angiotensin II (1000 ng/min/kg) for 28 days. Notch1 haploinsufficiency in myeloid cells (n = 9) prevented the formation of AAA attributed to decreased inflammation. Haploinsufficiency of Notch1 in SMCs (n = 14) per se did not prevent AAA formation, but histoarchitectural traits of AAA including elastin degradation and aortic remodeling, were minimal in SMC-Notch1+/-;Apoe-/- mice compared to Apoe-/- mice (n = 33). Increased immunostaining of the contractile SMC-phenotype markers and concomitant decreased expression of synthetic SMC-phenotype markers were observed in the aortae of SMC-Notch1+/-;Apoe-/- mice. Expression of connective tissue growth factor (CTGF), a matrix-associated protein that modulates the synthetic VSMC phenotype, increased in the abdominal aorta of Apoe-/- mice and in the adventitial region of the abdominal aorta in human AAA. Notch1 haploinsufficiency decreased the expression of Ctgf in the aorta and in vitro cell culture system. In vitro studies on SMCs using the Notch1 intracellular domain (NICD) plasmid, dominant negative mastermind-like (dnMAML), or specific siRNA suggest that Notch1, not Notch3, directly modulates the expression of CTGF. Conclusions Our data suggest that lack of Notch1 in SMCs limits dilation of the abdominal aorta by maintaining contractile SMC-phenotype and preventing matrix-remodeling.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Cells, Cultured
- Coculture Techniques
- Connective Tissue Growth Factor/metabolism
- Haploinsufficiency
- Matrix Metalloproteinases/biosynthesis
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Receptor, Notch1/metabolism
Collapse
Affiliation(s)
| | - Advitiya Mahajan
- Cardiology, Medical Pharmacology & Physiology and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Jeeyun Cheng
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jeremy T. Baeten
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Brenda Lilly
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Chetan P. Hans
- Ohio State University, Columbus, Ohio, United States of America
- Cardiology, Medical Pharmacology & Physiology and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
96
|
Choi B, Lee S, Kim SM, Lee EJ, Lee SR, Kim DH, Jang JY, Kang SW, Lee KU, Chang EJ, Song JK. Dipeptidyl Peptidase-4 Induces Aortic Valve Calcification by Inhibiting Insulin-Like Growth Factor-1 Signaling in Valvular Interstitial Cells. Circulation 2017; 135:1935-1950. [DOI: 10.1161/circulationaha.116.024270] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/31/2017] [Indexed: 01/08/2023]
Abstract
Background:
Calcification of the aortic valve leads to increased leaflet stiffness and consequently to the development of calcific aortic valve disease. However, the underlying molecular and cellular mechanisms of calcification remain unclear. Here, we identified that dipeptidyl peptidase-4 (DPP-4, also known as CD26) increases valvular calcification and promotes calcific aortic valve disease progression.
Methods:
We obtained the aortic valve tissues from humans and murine models (wild-type and endothelial nitric oxide synthase-deficient-mice) and cultured the valvular interstitial cells (VICs) and valvular endothelial cells from the cusps. We induced osteogenic differentiation in the primary cultured VICs and examined the effects of the DPP-4 inhibitor on the osteogenic changes in vitro and aortic valve calcification in endothelial nitric oxide synthase-deficient-mice. We also induced calcific aortic stenosis in male New Zealand rabbits (weight, 2.5–3.0 kg) by a cholesterol-enriched diet+vitamin D2 (25 000 IU, daily). Echocardiography was performed to assess the aortic valve area and the maximal and mean transaortic pressure gradients at baseline and 3-week intervals thereafter. After 12 weeks, we harvested the heart and evaluated the aortic valve tissue using immunohistochemistry.
Results:
We found that nitric oxide depletion in human valvular endothelial cells activates NF-κB in human VICs. Consequently, the NF-κB promotes DPP-4 expression, which then induces the osteogenic differentiation of VICs by limiting autocrine insulin-like growth factor-1 signaling. The inhibition of DPP-4 enzymatic activity blocked the osteogenic changes in VICs in vitro and reduced the aortic valve calcification in vivo in a mouse model. Sitagliptin administration in a rabbit calcific aortic valve disease model led to significant improvements in the rate of change in aortic valve area, transaortic peak velocity, and maximal and mean pressure gradients over 12 weeks. Immunohistochemistry staining confirmed the therapeutic effect of Sitagliptin in terms of reducing the calcium deposits in the rabbit aortic valve cusps. In rabbits receiving Sitagliptin, the plasma insulin-like growth factor-1 levels were significantly increased, in line with DPP-4 inhibition.
Conclusions:
DPP-4-dependent insulin-like growth factor-1 inhibition in VICs contributes to aortic valve calcification, suggesting that DPP-4 could serve as a potential therapeutic target to inhibit calcific aortic valve disease progression.
Collapse
Affiliation(s)
- Bongkun Choi
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sahmin Lee
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Min Kim
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Jin Lee
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Ro Lee
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae-Hee Kim
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Yoon Jang
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Wook Kang
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki-Up Lee
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun-Ju Chang
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Kwan Song
- From Department of Biomedical Sciences (B.C., S.-M.K., E.- J.L., S.R.L., S.-W.K., E.-J.C.), Division of Cardiology (S.L., D.- H.K., J.Y.J., J.-K.S.), and Division of Endocrinology and Metabolism, Department of Internal Medicine (K.-U.L.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
97
|
Abstract
PURPOSE OF REVIEW Aortic valve disease is relatively common and encompasses both congenital and acquired forms. Bicuspid aortic valve (BAV) is the most common type of cardiac malformation and predisposes to the development of calcific aortic valve disease (CAVD). Since the description of the link between NOTCH1, BAV and CAVD approximately a decade ago, there have been significant advances in the genetic and molecular understanding of these diseases. RECENT FINDINGS Recent work has defined the congenital cardiac phenotypes linked to mutations in NOTCH1, and in addition, novel etiologic genes for BAV have been discovered using new genetic technologies in humans. Furthermore, several mouse models of BAV have been described defining the role of endothelial Notch1 in aortic valve morphogenesis, whereas others have implicated new genes. These murine models along with other cell-based studies have led to molecular insights in the pathogenesis of CAVD. SUMMARY These findings provide important insights into the molecular and genetic basis of aortic valve malformations, including BAV, specifically highlighting the etiologic role of endothelial cells. In addition, numerous investigations in to the mechanisms of CAVD demonstrate the importance of developmental origins and signaling pathways as well as communication between valve endothelial cells and the underlying interstitial cells in valve disease onset and progression.
Collapse
|
98
|
Hrstka SCL, Li X, Nelson TJ. NOTCH1-Dependent Nitric Oxide Signaling Deficiency in Hypoplastic Left Heart Syndrome Revealed Through Patient-Specific Phenotypes Detected in Bioengineered Cardiogenesis. Stem Cells 2017; 35:1106-1119. [PMID: 28142228 DOI: 10.1002/stem.2582] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/12/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Abstract
Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect (CHD) attributable to multifactorial molecular underpinnings. Multiple genetic loci have been implicated to increase the risk of disease, yet genotype-phenotype relationships remain poorly defined. Whole genome sequencing complemented by cardiac phenotype from five individuals in an HLHS-affected family enabled the identification of NOTCH1 as a prioritized candidate gene linked to CHD in three individuals with mutant allele burden significantly impairing Notch signaling in the HLHS-affected proband. To better understand a mechanistic basis through which NOTCH1 contributes to heart development, human induced pluripotent stem cells (hiPSCs) were created from the HLHS-affected parent-proband triad and differentiated into cardiovascular cell lineages for molecular characterization. HLHS-affected hiPSCs exhibited a deficiency in Notch signaling pathway components and a diminished capacity to generate hiPSC-cardiomyocytes. Optimization of conditions to procure HLHS-hiPSC-cardiomyocytes led to an approach that compensated for dysregulated nitric oxide (NO)-dependent Notch signaling in the earliest specification stages. Augmentation of HLHS-hiPSCs with small molecules stimulating NO signaling in the first 4 days of differentiation provided a cardiomyocyte yield equivalent to the parental hiPSCs. No discernable differences in calcium dynamics were observed between the bioengineered cardiomyocytes derived from the proband and the parents. We conclude that in vitro modeling with HLHS-hiPSCs bearing NOTCH1 mutations facilitated the discovery of a NO-dependent signaling component essential for cardiovascular cell lineage specification. Potentiation of NO signaling with small therapeutic molecules restored cardiogenesis in vitro and may identify a potential therapeutic target for patients affected by functionally compromised NOTCH1 variants. Stem Cells 2017;35:1106-1119.
Collapse
Affiliation(s)
- Sybil C L Hrstka
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Xing Li
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA.,Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy J Nelson
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,General Internal Medicine and Transplant Center, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
99
|
Growth and maturation of heart valves leads to changes in endothelial cell distribution, impaired function, decreased metabolism and reduced cell proliferation. J Mol Cell Cardiol 2016; 100:72-82. [PMID: 27756541 DOI: 10.1016/j.yjmcc.2016.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022]
Abstract
Risk factors of heart valve disease are well defined and prolonged exposure throughout life leads to degeneration and dysfunction in up to 33% of the population. While aortic valve replacement remains the most common need for cardiovascular surgery particularly in those aged over 65, the underlying mechanisms of progressive deterioration are unknown. In other cardiovascular systems, a decline in endothelial cell integrity and function play a major role in promoting pathological changes, and while similar mechanisms have been speculated in the valves, studies to support this are lacking. The goal of this study was to examine age-related changes in valve endothelial cell (VEC) distribution, morphology, function and transcriptomes during critical stages of valve development (embryonic), growth (postnatal (PN)), maintenance (young adult) and aging (aging adult). Using a combination of in vivo mouse, and in vitro porcine assays we show that VEC function including, nitric oxide bioavailability, metabolism, endothelial-to-mesenchymal potential, membrane self-repair and proliferation decline with age. In addition, density of VEC distribution along the endothelium decreases and this is associated with changes in morphology, decreased cell-cell interactions, and increased permeability. These changes are supported by RNA-seq analysis showing that focal adhesion-, cell cycle-, and oxidative phosphorylation-associated biological processes are negatively impacted by aging. Furthermore, by performing high-throughput analysis we are able to report the differential and common transcriptomes of VECs at each time point that can provide insights into the mechanisms underlying age-related dysfunction. These studies suggest that maturation of heart valves over time is a multifactorial process and this study has identified several key parameters that may contribute to impairment of the valve to maintain critical structure-function relationships; leading to degeneration and disease.
Collapse
|
100
|
Abstract
SIGNIFICANCE Currently, calcific aortic valve disease (CAVD) is only treatable through surgical intervention because the specific mechanisms leading to the disease remain unclear. In this review, we explore the forces and structure of the valve, as well as the mechanosensors and downstream signaling in the valve endothelium known to contribute to inflammation and valve dysfunction. RECENT ADVANCES While the valvular structure enables adaptation to dynamic hemodynamic forces, these are impaired during CAVD, resulting in pathological systemic changes. Mechanosensing mechanisms-proteins, sugars, and membrane structures-at the surface of the valve endothelial cell relay mechanical signals to the nucleus. As a result, a large number of mechanosensitive genes are transcribed to alter cellular phenotype and, ultimately, induce inflammation and CAVD. Transforming growth factor-β signaling and Wnt/β-catenin have been widely studied in this context. Importantly, NADPH oxidase and reactive oxygen species/reactive nitrogen species signaling has increasingly been recognized to play a key role in the cellular response to mechanical stimuli. In addition, a number of valvular microRNAs are mechanosensitive and may regulate the progression of CAVD. CRITICAL ISSUES While numerous pathways have been described in the pathology of CAVD, no treatment options are available to avoid surgery for advanced stenosis and calcification of the aortic valve. More work must be focused on this issue to lead to successful therapies for the disease. FUTURE DIRECTIONS Ultimately, a more complete understanding of the mechanisms within the aortic valve endothelium will lead us to future therapies important for treatment of CAVD without the risks involved with valve replacement or repair. Antioxid. Redox Signal. 25, 401-414.
Collapse
Affiliation(s)
- Joan Fernández Esmerats
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia
| | - Jack Heath
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia
| | - Hanjoong Jo
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|