51
|
Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T. Auxin and nitric oxide control indeterminate nodule formation. BMC PLANT BIOLOGY 2007; 7:21. [PMID: 17488509 PMCID: PMC1878477 DOI: 10.1186/1471-2229-7-21] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Accepted: 05/08/2007] [Indexed: 05/15/2023]
Abstract
BACKGROUND Rhizobia symbionts elicit root nodule formation in leguminous plants. Nodule development requires local accumulation of auxin. Both plants and rhizobia synthesise auxin. We have addressed the effects of bacterial auxin (IAA) on nodulation by using Sinorhizobium meliloti and Rhizobium leguminosarum bacteria genetically engineered for increased auxin synthesis. RESULTS IAA-overproducing S. meliloti increased nodulation in Medicago species, whilst the increased auxin synthesis of R. leguminosarum had no effect on nodulation in Phaseolus vulgaris, a legume bearing determinate nodules. Indeterminate legumes (Medicago species) bearing IAA-overproducing nodules showed an enhanced lateral root development, a process known to be regulated by both IAA and nitric oxide (NO). Higher NO levels were detected in indeterminate nodules of Medicago plants formed by the IAA-overproducing rhizobia. The specific NO scavenger cPTIO markedly reduced nodulation induced by wild type and IAA-overproducing strains. CONCLUSION The data hereby presented demonstrate that auxin synthesised by rhizobia and nitric oxide positively affect indeterminate nodule formation and, together with the observation of increased expression of an auxin efflux carrier in roots bearing nodules with higher IAA and NO content, support a model of nodule formation that involves auxin transport regulation and NO synthesis.
Collapse
Affiliation(s)
- Youry Pii
- Dipartimento Scientifico Tecnologico, University of Verona, Verona, Italy
| | - Massimo Crimi
- Dipartimento Scientifico Tecnologico, University of Verona, Verona, Italy
| | - Giorgia Cremonese
- Dipartimento Scientifico Tecnologico, University of Verona, Verona, Italy
| | - Angelo Spena
- Dipartimento Scientifico Tecnologico, University of Verona, Verona, Italy
| | - Tiziana Pandolfini
- Dipartimento Scientifico Tecnologico, University of Verona, Verona, Italy
| |
Collapse
|
52
|
Reimann J, Flock U, Lepp H, Honigmann A, Adelroth P. A pathway for protons in nitric oxide reductase from Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:362-73. [PMID: 17466934 DOI: 10.1016/j.bbabio.2007.03.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 11/19/2022]
Abstract
Nitric oxide reductase (NOR) from P. denitrificans is a membrane-bound protein complex that catalyses the reduction of NO to N(2)O (2NO+2e(-)+2H(+)-->N(2)O+H(2)O) as part of the denitrification process. Even though NO reduction is a highly exergonic reaction, and NOR belongs to the superfamily of O(2)-reducing, proton-pumping heme-copper oxidases (HCuOs), previous measurements have indicated that the reaction catalyzed by NOR is non-electrogenic, i.e. not contributing to the proton electrochemical gradient. Since electrons are provided by donors in the periplasm, this non-electrogenicity implies that the substrate protons are also taken up from the periplasm. Here, using direct measurements in liposome-reconstituted NOR during reduction of both NO and the alternative substrate O(2), we demonstrate that protons are indeed consumed from the 'outside'. First, multiple turnover reduction of O(2) resulted in an increase in pH on the outside of the NOR-vesicles. Second, comparison of electrical potential generation in NOR-liposomes during oxidation of the reduced enzyme by either NO or O(2) shows that the proton transfer signals are very similar for the two substrates proving the usefulness of O(2) as a model substrate for these studies. Last, optical measurements during single-turnover oxidation by O(2) show electron transfer coupled to proton uptake from outside the NOR-liposomes with a tau=15 ms, similar to results obtained for net proton uptake in solubilised NOR [U. Flock, N.J. Watmough, P. Adelroth, Electron/proton coupling in bacterial nitric oxide reductase during reduction of oxygen, Biochemistry 44 (2005) 10711-10719]. NOR must thus contain a proton transfer pathway leading from the periplasmic surface into the active site. Using homology modeling with the structures of HCuOs as templates, we constructed a 3D model of the NorB catalytic subunit from P. denitrificans in order to search for such a pathway. A plausible pathway, consisting of conserved protonatable residues, is suggested.
Collapse
Affiliation(s)
- Joachim Reimann
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
53
|
Abstract
Nitric oxide (NO) is an intermediate of the respiratory pathway known as denitrification, and is a by-product of anaerobic nitrite respiration in the enteric Bacteria. Pathogens are also exposed to NO inside host phagocytes, and possibly in other host niches as well. In recent years it has become apparent that there are multiple regulatory systems in prokaryotes that mediate responses to NO exposure. Owing to its reactivity, NO also has the potential to perturb the activities of other regulatory proteins, which are not necessarily directly involved in the response to NO. This review describes the current state of understanding of regulatory systems that respond to NO. An emerging trend is the predominance of iron proteins among the known physiological NO sensors.
Collapse
Affiliation(s)
- Stephen Spiro
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75083-0688, USA.
| |
Collapse
|
54
|
Thorndycroft F, Butland G, Richardson D, Watmough N. A new assay for nitric oxide reductase reveals two conserved glutamate residues form the entrance to a proton-conducting channel in the bacterial enzyme. Biochem J 2007; 401:111-9. [PMID: 16961460 PMCID: PMC1698692 DOI: 10.1042/bj20060856] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A specific amperometric assay was developed for the membrane-bound NOR [NO (nitric oxide) reductase] from the model denitrifying bacterium Paracoccus denitrificans using its natural electron donor, pseudoazurin, as a co-substrate. The method allows the rapid and specific assay of NO reduction catalysed by recombinant NOR expressed in the cytoplasmic membranes of Escherichia coli. The effect on enzyme activity of substituting alanine, aspartate or glutamine for two highly conserved glutamate residues, which lie in a periplasmic facing loop between transmembrane helices III and IV in the catalytic subunit of NOR, was determined using this method. Three of the substitutions (E122A, E125A and E125D) lead to an almost complete loss of NOR activity. Some activity is retained when either Glu122 or Glu125 is substituted with a glutamine residue, but only replacement of Glu122 with an aspartate residue retains a high level of activity. These results are interpreted in terms of these residues forming the mouth of a channel that conducts substrate protons to the active site of NOR during turnover. This channel is also likely to be that responsible in the coupling of proton movement to electron transfer during the oxidation of fully reduced NOR with oxygen [U. Flock, N. J. Watmough and P. Adelroth (2005) Biochemistry 44, 10711-10719].
Collapse
Affiliation(s)
- Faye H. Thorndycroft
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, U.K
| | - Gareth Butland
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, U.K
| | - David J. Richardson
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, U.K
| | - Nicholas J. Watmough
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
55
|
Lee YY, Shearer N, Spiro S. Transcription factor NNR from Paracoccus denitrificans is a sensor of both nitric oxide and oxygen: isolation of nnr* alleles encoding effector-independent proteins and evidence for a haem-based sensing mechanism. MICROBIOLOGY-SGM 2006; 152:1461-1470. [PMID: 16622062 DOI: 10.1099/mic.0.28796-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nitrite reductase and nitric oxide reductase regulator (NNR) from Paracoccus denitrificans activates transcription in response to nitric oxide (NO). The mechanism of NO sensing has not been elucidated for NNR, or for any of its orthologues from the FNR/CRP family of transcriptional regulators. Using regulated expression of the nnr gene in Escherichia coli, evidence has now been obtained to indicate that activation of NNR by NO does not require de novo synthesis of the NNR polypeptide. In anaerobic cultures, NNR is inactivated slowly following removal of the source of NO. In contrast, exposure of anaerobically grown cultures to oxygen causes rapid inactivation of NNR, suggesting that the protein is inactivated directly by oxygen. By random and site-directed mutagenesis, two variants of NNR were isolated (with substitutions of arginine at position 80) that show high levels of activity in anaerobic cultures in the absence of NO. These proteins remain substantially inactive in aerobic cultures, suggesting that the substitutions uncouple the NO- and oxygen-signalling mechanisms, thus providing further evidence that NNR senses both molecules. Structural modelling suggested that Arg-80 is close to the C-helix that forms the monomer-monomer interface in other members of the FNR/CRP family and plays an important role in transducing the activating signal between the regulatory and DNA binding domains. Assays of NNR activity in a haem-deficient mutant of E. coli provided preliminary evidence to indicate that NNR activity is haem dependent.
Collapse
Affiliation(s)
- Yi-Ying Lee
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Neil Shearer
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Stephen Spiro
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
56
|
Blomberg LM, Blomberg MRA, Siegbahn PEM. Theoretical study of the reduction of nitric oxide in an A-type flavoprotein. J Biol Inorg Chem 2006; 12:79-89. [PMID: 16957917 DOI: 10.1007/s00775-006-0166-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 08/21/2006] [Indexed: 11/28/2022]
Abstract
The mechanism for the reduction of nitric oxide to nitrous oxide and water in an A-type flavoprotein (FprA) in Moorella thermoacetica, which has been proposed to be a scavenging type of nitric oxide reductase, has been investigated using density functional theory (B3LYP). A dinitrosyl complex, [{FeNO}(7)](2), has previously been proposed to be a key intermediate in the NO reduction catalyzed by FprA. The electrons and protons involved in the reduction were suggested to "super-reduce" the dinitrosyl intermediate to [{FeNO}(8)](2) or the corresponding diprotonated form, [{FeNO(H)}(8)](2). In this type of mechanism the electron and/or proton transfers will be a part of the rate-determining step. In the present study, on the other hand, a reaction mechanism is suggested in which N(2)O can be formed before the protons and electrons enter the catalytic cycle. One of the irons in the diiron center is used to stabilize the formation of a hyponitrite dianion, instead of binding a second NO. Cleaving the N-O bond in the hyponitrite dianion intermediate is the rate-determining step in the proposed reaction mechanism. The barrier of 16.5 kcal mol(-1) is in good agreement with the barrier height of the experimental rate-determining step of 14.8 kcal mol(-1). The energetics of some intermediates in the "super-reduction" mechanism and the mechanism proceeding via a hyponitrite dianion are compared, favoring the latter. It is also discussed how to experimentally discriminate between the two mechanisms.
Collapse
|
57
|
Richardson AR, Dunman PM, Fang FC. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 2006; 61:927-39. [PMID: 16859493 DOI: 10.1111/j.1365-2958.2006.05290.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus is a highly virulent human pathogen with an extensive array of strategies to subvert the innate immune response. An important aspect of innate immunity is the production of the nitrogen monoxide radical (Nitric Oxide, NO.). Here we describe an adaptive response to nitrosative stress that allows S. aureus to replicate at high concentrations of NO.. Microarray analysis revealed 84 staphylococcal genes with significantly altered expression following NO. exposure. Of these, 30 are involved with iron-homeostasis, potentially under the control of the Fur regulator. Another seven induced genes are involved in hypoxic/fermentative metabolism, including the flavohaemoprotein, Hmp. The SrrAB two-component system has been shown to regulate the expression of many of the NO.-induced metabolic genes. Indeed, inactivation of hmp, srrAB and fur resulted in heightened NO. sensitivity. Hmp was responsible for c. 90% of measurable staphylococcal NO. consumption and therefore critical for efficient NO. detoxification. While SrrAB was required for maximal hmp expression, srrAB mutants still exhibited significant NO. scavenging and NO.-dependent induction of hmp. Yet S. aureus lacking SrrAB were more sensitive to nitrosative stress than hmp mutants, indicating that the contribution of SrrAB to NO. resistance extends beyond the regulation of hmp expression. Both Hmp and SrrAB were required for full virulence in a murine sepsis model, however, only the attenuation of the hmp mutant was restored by the abrogation of host NO. production. Thus, the S. aureus Hmp protein has evolved to serve as an iNOS-dependent virulence determinant.
Collapse
Affiliation(s)
- Anthony R Richardson
- Department of Laboratory Medicine, University of Washington, School of Medicine, Seattle, WA 98185, USA
| | | | | |
Collapse
|
58
|
Seib KL, Wu HJ, Kidd SP, Apicella MA, Jennings MP, McEwan AG. Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol Mol Biol Rev 2006; 70:344-61. [PMID: 16760307 PMCID: PMC1489540 DOI: 10.1128/mmbr.00044-05] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neisseria gonorrhoeae is a host-adapted pathogen that colonizes primarily the human genitourinary tract. This bacterium encounters reactive oxygen and reactive nitrogen species as a consequence of localized inflammatory responses in the urethra of males and endocervix of females and also of the activity of commensal lactobacilli in the vaginal flora. This review describes recent advances in the understanding of defense systems against oxidative stress in N. gonorrhoeae and shows that while some of its defenses have similarities to the paradigm established with Escherichia coli, there are also some key differences. These differences include the presence of a defense system against superoxide based on manganese ions and a glutathione-dependent system for defense against nitric oxide which is under the control of a novel MerR-like transcriptional regulator. An understanding of the defenses against oxidative stress in N. gonorrhoeae and their regulation may provide new insights into the ways in which this bacterium survives challenges from polymorphonuclear leukocytes and urogenital epithelial cells.
Collapse
Affiliation(s)
- Kate L Seib
- The School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
The NOR (nitric oxide reductase) from Paracoccus denitrificans catalyses the two-electron reduction of NO to N2O (2NO+2H++2e−→N2O+H2O). The NOR is a divergent member of the superfamily of haem-copper oxidases, oxygen-reducing enzymes which couple the reduction of oxygen with translocation of protons across the membrane. In contrast, reduction of NO catalysed by NOR is non-electrogenic which, since electrons are supplied from the periplasmic side of the membrane, implies that the protons needed for NO reduction are also taken from the periplasm. Thus NOR must contain a proton-transfer pathway leading from the periplasmic side of the membrane into the catalytic site. The proton pathway has not been identified, and the mechanism and timing of proton transfer during NO reduction is unknown. To address these questions, we have studied the reaction between NOR and the chemically less reactive oxidant O2 [Flock, Watmough and Ädelroth (2005) Biochemistry 44, 10711–10719]. When fully reduced NOR reacts with O2, proton-coupled electron transfer occurs in a reaction that is rate-limited by internal proton transfer from a group with a pKa of 6.6. This group is presumably an amino acid residue close to the active site that acts as a proton donor also during NO reduction. The results are discussed in the framework of a structural model that identifies possible candidates for the proton donor as well as for the proton-transfer pathway.
Collapse
Affiliation(s)
- U Flock
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | |
Collapse
|
60
|
Abstract
ABSTRACTProteus mirabilis can persist in biofilms, with the bacteria in this state tending to resist antibiotic therapy. Until now, the relationship between the action of ciprofloxacin and the production of reactive oxygen species (ROS) has not been studied in planktonic and biofilmic P. mirabilis. Our results show that ciprofloxacin stimulates the production of ROS in planktonic P. mirabilis, but that the increase in ROS was observed in sensitive strains (n = 4) only in the absence of the extracellular matrix (ECM). This augmentation of ROS was principally intracellular, invoking an increase in intracellular superoxide dismutase (SOD). ROS were assayed by chemiluminescence (CL) and SOD by inhibition of reduction of nitroblue tetrazolium in the presence of methionine, riboflavin and light. The antibiotic-resistant strains (n = 4) did not suffer oxidative stress and exhibited a higher antioxidant capacity than antibiotic-sensitive ones, as indicated by tripyridyltriazine assay. Both types of bacterial strain showed a reduction in antioxidant capacity in the presence of ciprofloxacin, and only the resistant bacteria returned to normal count levels within 5 min of introduction of antibiotic. Ciprofloxacin stimulated ROS more than it did nitric oxide (NO) in planktonic bacteria, as determined by Griess's reaction. Proteus mirabilis biofilms treated with ciprofloxacin did not suffer any increase in ROS but there was an increase in NO and the ratio of intracellular ROS:NO decreased to 25%. Biofilms of P. mirabilis were neither stressed nor inhibited by 40 µg ciprofloxacin/ml, a dose higher than the minimum inhibitory concentration (i.e. supra MIC). Both resistant and sensitive strains maintained the number of viable bacteria in biofilms incubated with supra MIC ciprofloxacin at concentrations that stressed and reduced substantially the number of colony-forming units of planktonic bacteria per millilitre. These results contribute to understanding of the differences between biofilmic and planktonic bacteria, with respect to susceptibility to oxidative stress caused by ciprofloxacin and also the antioxidant effect of ECM.
Collapse
|
61
|
Karow DS, Pan D, Davis JH, Behrends S, Mathies RA, Marletta MA. Characterization of functional heme domains from soluble guanylate cyclase. Biochemistry 2005; 44:16266-74. [PMID: 16331987 PMCID: PMC2572136 DOI: 10.1021/bi051601b] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Soluble guanylate cyclase (sGC) is a heterodimeric, nitric oxide (NO)-sensing hemoprotein composed of two subunits, alpha1 and beta1. NO binds to the heme cofactor in the beta1 subunit, forming a five-coordinate NO complex that activates the enzyme several hundred-fold. In this paper, the heme domain has been localized to the N-terminal 194 residues of the beta1 subunit. This fragment represents the smallest construct of the beta1 subunit that retains the ligand-binding characteristics of the native enzyme, namely, tight affinity for NO and no observable binding of O(2). A functional heme domain from the rat beta2 subunit has been localized to the first 217 amino acids beta2(1-217). These proteins are approximately 40% identical to the rat beta1 heme domain and form five-coordinate, low-spin NO complexes and six-coordinate, low-spin CO complexes. Similar to sGC, these constructs have a weak Fe-His stretch [208 and 207 cm(-)(1) for beta1(1-194) and beta2(1-217), respectively]. beta2(1-217) forms a CO complex that is very similar to sGC and has a high nu(CO) stretching frequency at 1994 cm(-)(1). The autoxidation rate of beta1(1-194) was 0.073/min, while the beta2(1-217) was substantially more stable in the ferrous form with an autoxidation rate of 0.003/min at 37 degrees C. This paper has identified and characterized the minimum functional ligand-binding heme domain derived from sGC, providing key details toward a comprehensive characterization.
Collapse
Affiliation(s)
- David S Karow
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
62
|
Elvers KT, Turner SM, Wainwright LM, Marsden G, Hinds J, Cole JA, Poole RK, Penn CW, Park SF. NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol Microbiol 2005; 57:735-50. [PMID: 16045618 DOI: 10.1111/j.1365-2958.2005.04723.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Consistent with its role as a nitric oxide (NO)-detoxifying globin in Campylobacter jejuni, Cgb (Campylobacter globin) expression is strongly and specifically induced following exposure to nitrosative stress, suggesting a previously unrecognized capacity for NO-related stress sensing in this food-borne pathogen. In this study, Fur and PerR have been eliminated as major regulators of cgb, and NssR (Cj0466), a member of the Crp-Fnr superfamily, has been identified as the major positive regulatory factor that controls nitrosative stress-responsive expression of this gene. Accordingly, disruption of nssR resulted in the abolition of inducible cgb expression, which was restored by a complementing chromosomal insertion of the wild-type gene with its indigenous promoter at a second location. The NssR-deficient mutant was more sensitive to NO-related stress than a cgb mutant and this phenotype most likely arises from the failure of these cells to induce other NO-responsive components in addition to Cgb. Indeed, analysis of global gene expression, by microarray and confirmatory real-time polymerase chain reaction (PCR) in the wild type and nssR mutant, not only confirmed the dependence of inducible cgb expression on NssR, but also revealed for the first time a novel NssR-dependent nitrosative stress-responsive regulon. This regulon of at least four genes includes Cj0465c, a truncated globin. Consistent with NssR being a Crp-Fnr superfamily member, an Fnr-like binding sequence (TTAAC-N(4)-GTTAA) was found upstream of each gene at locations -40.5 to -42.5 relative to the centre of the binding sites and the transcription start point. Site-directed mutagenesis confirmed that this cis-acting motif mediates the nitrosative stress-inducible expression of cgb.
Collapse
Affiliation(s)
- Karen T Elvers
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford GU2 7XH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Bedmar EJ, Robles EF, Delgado MJ. The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum. Biochem Soc Trans 2005; 33:141-4. [PMID: 15667287 DOI: 10.1042/bst0330141] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Denitrification is an alternative form of respiration in which bacteria sequentially reduce nitrate or nitrite to nitrogen gas by the intermediates nitric oxide and nitrous oxide when oxygen concentrations are limiting. In Bradyrhizobium japonicum, the N2-fixing microsymbiont of soya beans, denitrification depends on the napEDABC, nirK, norCBQD, and nosRZDFYLX gene clusters encoding nitrate-, nitrite-, nitric oxide- and nitrous oxide-reductase respectively. Mutational analysis of the B. japonicum nap genes has demonstrated that the periplasmic nitrate reductase is the only enzyme responsible for nitrate respiration in this bacterium. Regulatory studies using transcriptional lacZ fusions to the nirK, norCBQD and nosRZDFYLX promoter region indicated that microaerobic induction of these promoters is dependent on the fixLJ and fixK2 genes whose products form the FixLJ–FixK2 regulatory cascade. Besides FixK2, another protein, nitrite and nitric oxide respiratory regulator, has been shown to be required for N-oxide regulation of the B. japonicum nirK and norCBQD genes. Thus nitrite and nitric oxide respiratory regulator adds to the FixLJ–FixK2 cascade an additional control level which integrates the N-oxide signal that is critical for maximal induction of the B. japonicum denitrification genes. However, the identity of the signalling molecule and the sensing mechanism remains unknown.
Collapse
Affiliation(s)
- E J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, P.O. Box 419, 18080-Granada, Spain.
| | | | | |
Collapse
|
64
|
Wach MJ, Kers JA, Krasnoff SB, Loria R, Gibson DM. Nitric oxide synthase inhibitors and nitric oxide donors modulate the biosynthesis of thaxtomin A, a nitrated phytotoxin produced by Streptomyces spp. Nitric Oxide 2005; 12:46-53. [PMID: 15631947 DOI: 10.1016/j.niox.2004.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 11/03/2004] [Accepted: 11/13/2004] [Indexed: 10/26/2022]
Abstract
Evidence for the involvement of a bacterial nitric oxide synthase (NOS) in the biosynthesis of a phytotoxin is presented. Several species of Streptomyces bacteria produce secondary metabolites with unusual nitrogen groups, such as thaxtomin A (ThxA), which contains a nitroindole moiety. ThxA is a phytotoxin made by three pathogenic Streptomyces species that cause common scab of potato. All three species possess a gene homologous to the oxygenase domain of murine inducible NOS, and this gene, nos, is essential for normal levels of ThxA production. We grew Streptomyces turgidiscabies in the presence of several known NOS inhibitors and a nitric oxide (NO) scavenger to determine their effect on ThxA production. The NO scavenger (CPTIO) and four NOS inhibitors (NAME, NMMA, AG, and 7-NI) reduced ThxA production without affecting bacterial growth. A strain of S. turgidiscabies from which the nos gene had been deleted was grown in the presence of three NO donors (DEANO, SIN, and SNAP), and all three partially restored ThxA production. Our data suggest that bacterial nitric oxide synthases may, at least in part, produce NO for biosynthetic purposes, rather than for cellular signaling, as they do in mammals.
Collapse
Affiliation(s)
- Michael J Wach
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
65
|
Kumita H, Matsuura K, Hino T, Takahashi S, Hori H, Fukumori Y, Morishima I, Shiro Y. NO Reduction by Nitric-oxide Reductase from Denitrifying Bacterium Pseudomonas aeruginosa. J Biol Chem 2004; 279:55247-54. [PMID: 15504726 DOI: 10.1074/jbc.m409996200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide reductase (NOR) of a denitrifying bacterium catalyzes NO reduction to N(2)O at the binuclear catalytic center consisting of high spin heme b(3) and non-heme Fe(B). The structures of the reaction intermediates in the single turnover of the NO reduction by NOR from Pseudomonas aeruginosa were investigated using optical absorption and EPR spectroscopies combined with an originally designed freeze-quench device. In the EPR spectrum of the sample, in which the fully reduced NOR was mixed with an NO solution and quenched at 0.5 ms after the mixing, two characteristic signals for the ferrous Fe(B)-NO and the penta-coordinated ferrous heme b(3)-NO species were observed. The CO inhibition of its formation indicated that two NO molecules were simultaneously distributed into the two irons of the same binuclear center of the enzyme in this state. The time- and temperature-dependent EPR spectral changes indicated that the species that appeared at 0.5 ms is a transient reaction intermediate prior to the N(2)O formation, in good agreement with the so-called "trans" mechanism. It was also found that the final state of the enzyme in the single turnover cycle is the fully oxidized state, in which the mu-oxo-bridged ligand is absent between the two irons of its binuclear center, unlike the resting form of NOR as isolated. On the basis of these present findings, we propose a newly developed mechanism for the NO reduction reaction conducted by NOR.
Collapse
Affiliation(s)
- Hideyuki Kumita
- RIKEN Harima Institute/SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
|
67
|
Oh BK, Meyerhoff ME. Catalytic generation of nitric oxide from nitrite at the interface of polymeric films doped with lipophilic CuII-complex: a potential route to the preparation of thromboresistant coatings. Biomaterials 2004; 25:283-93. [PMID: 14585716 DOI: 10.1016/s0142-9612(03)00530-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel approach potentially useful for the development of more thromboresistant polymeric materials is examined. The method is based on the catalytic generation of nitric oxide (NO) via Cu(I) mediated reduction of nitrite ions. Preliminary solution phase studies demonstrate that ascorbate or thiolate anions can generate Cu(I) from Cu(II) with subsequent catalytic conversion of any nitrite ions present to NO by the unstable Cu(I) species. Incorporation of this same chemistry within a hydrophobic polymeric material requires immobilizing Cu(II) ions into a polymeric phase via use of a lipophilic Cu(II) chelating ligand (dibenzo [e,k]-2,3,8,9-tetraphenyl-1,4,7,10-tetraaza-cyclododeca-1,3,7,9-tetraene (DTTCT)). It is shown that this complex can be reduced to its Cu(I) form by appropriate reducing equivalents present in the bathing solution. The resulting Cu(I) complex can then reduce nitrite to NO with the NO generation occurring at the polymer/solution interface at physiological pH. Data from chemiluminescence experiments indicate that the flux of NO at the polymer surface is comparable to that of endothelial cells (>/=1x10(-10)mol/cm(2)min) when 0.5mM nitrite/1mM ascorbate are present in the bathing solution. Potentially more useful NO generation can be achieved by doping the polymer film with the Cu(II) complex along with a lipophilic quaternary ammonium nitrite salt. In this case reducing equivalents within the aqueous phase enable the nitrite derived from the polymer to be converted into NO by the Cu(II/I) ligand complex. Films of this type are shown to generate NO for at least 6h in PBS buffer with fluxes on the order of 1.5x10(-10)mol/cm(2)min. Physiologically relevant levels of NO release are also shown to exist at the polymer interface when films are soaked in fresh plasma as well as undiluted whole blood, indicating that endogenous reducing equivalents present in blood can efficiently reduce the Cu(II)-ligand within the polymer film. The prospects of using these new NO releasing films to devise more biocompatible polymeric coatings for biomedical applications are discussed.
Collapse
Affiliation(s)
- Bong Kyun Oh
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
68
|
Grönberg KLC, Watmough NJ, Thomson AJ, Richardson DJ, Field SJ. Redox-dependent open and closed forms of the active site of the bacterial respiratory nitric-oxide reductase revealed by cyanide binding studies. J Biol Chem 2004; 279:17120-5. [PMID: 14766741 DOI: 10.1074/jbc.m400824200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial respiratory nitric-oxide reductase (NOR) catalyzes the respiratory detoxification of nitric oxide in bacteria and Archaea. It is a member of the well known super-family of heme-copper oxidases but has a [heme Fe-non-heme Fe] active site rather than the [heme Fe-Cu(B)] active site normally associated with oxygen reduction. Paracoccus denitrificans NOR is spectrally characterized by a ligand-to-metal charge transfer absorption band at 595 nm, which arises from the high spin ferric heme iron of a micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site. On reduction of the nonheme iron, the micro-oxo bridge is broken, and the ferric heme iron is hydroxylated or hydrated, depending on the pH. At present, the catalytic cycle of NOR is a matter of much debate, and it is not known to which redox state(s) of the enzyme nitric oxide can bind. This study has used cyanide to probe the nature of the active site in a number of different redox states. Our observations suggest that the micro-oxo-bridged [heme Fe(III)-O-Fe(III)] active site represents a closed or resting state of NOR that can be opened by reduction of the non-heme iron.
Collapse
Affiliation(s)
- Karin L C Grönberg
- School of Biological Sciences and School of Chemical Sciences and Pharmacy, Centre for Metalloprotein Spectroscopy and Biology, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
69
|
Carlsson S, Govoni M, Wiklund NP, Weitzberg E, Lundberg JO. In vitro evaluation of a new treatment for urinary tract infections caused by nitrate-reducing bacteria. Antimicrob Agents Chemother 2003; 47:3713-8. [PMID: 14638471 PMCID: PMC296218 DOI: 10.1128/aac.47.12.3713-3718.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 08/19/2003] [Accepted: 09/09/2003] [Indexed: 11/20/2022] Open
Abstract
Dietary and endogenous nitrates are excreted in urine, and during infection with nitrate-reducing bacteria they are reduced to nitrite. At a low pH nitrite is converted to a variety of nitrogen oxides that are toxic to bacteria. We hypothesized that acidification of nitrite-rich infected urine would result in the killing of the nitrate-reducing bacteria. An Escherichia coli control strain and a mutant lacking nitrate reductase activity were preincubated in urine supplemented with sodium nitrate (0 to 10 mM) at pH 7.0. Then, the nitrite-containing bacterial culture was transferred (and diluted 1/10) to slightly acidic urine (pH 5 and 5.5) containing ascorbic acid (10 mM) and growth was monitored. The control strain produced nitrite in amounts related to the amount of nitrate added. This strain was killed when the culture was transferred to acidic urine. In contrast, the mutant that did not produce nitrite retained full viability. When control bacteria were grown in acidic urine with nitrate and ascorbic acid present from the start of the experiment, no inhibition of growth was noted. The MICs and minimal bactericidal concentrations of sodium nitrite-ascorbic acid in acidic urine were comparable to those of conventional antibiotics. Preincubation of nitrate-reducing E. coli in nitrate-rich urine leads to the accumulation of nitrite. Subsequent acidification of the urine results in generation of nitrogen oxides that are bactericidal. Killing, however, requires a sequential procedure in which the bacteria are first allowed to grow in a nitrate-rich neutral environment, later followed by acidification. We speculate that ingestion of nitrate followed some hours later by acidification of urine could be a new therapeutic strategy for the treatment of urinary tract infections.
Collapse
Affiliation(s)
- S Carlsson
- Department of Surgery, Section of Urology, Karolinska Hospital, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
70
|
Measurement of Nitric Oxide Production in Biological Systems by Using Griess Reaction Assay. SENSORS 2003. [DOI: 10.3390/s30800276] [Citation(s) in RCA: 440] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
71
|
Corker H, Poole RK. Nitric oxide formation by Escherichia coli. Dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp. J Biol Chem 2003; 278:31584-92. [PMID: 12783887 DOI: 10.1074/jbc.m303282200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) is a key signaling and defense molecule in biological systems. The bactericidal effects of NO produced, for example, by macrophages are resisted by various bacterial NO-detoxifying enzymes, the best understood being the flavohemoglobins exemplified by Escherichia coli Hmp. However, many bacteria, including E. coli, are reported to produce NO by processes that are independent of denitrification in which NO is an obligatory intermediate. We demonstrate using an NO-specific electrode that E. coli cells, grown anaerobically with nitrate as terminal electron acceptor, generate significant NO on adding nitrite. The periplasmic cytochrome c nitrite reductase (Nrf) is shown, by comparing Nrf+ and Nrf- mutants, to be largely responsible for NO generation. Surprisingly, an hmp mutant did not accumulate more NO but, rather, failed to produce detectable NO. Anaerobic growth of the hmp mutant was not stimulated by nitrate, and the mutant failed to produce periplasmic cytochrome(s) c, leading to the hypothesis that accumulating NO in the absence of Hmp inactivates the global anaerobic regulator Fnr by reaction with the [4Fe-4S]2+ cluster (Cruz-Ramos, H., Crack, J., Wu, G., Hughes, M. N., Scott, C., Thomson, A. J., Green, J., and Poole, R. K. (2002) EMBO J. 21, 3235-3244). Fnr thus failed to up-regulate nitrite reductase. The model is supported by the inability of an fnr mutant to generate NO and by the restoration of NO accumulation to hmp mutants upon introducing a plasmid encoding Fnr* (D154A) known to confer activity in the presence of oxygen. A cytochrome bd-deficient mutant retained NO-generating activity. The present study reveals a critical balance between NO-generating and -detoxifying activities during anaerobic growth.
Collapse
Affiliation(s)
- Hazel Corker
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
72
|
Cohen MF, Yamasaki H. Involvement of nitric oxide synthase in sucrose-enhanced hydrogen peroxide tolerance of Rhodococcus sp. strain APG1, a plant-colonizing bacterium. Nitric Oxide 2003; 9:1-9. [PMID: 14559426 DOI: 10.1016/s1089-8603(03)00043-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen peroxide (H2O2) tolerance of Rhodococcus sp. strain APG1, previously isolated from the aquatic fern Azolla pinnata, was examined in relation to nitric oxide (NO) production by cells cultured on a variety of C sources. Cells inoculated onto A. pinnata fronds established a surface-sterilant resistant density of 2-4x10(7) cells g(-1) without causing disease. Compared to cultures containing glucose, fructose, mannitol, or glycerol, those provided only with sucrose displayed, on a per C basis, substantially lower (<10%) growth yields and higher resistance to H2O2. NO, a positive regulator of catalase synthesis in bacteria, was produced in larger amounts in sucrose-grown cells as evidence by eightfold greater per cell accumulations in the medium of nitrite (NO2-), a stable oxidation product of NO. Addition to cells of L-arginine, the substrate for nitric oxide synthase (NOS), stimulated production of NO, detected both by fluorometric reaction with diaminofluorescein-FM diacetate (DAF-FM DA) and by increased levels of NO2- in the culture medium. These results suggest that sucrose may enhance H2O2 tolerance of Rhodococcus APG1 by increasing cellular NO producing capacity. We propose a regulatory role for NOS in promoting tolerance of Rhodococcus APG1 to oxidative stress in the phyllosphere.
Collapse
Affiliation(s)
- Michael F Cohen
- Division of Functional Genomics, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | | |
Collapse
|
73
|
Affiliation(s)
- Don J Durzan
- Department of Environmental Horticulture, University of California, Davis, CA 95616-8587, USA.
| | | |
Collapse
|
74
|
Braker G, Tiedje JM. Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Appl Environ Microbiol 2003; 69:3476-83. [PMID: 12788753 PMCID: PMC161466 DOI: 10.1128/aem.69.6.3476-3483.2003] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Accepted: 02/24/2003] [Indexed: 11/20/2022] Open
Abstract
A PCR-based approach was developed to recover nitric oxide (NO) reductase (norB) genes as a functional marker gene for denitrifying bacteria. norB database sequences grouped in two very distinct branches. One encodes the quinol-oxidizing single-subunit class (qNorB), while the other class is a cytochrome bc-type complex (cNorB). The latter oxidizes cytochrome c, and the gene is localized adjacent to norC. While both norB types occur in denitrifying strains, the qnorB type was also found in a variety of nondenitrifying strains, suggesting a function in detoxifying NO. Branch-specific degenerate primer sets detected the two norB types in our denitrifier cultures. Specificity was confirmed by sequence analysis of the norB amplicons and failure to amplify norB from nondenitrifying strains. These primer sets also specifically amplified norB from freshwater and marine sediments. Pairwise comparison of amplified norB sequences indicated minimum levels of amino acid identity of 43.9% for qnorB and 38% for cnorB. Phylogenetic analysis confirmed the existence of two classes of norB genes, which clustered according to the respective primer set. Within the qnorB cluster, the majority of genes from isolates and a few environmental clones formed a separate subcluster. Most environmental qnorB clones originating from both habitats clustered into two distinct subclusters of novel sequences from presumably as yet uncultivated organisms. cnorB clones were located on separate branches within subclusters of genes from known organisms, suggesting an origin from similar organisms.
Collapse
Affiliation(s)
- Gesche Braker
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
75
|
Mesa S, Velasco L, Manzanera ME, Delgado MAJ, Bedmar EJ. Characterization of the norCBQD genes, encoding nitric oxide reductase, in the nitrogen fixing bacterium Bradyrhizobium japonicum. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3553-3560. [PMID: 12427946 DOI: 10.1099/00221287-148-11-3553] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genes norCBQD that encode the bc-type nitric oxide reductase from Bradyrhizobium japonicum USDA110 have been isolated and characterized. norC and norB encode the cytochrome c-containing subunit II and cytochrome b-containing subunit I of nitric oxide reductase, respectively. norQ encodes a protein with an ATP/GTP-binding motif, and the predicted norD gene product shows similarity with NorD from other denitrifiers. Mutational analysis indicates that the two structural norC and norB genes are required for microaerobic growth under nitrate-respiring conditions. A mutant strain lacking a functional norC gene also lacked the 16 kDa c-type cytochrome that is normally detectable by haem-staining of proteins from membranes of microaerobically grown wild-type cells. Expression of a transcriptional fusion of the nor promoter region to the reporter gene lacZ (P(norC)-lacZ) was not detected in aerobically grown cells of USDA110, but the fusion was induced threefold when the cells were cultured under microaerobic conditions (1% O(2)) with either nitrite or nitric oxide, and about 18-fold when nitrate was the N oxide present in the medium. The P(norC)-lacZ fusion was not expressed in the B. japonicum fixK(2) mutant strain 9043, but complementation of the mutant with the fixK(2) gene restored beta-galactosidase activity to levels similar to those found in the parental strain. The promoter region of the norCBQD genes has been characterized by primer extension. A major transcript initiates 45.5 bp downstream of the centre of a putative binding site for the transcription factor FixK(2).
Collapse
Affiliation(s)
- Socorro Mesa
- Departamento de Microbiologı́a del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidı́n, CSIC, E-18080 Granada, Spain1
| | - Leonardo Velasco
- Centro de Investigación y Formación Hortı́cola.E-04700 El Ejido, Almerı́a, Spain2
| | - Maximino E Manzanera
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK3
| | - Marı A J Delgado
- Departamento de Microbiologı́a del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidı́n, CSIC, E-18080 Granada, Spain1
| | - Eulogio J Bedmar
- Departamento de Microbiologı́a del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidı́n, CSIC, E-18080 Granada, Spain1
| |
Collapse
|
76
|
Abstract
Denitrification, the reduction of nitrate or nitrite to nitrous oxide or dinitrogen, is the major mechanism by which fixed nitrogen returns to the atmosphere from soil and water. Although the denitrifying ability has been found in microorganisms belonging to numerous groups of bacteria and Archaea, the genes encoding the denitrifying reductases have been studied in only few species. Recent investigations have led to the identification of new classes of denitrifying reductases, indicating a more complex genetic basis of this process than previously recognized. The increasing number of genome sequencing projects has opened a new way to study the genetics of the denitrifying process in bacteria and Archaea. In this review, we summarized the current knowledge on denitrifying genes and compared their genetic organizations by using new sequences resulting from the analysis of finished and unfinished microbial genomes with a special attention paid to the clustering of genes encoding different classes of reductases. In addition, some evolutionary relationships between the structural genes are presented.
Collapse
Affiliation(s)
- Laurent Philippot
- Institut National de la Recherche Agronomique-UMR 111 Géosols-Microbiologie des Sols-17, rue Sully-B.V. 86510, 21065 Dijon Cedex, France.
| |
Collapse
|
77
|
Pitcher RS, Cheesman MR, Watmough NJ. Molecular and spectroscopic analysis of the cytochrome cbb(3) oxidase from Pseudomonas stutzeri. J Biol Chem 2002; 277:31474-83. [PMID: 12070166 DOI: 10.1074/jbc.m204103200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome cbb(3) oxidase, a member of the heme-copper oxidase superfamily, is characterized by its high affinity for oxygen while retaining the ability to pump protons. These attributes are central to its proposed role in the microaerobic metabolism of proteobacteria. We have completed the first detailed spectroscopic characterization of a cytochrome cbb(3) oxidase, the enzyme purified from Pseudomonas stutzeri. A combination of UV-visible and magnetic CD spectroscopies clearly identified four low-spin hemes and the high-spin heme of the active site. This heme complement is in good agreement with our analysis of the primary sequence of the ccoNOPQ operon and biochemical analysis of the complex. Near-IR magnetic CD spectroscopy revealed the unexpected presence of a low-spin bishistidine-coordinated c-type heme in the complex. This was shown to be one of two c-type hemes in the CcoP subunit by separately expressing the subunit in Escherichia coli. Separate expression of CcoP also allowed us to unambiguously assign each of the signals associated with low-spin ferric hemes present in the X-band EPR spectrum of the oxidized enzyme. This work both underpins future mechanistic studies on this distinctive class of bacterial oxidases and raises questions concerning the role of CcoP in electron delivery to the catalytic subunit.
Collapse
Affiliation(s)
- Robert S Pitcher
- Centre for Metalloprotein Spectroscopy and Biology and the School of Biological Sciences, University of East Anglia, Norfolk NR4 7TJ, United Kingdom
| | | | | |
Collapse
|
78
|
Hutchings MI, Mandhana N, Spiro S. The NorR protein of Escherichia coli activates expression of the flavorubredoxin gene norV in response to reactive nitrogen species. J Bacteriol 2002; 184:4640-3. [PMID: 12142437 PMCID: PMC135257 DOI: 10.1128/jb.184.16.4640-4643.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2002] [Accepted: 05/09/2002] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli norVW genes encode a flavorubredoxin and NADH:(flavo)rubredoxin reductase, respectively, which are involved in nitric oxide detoxification under anaerobic growth conditions. Here it is shown that the norVW genes also have a role in protection against reactive nitrogen intermediates generated from nitroprusside. Transcription from the norV promoter is activated by the presence of nitroprusside in the growth medium; activation requires the product of a divergently transcribed regulatory gene, norR.
Collapse
Affiliation(s)
- Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | |
Collapse
|
79
|
Poock SR, Leach ER, Moir JWB, Cole JA, Richardson DJ. Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli. J Biol Chem 2002; 277:23664-9. [PMID: 11960983 DOI: 10.1074/jbc.m200731200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide is a key element in host defense against invasive pathogens. The periplasmic cytochrome c nitrite reductase (NrfA) of Escherichia coli catalyzes the respiratory reduction of nitrite, but in vitro studies have shown that it can also reduce nitric oxide. The physiological significance of the latter reaction in vivo has never been assessed. In this study the reduction of nitric oxide by Escherichia coli was measured in strains active or deficient in periplasmic nitrite reduction. Nrf(+) cells, harvested from cultures grown anaerobically, possessed a nitric-oxide reductase activity with physiological electron donation of 60 nmol min(-1) x mg dry wt(-1), and an in vivo turnover number of NrfA of 390 NO* s(-1) was calculated. Nitric-oxide reductase activity could not be detected in Nrf(-) strains. Comparison of the anaerobic growth of Nrf(+) and Nrf(-) strains revealed a higher sensitivity to nitric oxide in the NrfA(-) strains. A higher sensitivity to the nitrosating agent S-nitroso-N-acetyl penicillamine (SNAP) was also observed in agar plate disk-diffusion assays. Oxygen respiration by E. coli was also more sensitive to nitric oxide in the Nrf(-) strains compared with the Nrf(+) parent strain. The results demonstrate that active periplasmic cytochrome c nitrite reductase can confer the capacity for nitric oxide reduction and detoxification on E. coli. Genomic analysis of many pathogenic enteric bacteria reveals the presence of nrf genes. The present study raises the possibility that this reflects an important role for the cytochrome c nitrite reductase in nitric oxide management in oxygen-limited environments.
Collapse
Affiliation(s)
- Susannah R Poock
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
80
|
Field SJ, Prior L, Roldan MD, Cheesman MR, Thomson AJ, Spiro S, Butt JN, Watmough NJ, Richardson DJ. Spectral properties of bacterial nitric-oxide reductase: resolution of pH-dependent forms of the active site heme b3. J Biol Chem 2002; 277:20146-50. [PMID: 11901154 DOI: 10.1074/jbc.m112202200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial nitric-oxide reductase catalyzes the two electron reduction of nitric oxide to nitrous oxide. In the oxidized form the active site non-heme Fe(B) and high spin heme b(3) are mu-oxo bridged. The heme b(3) has a ligand-to-metal charge transfer band centered at 595 nm, which is insensitive to pH over the range of 6.0-8.5. Partial reduction of nitric-oxide reductase yields a three electron-reduced state where only the heme b(3) remains oxidized. This results in a shift of the heme b(3) charge transfer band lambda(max) to longer wavelengths. At pH 6.0 the charge transfer band lambda(max) is 605 nm, whereas at pH 8.5 it is 635 nm. At pH 6.5 and 7.5 the nitric-oxide reductase ferric heme b(3) population is a mixture of both 605- and 635-nm forms. Magnetic circular dichroism spectroscopy suggests that at all pH values examined the proximal ligand to the ferric heme b(3) in the three electron-reduced form is histidine. At pH 8.5 the distal ligand is hydroxide, whereas at pH 6.0, when the enzyme is most active, it is water.
Collapse
Affiliation(s)
- Sarah J Field
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Wasser IM, de Vries S, Moënne-Loccoz P, Schröder I, Karlin KD. Nitric oxide in biological denitrification: Fe/Cu metalloenzyme and metal complex NO(x) redox chemistry. Chem Rev 2002; 102:1201-34. [PMID: 11942794 DOI: 10.1021/cr0006627] [Citation(s) in RCA: 369] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ian M Wasser
- Department of Chemistry, The Johns Hopkins University, Charles and 34th Streets, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
82
|
Gardner AM, Helmick RA, Gardner PR. Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J Biol Chem 2002; 277:8172-7. [PMID: 11751865 DOI: 10.1074/jbc.m110471200] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) is a poison, and organisms employ diverse systems to protect against its harmful effects. In Escherichia coli, ygaA encodes a transcription regulator (b2709) controlling anaerobic NO reduction and detoxification. Adjacent to ygaA and oppositely transcribed are ygaK (encoding a flavorubredoxin (flavoRb) (b2710) with a NO-binding non-heme diiron center) and ygbD (encoding a NADH:(flavo)Rb oxidoreductase (b2711)), which function in NO reduction and detoxification. Mutation of either ygaA or ygaK eliminated inducible anaerobic NO metabolism, whereas ygbD disruption partly impaired the activity. NO-sensitive [4Fe-4S] (de)hydratases, including the Krebs cycle aconitase and the Entner-Doudoroff pathway 6-phosphogluconate dehydratase, were more susceptible to inactivation in ygaK or ygaA mutants than in the parental strain, and these metabolic poisonings were associated with conditional growth inhibitions. flavoRb (NO reductase) and flavohemoglobin (NO dioxygenase) maximally metabolized and detoxified NO in anaerobic and aerobic E. coli, respectively, whereas both enzymes scavenged NO under microaerobic conditions. We suggest designation of the ygaA-ygaK-ygbD gene cluster as the norRVW modulon for NO reduction and detoxification.
Collapse
Affiliation(s)
- Anne M Gardner
- Division of Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
83
|
Gardner AM, Gardner PR. Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli. Evidence for a novel inducible anaerobic nitric oxide-scavenging activity. J Biol Chem 2002; 277:8166-71. [PMID: 11751864 DOI: 10.1074/jbc.m110470200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide dioxygenase (NOD) and reductase (NOR) activities of flavohemoglobin (flavoHb) have been suggested as mechanisms for NO metabolism and detoxification in a variety of microbes. Mechanisms of NO detoxification were tested in Escherichia coli using flavoHb-deficient mutants and overexpressors. flavoHb showed negligible anaerobic NOR activity and afforded no protection to the NO-sensitive aconitase or the growth of anoxic E. coli, whereas the NOD activity and the protection afforded with O(2) were substantial. A NO-inducible, O(2)-sensitive, and cyanide-resistant NOR activity efficiently metabolized NO and protected anaerobic cells from NO toxicity independent of the NOR activity of flavoHb. flavoHb possesses nitrosoglutathione and nitrite reductase activities that may account for the protection it affords against these agents. NO detoxification by flavoHb occurs most effectively via O(2)-dependent NO dioxygenation.
Collapse
Affiliation(s)
- Anne M Gardner
- Division of Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
84
|
Büsch A, Friedrich B, Cramm R. Characterization of the norB gene, encoding nitric oxide reductase, in the nondenitrifying cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 2002; 68:668-72. [PMID: 11823206 PMCID: PMC126718 DOI: 10.1128/aem.68.2.668-672.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A norB gene encoding a putative nitric oxide reductase is present in the genome of the nondenitrifying cyanobacterium Synechocystis sp. strain PCC6803. The gene product belongs to the quinol-oxidizing single-subunit class of nitric oxide reductases, discovered recently in the denitrifier Ralstonia eutropha. Heterologous complementation of a nitric oxide reductase-negative mutant of R. eutropha with norB from Synechocystis restored nitric oxide reductase activity. With reduced menadione as the electron donor, an enzymatic activity of 101 nmol of NO per min per mg of protein was obtained with membrane fractions of Synechocystis wild-type cells. Virtually no nitric oxide reductase activity was present in a norB-negative mutant of Synechocystis. Growing cells of this mutant are more sensitive toward NO than wild-type cells, indicating that the presence of a nitric oxide reductase is beneficial for Synechocystis when the cells are exposed to NO. Transcriptional fusions with the chloramphenicol acetyltransferase reporter gene were constructed to monitor norB expression in Synechocystis. Transcription of norB was not enhanced by the addition of the NO-generating agent sodium nitroprusside.
Collapse
Affiliation(s)
- Andrea Büsch
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | |
Collapse
|
85
|
Gaston B, Ratjen F, Vaughan JW, Malhotra NR, Canady RG, Snyder AH, Hunt JF, Gaertig S, Goldberg JB. Nitrogen redox balance in the cystic fibrosis airway: effects of antipseudomonal therapy. Am J Respir Crit Care Med 2002; 165:387-90. [PMID: 11818326 DOI: 10.1164/ajrccm.165.3.2106006] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Denitrifying bacteria metabolize nitrogen oxides through assimilatory and dissimilatory pathways. These redox reactions may affect lung physiology. We hypothesized that airway colonization with denitrifying bacteria could alter nitrogen balance in the cystic fibrosis (CF) airway. We measured airway nitrogen redox species before and after antimicrobial therapy for Pseudomonas aeruginosa in patients with CF. We also studied ammonium (NH(4)(+)) and nitric oxide (NO) metabolism in clinical strains of P. aeruginosa in vitro and in CF sputum ex vivo. Ammonium concentrations in both sputum and tracheal aspirates decreased with therapy. Nitric oxide reductase (NOR) was present in clinical strains of P. aeruginosa, which both produced NH(4)(+) and consumed NO. Further, NO consumption by CF sputum was inhibited by tobramycin ex vivo. We conclude that treatment of pseudomonal lung infections is associated with decreased NH(4)(+) concentrations in the CF airways. In epithelial cells, NH(4)(+) inhibits chloride transport, and nitrogen oxides inhibit amiloride-sensitive sodium transport and augment chloride transport. We speculate that normalization of airway nitrogen redox balance could contribute to the beneficial effects of antipseudomonal therapy on lung function in CF.
Collapse
Affiliation(s)
- Benjamin Gaston
- Department of Pediatric Pulmonary Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.
Collapse
|
87
|
Abstract
This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.
Collapse
|
88
|
Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001; 357:593-615. [PMID: 11463332 PMCID: PMC1221991 DOI: 10.1042/0264-6021:3570593] [Citation(s) in RCA: 1597] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.
Collapse
Affiliation(s)
- W K Alderton
- In Vitro Pharmacology Department, GlaxoSmithKline Research and Development, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | | | | |
Collapse
|
89
|
Ferguson SJ, Fülöp V. Cytochrome cd1 nitrite reductase structure raises interesting mechanistic questions. Subcell Biochem 2001; 35:519-40. [PMID: 11192732 DOI: 10.1007/0-306-46828-x_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- S J Ferguson
- Department of Biochemistry and Oxford Centre for Molecular Sciences, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | | |
Collapse
|
90
|
Butland G, Spiro S, Watmough NJ, Richardson DJ. Two conserved glutamates in the bacterial nitric oxide reductase are essential for activity but not assembly of the enzyme. J Bacteriol 2001; 183:189-99. [PMID: 11114916 PMCID: PMC94865 DOI: 10.1128/jb.183.1.189-199.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial nitric oxide reductase (NOR) is a divergent member of the family of respiratory heme-copper oxidases. It differs from other family members in that it contains an Fe(B)-heme-Fe dinuclear catalytic center rather than a Cu(B)-heme-Fe center and in that it does not pump protons. Several glutamate residues are conserved in NORs but are absent in other heme-copper oxidases. To facilitate mutagenesis-based studies of these residues in Paracoccus denitrificans NOR, we developed two expression systems that enable inactive or poorly active NOR to be expressed, characterized in vivo, and purified. These are (i) a homologous system utilizing the cycA promoter to drive aerobic expression of NOR in P. denitrificans and (ii) a heterologous system which provides the first example of the expression of an integral-membrane cytochrome bc complex in Escherichia coli. Alanine substitutions for three of the conserved glutamate residues (E125, E198, and E202) were introduced into NOR, and the proteins were expressed in P. denitrificans and E. coli. Characterization in intact cells and membranes has demonstrated that two of the glutamates are essential for normal levels of NOR activity: E125, which is predicted to be on the periplasmic surface close to helix IV, and E198, which is predicted to lie in the middle of transmembrane helix VI. The subsequent purification and spectroscopic characterization of these enzymes established that they are stable and have a wild-type cofactor composition. Possible roles for these glutamates in proton uptake and the chemistry of NO reduction at the active site are discussed.
Collapse
Affiliation(s)
- G Butland
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
91
|
Trochu JN, Bouhour JB, Kaley G, Hintze TH. Role of endothelium-derived nitric oxide in the regulation of cardiac oxygen metabolism: implications in health and disease. Circ Res 2000; 87:1108-17. [PMID: 11110767 DOI: 10.1161/01.res.87.12.1108] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelium-derived NO is considered to be primarily an important determinant of vascular tone and platelet activity; however, the modulation of myocardial metabolism by NO may be one of its most important roles. This modulation may be critical for the regulation of tissue metabolism. Several physiological processes act in concert to make endothelial NO synthase-derived NO potentially important in the regulation of mitochondrial respiration in cardiac tissue, including (1) the nature of the capillary network in the myocardium, (2) the diffusion distance for NO, (3) the low toxicity of NO at physiological (nanomolar) concentrations, (4) the fact that low PO(2) in tissue facilitates the action of NO on cytochrome oxidase, and (5) the formation of oxygen free radicals. A decrease in NO production is involved in the pathophysiological modifications that occur in heart failure and diabetes, disease states associated with altered cardiac metabolism that contributes to the evolution of the disease process. In contrast, several drugs (eg, angiotensin-converting enzyme inhibitors, amlodipine, and statins) can restore or maintain endogenous production of NO by endothelial cells, and this mechanism may explain part of their therapeutic efficiency. Thus, the purpose of this review is to critically evaluate the role of NO in the control of mitochondrial respiration, with special emphasis on its effect on cardiac metabolism.
Collapse
Affiliation(s)
- J N Trochu
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
92
|
Stevanin TM, Ioannidis N, Mills CE, Kim SO, Hughes MN, Poole RK. Flavohemoglobin Hmp affords inducible protection for Escherichia coli respiration, catalyzed by cytochromes bo' or bd, from nitric oxide. J Biol Chem 2000; 275:35868-75. [PMID: 10915782 DOI: 10.1074/jbc.m002471200] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Respiration of Escherichia coli catalyzed either by cytochrome bo' or bd is sensitive to micromolar extracellular NO; extensive, transient inhibition of respiration increases as dissolved oxygen tension in the medium decreases. At low oxygen concentrations (25-33 microm), the duration of inhibition of respiration by 9 microm NO is increased by mutation of either oxidase. Respiration of an hmp mutant defective in flavohemoglobin (Hmp) synthesis is extremely NO-sensitive (I(50) about 0.8 microm); conversely, cells pre-grown with sodium nitroprusside or overexpressing plasmid-borne hmp(+) are insensitive to 60 microm NO and have elevated levels of immunologically detectable Hmp. Purified Hmp consumes O(2) at a rate that is instantaneously and extensively (>10-fold) stimulated by NO due to NO oxygenase activity but, in the absence of NO, Hmp does not contribute measurably to cell oxygen consumption. Cyanide binds to Hmp (K(d) 3 microm). Concentrations of KCN (100 microm) that do not significantly inhibit cell respiration markedly suppress the protection of respiration from NO afforded by Hmp and abolish NO oxygenase activity of purified Hmp. The results demonstrate the role of Hmp in protecting respiration from NO stress and are discussed in relation to the energy metabolism of E. coli in natural O(2)-depleted environments.
Collapse
Affiliation(s)
- T M Stevanin
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | | | |
Collapse
|
93
|
Hutchings MI, Shearer N, Wastell S, van Spanning RJ, Spiro S. Heterologous NNR-mediated nitric oxide signaling in Escherichia coli. J Bacteriol 2000; 182:6434-9. [PMID: 11053388 PMCID: PMC94790 DOI: 10.1128/jb.182.22.6434-6439.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor NNR from Paracoccus denitrificans was expressed in a strain of Escherichia coli carrying a plasmid-borne fusion of the melR promoter to lacZ, with a consensus FNR-binding site 41.5 bp upstream of the transcription start site. This promoter was activated by NNR under anaerobic growth conditions in media containing nitrate, nitrite, or the NO(+) donor sodium nitroprusside. Activation by nitrate was abolished by a mutation in the molybdenum cofactor biosynthesis pathway, indicating a requirement for nitrate reductase activity. Activation by nitrate was modulated by the inclusion of reduced hemoglobin in culture media, because of the ability of hemoglobin to sequester nitric oxide and nitrite. The ability of nitrate and nitrite to activate NNR is likely due to the formation of NO (or related species) during nitrate and nitrite respiration. Amino acids potentially involved in NNR activity were replaced by site-directed mutagenesis, and the activities of NNR derivatives were tested in the E. coli reporter system. Substitutions at Cys-103 and Tyr-35 significantly reduced NNR activity but did not abolish the response to reactive nitrogen species. Substitutions at Phe-82 and Tyr-93 severely impaired NNR activity, but the altered proteins retained the ability to repress an FNR-repressible promoter, so these mutations have a "positive control" phenotype. It is suggested that Phe-82 and Tyr-93 identify an activating region of NNR that is involved in an interaction with RNA polymerase. Replacement of Ser-96 with alanine abolished NNR activity, and the protein was undetectable in cell extracts. In contrast, NNR in which Ser-96 was replaced with threonine retained full activity.
Collapse
Affiliation(s)
- M I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
94
|
Hutchings MI, Spiro S. The nitric oxide regulated nor promoter of Paracoccus denitrificans. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2635-2641. [PMID: 11021938 DOI: 10.1099/00221287-146-10-2635] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The promoter of the Paracoccus denitrificans nitric oxide reductase operon (norCBQDEF) has been characterized by primer extension and deletion analysis. A major transcript that is detectable only in anaerobically grown cells initiates 43.5 bp downstream of the centre of a putative binding site for the transcription factor NNR (nitrite and nitric oxide reductase regulator, which is known to regulate nor expression). A minor transcript initiates 121 bp upstream of the major transcript and is detectable in cells grown aerobically or anaerobically. Deletion derivatives of the nor promoter region were constructed and analysed in vivo using transcriptional fusions to the reporter gene lacZ. Expression patterns from promoter deletions in a wild-type strain and an nnr mutant confirmed that the minor transcript is NNR independent, and makes a small contribution to nor expression under both aerobic and anaerobic growth conditions. A deletion derivative truncated to within 7 bp of the putative NNR-binding site showed a near wild-type response to anaerobic growth, showing that no upstream DNA sequences are required for activation of the major promoter. Site-directed mutagenesis of the putative NNR-binding site confirmed that this is the major cis-acting sequence mediating the anaerobic inducibility of nor expression.
Collapse
Affiliation(s)
- Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK1
| | - Stephen Spiro
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK1
| |
Collapse
|
95
|
Householder TC, Fozo EM, Cardinale JA, Clark VL. Gonococcal nitric oxide reductase is encoded by a single gene, norB, which is required for anaerobic growth and is induced by nitric oxide. Infect Immun 2000; 68:5241-6. [PMID: 10948150 PMCID: PMC101784 DOI: 10.1128/iai.68.9.5241-5246.2000] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding a nitric oxide reductase has been identified in Neisseria gonorrhoeae. The norB gene product shares significant identity with the nitric oxide reductases in Ralstonia eutropha and Synechocystis sp. and, like those organisms, the gonococcus lacks a norC homolog. The gonococcal norB gene was found to be required for anaerobic growth, but the absence of norB did not dramatically decrease anaerobic survival. In a wild-type background, induction of norB expression was seen anaerobically in the presence of nitrite but not anaerobically without nitrite or aerobically. norB expression is not regulated by FNR or NarP, but a functional aniA gene (which encodes an anaerobically induced outer membrane nitrite reductase) is necessary for expression. When aniA is constitutively expressed, norB expression can be induced both anaerobically and aerobically, but only in the presence of nitrite, suggesting that nitric oxide, which is likely to be produced by AniA as a product of nitrite reduction, is the inducing agent. This was confirmed with the use of the nitric oxide donor, spermine-nitric oxide complex, in an aniA null background both anaerobically and aerobically. NorB is important for gonococcal adaptation to an anaerobic environment, a physiologically relevant state during gonococcal infection. The presence of this enzyme, which is induced by nitric oxide, may also have implications in immune evasion and immunomodulation in the human host.
Collapse
Affiliation(s)
- T C Householder
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
96
|
Richardson DJ. Bacterial respiration: a flexible process for a changing environment. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 3):551-571. [PMID: 10746759 DOI: 10.1099/00221287-146-3-551] [Citation(s) in RCA: 368] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK1
| |
Collapse
|
97
|
Fülöp V, Watmough NJ, Ferguson SJ. Structure and enzymology of two bacterial diheme enzymes: Cytochrome cd1 nitrite reductase and cytochrome c peroxidase. ADVANCES IN INORGANIC CHEMISTRY 2000. [DOI: 10.1016/s0898-8838(00)51003-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
98
|
Abstract
Enzymatic reactions involving inorganic nitrogen species provide a rich variety of systems with which to study biological chemistry. In many cases, catalysis involves redox chemistry and takes place at metal centres. Recent structures and new spectroscopic data have rapidly advanced our knowledge of nitrogen cycle enzymology, particularly in the areas of nitrogen fixation, hydroxylamine oxidation and nitrite reduction. In the case of the nitrate reductases and nitric oxide reductase, models for structure and catalysis can be designed, based on new structural information that is now available for closely related enzymes. The past two years have also seen significant progress in our understanding of the enzymology of some 'new' reactions of the nitrogen cycle, for example anaerobic ammona oxidation and heterotrophic nitrification.
Collapse
Affiliation(s)
- D J Richardson
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich, UK.
| | | |
Collapse
|