51
|
NADPH–Cytochrome P450 Reductase Mediates the Fatty Acid Desaturation of ω3 and ω6 Desaturases from Mortierella alpina. Curr Issues Mol Biol 2022; 44:1828-1837. [PMID: 35678654 PMCID: PMC9164069 DOI: 10.3390/cimb44050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Fatty acid desaturases play an important role in maintaining the appropriate structure and function of biological membranes. The biochemical characterization of integral membrane desaturases, particularly ω3 and ω6 desaturases, has been limited by technical difficulties relating to the acquisition of large quantities of purified proteins, and by the fact that functional activities of these proteins were only tested in an NADH-initiated reaction system. The main aim of this study was to reconstitute an NADPH-dependent reaction system in vitro and investigate the kinetic properties of Mortierella alpina ω3 and ω6 desaturases in this system. After expression and purification of the soluble catalytic domain of NADPH–cytochrome P450 reductase, the NADPH-dependent fatty acid desaturation was reconstituted for the first time in a system containing NADPH, NADPH–cytochrome P450 reductase, cytochrome b5, M. alpina ω3 and ω6 desaturase and detergent. In this system, the maximum activity of ω3 and ω6 desaturase was 213.4 ± 9.0 nmol min−1 mg−1 and 10.0 ± 0.5 nmol min−1 mg−1, respectively. The highest kcat/Km value of ω3 and ω6 desaturase was 0.41 µM−1 min−1 and 0.09 µM−1 min−1 when using linoleoyl CoA (18:2 ω6) and oleoyl CoA (18:1 ω9) as substrates, respectively. M. alpina ω3 and ω6 desaturases were capable of using NADPH as reductant when mediated by NADPH–cytochrome P450 reductase; although, their efficiency is distinguishable from NADH-dependent desaturation. These results provide insights into the mechanisms underlying ω3 and ω6 fatty acid desaturation and may facilitate the production of important fatty acids in M. alpina.
Collapse
|
52
|
Li Y, Wang X, Zhang X, Liu Z, Peng L, Hao Q, Liu Z, Men S, Tong N, Shu Q. ABSCISIC ACID-INSENSITIVE 5-ω3 FATTY ACID DESATURASE3 module regulates unsaturated fatty acids biosynthesis in Paeonia ostii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111189. [PMID: 35193738 DOI: 10.1016/j.plantsci.2022.111189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/26/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Paeonia ostii is an authorized novel vegetable oil crop due to its seeds rich in unsaturated fatty acids (UFAs) especially α-linolenic acid (ALA), which overweight the current available edible oil. However, little is known on the regulation mechanism of UFAs biosynthesis during its seed development. Here, we used transcriptome and proteome data combining phytochemistry means to uncover the relationship between abscisic acid (ABA) signaling and UFAs biosynthesis during P. ostii seed development. Based on transcriptome and proteome analysis, two desaturases of omega-6 and omega-3 fatty acid, named as PoFAD2 and PoFAD3 responsible for ALA biosynthesis were identified. Then, an ABSCISIC ACID-INSENSITIVE 5 (ABI5) proteins was identified as an upstream transcriptional factor, which activated the expression of PoFAD3 instead of PoFAD2. Moreover, silencing of PoABI5 repressed the response of PoFAD3 to ABA. This study provides the first view on the connection between the function of ABA signaling factors and ALA biosynthesis in the P. ostii seed, which lays the foundation for studies on the regulatory mechanism of ABA signaling involved in the UFAs synthesis during seeds development, meanwhile, it will shed light on manipulation of ALA content for satisfying human demands on high quality of edible oil or healthy supplement.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Xiruo Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao Zhang
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zheng'an Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Liping Peng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| | - Qing Hao
- College of Landscape and Forestry, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zenggen Liu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining, 810008, China.
| | - Siqi Men
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ningning Tong
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qingyan Shu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
53
|
Voronkov A, Ivanova T. Significance of Lipid Fatty Acid Composition for Resistance to Winter Conditions in Asplenium scolopendrium. BIOLOGY 2022; 11:507. [PMID: 35453707 PMCID: PMC9024544 DOI: 10.3390/biology11040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Ferns are one of the oldest land plants. Among them, there are species that, during the course of evolution, have adapted to living in temperate climates and under winter conditions. Asplenium scolopendrium is one such species whose fronds are able to tolerate low subzero temperatures in winter. It is known that the resistance of ferns to freezing is associated with their prevention of desiccation via unique properties of the xylem and effective photoprotective mechanisms. In this work, the composition of A. scolopendrium lipid fatty acids (FAs) at different times of the year was studied by gas-liquid chromatography with mass spectrometry to determine their role in the resistance of this species to low temperatures. During the growing season, the polyunsaturated FA content increased significantly. This led to increases in the unsaturation and double-bond indices by winter. In addition, after emergence from snow, medium-chain FAs were found in the fronds. Thus, it can be speculated that the FA composition plays an important role in the adaptation of A. scolopendrium to growing conditions and preparation for successful wintering.
Collapse
Affiliation(s)
- Alexander Voronkov
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, IPP RAS, 35 Botanicheskaya St., 127276 Moscow, Russia;
| | | |
Collapse
|
54
|
Jia X, Xiong X, Chen H, Xiao G, Cheng Q, Zhang Z. Promising Novel Method of Acetylation Modification for Regulating Fatty Acid Metabolism in Brassica napus L. BIOLOGY 2022; 11:483. [PMID: 35453683 PMCID: PMC9029296 DOI: 10.3390/biology11040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
In this study, lysine acetylation analysis was conducted using two Brassica napus near-isogenic lines, HOCR and LOCR, containing high and low oleic acid contents, respectively, to explore this relationship. Proteins showing differences in quantitative information between the B. napus lines were identified in lysine acetylation analysis, and KEGG pathways were analyzed, yielding 45 enriched proteins, most of which are involved in carbon fixation in photosynthetic organisms, photosynthesis, ascorbate and aldarate metabolism, and glycolysis. Potential key genes related to fatty acid metabolisms were determined. To further explore the effect of acetylation modification on fatty acid metabolisms, the acyl-ACP3 related gene BnaACP363K was cloned, and a base mutation at No.63 was changed via overlapping primer PCR method. This study is the first to demonstrate that acetylation modification can regulate oleic acid metabolisms, which provides a promising approach for the study of the molecular mechanism of oleic acid in rapeseed.
Collapse
Affiliation(s)
- Xiaojiang Jia
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
- Junlebao Dairy Co., Ltd., Shijiazhuang 050221, China
| | - Xinghua Xiong
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Hao Chen
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Gang Xiao
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Qian Cheng
- Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Changsha 410205, China
| | - Zhenqian Zhang
- College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
55
|
Bacilio-Jiménez M, Carreon-Palau L, Arredondo-Vega BO, Alejandra Chávez-Cobian J, Carrillo-González R. Changes in fatty acid in Tecoma stans grown in mine residues after compost amendment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1455-1464. [PMID: 35196468 DOI: 10.1080/15226514.2022.2033690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amendment tailing heaps with compost may deplete metal(loid)s concentration and improve the conditions for plant development. This research aimed to compare the Tecoma stans ability to grow on soil from the Sonora desert and mining waste (MW) after amendment with compost. Amendment the MW, with compost, decreased soluble As, Cd, Cu, Mn, Pb, and Zn up to 47, 33, 11, 34, 69, and 34%, respectively; increased ten times the leaves weight, and thirteen times the leaf area of the plants. Arsenic, Cd, Pb, Cu, and Zn in plants tissues decreased 27, 28, 27, 12, and 11%, respectively. The bioaccumulation and translocation factors were lower than one, so T. stans do not accumulate these elements. Polyunsaturated fatty acids 18:2ω6 and 18:3ω3 were increased, suggesting lower alteration of thylakoidal membrane integrity due to compost treatment. But, the amendment to the tailing was not enough to deplete the abiotic stress.
Collapse
Affiliation(s)
| | - Laura Carreon-Palau
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Baja California Sur, Mexico
| | | | | | | |
Collapse
|
56
|
Allakhverdiev ES, Khabatova VV, Kossalbayev BD, Zadneprovskaya EV, Rodnenkov OV, Martynyuk TV, Maksimov GV, Alwasel S, Tomo T, Allakhverdiev SI. Raman Spectroscopy and Its Modifications Applied to Biological and Medical Research. Cells 2022; 11:cells11030386. [PMID: 35159196 PMCID: PMC8834270 DOI: 10.3390/cells11030386] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, there is an interest in biomedical and nanobiotechnological studies, such as studies on carotenoids as antioxidants and studies on molecular markers for cardiovascular, endocrine, and oncological diseases. Moreover, interest in industrial production of microalgal biomass for biofuels and bioproducts has stimulated studies on microalgal physiology and mechanisms of synthesis and accumulation of valuable biomolecules in algal cells. Biomolecules such as neutral lipids and carotenoids are being actively explored by the biotechnology community. Raman spectroscopy (RS) has become an important tool for researchers to understand biological processes at the cellular level in medicine and biotechnology. This review provides a brief analysis of existing studies on the application of RS for investigation of biological, medical, analytical, photosynthetic, and algal research, particularly to understand how the technique can be used for lipids, carotenoids, and cellular research. First, the review article shows the main applications of the modified Raman spectroscopy in medicine and biotechnology. Research works in the field of medicine and biotechnology are analysed in terms of showing the common connections of some studies as caretenoids and lipids. Second, this article summarises some of the recent advances in Raman microspectroscopy applications in areas related to microalgal detection. Strategies based on Raman spectroscopy provide potential for biochemical-composition analysis and imaging of living microalgal cells, in situ and in vivo. Finally, current approaches used in the papers presented show the advantages, perspectives, and other essential specifics of the method applied to plants and other species/objects.
Collapse
Affiliation(s)
- Elvin S. Allakhverdiev
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, 119991 Moscow, Russia;
| | - Venera V. Khabatova
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
| | - Bekzhan D. Kossalbayev
- Geology and Oil-gas Business Institute Named after K. Turyssov, Satbayev University, Satpaeva, 22, Almaty 050043, Kazakhstan;
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050038, Kazakhstan
| | - Elena V. Zadneprovskaya
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
| | - Oleg V. Rodnenkov
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
| | - Tamila V. Martynyuk
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
| | - Georgy V. Maksimov
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, 119991 Moscow, Russia;
- Department of Physical Materials Science, Technological University “MISiS”, Leninskiy Prospekt 4, Office 626, 119049 Moscow, Russia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan;
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia;
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow, Russia
- Correspondence:
| |
Collapse
|
57
|
Otyama PI, Chamberlin K, Ozias-Akins P, Graham MA, Cannon EKS, Cannon SB, MacDonald GE, Anglin NL. Genome-wide approaches delineate the additive, epistatic, and pleiotropic nature of variants controlling fatty acid composition in peanut (Arachis hypogaea L.). G3 (BETHESDA, MD.) 2022; 12:jkab382. [PMID: 34751378 PMCID: PMC8728033 DOI: 10.1093/g3journal/jkab382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022]
Abstract
The fatty acid composition of seed oil is a major determinant of the flavor, shelf-life, and nutritional quality of peanuts. Major QTLs controlling high oil content, high oleic content, and low linoleic content have been characterized in several seed oil crop species. Here, we employ genome-wide association approaches on a recently genotyped collection of 787 plant introduction accessions in the USDA peanut core collection, plus selected improved cultivars, to discover markers associated with the natural variation in fatty acid composition, and to explain the genetic control of fatty acid composition in seed oils. Overall, 251 single nucleotide polymorphisms (SNPs) had significant trait associations with the measured fatty acid components. Twelve SNPs were associated with two or three different traits. Of these loci with apparent pleiotropic effects, 10 were associated with both oleic (C18:1) and linoleic acid (C18:2) content at different positions in the genome. In all 10 cases, the favorable allele had an opposite effect-increasing and lowering the concentration, respectively, of oleic and linoleic acid. The other traits with pleiotropic variant control were palmitic (C16:0), behenic (C22:0), lignoceric (C24:0), gadoleic (C20:1), total saturated, and total unsaturated fatty acid content. One hundred (100) of the significantly associated SNPs were located within 1000 kbp of 55 genes with fatty acid biosynthesis functional annotations. These genes encoded, among others: ACCase carboxyl transferase subunits, and several fatty acid synthase II enzymes. With the exception of gadoleic (C20:1) and lignoceric (C24:0) acid content, which occur at relatively low abundance in cultivated peanuts, all traits had significant SNP interactions exceeding a stringent Bonferroni threshold (α = 1%). We detected 7682 pairwise SNP interactions affecting the relative abundance of fatty acid components in the seed oil. Of these, 627 SNP pairs had at least one SNP within 1000 kbp of a gene with fatty acid biosynthesis functional annotation. We evaluated 168 candidate genes underlying these SNP interactions. Functional enrichment and protein-to-protein interactions supported significant interactions (P-value < 1.0E-16) among the genes evaluated. These results show the complex nature of the biology and genes underlying the variation in seed oil fatty acid composition and contribute to an improved genotype-to-phenotype map for fatty acid variation in peanut seed oil.
Collapse
Affiliation(s)
- Paul I Otyama
- Interdepartmental Genetics and Genomics, Iowa State University, Ames, IA 50011, USA
- Agronomy Department, Iowa State University, Ames, IA 50011, USA
| | - Kelly Chamberlin
- USDA—Agricultural Research Service, Stillwater, OK 740752714, USA
| | - Peggy Ozias-Akins
- Genetics, and Genomics and Department of Horticulture, Institute of Plant Breeding, University of Georgia, Tifton, GA 31793-5766, USA
| | - Michelle A Graham
- Corn Insects and Crop Genetics Research Unit, USDA—Agricultural Research Service, Ames, IA 50011, USA
| | - Ethalinda K S Cannon
- Corn Insects and Crop Genetics Research Unit, USDA—Agricultural Research Service, Ames, IA 50011, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, USDA—Agricultural Research Service, Ames, IA 50011, USA
| | | | - Noelle L Anglin
- USDA-ARS Small Grains and Potato Research Laboratory, Aberdeen, ID 83210, USA
| |
Collapse
|
58
|
A review of recent progress in reducing NaCl content in meat and fish products using basic amino acids. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
59
|
Voronkov AS, Ivanova TV, Kumachova TK. The features of the fatty acid composition of Pyrus L. total lipids are determined by mountain ecosystem conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:350-363. [PMID: 34959055 DOI: 10.1016/j.plaphy.2021.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The composition of fatty acids (FAs) of total lipids of pericarp, seeds, and leaves of Pyrus caucasica Fed. and Pyrus communis L. growing in mountain ecosystems at different altitudes (300, 700 and 1200 m) was studied. It was found that the greatest differences in the relative content of FAs within a species, depending on the altitudes above sea level, were characteristic of the outer tissues of the pericarp (peel) and leaves, which were in direct contact with the external environment. Pericarp parenchyma to a lesser extent, and seeds practically did not differ in FA composition at different heights. At altitudes with increased UV radiation, conjugated octadecadienoates: rumenic acid (9,11-18:2) and 10,12-18:2 were registered in the pericarp and leaf of Purys L., the functions of which in plants were practically not studied. The wild P. caucasica at all growing altitudes was characterized by more very-long-chain FAs (VLCFAs) than the P. communis cultivar. At 700 m, most likely when exposed to fungal infections, the relative number of VLCFAs increased significantly, and new species of individual odd-chaine FAs appeared in their composition in both representatives. It was especially worth noting the appearance in peel and leaf melissic acid (30:0), which was rarely recorded in the plant. A characteristic feature of only P. communis at an altitude of 700 m was the large number of unsaturated individual VLCFAs. Based on the data obtained, a scheme of possible pathways for VLCFA biosynthesis in P. communis were proposed.
Collapse
Affiliation(s)
- Alexander S Voronkov
- K. A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St, Moscow, 127276, Russia.
| | - Tatiana V Ivanova
- K. A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| | - Tamara K Kumachova
- Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya St, Moscow, 127550, Russia
| |
Collapse
|
60
|
Wu DL, Rao QX, Cheng L, Lv WW, Zhao YL, Song WG. Cloning and characterisation of a Δ9 fatty acyl desaturase-like gene from the red claw crayfish (Cherax quadricarinatus) and its expression analysis under cold stress. J Therm Biol 2021; 102:103122. [PMID: 34863485 DOI: 10.1016/j.jtherbio.2021.103122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/19/2021] [Accepted: 10/30/2021] [Indexed: 11/28/2022]
Abstract
Desaturase is one of the key enzymes in the unsaturated fatty acid synthesis pathway. Δ9 desaturase catalyzes the synthesis of oleic acid from stearic acid by introducing double bonds in the 9th and 10th carbon chains, thereby increasing the content of MUFAs in the body. In order to explore the main function of the Δ9 desaturase gene under low temperature stress, RACE-PCR technology was used in this study to clone the full-length sequence of the CqFAD9-like from the hepatopancreas of red claw crayfish, Cherax quadricarinatus. The full length of the sequence is 1236 bp, and the open reading frame is 1041 bp, encoding 346 amino acid residues. The 5 'UTR is 116 bp, the 3' UTR is 79 bp, and the 3 'UTR contains a PloyA tail. The predicted theoretical isoelectric point and molecular weight are 8.68 and 40.28 kDa, respectively. Homology analysis showed that the sequence had the highest similarity with FAD9 from crustaceans. The results of real-time PCR showed that the expression level of this gene was highest in the hepatopancreas, which was significantly higher than other tissues, followed by the ovaries, brain ganglion and stomach. At the same time, the expression of the CqFAD9-like in hepatopancreas of crayfish cultured at 25, 20, 15 and 9 °C for four weeks was detected. The results showed that expression of the FAD9 gene increased gradually with decreasing temperature, indicating that metabolic desaturation might play a regulatory role during cold stress.
Collapse
Affiliation(s)
- Dong-Lei Wu
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai, 201106, China
| | - Qin-Xiong Rao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai, 201106, China
| | - Lin Cheng
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai, 201106, China
| | - Wei-Wei Lv
- Shanghai Runzhuang Agricultural Science and Technology Co., Ltd, China
| | - Yun-Long Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| | - Wei-Guo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai, 201106, China.
| |
Collapse
|
61
|
Kalugina OV, Mikhailova TA, Afanasyeva LV, Gurina VV, Ivanova MV. Changes in the fatty acid composition of pine needle lipids under the aluminum smelter emissions. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2083-2095. [PMID: 34546442 DOI: 10.1007/s10646-021-02479-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Changes in the fatty acid (FA) composition of total lipids of Pinus sylvestris needles at different pollution levels caused by emissions from a large aluminum smelter (BrAS) have been studied. In the needles of trees from unpolluted (background) territories, the FA spectrum is represented by 24 acids with prevalence of unsaturated FAs (71.6%). The main unsaturated FA are represented by oleic (C18: 1ω9), linoleic (C18: 2ω6), and α-linolenic (C18: 3ω3) acids. Under the influence of BrAS emissions, the total amount of identified FAs in the needles and the proportion of unsaturated FAs decrease, while the fraction of saturated FAs, on the contrary, increases from 25.4% in unpolluted needles to 33.2% in polluted ones. The content of palmitic FA (C16:0) in the needles exceeds background values by 1.5 times, behenic acid (C22:0) - by 1.6-2.5 times, arachidic acid (C20:0) - by 1.5 times, palmitic margaric acid (C17:0) - by 1.5-2.3 times. These FAs play the important role in the protection of plant membranes from the effects of abiotic stress factors, making them less permeable. The sum of short-chain saturated FAs (C12:0, C14:0, C15:0) increase by 4.8 times in needles of trees that are highly polluted. Pentadecanoic (C15:0) acid is found in the needles only in the background areas and at the low pollution level. With a more severe pollution, C15:0 is not identified, but lauric acid with the cis-configuration of double bonds in the structure (izo-C12:0) appears. The presence of "relict" ∆5-polymethylene FAs in the composition of pine needle membrane lipids is determined. In the background areas, they account for 12.9% of the total FAs. With the industrial pollution intensification, their total content increases and reaches 14.1%. ∆5-polymethylene FAs are also able to protect membranes against negative influences. Thus, changes in the quantitative and qualitative FA composition of pine needle total lipids indicate the activation of the stabilization mechanisms of membrane lipids due to their tight packing in a bilayer. It is one of the adaptive reactions of Pinus sylvestris in response to the impact of the aluminum industry emissions.
Collapse
Affiliation(s)
- Olga Vladimirovna Kalugina
- The Natural and Anthropogenic Ecosystems Laboratory, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| | - Tatiana Alekseevna Mikhailova
- The Natural and Anthropogenic Ecosystems Laboratory, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| | - Larisa Vladimirovna Afanasyeva
- Laboratory of Floristics and Geobotany, Institute of General and Experimental Biology Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia, 6, Sakhyanova str., 670047, Ulan-Ude, Russia.
| | - Veronika Valerievna Gurina
- Laboratory of Plant Cell Physiology, Siberian Instititue of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| | - Maria Vladimirovna Ivanova
- Laboratory of Ecosystems Bioindication, Siberian Instititue of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| |
Collapse
|
62
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
63
|
In Silico Analysis of Fatty Acid Desaturases Structures in Camelina sativa, and Functional Evaluation of Csafad7 and Csafad8 on Seed Oil Formation and Seed Morphology. Int J Mol Sci 2021; 22:ijms221910857. [PMID: 34639198 PMCID: PMC8532002 DOI: 10.3390/ijms221910857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Fatty acid desaturases add a second bond into a single bond of carbon atoms in fatty acid chains, resulting in an unsaturated bond between the two carbons. They are classified into soluble and membrane-bound desaturases, according to their structure, subcellular location, and function. The orthologous genes in Camelina sativa were identified and analyzed, and a total of 62 desaturase genes were identified. It was revealed that they had the common fatty acid desaturase domain, which has evolved separately, and the proteins of the same family also originated from the same ancestry. A mix of conserved, gained, or lost intron structure was obvious. Besides, conserved histidine motifs were found in each family, and transmembrane domains were exclusively revealed in the membrane-bound desaturases. The expression profile analysis of C. sativa desaturases revealed an increase in young leaves, seeds, and flowers. C. sativa ω3-fatty acid desaturases CsaFAD7 and CsaDAF8 were cloned and the subcellular localization analysis showed their location in the chloroplast. They were transferred into Arabidopsis thaliana to obtain transgenic lines. It was revealed that the ω3-fatty acid desaturase could increase the C18:3 level at the expense of C18:2, but decreases in oil content and seed weight, and wrinkled phenotypes were observed in transgenic CsaFAD7 lines, while no significant change was observed in transgenic CsaFAD8 lines in comparison to the wild-type. These findings gave insights into the characteristics of desaturase genes, which could provide an excellent basis for further investigation for C. sativa improvement, and overexpression of ω3-fatty acid desaturases in seeds could be useful in genetic engineering strategies, which are aimed at modifying the fatty acid composition of seed oil.
Collapse
|
64
|
Volov M, Cohen N, Bodner L, Dubiner S, Hefetz A, Bouchebti S, Levin E. The Effect of Climate and Diet on Body Lipid Composition in the Oriental Hornet (Vespa orientalis). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.755331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fatty acids (FA) are the primary metabolic fuel for many organisms and the fundamental component of membranes of all living organisms. FAs can be saturated (SFA), monounsaturated (MUFA), or polyunsaturated (PUFA). PUFA are not synthesized by most animals and are considered as essential nutrients. We examined the effect of climate on the saturation level of polar (mostly membranal) and neutral lipids in the body of the Oriental hornet (Vespa orientalis) from two extreme climatic zones: Mediterranean high elevation; and hot arid desert. In contrast to previous reports, the environmental temperature was shown to affect the hornet colonies’ thermal environments. The hornets nonetheless maintained their colony temperature within a narrow range. Analyses of the hornets’ unsaturation levels of polar and non-polar body lipids revealed caste differences: gynes and males contained less unsaturated lipids than workers. However, there were no differences in the respective castes between the two different climate zones tested. Experimentally manipulating the diet of queenless hornet colonies to a high Omega-3 diet (salmon) or a high Omega-6 diet (crickets) had only a minor effect on the worker-born males’ lipid composition. Although salmon-fed males had a higher Omega-3 content than cricket-fed ones, the proportion of these fatty acids was still low (below 1%). Cricket-fed males had significantly higher levels of Omega-6 than salmon-fed males. Our data show that the specific lipid composition of the hornet body is highly regulated and deficient in essential PUFA, even under different climates or high Omega-3 or Omega-6 PUFA diet. PUFA, especially Omega-3, is considered to have a beneficial effect on physiological processes. Our finding that these FA, when common in the diet, are almost absent in the body raises questions about how they affect animals’ physiology.
Collapse
|
65
|
Pang L, Shah H, Xu Y, Qian S. Delta-5-desaturase: A novel therapeutic target for cancer management. Transl Oncol 2021; 14:101207. [PMID: 34438249 PMCID: PMC8390547 DOI: 10.1016/j.tranon.2021.101207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
D5D is an independent prognostic factor in cancer. D5D aggravates cancer progression via mediating AA/PGE2 production from DGLA. AA/PGE2 promotes cancer progression via regulating the tumor microenvironment. Inhibition of D5D redirects COX-2 catalyzed DGLA peroxidation, producing 8-HOA. 8-HOA suppress cancer by regulating proliferation, apoptosis, and metastasis.
Delta-5 desaturase (D5D) is a rate-limiting enzyme that introduces double-bonds to the delta-5 position of the n-3 and n-6 polyunsaturated fatty acid chain. Since fatty acid metabolism is a vital factor in cancer development, several recent studies have revealed that D5D activity and expression could be an independent prognostic factor in cancers. However, the mechanistic basis of D5D in cancer progression is still controversial. The classical concept believes that D5D could aggravate cancer progression via mediating arachidonic acid (AA)/prostaglandin E2 production from dihomo-γ-linolenic acid (DGLA), resulting in activation of EP receptors, inflammatory pathways, and immunosuppression. On the contrary, D5D may prevent cancer progression through activating ferroptosis, which is iron-dependent cell death. Suppression of D5D by RNA interference and small-molecule inhibitor has been identified as a promising anti-cancer strategy. Inhibition of D5D could shift DGLA peroxidation pattern from generating AA to a distinct anti-cancer free radical byproduct, 8-hydroxyoctanoic acid, resulting in activation of apoptosis pathway and simultaneously suppression of cancer cell survival, proliferation, migration, and invasion. Hence, understanding the molecular mechanisms of D5D on cancer may therefore facilitate the development of novel therapeutical applications. Given that D5D may serve as a promising target in cancer, in this review, we provide an updated summary of current knowledge on the role of D5D in cancer development and potentially useful therapeutic strategies.
Collapse
Affiliation(s)
- Lizhi Pang
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA.
| | - Harshit Shah
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA
| | - Yi Xu
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Steven Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Sudro 108, 1401 Albrecht Blvd, Fargo, ND, USA
| |
Collapse
|
66
|
Garcia Corrales AV, Haidar M, Bogie JFJ, Hendriks JJA. Fatty Acid Synthesis in Glial Cells of the CNS. Int J Mol Sci 2021; 22:ijms22158159. [PMID: 34360931 PMCID: PMC8348209 DOI: 10.3390/ijms22158159] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acids (FAs) are of crucial importance for brain homeostasis and neural function. Glia cells support the high demand of FAs that the central nervous system (CNS) needs for its proper functioning. Additionally, FAs can modulate inflammation and direct CNS repair, thereby contributing to brain pathologies such Alzheimer’s disease or multiple sclerosis. Intervention strategies targeting FA synthesis in glia represents a potential therapeutic opportunity for several CNS diseases.
Collapse
Affiliation(s)
- Aida V Garcia Corrales
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
67
|
Chang L, Lu H, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Lipid metabolism research in oleaginous fungus Mortierella alpina: Current progress and future prospects. Biotechnol Adv 2021; 54:107794. [PMID: 34245810 DOI: 10.1016/j.biotechadv.2021.107794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The oleaginous fungus Mortierella alpina has distinct advantages in long-chain PUFAs production, and it is the only source for dietary arachidonic acid (ARA) certificated by FDA and European Commission. This review provides an overall introduction to M. alpina, including its major research methods, key factors governing lipid biosynthesis, metabolic engineering and omics studies. Currently, the research interests in M. alpina focus on improving lipid yield and fatty acid desaturation degree by enhancing fatty acid precursors and the reducing power NADPH, and genetic manipulation on PUFAs synthetic pathways is carried to optimise fatty acid composition. Besides, multi-omics studies have been applied to elucidate the global regulatory mechanism of lipogenesis in M. alpina. However, research challenges towards achieving a lipid cell factory lie in strain breeding and cost control due to the coenocytic mycelium, long fermentation period and insufficient conversion rate from carbon to lipid. We also proposed future research goals based on a multilevel regulating strategy: obtaining ideal chassis by directional evolution and high-throughput screening; rewiring central carbon metabolism and inhibiting competitive pathways by multi-gene manipulation system to enhance carbon to lipid conversion rate; optimisation of protein function based on post-translational modification; application of dynamic fermentation strategies suitable for different fermentation phases. By reviewing the comprehensive research progress of this oleaginous fungus, we aim to further comprehend the fungal lipid metabolism and provide reference information and guidelines for the exploration of microbial oils from the perspectives of fundamental research to industrial application.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, PR China; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
68
|
Zhang B, Xia P, Yu H, Li W, Chai W, Liang Z. Based on the whole genome clarified the evolution and expression process of fatty acid desaturase genes in three soybeans. Int J Biol Macromol 2021; 182:1966-1980. [PMID: 34052275 DOI: 10.1016/j.ijbiomac.2021.05.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022]
Abstract
Soybean is an important oil crop cultivated worldwide. With the increasing global population crossed with growing challenging cultivation conditions, improving soybean breeding by selecting important traits is urgent needed. Genes coding for plant fatty acid desaturases (FADs) genes are major candidates for that, because they are involving in controlling fatty acid composition and holding membrane fluidity under abiotic stress. Here, 75 FADs were found in three soybean genomes, which were further classified into four sub-groups. Phylogenetic tree, gene structure, motif and promoter analysis showed that the FAD gene family was conserved in the three soybeans. In addition, the numbers of omega desaturase from Chinese cultivated varieties were significantly higher than those in Chinese wild soybean and ancient polyploid soybean, respectively. However, it was the opposite for the sphingolipid subfamily. These results indicated that each subfamily was subjected to different selection pressures during cultivation and domestication. As the extra genes of the subfamily were very close to other family members' positions on chromosomes, they should be produced by duplication. The cis-element analysis of FAD promoter sequences revealed that upstream sequences of FAD contained abundant light, hormone and abiotic stress responsive cis-elements, suggesting that the quality of soybean could be improved by regulating these stresses. Expression analysis of Chinese wild soybean under salt stress showed that GsDES1.1, GsDES1.2, GsFAD2.1 and GsSLD1 in leaves and GsSLD2, GsSLD5 and GsSLD6 in roots were not closely related to salt stress response. Therefore, we explored the significant role of conserved, duplicated and neofunctionalized FAD in the domestication of soybean, which contributes to the importance of soybean as a global oil crop.
Collapse
Affiliation(s)
- Bingxue Zhang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Pengguo Xia
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Haizheng Yu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenrui Li
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weiguo Chai
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Zongsuo Liang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resource, Yangling 712100, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
69
|
Choudhary AK, Mishra G. Functional characterization and expression profile of microsomal FAD2 and FAD3 genes involved in linoleic and α-linolenic acid production in Leucas cephalotes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1233-1244. [PMID: 34220042 PMCID: PMC8212227 DOI: 10.1007/s12298-021-01016-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 05/19/2023]
Abstract
UNLABELLED The genus Leucas belongs to Lamiaceae, and has attained more attention due to the presence of unusual allenic fatty acids called laballenic and phlomic acid in majority of its species. This genus has been known since traditional medicinal times and has numerous economical, nutritional, and industrial properties. So far genetic, molecular and biochemical analyses of lipid metabolism and fatty acid biosynthetic pathway in Leucas has not been reported. The objective of this study is to identify, isolate, analyze expression profiles, and functionally characterize the membrane-associated desaturases responsible for unsaturated fatty acid accumulation in Leucas cephalotes. Full-length LcFAD2 and LcFAD3 cDNAs were isolated and expressed in Saccharomyces cerevisiae BY4741 for functional characterization. Substrate feeding assay using S. cerevisiae confirmed that the LcFAD2 enzyme catalyzes desaturation of both palmitoleic (16:1∆9) and oleic (18:1∆9) acids to form palmitolinoleic (16:2∆9,12) and linoleic (18:2∆9,12) acids respectively. As a contrast, the heterologous activity of LcFAD2 enzyme in S. cerevisiae led to the synthesis of palmitolinoleic (16:2∆9,12) acid, an unusual fatty acid that is not found naturally in Leucas cephalotes. While the LcFAD3 enzyme catalyzed linoleic acid (18:2∆9,12) into α-linolenic acid (18:3∆9,12,15). Furthermore, transcript abundance of LcFAD2 and LcFAD3 cDNAs were estimated from various plant parts such as roots, shoots, leaves, petals and developing seeds. Our results have shown that the differential transcriptional activity of LcFAD2 and LcFAD3 desaturase genes differs significantly in developing seeds, petals, leaves, stems, and roots of L. cephalotes. Furthermore, for the industrial production of these essential fatty acids, namely, linoleic and α-linolenic acid, FAD2 and FAD3 enzyme activity could be exploited from this upcoming significant oil plant, Leucas cephalotes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01016-z.
Collapse
Affiliation(s)
| | - Girish Mishra
- Department of Botany, University of Delhi, Delhi, 110007 India
| |
Collapse
|
70
|
Laureano G, Cavaco AR, Matos AR, Figueiredo A. Fatty Acid Desaturases: Uncovering Their Involvement in Grapevine Defence against Downy Mildew. Int J Mol Sci 2021; 22:ijms22115473. [PMID: 34067363 PMCID: PMC8196838 DOI: 10.3390/ijms22115473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Grapevine downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most severe and devastating diseases in viticulture. Unravelling the grapevine defence mechanisms is crucial to develop sustainable disease control measures. Here we provide new insights concerning fatty acid's (FA) desaturation, a fundamental process in lipid remodelling and signalling. Previously, we have provided evidence that lipid signalling is essential in the establishment of the incompatible interaction between grapevine and Plasmopara viticola. In the first hours after pathogen challenge, jasmonic acid (JA) accumulation, activation of its biosynthetic pathway and an accumulation of its precursor, the polyunsaturated α-linolenic acid (C18:3), were observed in the leaves of the tolerant genotype, Regent. This work was aimed at a better comprehension of the desaturation processes occurring after inoculation. We characterised, for the first time in Vitis vinifera, the gene family of the FA desaturases and evaluated their involvement in Regent response to Plasmopara viticola. Upon pathogen challenge, an up-regulation of the expression of plastidial FA desaturases genes was observed, resulting in a higher content of polyunsaturated fatty acids (PUFAs) of chloroplast lipids. This study highlights FA desaturases as key players in membrane remodelling and signalling in grapevine defence towards biotrophic pathogens.
Collapse
|
71
|
Lv W, Jin S, Wang N, Cao D, Jin X, Zhang Y. Identification of important proteins from the gonads and pituitary involved in the gonad development of Amur sturgeon, Acipenser schrenckii, regulated by GnRH-a treatment by iTRAQ-based analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100831. [PMID: 33933834 DOI: 10.1016/j.cbd.2021.100831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Weihua Lv
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Haebin, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Nianmin Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Haebin, China
| | - Dingchen Cao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Haebin, China
| | - Xing Jin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Haebin, China.
| | - Ying Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Haebin, China.
| |
Collapse
|
72
|
Starke J, Harting R, Maurus I, Leonard M, Bremenkamp R, Heimel K, Kronstad JW, Braus GH. Unfolded Protein Response and Scaffold Independent Pheromone MAP Kinase Signaling Control Verticillium dahliae Growth, Development, and Plant Pathogenesis. J Fungi (Basel) 2021; 7:jof7040305. [PMID: 33921172 PMCID: PMC8071499 DOI: 10.3390/jof7040305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Differentiation, growth, and virulence of the vascular plant pathogen Verticillium dahliae depend on a network of interconnected cellular signaling cascades. The transcription factor Hac1 of the endoplasmic reticulum-associated unfolded protein response (UPR) is required for initial root colonization, fungal growth, and vascular propagation by conidiation. Hac1 is essential for the formation of microsclerotia as long-time survival resting structures in the field. Single endoplasmic reticulum-associated enzymes for linoleic acid production as precursors for oxylipin signal molecules support fungal growth but not pathogenicity. Microsclerotia development, growth, and virulence further require the pheromone response mitogen-activated protein kinase (MAPK) pathway, but without the Ham5 scaffold function. The MAPK phosphatase Rok1 limits resting structure development of V.dahliae, but promotes growth, conidiation, and virulence. The interplay between UPR and MAPK signaling cascades includes several potential targets for fungal growth control for supporting disease management of the vascular pathogen V.dahliae.
Collapse
Affiliation(s)
- Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Rica Bremenkamp
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
- Correspondence: ; Tel.: +49-(0)551-39-33771
| |
Collapse
|
73
|
Moosmann B, Schindeldecker M, Hajieva P. Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation. Biol Chem 2021; 401:213-231. [PMID: 31318686 DOI: 10.1515/hsz-2019-0232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
Life most likely developed under hyperthermic and anaerobic conditions in close vicinity to a stable geochemical source of energy. Epitomizing this conception, the first cells may have arisen in submarine hydrothermal vents in the middle of a gradient established by the hot and alkaline hydrothermal fluid and the cooler and more acidic water of the ocean. To enable their escape from this energy-providing gradient layer, the early cells must have overcome a whole series of obstacles. Beyond the loss of their energy source, the early cells had to adapt to a loss of external iron-sulfur catalysis as well as to a formidable temperature drop. The developed solutions to these two problems seem to have followed the principle of maximum parsimony: Cysteine was introduced into the genetic code to anchor iron-sulfur clusters, and fatty acid unsaturation was installed to maintain lipid bilayer viscosity. Unfortunately, both solutions turned out to be detrimental when the biosphere became more oxidizing after the evolution of oxygenic photosynthesis. To render cysteine thiol groups and fatty acid unsaturation compatible with life under oxygen, numerous counter-adaptations were required including the advent of glutathione and the addition of the four latest amino acids (methionine, tyrosine, tryptophan, selenocysteine) to the genetic code. In view of the continued diversification of derived antioxidant mechanisms, it appears that modern life still struggles with the initially developed strategies to escape from its hydrothermal birthplace. Only archaea may have found a more durable solution by entirely exchanging their lipid bilayer components and rigorously restricting cysteine usage.
Collapse
Affiliation(s)
- Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Mario Schindeldecker
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Parvana Hajieva
- Cellular Adaptation Group, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| |
Collapse
|
74
|
Liu Y, Koh CMJ, Yap SA, Cai L, Ji L. Understanding and exploiting the fatty acid desaturation system in Rhodotorula toruloides. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:73. [PMID: 33741038 PMCID: PMC7977280 DOI: 10.1186/s13068-021-01924-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/06/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Rhodotorula toruloides is a robust producer of triacylglycerol owing to its fast growth rate and strong metabolic flux under conditions of high cell density fermentation. However, the molecular basis of fatty acid biosynthesis, desaturation and regulation remains elusive. RESULTS We present the molecular characterization of four fatty acid desaturase (FAD) genes in R. toruloides. Biosynthesis of oleic acid (OA) and palmitoleic acid (POA) was conferred by a single-copy ∆9 Fad (Ole1) as targeted deletion of which abolished the biosynthesis of all unsaturated fatty acids. Conversion of OA to linoleic acid (LA) and α-linolenic acid (ALA) was predominantly catalyzed by the bifunctional ∆12/∆15 Fad2. FAD4 was found to encode a trifunctional ∆9/∆12/∆15 FAD, playing important roles in lipid and biomass production as well as stress resistance. Furthermore, an abundantly transcribed OLE1-related gene, OLE2 encoding a 149-aa protein, was shown to regulate Ole1 regioselectivity. Like other fungi, the transcription of FAD genes was controlled by nitrogen levels and fatty acids in the medium. A conserved DNA motif, (T/C)(G/A)TTGCAGA(T/C)CCCAG, was demonstrated to mediate the transcription of OLE1 by POA/OA. The applications of these FAD genes were illustrated by engineering high-level production of OA and γ-linolenic acid (GLA). CONCLUSION Our work has gained novel insights on the transcriptional regulation of FAD genes, evolution of FAD enzymes and their roles in UFA biosynthesis, membrane stress resistance and, cell mass and total fatty acid production. Our findings should illuminate fatty acid metabolic engineering in R. toruloides and beyond.
Collapse
Affiliation(s)
- Yanbin Liu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Chong Mei John Koh
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Sihui Amy Yap
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lin Cai
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lianghui Ji
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
75
|
Remize M, Brunel Y, Silva JL, Berthon JY, Filaire E. Microalgae n-3 PUFAs Production and Use in Food and Feed Industries. Mar Drugs 2021; 19:113. [PMID: 33670628 PMCID: PMC7922858 DOI: 10.3390/md19020113] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.
Collapse
Affiliation(s)
- Marine Remize
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Yves Brunel
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Joana L. Silva
- ALLMICROALGAE–Natural Products, Avenida 25 Abril, 2445-413 Pataias, Portugal;
| | | | - Edith Filaire
- GREENTECH, Biopôle Clermont-Limagne, 63360 SAINT BEAUZIRE, France;
- ECREIN Team, UMR 1019 INRA-UcA, UNH (Human Nutrition Unity), University Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
76
|
Li J, Liu A, Najeeb U, Zhou W, Liu H, Yan G, Gill RA, Yun X, Bai Q, Xu L. Genome-wide investigation and expression analysis of membrane-bound fatty acid desaturase genes under different biotic and abiotic stresses in sunflower (Helianthus annuus L.). Int J Biol Macromol 2021; 175:188-198. [PMID: 33549671 DOI: 10.1016/j.ijbiomac.2021.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Membrane-bound fatty acid desaturase (FAD) gene family plays crucial roles in regulation of fatty acid (FA) compositions in plants. Sunflower (Helianthus annuus L.) is an important oilseed crop in the world; however, no comprehensive study on exploring the role of FAD family in relation to stress tolerance in sunflower has been performed yet. In this study, we identified 40 putative FAD genes in H. annuus (HaFAD), which were unevenly distributed across 13 of the total 17 chromosomes. Phylogenetic analysis indicated that HaFAD genes were divided into four subfamilies, as supported by highly conserved gene structures and motifs. Collinearity analysis showed that tandem duplication events played a crucial role in the expansion of HaFAD gene family. In addition, tissue-specific expression showed that 32 HaFAD genes were widely expressed in various tissues or organs of sunflower. Furthermore, qRT-PCR results revealed significant expression changes of HaFAD genes in response to abiotic (cadmium, drought) and biotic (Orobanche cumana) stresses, suggesting their important functions in response to different stresses. Therefore, our results provide insights into HaFAD gene family in response to different stresses, and some specific up-regulated genes such as HaFAD3.2, HaADS8, HaFAD2.1, and HaADS9 would be the potential candidate genes for the sunflower tolerance breeding.
Collapse
Affiliation(s)
- Juanjuan Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ake Liu
- Faculty of Biology Science and Technology, Changzhi University, Shanxi 046011, China.
| | - Ullah Najeeb
- Queensland Alliance for Agriculture and Food Innovation, Centre for Plant Science, The University of Queensland, Toowoomba, QLD 4350, Australia
| | - Weijun Zhou
- Zhejiang Key Laboratory of Crop Germplasm, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Hui Liu
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Guijun Yan
- UWA School of Agriculture and Environment and The UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Rafaqat Ali Gill
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaopeng Yun
- Institute of Plant Protection, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot 010031, China
| | - Quanjiang Bai
- Institute of Plant Protection, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot 010031, China
| | - Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
77
|
Chen GQ, Kim WN, Johnson K, Park ME, Lee KR, Kim HU. Transcriptome Analysis and Identification of Lipid Genes in Physaria lindheimeri, a Genetic Resource for Hydroxy Fatty Acids in Seed Oil. Int J Mol Sci 2021; 22:ijms22020514. [PMID: 33419225 PMCID: PMC7825617 DOI: 10.3390/ijms22020514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Hydroxy fatty acids (HFAs) have numerous industrial applications but are absent in most vegetable oils. Physaria lindheimeri accumulating 85% HFA in its seed oil makes it a valuable resource for engineering oilseed crops for HFA production. To discover lipid genes involved in HFA synthesis in P. lindheimeri, transcripts from developing seeds at various stages, as well as leaf and flower buds, were sequenced. Ninety-seven percent clean reads from 552,614,582 raw reads were assembled to 129,633 contigs (or transcripts) which represented 85,948 unique genes. Gene Ontology analysis indicated that 60% of the contigs matched proteins involved in biological process, cellular component or molecular function, while the remaining matched unknown proteins. We identified 42 P. lindheimeri genes involved in fatty acid and seed oil biosynthesis, and 39 of them shared 78-100% nucleotide identity with Arabidopsis orthologs. We manually annotated 16 key genes and 14 of them contained full-length protein sequences, indicating high coverage of clean reads to the assembled contigs. A detailed profiling of the 16 genes revealed various spatial and temporal expression patterns. The further comparison of their protein sequences uncovered amino acids conserved among HFA-producing species, but these varied among non-HFA-producing species. Our findings provide essential information for basic and applied research on HFA biosynthesis.
Collapse
Affiliation(s)
- Grace Q. Chen
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA;
- Correspondence: (G.Q.C.); (H.U.K.)
| | - Won Nyeong Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Korea;
| | - Kumiko Johnson
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA;
| | - Mid-Eum Park
- Department of Molecular Biology, Graduate School, Sejong University, Seoul 05006, Korea;
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54974, Korea;
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Korea;
- Department of Molecular Biology, Graduate School, Sejong University, Seoul 05006, Korea;
- Correspondence: (G.Q.C.); (H.U.K.)
| |
Collapse
|
78
|
Untargeted Lipidomics Analysis of the Cyanobacterium Synechocystis sp. PCC 6803: Lipid Composition Variation in Response to Alternative Cultivation Setups and to Gene Deletion. Int J Mol Sci 2020; 21:ijms21238883. [PMID: 33255174 PMCID: PMC7727718 DOI: 10.3390/ijms21238883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022] Open
Abstract
Cyanobacteria play an important role in several ecological environments, and they are widely accepted to be the ancestors of chloroplasts in modern plants and green algae. Cyanobacteria have become attractive models for metabolic engineering, with the goal of exploring them as microbial cell factories. However, the study of cyanobacterial lipids’ composition and variation, and the assessment of the lipids’ functional and structural roles have been largely overlooked. Here, we aimed at expanding the cyanobacterial lipidomic analytical pipeline by using an untargeted lipidomics approach. Thus, the lipid composition variation of the model cyanobacterium Synechocystis sp. PCC 6803 was investigated in response to both alternative cultivation setups and gene deletion. This approach allowed for detecting differences in total lipid content, alterations in fatty-acid unsaturation level, and adjustments of specific lipid species among the identified lipid classes. The employed method also revealed that the cultivation setup tested in this work induced a deeper alteration of the cyanobacterial cell lipidome than the deletion of a gene that results in a dramatic increase in the release of lipid-rich outer membrane vesicles. This study further highlights how growth conditions must be carefully selected when cyanobacteria are to be engineered and/or scaled-up for lipid or fatty acids production.
Collapse
|
79
|
Nachtschatt M, Okada S, Speight R. Integral Membrane Fatty Acid Desaturases: A Review of Biochemical, Structural, and Biotechnological Advances. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.202000181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matthias Nachtschatt
- Commonwealth Scientific and Industrial Research Organisation Clunies Ross St. Canberra ACT 2601 Australia
- Queensland University of Technology 2 George St. Brisbane QLD 4000 Australia
| | - Shoko Okada
- Commonwealth Scientific and Industrial Research Organisation Clunies Ross St. Canberra ACT 2601 Australia
| | - Robert Speight
- Queensland University of Technology 2 George St. Brisbane QLD 4000 Australia
| |
Collapse
|
80
|
Góralska M, Bińkowski J, Lenarczyk N, Bienias A, Grądzielewska A, Czyczyło-Mysza I, Kapłoniak K, Stojałowski S, Myśków B. How Machine Learning Methods Helped Find Putative Rye Wax Genes Among GBS Data. Int J Mol Sci 2020; 21:E7501. [PMID: 33053706 PMCID: PMC7593958 DOI: 10.3390/ijms21207501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022] Open
Abstract
The standard approach to genetic mapping was supplemented by machine learning (ML) to establish the location of the rye gene associated with epicuticular wax formation (glaucous phenotype). Over 180 plants of the biparental F2 population were genotyped with the DArTseq (sequencing-based diversity array technology). A maximum likelihood (MLH) algorithm (JoinMap 5.0) and three ML algorithms: logistic regression (LR), random forest and extreme gradient boosted trees (XGBoost), were used to select markers closely linked to the gene encoding wax layer. The allele conditioning the nonglaucous appearance of plants, derived from the cultivar Karlikovaja Zelenostebelnaja, was mapped at the chromosome 2R, which is the first report on this localization. The DNA sequence of DArT-Silico 3585843, closely linked to wax segregation detected by using ML methods, was indicated as one of the candidates controlling the studied trait. The putative gene encodes the ABCG11 transporter.
Collapse
Affiliation(s)
- Magdalena Góralska
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Szczecin, ul. Słowackiego 17, 71–434 Szczecin, Poland; (M.G.); (J.B.); (N.L.); (A.B.); (S.S.)
| | - Jan Bińkowski
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Szczecin, ul. Słowackiego 17, 71–434 Szczecin, Poland; (M.G.); (J.B.); (N.L.); (A.B.); (S.S.)
| | - Natalia Lenarczyk
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Szczecin, ul. Słowackiego 17, 71–434 Szczecin, Poland; (M.G.); (J.B.); (N.L.); (A.B.); (S.S.)
| | - Anna Bienias
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Szczecin, ul. Słowackiego 17, 71–434 Szczecin, Poland; (M.G.); (J.B.); (N.L.); (A.B.); (S.S.)
| | - Agnieszka Grądzielewska
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, ul. Akademicka, 20–950 Lublin, Poland;
| | - Ilona Czyczyło-Mysza
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30–239 Kraków, Poland; (I.C.-M.); (K.K.)
| | - Kamila Kapłoniak
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30–239 Kraków, Poland; (I.C.-M.); (K.K.)
| | - Stefan Stojałowski
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Szczecin, ul. Słowackiego 17, 71–434 Szczecin, Poland; (M.G.); (J.B.); (N.L.); (A.B.); (S.S.)
| | - Beata Myśków
- Department of Plant Genetics, Breeding and Biotechnology, West-Pomeranian University of Technology, Szczecin, ul. Słowackiego 17, 71–434 Szczecin, Poland; (M.G.); (J.B.); (N.L.); (A.B.); (S.S.)
| |
Collapse
|
81
|
Li L, Li Y, Wang R, Chao L, Xiu Y, Wang H. Characterization of the stearoyl-ACP desaturase gene (PoSAD) from woody oil crop Paeonia ostii var. lishizhenii in oleic acid biosynthesis. PHYTOCHEMISTRY 2020; 178:112480. [PMID: 32768716 DOI: 10.1016/j.phytochem.2020.112480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Paeonia ostii var. lishizhenii has been approved as a woody oil crop with the outstanding characteristic of abundant α-linolenic acid (C18:3, ALA) in its seed oil. The stearoyl-ACP desaturase gene (SAD) regulates the first key step from stearic acid (C18:0, SA) to oleic acid (C18:1, OA) in the ALA biosynthetic pathway, but its functional characterization in P. ostii var. lishizhenii is absent to date. In this study, a key PoSAD gene (1719 bp in length) was acquired from endosperm of P. ostii var. lishizhenii by transcriptome sequencing analysis and the RACE (rapid-amplification of cDNA ends) method. Bioinformatic analysis of the PoSAD protein showed high homology (ranging from 90.4% to 94.4%) and similar physical and chemical properties to SAD from other higher plants, indicating that it encodes a putative stearoyl-ACP desaturase. Analysis of cis-acting elements found several endosperm tissue-specific motifs; i.e., one Prolamin box, thirteen DOFCOREs and one RY repeat in its promoter. The results of the qRT-PCR experiments verified that PoSAD was most highly expressed in developing endosperm at 59 days after pollination (53.7 times that in shoots) compared with that in roots (1.4 times), stems (2.5 times), leaves (3.1 times), petals (13.1 times) and stamens (46.0 times). Meanwhile, the fatty acid contents in P. ostii var. lishizhenii endosperm at seven growth stages were compared with variation in PoSAD expression. Heterologous expression of PoSAD significantly decreased SA and increased OA content, which effectively reduced the ratios of SA to OA in Saccharomyces cerevisiae and Arabidopsis thaliana. However, contents and ratios of palmitic acid (C16:0) and palmitoleic acid (C16:1) were stable in transgenic yeast, and palmitoleic acid remained absent in transgenic A. thaliana seeds. These results illustrate that PoSAD plays an essential role in endosperm development of P. ostii var. lishizhenii, strictly in catalysis of SA desaturation and OA biosynthesis but without functioning in PA desaturation. The results contribute to our understanding of the characterization of PoSAD in OA biosynthesis in P. ostii var. lishizhenii.
Collapse
Affiliation(s)
- Linkun Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Yipei Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Ruoxin Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Longjun Chao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Beijing Peonature Biotechnology Co., Ltd., Beijing, 101301, China.
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Huafang Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
82
|
Zhu KC, Zhang N, Liu BS, Guo L, Guo HY, Jiang SG, Zhang DC. Transcription factor pparαb activates fads2s to promote LC-PUFA biosynthesis in the golden pompano Trachinotus ovatus (Linnaeus 1758). Int J Biol Macromol 2020; 161:605-616. [DOI: 10.1016/j.ijbiomac.2020.06.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/18/2023]
|
83
|
Guha S, Calarco S, Gachet MS, Gertsch J. Juniperonic Acid Biosynthesis is Essential in Caenorhabditis Elegans Lacking Δ6 Desaturase ( fat-3) and Generates New ω-3 Endocannabinoids. Cells 2020; 9:cells9092127. [PMID: 32961767 PMCID: PMC7564282 DOI: 10.3390/cells9092127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
In eukaryotes, the C20:4 polyunsaturated fatty acid arachidonic acid (AA) plays important roles as a phospholipid component, signaling molecule and precursor of the endocannabinoid-prostanoid axis. Accordingly, the absence of AA causes detrimental effects. Here, compensatory mechanisms involved in AA deficiency in Caenorhabditis elegans were investigated. We show that the ω-3 C20:4 polyunsaturated fatty acid juniperonic acid (JuA) is generated in the C. elegansfat-3(wa22) mutant, which lacks Δ6 desaturase activity and cannot generate AA and ω-3 AA. JuA partially rescued the loss of function of AA in growth and development. Additionally, we observed that supplementation of AA and ω-3 AA modulates lifespan of fat-3(wa22) mutants. We described a feasible biosynthetic pathway that leads to the generation of JuA from α-linoleic acid (ALA) via elongases ELO-1/2 and Δ5 desaturase which is rate-limiting. Employing liquid chromatography mass spectrometry (LC-MS/MS), we identified endocannabinoid-like ethanolamine and glycerol derivatives of JuA and ω-3 AA. Like classical endocannabinoids, these lipids exhibited binding interactions with NPR-32, a G protein coupled receptor (GPCR) shown to act as endocannabinoid receptor in C. elegans. Our study suggests that the eicosatetraenoic acids AA, ω-3 AA and JuA share similar biological functions. This biosynthetic plasticity of eicosatetraenoic acids observed in C. elegans uncovers a possible biological role of JuA and associated ω-3 endocannabinoids in Δ6 desaturase deficiencies, highlighting the importance of ALA.
Collapse
|
84
|
Starikov AY, Sidorov RA, Mironov KS, Goriainov SV, Los DA. Delta or Omega? Δ12 (ω6) fatty acid desaturases count 3C after the pre-existing double bond. Biochimie 2020; 179:46-53. [PMID: 32946991 DOI: 10.1016/j.biochi.2020.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
Abstract
Fatty acid desaturases (FADs) represent a class of oxygen-dependent enzymes that dehydrogenate C-C bonds in the fatty acids (FAs) producing unsaturated CC double bonds that markedly change the properties of biological membranes. FADs are highly specific towards their acyl substrates, the position and configuration of the introduced double bonds. The double bond positioning of soluble acyl-carrier-protein Δ9-FADs was determined relative to the carboxyl end of a FA. Similar mode was suggested for the acyl-lipid Δ12-FADs (also known as ω6-FADs), however, their exact counting order remain unknown. Here we used monounsaturated odd- (17:1Δ10) and even-chain (18:1Δ11) FAs to show that acyl-lipid Δ12-FADs of, at least, two cyanobacterial species, Gloeobacter violaceus and Synechocystis sp. strain PCC 6803, use neither end of the fatty acid (Δ or ω) as a counting reference point; but count three carbons toward the methyl end from an existing double bond in the monoene precursors irrespective of a FA chain length.
Collapse
Affiliation(s)
- Alexander Y Starikov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russian Federation
| | - Roman A Sidorov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russian Federation
| | - Kirill S Mironov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russian Federation
| | - Sergei V Goriainov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street, Build. 6, Moscow, 117198, Russian Federation
| | - Dmitry A Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russian Federation.
| |
Collapse
|
85
|
Erimban S, Daschakraborty S. Cryostabilization of the Cell Membrane of a Psychrotolerant Bacteria via Homeoviscous Adaptation. J Phys Chem Lett 2020; 11:7709-7716. [PMID: 32840376 DOI: 10.1021/acs.jpclett.0c01675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Homeoviscous adaptation (maintenance of a critical balance between the saturated and unsaturated lipids) of the cell membrane of psychrotolerant bacteria is essential to protect them against freeze-thaw cycle. But how does the homeoviscous adaptation protect the cell membrane during cold stress? In this Letter, we answer this question using a coarse-grained molecular dynamics simulation technique. On the basis of the reported fatty acid profiles of psychrotolerant bacteria at different temperatures, multiple lipid membranes are simulated at a wide range of temperatures between 250 and 300 K. We explicate how the homeoviscous adaptation minimizes the effect of cold stress on the structure and fluidity of the membrane. Partial freezing of the saturated lipid domain occurs with the self-aggregation of saturated and unsaturated lipids near the melting temperature of the unadapted lipid membrane. The gel-like phase provides necessary local packing density that can be sensed by sensor proteins responsible for the homeoviscous adaptation.
Collapse
Affiliation(s)
- Shakkira Erimban
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | | |
Collapse
|
86
|
Martínez-Alarcón D, Hagen W, Held C, Saborowski R. Molecular aspects of lipid metabolism in the midgut gland of the brown shrimp Crangon crangon. Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110465. [PMID: 32621989 DOI: 10.1016/j.cbpb.2020.110465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 11/30/2022]
Abstract
The brown shrimp, Crangon crangon, is well adapted to the variable environmental conditions in the southern North Sea. It is very abundant, has high reproduction rates, and holds a key position in coastal ecosystems. This species has very low lipid deposits in the midgut gland, suggesting that the main function of the midgut gland is metabolic turnover rather than energy storage. Based on seasonal gene expression studies and established transcriptome data, we investigated key components of lipid metabolic pathways. Gene expression of triacylglycerol lipase, phospholipase, and fatty acid desaturase were analyzed and compared with that of other digestive enzymes involved in lipid, carbohydrate, and protein catabolism. Our results suggest that gene expression of digestive enzymes involved in lipid metabolism is modulated by the lipid content in the midgut gland and is related to food availability. Brown shrimp seem to be capable of using cellular phospholipids during periods of food paucity but high energetic (lipid) requirements. Two of three isoforms of fatty acid binding proteins (FABPs) from the midgut gland involved in fatty acid transport showed specific mutations of the binding site. We hypothesize that the mutations in FABPs and deficiencies in anabolic pathways limit lipid storage capacities in the midgut gland of C. crangon. In turn, food utilization, including lipid catabolism, has to be efficient to fulfill the energetic requirements of brown shrimp.
Collapse
Affiliation(s)
- Diana Martínez-Alarcón
- Bremen Marine Ecology (BreMarE), Marine Zoology, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, P.O. Box 120161, 27515 Bremerhaven, Germany
| | - Wilhelm Hagen
- Bremen Marine Ecology (BreMarE), Marine Zoology, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany
| | - Christoph Held
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, P.O. Box 120161, 27515 Bremerhaven, Germany
| | - Reinhard Saborowski
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Functional Ecology, P.O. Box 120161, 27515 Bremerhaven, Germany.
| |
Collapse
|
87
|
Dennis AB, Ballesteros GI, Robin S, Schrader L, Bast J, Berghöfer J, Beukeboom LW, Belghazi M, Bretaudeau A, Buellesbach J, Cash E, Colinet D, Dumas Z, Errbii M, Falabella P, Gatti JL, Geuverink E, Gibson JD, Hertaeg C, Hartmann S, Jacquin-Joly E, Lammers M, Lavandero BI, Lindenbaum I, Massardier-Galata L, Meslin C, Montagné N, Pak N, Poirié M, Salvia R, Smith CR, Tagu D, Tares S, Vogel H, Schwander T, Simon JC, Figueroa CC, Vorburger C, Legeai F, Gadau J. Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum. BMC Genomics 2020; 21:376. [PMID: 32471448 PMCID: PMC7257214 DOI: 10.1186/s12864-020-6764-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.
Collapse
Affiliation(s)
- Alice B Dennis
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland.
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| | - Gabriel I Ballesteros
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Chile
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Stéphanie Robin
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Jens Bast
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
- Institute of Zoology, Universität zu Köln, 50674, Köln, Germany
| | - Jan Berghöfer
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Maya Belghazi
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, PINT, PFNT, Marseille, France
| | - Anthony Bretaudeau
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Jan Buellesbach
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Elizabeth Cash
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Zoé Dumas
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Mohammed Errbii
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | | | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Joshua D Gibson
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Corinne Hertaeg
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland
- Department of Environmental Systems Sciences, D-USYS, ETH Zürich, Zürich, Switzerland
| | - Stefanie Hartmann
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Mark Lammers
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Blas I Lavandero
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ina Lindenbaum
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | | | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Nina Pak
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Chris R Smith
- Department of Biology, Earlham College, Richmond, IN, 47374, USA
| | - Denis Tagu
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
| | - Sophie Tares
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tanja Schwander
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
| | | | - Christian C Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Chile
| | - Christoph Vorburger
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Fabrice Legeai
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany.
| |
Collapse
|
88
|
Poole LB, Parsonage D, Sergeant S, Miller LR, Lee J, Furdui CM, Chilton FH. Acyl-lipid desaturases and Vipp1 cooperate in cyanobacteria to produce novel omega-3 PUFA-containing glycolipids. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:83. [PMID: 32399061 PMCID: PMC7203895 DOI: 10.1186/s13068-020-01719-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/16/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Dietary omega-3 (n-3), long chain (LC-, ≥ 20 carbons), polyunsaturated fatty acids (PUFAs) derived largely from marine animal sources protect against inflammatory processes and enhance brain development and function. With the depletion of natural stocks of marine animal sources and an increasing demand for n-3 LC-PUFAs, alternative, sustainable supplies are urgently needed. As a result, n-3 18-carbon and LC-PUFAs are being generated from plant or algal sources, either by engineering new biosynthetic pathways or by augmenting existing systems. RESULTS We utilized an engineered plasmid encoding two cyanobacterial acyl-lipid desaturases (DesB and DesD, encoding Δ15 and Δ6 desaturases, respectively) and "vesicle-inducing protein in plastids" (Vipp1) to induce production of stearidonic acid (SDA, 18:4 n-3) at high levels in three strains of cyanobacteria (10, 17 and 27% of total lipids in Anabaena sp. PCC7120, Synechococcus sp. PCC7002, and Leptolyngbya sp. strain BL0902, respectively). Lipidomic analysis revealed that in addition to SDA, the rare anti-inflammatory n-3 LC-PUFA eicosatetraenoic acid (ETA, 20:4 n-3) was synthesized in these engineered strains, and ~ 99% of SDA and ETA was complexed to bioavailable monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) species. Importantly, novel molecular species containing alpha-linolenic acid (ALA), SDA and/or ETA in both acyl positions of MGDG and DGDG were observed in the engineered Leptolyngbya and Synechococcus strains, suggesting that these could provide a rich source of anti-inflammatory molecules. CONCLUSIONS Overall, this technology utilizes solar energy, consumes carbon dioxide, and produces large amounts of nutritionally important n-3 PUFAs and LC-PUFAs. Importantly, it can generate previously undescribed, highly bioavailable, anti-inflammatory galactosyl lipids. This technology could therefore be transformative in protecting ocean fisheries and augmenting the nutritional quality of human and animal food products.
Collapse
Affiliation(s)
- Leslie B. Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Leslie R. Miller
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Present Address: 139 N St. Patrick St., New Orleans, LA 70119 USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Cristina M. Furdui
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Floyd H. Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Department of Nutritional Sciences and the BIO5 Institute, University of Arizona, Tucson, AZ USA
| |
Collapse
|
89
|
Liu K, Zhao S, Wang S, Wang H, Zhang Z. Identification and analysis of the FAD gene family in walnuts (Juglans regia L.) based on transcriptome data. BMC Genomics 2020; 21:299. [PMID: 32293267 PMCID: PMC7158092 DOI: 10.1186/s12864-020-6692-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Walnut kernels contain a large amount of unsaturated fatty acids, such as linoleic acid and linolenic acid, which are essential fatty acids for humans and have important effects on growth and health. The main function of fatty acid desaturase (FAD), which is widely distributed in organisms, is to remove hydrogen from carbon chains in the biosynthesis of unsaturated fatty acids to generate C=C bonds. RESULTS By performing a series of bioinformatics analysis, 24 members of the JrFAD gene family were identified from the genome database of walnut, and then compared with the homologous genes from Arabidopsis. Phylogenetic analysis showed that JrFADs were classified into four subfamilies: the SAD desaturase subfamily, Δ7/Δ9 desaturase subfamily, Δ12/ω-3 desaturase subfamily and "front-end" desaturase subfamily. Meanwhile, the expression of fatty acid synthesis genes in walnut kernels at different developmental stages was analysed by transcriptome sequencing, with expression of JrFAD3-1, which encodes an enzyme involved in linolenic acid synthesis, being particularly prominent. The relative expression level of JrFAD3-1 changed dramatically with the kernel development stages and exhibited a Bell-Shaped Curve. A significant positive correlation was observed between the expression of JrFAD3-1 during 70-100 DAF (Days after flowering) and the content of alpha-linolenic acid during 100-130 DAF, with a correlation coefficient of 0.991. Additionally, JrFAD3-1 was proved closely related to homologous genes in Betula pendula and Corylus heterophylla, indicating that the conserved structure of FADs is consistent with classical plant taxonomy. CONCLUSION Twenty-four members JrFADs in walnut were identified and classified into four subfamilies. JrFAD3-1 may play significant roles in the biosynthesis of polyunsaturated fatty acids in walnut.
Collapse
Affiliation(s)
- Kai Liu
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, 071001, China
| | - Shugang Zhao
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| | - Shuang Wang
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, 071001, China
| | - Hongxia Wang
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, 071001, China. .,Research Center for Agricultural Engineering Technology of Mountain District of Hebei, Baoding, 071001, China. .,National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, 071001, China.
| | - Zhihua Zhang
- Mountainous Area Research Institute of Hebei Province, Hebei Agricultural University, Baoding, 071001, China. .,Research Center for Agricultural Engineering Technology of Mountain District of Hebei, Baoding, 071001, China. .,National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, 071001, China.
| |
Collapse
|
90
|
Li D, Damry AM, Petrie JR, Vanhercke T, Singh SP, Jackson CJ. Consensus Mutagenesis and Ancestral Reconstruction Provide Insight into the Substrate Specificity and Evolution of the Front-End Δ6-Desaturase Family. Biochemistry 2020; 59:1398-1409. [DOI: 10.1021/acs.biochem.0c00110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongdi Li
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Adam M. Damry
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - James R. Petrie
- CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Thomas Vanhercke
- CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Surinder P. Singh
- CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Colin J. Jackson
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, 19 Eastern Road, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
91
|
Breton S, Jouhet J, Guyet U, Gros V, Pittera J, Demory D, Partensky F, Doré H, Ratin M, Maréchal E, Nguyen NA, Garczarek L, Six C. Unveiling membrane thermoregulation strategies in marine picocyanobacteria. THE NEW PHYTOLOGIST 2020; 225:2396-2410. [PMID: 31591719 DOI: 10.1111/nph.16239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/29/2019] [Indexed: 05/23/2023]
Abstract
The wide latitudinal distribution of marine Synechococcus cyanobacteria partly relies on the differentiation of lineages adapted to distinct thermal environments. Membranes are highly thermosensitive cell components, and the ability to modulate their fluidity can be critical for the fitness of an ecotype in a particular thermal niche. We compared the thermophysiology of Synechococcus strains representative of major temperature ecotypes in the field. We measured growth, photosynthetic capacities and membrane lipidome variations. We carried out a metagenomic analysis of stations of the Tara Oceans expedition to describe the latitudinal distribution of the lipid desaturase genes in the oceans. All strains maintained efficient photosynthetic capacities over their different temperature growth ranges. Subpolar and cold temperate strains showed enhanced capacities for lipid monodesaturation at low temperature thanks to an additional, poorly regiospecific Δ9-desaturase. By contrast, tropical and warm temperate strains displayed moderate monodesaturation capacities but high proportions of double unsaturations in response to cold, thanks to regiospecific Δ12-desaturases. The desaturase genes displayed specific distributions directly related to latitudinal variations in ocean surface temperature. This study highlights the critical importance of membrane fluidity modulation by desaturases in the adaptive strategies of Synechococcus cyanobacteria during the colonization of novel thermal niches.
Collapse
Affiliation(s)
- Solène Breton
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation et Diversité en Milieu Marin (AD2M), Ecology of Marine Plankton (ECOMAP) Team, Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixe de recherche 5168 CNRS, CEA, INRA, Université Grenoble Alpes, IRIG, CEA Grenoble, 17, rue des Martyrs, 38000, Grenoble, France
| | - Ulysse Guyet
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation et Diversité en Milieu Marin (AD2M), Ecology of Marine Plankton (ECOMAP) Team, Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Valérie Gros
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixe de recherche 5168 CNRS, CEA, INRA, Université Grenoble Alpes, IRIG, CEA Grenoble, 17, rue des Martyrs, 38000, Grenoble, France
| | - Justine Pittera
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation et Diversité en Milieu Marin (AD2M), Ecology of Marine Plankton (ECOMAP) Team, Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - David Demory
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Frédéric Partensky
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation et Diversité en Milieu Marin (AD2M), Ecology of Marine Plankton (ECOMAP) Team, Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Hugo Doré
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation et Diversité en Milieu Marin (AD2M), Ecology of Marine Plankton (ECOMAP) Team, Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Morgane Ratin
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation et Diversité en Milieu Marin (AD2M), Ecology of Marine Plankton (ECOMAP) Team, Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixe de recherche 5168 CNRS, CEA, INRA, Université Grenoble Alpes, IRIG, CEA Grenoble, 17, rue des Martyrs, 38000, Grenoble, France
| | - Ngoc An Nguyen
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation et Diversité en Milieu Marin (AD2M), Ecology of Marine Plankton (ECOMAP) Team, Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Laurence Garczarek
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation et Diversité en Milieu Marin (AD2M), Ecology of Marine Plankton (ECOMAP) Team, Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Christophe Six
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation et Diversité en Milieu Marin (AD2M), Ecology of Marine Plankton (ECOMAP) Team, Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| |
Collapse
|
92
|
Li T, Lin X, Yu L, Lin S, Rodriguez IB, Ho TY. RNA-seq profiling of Fugacium kawagutii reveals strong responses in metabolic processes and symbiosis potential to deficiencies of iron and other trace metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135767. [PMID: 31972930 DOI: 10.1016/j.scitotenv.2019.135767] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/09/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
A healthy symbiotic relationship between corals and Symbiodiniaceae relies on suitable temperature and adequate nutrients including trace metals. Besides global warming, trace metal deficiency has been shown to cause coral bleaching, a phenomenon responsible for extensive coral reef degradation around the world. How trace metal deficiency impacts Symbiodiniaceae and coral symbiosis is poorly understood, however. In this study, we applied RNA-seq to investigate how Fugacium kawagutii responds to the deficiency of five trace metals (Fe2+, Zn2+, Cu2+, Mn2+, Ni2+). We identified 685 to 2805 differentially expressed genes (DEGs) from these trace metal deficiency conditions, among which 372 were commonly regulated by all the five trace metals and were significantly enriched in energy metabolism (e.g. fatty acid synthesis). Furthermore, genes associated with extracellular matrix (ECM), cell surface structure and cell adhesion were impacted, suggesting that the ability of recognition and adhesion of F. kawagutii may be altered by trace metal deficiencies. In addition, among the five metals, Fe2+ deficiency exhibited the strongest influence, with Fe-rich redox elements and many antioxidant synthesis genes being markedly down-regulated, indicative of adaptive reduction of Fe demand but a compromised ability to combat oxidative stress. Overall, deficiency of trace metals (especially Fe) seems to repress growth and ability of ROS scavenging, elevate energy metabolism and innate immunity, and alter cell adhesion capability, with implications in symbiosis disruption and coral bleaching.
Collapse
Affiliation(s)
- Tangcheng Li
- State Key Laboratory of Marine Environmental Science, Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361000, Fujian,China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361000, Fujian,China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361000, Fujian,China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361000, Fujian,China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| | - Irene B Rodriguez
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Tung-Yuan Ho
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
93
|
Luisa Hernández M, Dolores Sicardo M, Arjona PM, Martínez-Rivas JM. Specialized Functions of Olive FAD2 Gene Family Members Related to Fruit Development and the Abiotic Stress Response. PLANT & CELL PHYSIOLOGY 2020; 61:427-441. [PMID: 31730170 DOI: 10.1093/pcp/pcz208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/31/2019] [Indexed: 05/21/2023]
Abstract
Three different cDNA sequences, designated OepFAD2-3, OepFAD2-4 and OepFAD2-5, encoding three microsomal oleate desaturases (FAD2) have been isolated from olive (Olea europaea cv. Picual). Sequence analysis and functional expression in yeast of the corresponding cDNAs confirm that they encode microsomal oleate desaturases. Gene expression and lipid analysis indicate that these three genes are not involved in the linoleic acid present in seed lipids, while OeFAD2-5, together with OeFAD2-2, contributes mostly to the linoleic acid present in the mesocarp and, therefore, in the olive oil. Our results have also shown that olive FAD2-3, FAD2-4 and FAD2-5 gene expression is not only spatially and temporally regulated in olive fruit, but also is cultivar-dependent, as well as regulated by water regime, temperature, light and wounding. All these data suggest specialized physiological roles for the olive FAD2 gene family members with respect to both aspects of the biosynthesis of the linoleic acid, either present in storage lipids that constitute the olive oil or being part of membrane lipids, which are involved in the response to abiotic stresses, and highlight the differences on FAD2 gene regulation between oilseeds and oil fruits.
Collapse
Affiliation(s)
- M Luisa Hernández
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Building 46, Ctra. Utrera Km.1, Sevilla 41013, Spain
| | - M Dolores Sicardo
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Building 46, Ctra. Utrera Km.1, Sevilla 41013, Spain
| | - Patricia M Arjona
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Building 46, Ctra. Utrera Km.1, Sevilla 41013, Spain
| | - José M Martínez-Rivas
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, Building 46, Ctra. Utrera Km.1, Sevilla 41013, Spain
| |
Collapse
|
94
|
Czumaj A, Śledziński T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020; 12:E356. [PMID: 32013225 PMCID: PMC7071289 DOI: 10.3390/nu12020356] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered one of the most important components of cells that influence normal development and function of many organisms, both eukaryotes and prokaryotes. Unsaturated fatty acid desaturases play a crucial role in the synthesis of PUFAs, inserting additional unsaturated bonds into the acyl chain. The level of expression and activity of different types of desaturases determines profiles of PUFAs. It is well recognized that qualitative and quantitative changes in the PUFA profile, resulting from alterations in the expression and activity of fatty acid desaturases, are associated with many pathological conditions. Understanding of underlying mechanisms of fatty acid desaturase activity and their functional modification will facilitate the development of novel therapeutic strategies in diseases associated with qualitative and quantitative disorders of PUFA.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki, 80-211 Gdansk, Poland;
| | | |
Collapse
|
95
|
Cao W, Cheng S, Yang J, Feng J, Zhang W, Li Z, Chen Q, Xia Y, Ouyang Z, Ma X. Large-scale lipid analysis with C=C location and sn-position isomer resolving power. Nat Commun 2020; 11:375. [PMID: 31953382 PMCID: PMC6969141 DOI: 10.1038/s41467-019-14180-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids play a pivotal role in biological processes and lipid analysis by mass spectrometry (MS) has significantly advanced lipidomic studies. While the structure specificity of lipid analysis proves to be critical for studying the biological functions of lipids, current mainstream methods for large-scale lipid analysis can only identify the lipid classes and fatty acyl chains, leaving the C=C location and sn-position unidentified. In this study, combining photochemistry and tandem MS we develop a simple but effective workflow to enable large-scale and near-complete lipid structure characterization with a powerful capability of identifying C=C location(s) and sn-position(s) simultaneously. Quantitation of lipid structure isomers at multiple levels of specificity is achieved and different subtypes of human breast cancer cells are successfully discriminated. Remarkably, human lung cancer tissues can only be distinguished from adjacent normal tissues using quantitative results of both lipid C=C location and sn-position isomers.
Collapse
Affiliation(s)
- Wenbo Cao
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Simin Cheng
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Jing Yang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Jiaxin Feng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenpeng Zhang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Zishuai Li
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China
| | - Qinhua Chen
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei Province, 442000, China
| | - Yu Xia
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zheng Ouyang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China.
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Xiaoxiao Ma
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
96
|
Guo X, Chen S, Cao J, Zhou J, Chen Y, Jamali MA, Zhang Y. Hydrolysis and oxidation of protein and lipids in dry-salted grass carp ( Ctenopharyngodon idella) as affected by partial substitution of NaCl with KCl and amino acids. RSC Adv 2019; 9:39545-39560. [PMID: 35541390 PMCID: PMC9076089 DOI: 10.1039/c9ra07019b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/16/2019] [Indexed: 11/21/2022] Open
Abstract
To obtain healthier meat products with reduced Na content, the salt substitute containing l-histidine and l-lysine was compared with NaCl in the hydrolysis and oxidation of protein and lipids of dry-salted fish during processing. Compared with NaCl-treated fish (S-F), salt substitute treated fish (SS-F) had a lower Na content, higher moisture content and lower hardness. Sensory analysis showed that salt substitute didn't affect the acceptability of salted fish. The free fatty acids of SS-F treated fish had a slight tendency toward lipolysis at the end of processing. Additionally, the conjugated diene value, lipoxygenase activity and malondialdehyde value were lower in the ventral and dorsal muscles for the SS-F treatment. Meanwhile, the protein carbonyls and thiol groups were significantly decreased as cathepsin B and L activities and FAA content were increased in the ventral and dorsal muscles for the SS-F treatment. l-Histidine and l-lysine accelerated the hydrolysis (inhibit the oxidation) of protein and lipids in dry-salted grass carp, illustrating that l-histidine and l-lysine will be a positive approach to develop healthier meat products.
Collapse
Affiliation(s)
- Xiuyun Guo
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University Nanjing 210095 China
- Synergetic Innovation Center of Food Safety and Nutrition Nanjing China
| | - Shanan Chen
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University Nanjing 210095 China
- Synergetic Innovation Center of Food Safety and Nutrition Nanjing China
| | - Jiayue Cao
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University Nanjing 210095 China
- Synergetic Innovation Center of Food Safety and Nutrition Nanjing China
| | - Jingying Zhou
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University Nanjing 210095 China
- Synergetic Innovation Center of Food Safety and Nutrition Nanjing China
| | - Yanzheng Chen
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University Nanjing 210095 China
- Synergetic Innovation Center of Food Safety and Nutrition Nanjing China
| | - Muneer Ahmed Jamali
- Department of Animal Products Technology, Sindh Agriculture University Tandojam Pakistan
| | - Yawei Zhang
- College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University Nanjing 210095 China
- Synergetic Innovation Center of Food Safety and Nutrition Nanjing China
| |
Collapse
|
97
|
Endoplasmic reticulum retention signaling and transmembrane channel proteins predicted for oilseed ω3 fatty acid desaturase 3 (FAD3) genes. Funct Integr Genomics 2019; 20:433-458. [PMID: 31781992 DOI: 10.1007/s10142-019-00718-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
Oilseed crop oils contain a variety of unsaturated fatty acids that are synthesized and regulated by fatty acid desaturases (FADs). In this study, 14 FAD3 (ω3 desaturase) protein sequences from oilseeds are analyzed and presented through the application of several computational tools. The results indicated a close relationship between Brassica napus and Camelina sativa, as well as between Salvia hispanica and Perilla frutescens FAD3s, due to a high similarity in codon preferences in codon usage clusters and the phylogenetic tree. The cis-acting element results reveal that the seed-specific promoter region of BnFAD3 contains the critical conserved boxes such as HSE and ABRE, which are involved in responsiveness to heat stress and abscisic acid. The presence of the aforementioned conserved boxes may increase cold acclimation as well as tolerance to drought and high salinity. Omega(ω)3 desaturases contain a Skn-1 motif which is a cis-acting regulatory element required involved in endosperm development. In oilseed FAD3s, leucine is the most repeated amino acid in FAD3 proteins. The study conveyed that B. napus, Camelina sativa, Linum usitatissimum, Vernicia fordii, Gossypium hirsutum, S. hispanica, Cannabis sativa, and P. frutescens have retention signal KXKXX/XKXX at their c-terminus sites, which is one of the most important characteristics of FADs. Additionally, it was found that BnFAD3 is a transmembrane protein that can convert ω6 to ω3 fatty acids and may simultaneously act as a potassium ion channel in the ER.
Collapse
|
98
|
Protective Role of Leaf Variegation in Pittosporum tobira under Low Temperature: Insights into the Physio-Biochemical and Molecular Mechanisms. Int J Mol Sci 2019; 20:ijms20194857. [PMID: 31574927 PMCID: PMC6801658 DOI: 10.3390/ijms20194857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 01/17/2023] Open
Abstract
Leaf variegation has been demonstrated to have adaptive functions such as cold tolerance. Pittosporum tobira is an ornamental plant with natural leaf variegated cultivars grown in temperate regions. Herein, we investigated the role of leaf variegation in low temperature responses by comparing variegated “Variegatum” and non-variegated “Green Pittosporum” cultivars. We found that leaf variegation is associated with impaired chloroplast development in the yellow sector, reduced chlorophyll content, strong accumulation of carotenoids and high levels of ROS. However, the photosynthetic efficiency was not obviously impaired in the variegated leaves. Also, leaf variegation plays low temperature protective function since “Variegatum” displayed strong and efficient ROS-scavenging enzymatic systems to buffer cold (10 °C)-induced damages. Transcriptome analysis under cold conditions revealed 309 differentially expressed genes between both cultivars. Distinctly, the strong cold response observed in “Variegatum” was essentially attributed to the up-regulation of HSP70/90 genes involved in cellular homeostasis; up-regulation of POD genes responsible for cell detoxification and up-regulation of FAD2 genes and subsequent down-regulation of GDSL genes leading to high accumulation of polyunsaturated fatty acids for cell membrane fluidity. Overall, our results indicated that leaf variegation is associated with changes in physiological, biochemical and molecular components playing low temperature protective function in P. tobira.
Collapse
|
99
|
Universal Molecular Triggers of Stress Responses in Cyanobacterium Synechocystis. Life (Basel) 2019; 9:life9030067. [PMID: 31434306 PMCID: PMC6789579 DOI: 10.3390/life9030067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023] Open
Abstract
Systemic analysis of stress-induced transcription in the cyanobacterium Synechocystis sp. strain PCC 6803 identifies a number of genes as being induced in response to most abiotic stressors (heat, osmotic, saline, acid stress, strong light, and ultraviolet radiation). Genes for heat-shock proteins (HSPs) are activated by all these stresses and form a group that universally responds to all environmental changes. The functions of universal triggers of stress responses in cyanobacteria can be performed by reactive oxygen species (ROS), in particular H2O2, as well as changes in the redox potential of the components of the photosynthetic electron transport chain. The double mutant of Synechocystis sp. PCC 6803 (katG/tpx, or sll1987/sll0755), which is defective in antioxidant enzymes catalase (KatG) and thioredoxin peroxidase (Tpx), cannot grow in the presence of exogenous hydrogen peroxide (H2O2); and it is extremely sensitive to low concentrations of H2O2, especially under conditions of cold stress. Experiments on this mutant demonstrate that H2O2 is involved in regulation of gene expression that responds to a decrease in ambient temperature, and affects both the perception and the signal transduction of cold stress. In addition, they suggest that formation of ROS largely depends on the physical state of the membranes such as fluidity or viscosity. In cyanobacteria, an increase in membrane turnover leads to a decrease in the formation of ROS and an increase in resistance to cold stress. Therefore: (1) H2O2 is the universal trigger of stress responses in cyanobacterial cells; (2) ROS formation (in particular, H2O2) depends on the physical properties of both cytoplasmic and thylakoid membranes; (3) The destructive effect of H2O2 is reduced by increasing of fluidity of biological membranes.
Collapse
|
100
|
Vingiani GM, De Luca P, Ianora A, Dobson ADW, Lauritano C. Microalgal Enzymes with Biotechnological Applications. Mar Drugs 2019; 17:md17080459. [PMID: 31387272 PMCID: PMC6723882 DOI: 10.3390/md17080459] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
Enzymes are essential components of biological reactions and play important roles in the scaling and optimization of many industrial processes. Due to the growing commercial demand for new and more efficient enzymes to help further optimize these processes, many studies are now focusing their attention on more renewable and environmentally sustainable sources for the production of these enzymes. Microalgae are very promising from this perspective since they can be cultivated in photobioreactors, allowing the production of high biomass levels in a cost-efficient manner. This is reflected in the increased number of publications in this area, especially in the use of microalgae as a source of novel enzymes. In particular, various microalgal enzymes with different industrial applications (e.g., lipids and biofuel production, healthcare, and bioremediation) have been studied to date, and the modification of enzymatic sequences involved in lipid and carotenoid production has resulted in promising results. However, the entire biosynthetic pathways/systems leading to synthesis of potentially important bioactive compounds have in many cases yet to be fully characterized (e.g., for the synthesis of polyketides). Nonetheless, with recent advances in microalgal genomics and transcriptomic approaches, it is becoming easier to identify sequences encoding targeted enzymes, increasing the likelihood of the identification, heterologous expression, and characterization of these enzymes of interest. This review provides an overview of the state of the art in marine and freshwater microalgal enzymes with potential biotechnological applications and provides future perspectives for this field.
Collapse
Affiliation(s)
- Giorgio Maria Vingiani
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy
| | - Pasquale De Luca
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy
| | - Adrianna Ianora
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy
| | - Alan D W Dobson
- School of Microbiology, University College Cork, College Road, T12 YN60 Cork, Ireland
- Environmental Research Institute, University College Cork, Lee Road, T23XE10 Cork, Ireland
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy.
| |
Collapse
|