51
|
Abstract
The vascular network delivers oxygen (O(2)) and nutrients to all cells within the body. It is therefore not surprising that O(2) availability serves as a primary regulator of this complex organ. Most transcriptional responses to low O(2) are mediated by hypoxia-inducible factors (HIFs), highly conserved transcription factors that control the expression of numerous angiogenic, metabolic, and cell cycle genes. Accordingly, the HIF pathway is currently viewed as a master regulator of angiogenesis. HIF modulation could provide therapeutic benefit for a wide array of pathologies, including cancer, ischemic heart disease, peripheral artery disease, wound healing, and neovascular eye diseases. Hypoxia promotes vessel growth by upregulating multiple pro-angiogenic pathways that mediate key aspects of endothelial, stromal, and vascular support cell biology. Interestingly, recent studies show that hypoxia influences additional aspects of angiogenesis, including vessel patterning, maturation, and function. Through extensive research, the integral role of hypoxia and HIF signaling in human disease is becoming increasingly clear. Consequently, a thorough understanding of how hypoxia regulates angiogenesis through an ever-expanding number of pathways in multiple cell types will be essential for the identification of new therapeutic targets and modalities.
Collapse
Affiliation(s)
- Bryan L Krock
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
52
|
Hatano N, Itoh Y, Suzuki H, Muraki Y, Hayashi H, Onozaki K, Wood IC, Beech DJ, Muraki K. Hypoxia-inducible factor-1α (HIF1α) switches on transient receptor potential ankyrin repeat 1 (TRPA1) gene expression via a hypoxia response element-like motif to modulate cytokine release. J Biol Chem 2012; 287:31962-72. [PMID: 22843691 PMCID: PMC3442528 DOI: 10.1074/jbc.m112.361139] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transient receptor potential ankyrin repeat 1 (TRPA1) forms calcium (Ca2+)- and zinc (Zn2+)-permeable ion channels that sense noxious substances. Despite the biological and clinical importance of TRPA1, there is little knowledge of the mechanisms that lead to transcriptional regulation of TRPA1 and of the functional role of transcriptionally induced TRPA1. Here we show induction of TRPA1 by inflammatory mediators and delineate the underlying molecular mechanisms and functional relevance. In human fibroblast-like synoviocytes, key inflammatory mediators (tumor necrosis factor-α and interleukin-1α) induced TRPA1 gene expression via nuclear factor-κB signaling and downstream activation of the transcription factor hypoxia-inducible factor-1α (HIF1α). HIF1α unexpectedly acted by binding to a specific hypoxia response element-like motif and its flanking regions in the TRPA1 gene. The induced TRPA1 channels, which were intrinsically activated by endogenous hydrogen peroxide and Zn2+, suppressed secretion of interleukin-6 and interleukin-8. The data suggest a previously unrecognized HIF1α mechanism that links inflammatory mediators to ion channel expression.
Collapse
Affiliation(s)
- Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya 464-8650, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Wu BN, Chen HY, Liu CP, Hsu LY, Chen IJ. KMUP-1 inhibits H441 lung epithelial cell growth, migration and proinflammation via increased NO/CGMP and inhibited RHO kinase/VEGF signaling pathways. Int J Immunopathol Pharmacol 2012; 24:925-39. [PMID: 22230399 DOI: 10.1177/039463201102400411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigates whether KMUP-1 protects soluble guanylate cyclase (sGC) and inhibits vascular endothelial growth factor (VEGF) expression in lung epithelial cells in hypoxia, therapeutically targeting epithelial proinflammation. H441 cells were used as a representative epithelial cell line to examine the role of sGC and VEGF in hypoxia and the anti-proinflammatory activity of KMUP-1 in normoxia. Human H441 cells were grown in hypoxia for 24-72 h. KMUP-1 (1, 10, 100 microM) arrested cells at the G0/G1 phase of the cell cycle, reduced cell survival and migration, increased p21/p27, restored eNOS, increased soluble guanylate cyclase (sGC) and PKG and inhibited Rho kinase II (ROCK-II). KMUP-1 (0.001-0.1 microM) concentration dependently increased eNOS in normoxia and did not inhibit phosphodiesterase-5A (PDE-5A) in hypoxic cells. Hypoxia-induced factor-1alpha (HIF-1alpha) and VEGF were suppressed by KMUP-1 but not by L-NAME (100 microM). The PKG inhibitor Rp-8-CPT-cGMPS (10 microM) blunted the inhibition of ROCK-II by KMUP-1. KMUP-1 inhibited thromboxane A2-mimetic agonist U46619-induced PDE-5A, TNF-alpha (100 ng/ml)-induced iNOS, and ROCK-II and associated phospho-p38 MAPK, suggesting multiple anti-proinflammatory activities. In addition, increased p21/p27 by KMUP-1 at higher concentrations might contribute to an increased Bax/Bcl-2 and active caspase-3/procaspase-3 ratio, concomitantly causing apoptosis. KMUP-1 inhibited ROCK-II/VEGF in hypoxia, indicating its anti-neoplastic and anti-inflammatory properties. KMUP-1 inhibited TNF-alpha-induced iNOS and U46619-induced PDE-5A and phospho-p38 MAPK in normoxia, confirming its anti-proinflammatory action. KMUP-1 could be used as an anti-proinflammatory to reduce epithelial inflammation.
Collapse
Affiliation(s)
- B N Wu
- Department of Pharmacology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
54
|
Mei S, Cammalleri M, Azara D, Casini G, Bagnoli P, Dal Monte M. Mechanisms underlying somatostatin receptor 2 down-regulation of vascular endothelial growth factor expression in response to hypoxia in mouse retinal explants. J Pathol 2012; 226:519-533. [DOI: 10.1002/path.3006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
55
|
Xia Y, Choi HK, Lee K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem 2012; 49:24-40. [PMID: 22305612 DOI: 10.1016/j.ejmech.2012.01.033] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 12/28/2022]
Abstract
Tumor hypoxia has been recognized as a common feature of solid tumors and a negative prognostic factor for response to treatment and survival of cancer patients. The discovery of hypoxia-inducible factor-1 (HIF-1), a molecular determinant of responses to hypoxia in mammalian cells, has renewed enthusiasm for discovery and development of targeted therapies exploiting the hypoxic tumor microenvironment. HIF-1 activity in tumors depends on availability of the HIF-1α subunit, the levels of which increase under hypoxic conditions and through activation of oncogenes and/or inactivation of tumor suppressor genes. Increased HIF-1 has been correlated with increased angiogenesis, aggressive tumor growth, and poor patient prognosis, leading to current interest in HIF-1 as promising anticancer drug target. In spite of an ever increasing number of putative small molecule inhibitors of HIF-1, only a few are progressing through preclinical and early clinical development. In this review, we will discuss recent advances in discovery and development of small molecule inhibitors that target the HIF-1 pathway as potential anticancer agents.
Collapse
Affiliation(s)
- Yan Xia
- College of Pharmacy, Dongguk University-Seoul, Seoul, Republic of Korea
| | | | | |
Collapse
|
56
|
Li Y, Zhao X, Tang H, Zhong Z, Zhang L, Xu R, Li S, Wang Y. Effects of YC-1 on Hypoxia-Inducible Factor 1 Alpha in Hypoxic Human Bladder Transitional Carcinoma Cell Line T24 Cells. Urol Int 2012; 88:95-101. [DOI: 10.1159/000331881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/01/2011] [Indexed: 11/19/2022]
|
57
|
Takeuchi A, Hori M, Sato S, Ban HS, Kuchimaru T, Kizaka-Kondoh S, Yamori T, Nakamura H. Synthesis and biological activity of furanylindazoles as inhibitors of hypoxia inducible factor (HIF)-1 transcriptional activity. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20134h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
58
|
Tiriveedhi V, Gelman AE, Mohanakumar T. HIF-1α signaling by airway epithelial cell K-α1-tubulin: role in fibrosis and chronic rejection of human lung allografts. Cell Immunol 2011; 273:59-66. [PMID: 22192476 DOI: 10.1016/j.cellimm.2011.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/01/2011] [Accepted: 11/21/2011] [Indexed: 11/17/2022]
Abstract
Long term survival of the human lung allografts are hindered by chronic rejection, manifested clinically as bronchiolitis obliterans syndrome (BOS). We previously demonstrated significant correlation between the development of antibodies (Abs) to K-α1-tubulin (Kα1T) and BOS. In this study, we investigated the molecular basis for fibrinogenesis mediated by ligation of Kα1T expressed on airway epithelial cells by its specific Abs. Using RT-PCR we demonstrate that normal human bronchial epithelial (NHBE) cells upon ligation of Kα1T with specific Abs caused upregulation of pro-fibrotic growth factors. Western blot analysis of NHBE incubated with Kα1T Abs increased hypoxia inducible factor (HIF-1α). Kα1T Ab-mediated growth factor expression is dependent on HIF-1α as inhibition of HIF-1α returned fibrotic growth factor expression to basal levels. In conclusion, we propose that HIF-1α -mediated upregulation of fibrogenic growth factors induced by ligation of Kα1T Abs is critical for development of fibrosis leading to chronic rejection of lung allograft.
Collapse
|
59
|
Li JP, Li FYL, Xu A, Cheng B, Tsao SW, Fung ML, Leung WK. Lipopolysaccharide and hypoxia-induced HIF-1 activation in human gingival fibroblasts. J Periodontol 2011; 83:816-24. [PMID: 22087807 DOI: 10.1902/jop.2011.110458] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND We previously reported that chronic periodontal inflammation causes the accumulation of the transcriptional activator hypoxia-inducible factor-1α (HIF-1α) in human gingival fibroblasts (HGFs) in vivo. Here, evidence is provided that bacterial lipopolysaccharides (LPS) and cellular hypoxia, both associated with periodontitis, can individually, or in combination, lead to the accumulation and activation of HIF-1 in HGF in vitro. METHODS Primary gingival fibroblasts were cultured from human gingival biopsies. HIF-1α peptide from HGFs treated with Escherichia coli LPS under normoxia or hypoxia was detected by nuclear protein extraction, immunoprecipitation, immunoblotting, and immunocytofluorescence. HIF-1α transcripts were detected using reverse transcription polymerase chain reaction (PCR). The transcript expression levels of vascular endothelial growth factor-A (VEGF-A), a downstream gene of HIF-1α, were assessed by quantitative real-time PCR. RESULTS Two HIF-1α splicing transcription variants were found to be constitutively expressed in HGFs. E. coli LPS induced a dose- and time-dependent nuclear accumulation of HIF-1α peptide in HGFs. This accumulation could be attenuated by treatment with a Toll-like receptor 4 (TLR4)-neutralizing antibody. Under hypoxia, LPS further increased HIF-1α accumulation in HGFs. VEGF-A transcript expression was upregulated by LPS under both normoxia and hypoxia but was downregulated by pretreatment with TLR4-neutralizing antibody or the specific HIF-1α inhibitor 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole. CONCLUSION LPS induces the nuclear accumulation of HIF-1α in HGFs and induces HIF-1 biologic activity under normoxia or hypoxia possibly through TLR4.
Collapse
Affiliation(s)
- Jing-Ping Li
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Rd., Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
60
|
Yan J, Zhou B, Taheri S, Shi H. Differential effects of HIF-1 inhibition by YC-1 on the overall outcome and blood-brain barrier damage in a rat model of ischemic stroke. PLoS One 2011; 6:e27798. [PMID: 22110762 PMCID: PMC3218033 DOI: 10.1371/journal.pone.0027798] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/25/2011] [Indexed: 01/02/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a master regulator of cellular adaptation to hypoxia and has been suggested as a potent therapeutic target in cerebral ischemia. Here we show in an ischemic stroke model of rats that inhibiting HIF-1 and its downstream genes by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) significantly increases mortality and enlarges infarct volume evaluated by MRI and histological staining. Interestingly, the HIF-1 inhibition remarkably ameliorates ischemia-induced blood-brain barrier (BBB) disruption determined by Evans blue leakage although it does not affect brain edema. The result demonstrates that HIF-1 inhibition has differential effects on ischemic outcomes and BBB permeability. It indicates that HIF-1 may have different functions in different brain cells. Further analyses show that ischemia upregulates HIF-1 and its downstream genes erythropoietin (EPO), vascular endothelial growth factor (VEGF), and glucose transporter (Glut) in neurons and brain endothelial cells and that YC-1 inhibits their expression. We postulate that HIF-1-induced VEGF increases BBB permeability while certain other proteins coded by HIF-1's downstream genes such as epo and glut provide neuroprotection in an ischemic brain. The results indicate that YC-1 lacks the potential as a cerebral ischemic treatment although it confers certain protection to the cerebral vascular system.
Collapse
Affiliation(s)
- Jingqi Yan
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, United States of America
| | - Bo Zhou
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, United States of America
| | - Saeid Taheri
- Department of Neurology, University of South Carolina, Columbia, South Carolina, United States of America
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
61
|
Huh JW, Kim SY, Lee JH, Lee YS. YC-1 attenuates hypoxia-induced pulmonary arterial hypertension in mice. Pulm Pharmacol Ther 2011; 24:638-46. [PMID: 21963997 DOI: 10.1016/j.pupt.2011.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 09/09/2011] [Accepted: 09/17/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary vascular resistance and elevation of pulmonary arterial pressure, leading to right ventricular failure and eventual death. Currently, no curative therapy for PAH is available, and the overall prognosis is very poor. Recently, direct activators of soluble guanylyl cyclase (sGC) have been tested as a novel therapeutic modality in experimental models of pulmonary arterial hypertension (PAH). OBJECTIVE In this study, we used in vitro and in vivo models to evaluate the therapeutic potential of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), a dual functioning chemical, as a direct activator of guanylyl cyclase and an inhibitor of hypoxia-inducible factor-1. METHODS We analyzed the effects of YC-1 on cell proliferation and the levels of p21 and p53 in human pulmonary artery smooth muscle cells (HPASMCs) under hypoxia. We also determined the effects of YC-1 on expression of endothelin-1 (ET-1) and phosphorylation status of endothelial nitric oxide synthase (eNOS) at Ser(1179) in human pulmonary artery endothelial cells (HPAECs) under hypoxia. In mice, hypoxic PAH was induced by exposure to normobaric hypoxic conditions for 28 days. To assess preventive or therapeutic effects, randomized mice were subjected to once daily i.p. injections of YC-1 for the entire hypoxic period (5 mg/kg) or for the last seven days of a 28-day hypoxic period (5 and 10 mg/kg). On day 28, we measured the right ventricular systolic pressure (RVSP) and determined the degrees of right ventricular hypertrophy (RVH) and vascular remodeling. RESULTS In HPASMCs, YC-1 inhibited hypoxia-induced proliferation and induction of p53 and p21 in a concentration-dependent manner. Also, YC-1 suppressed the hypoxia-induced expression of ET-1 mRNA and dephosphorylation of eNOS at Ser(1179) in HPAECs. In the preventive in vivo model, a daily dose of 5 mg/kg YC-1 significantly prevented the elevation of RVSP, development of RVH, and pulmonary vascular remodeling, which were caused by hypoxic exposure. In the therapeutic model, YC-1 at daily doses of 5 and 10 mg/kg alleviated RVH and pulmonary vascular remodeling but did not prevent the elevation of RVSP. CONCLUSIONS Our results indicate that YC-1 prevents the development of hypoxia-induced PAH in a preventive model and alleviates RVH and pulmonary vascular remodeling in a therapeutic model. Therefore, these data imply that YC-1 has therapeutic potential for use in a single or combination therapy for PAH.
Collapse
Affiliation(s)
- Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
62
|
Feng Y, Zhu H, Ling T, Hao B, Zhang G, Shi R. Effects of YC-1 targeting hypoxia-inducible factor 1 alpha in oesophageal squamous carcinoma cell line Eca109 cells. Cell Biol Int 2011; 35:491-497. [PMID: 20977428 DOI: 10.1042/cbi20090419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2025]
Abstract
HIF-1α (hypoxia-inducible factor 1 alpha) is believed to promote oesophageal squamous tumour growth. Thus, an HIF-1α inhibitor is viewed as a therapeutic target in treating oesophageal cancer. Recently, YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole] has been widely used as a potential HIF-1α inhibitor and is being developed as a novel anticancer drug. However, little is known about the effects of YC-1 in human oesophageal cancer. In the present study, we aimed to investigate these effects in an esophageal squamous cancer cell line; i.e. Eca109 cells. We found that YC-1 abolished the hypoxia-induced up-regulation of HIF-1α. YC-1 arrested cell growth and inhibited cell migration activities in Eca109 cells. These results suggest that YC-1 may be a chemotherapy candidate against oesophageal squamous cancers.
Collapse
Affiliation(s)
- Yadong Feng
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
63
|
Hypoxia effects on proangiogenic factors in human umbilical vein endothelial cells: functional role of the peptide somatostatin. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:593-612. [DOI: 10.1007/s00210-011-0625-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/23/2011] [Indexed: 12/15/2022]
|
64
|
Yang X, Wang Y, Luo J, Liu S, Yang Z. Protective effects of YC-1 against glutamate induced PC12 cell apoptosis. Cell Mol Neurobiol 2011; 31:303-11. [PMID: 21063768 PMCID: PMC11498540 DOI: 10.1007/s10571-010-9622-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/19/2010] [Indexed: 01/31/2023]
Abstract
Glutamate, one of the major neurotransmitters in the central nervous system, is released into the synaptic spaces and bound to the glutamate receptors which facilitate normal synaptic transmission, synaptic plasticity, and brain development. Past studies have shown that glutamate with high concentration is a potent neurotoxin capable of destroying neurons through many signal pathways. In this research, our main purpose was to determine whether the specific soluble guanylyl cyclase activator YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole) had effect on glutamate-induced apoptosis in cultured PC12 cells. The differentiated PC12 cells impaired by glutamate were used as the cell model of excitability, and were exposed to YC-1 or/and ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) with gradient concentrations for 24 h. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl) assay was used to detect the cellular viability. Radioimmunoassay (RIA) was used to detect the cGMP (cyclic guanosine monophosphate) concentrations in PC12 cells. Hoechst 33258 staining and flow cytometric analysis were used to detect the cell apoptosis. The cellular viability was decreased and the apoptotic rate was increased when PC12 cells were treated with glutamate. Cells treated with YC-1 or/and ODQ showed no significant differences in the cell viability and intracellular cGMP levels compared with those of control group. The specific soluble guanylyl cyclase (sGC) inhibitor ODQ showed an inhibitory effect on cGMP level and aggravated the apoptosis of PC12 cells induced by glutamate. YC-1 elevated cGMP level thus decreased PC12 cell apoptosis induced by glutamate, but this effect could be reversed by ODQ. These results revealed that YC-1 might attenuate glutamate-induced PC12 cell apoptosis via a sGC-cGMP involved pathway.
Collapse
Affiliation(s)
- Xiaofan Yang
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Yucheng Wang
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Jia Luo
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Shichang Liu
- College of Medicine, Nankai University, Tianjin, 300071 China
| | - Zhuo Yang
- College of Medicine, Nankai University, Tianjin, 300071 China
| |
Collapse
|
65
|
Ban HS, Uto Y, Nakamura H. Hypoxia-inducible factor inhibitors: a survey of recent patented compounds (2004 – 2010). Expert Opin Ther Pat 2011; 21:131-46. [DOI: 10.1517/13543776.2011.547477] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
66
|
Chung JW, Shin JE, Han KW, Ahn JH, Kim YJ, Park JW, So HS. Up-regulation of hypoxia-inducible factor-1 alpha by cobalt chloride prevents hearing loss in noise-exposed mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:153-159. [PMID: 21787680 DOI: 10.1016/j.etap.2010.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/02/2010] [Accepted: 10/09/2010] [Indexed: 05/31/2023]
Abstract
Since hypoxia-inducible factor-1α (HIF-1α) is the key transcription factor that enables cells to survive in hypoxia, we have investigated whether an upregulation of HIF-1α prevents the noise-induced hearing loss in BALB/c hybrid mice, which were intraperitoneally injected with CoCl(2) (a HIF-1α inducer) and exposed to white band noise with 120 dB peak equivalent sound pressure level for 3h once daily for 3 days. In the CoCl(2) treatment group, HIF-1α was found to be up-regulated in the cochlear tissues and the hearing loss was largely prevented. Histologically, the loss of sensory hair cells was also significantly lower in the CoCl(2) treatment group than the Control group. However, YC-1 (a HIF-1α inhibitor) attenuated the preventive effect of CoCl(2) on the noise-induced hearing loss. These results suggest that HIF-1α plays a crucial role in the prevention against noise trauma in the inner ear.
Collapse
MESH Headings
- Animals
- Auditory Threshold/drug effects
- Auditory Threshold/physiology
- Blotting, Western
- Cell Survival/drug effects
- Cobalt/pharmacology
- Cochlea/drug effects
- Cochlea/metabolism
- Environmental Exposure
- Enzyme Inhibitors/pharmacology
- Evoked Potentials, Auditory/drug effects
- Guanylate Cyclase/antagonists & inhibitors
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/pathology
- Hearing/drug effects
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/prevention & control
- Hearing Loss, Noise-Induced/psychology
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Indazoles/pharmacology
- Mice
- Mice, Inbred BALB C
- Noise/adverse effects
Collapse
Affiliation(s)
- Jong Woo Chung
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
67
|
Sakurai T, Endo S, Hatano D, Ogasawara J, Kizaki T, Oh-ishi S, Izawa T, Ishida H, Ohno H. Effects of exercise training on adipogenesis of stromal-vascular fraction cells in rat epididymal white adipose tissue. Acta Physiol (Oxf) 2010. [DOI: 10.1111/j.1748-1716.2010.02159.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
68
|
Li SH, Ryu JH, Park SE, Cho YS, Park JW, Lee WJ, Chun YS. Vitamin C supplementation prevents testosterone-induced hyperplasia of rat prostate by down-regulating HIF-1α. J Nutr Biochem 2010; 21:801-8. [DOI: 10.1016/j.jnutbio.2009.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 05/05/2009] [Accepted: 06/08/2009] [Indexed: 12/31/2022]
|
69
|
Lou JJW, Chua YL, Chew EH, Gao J, Bushell M, Hagen T. Inhibition of hypoxia-inducible factor-1alpha (HIF-1alpha) protein synthesis by DNA damage inducing agents. PLoS One 2010; 5:e10522. [PMID: 20479887 PMCID: PMC2866540 DOI: 10.1371/journal.pone.0010522] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/12/2010] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor that is composed of a hypoxia-inducible α subunit (HIF-1α and HIF-2α) and a constitutively expressed β subunit (HIF-1β). HIF mediates the adaptation of cells and tissues to low oxygen concentrations. It also plays an important role in tumorigenesis and constitutes an important therapeutic target in anti-tumor therapy. We have screened a number of reported HIF inhibitors for their effects on HIF-transcriptional activity and found that the DNA damage inducing agents camptothecin and mitomycin C produced the most robust effects. Camptothecin is a reported inhibitor of HIF-1α translation, while mitomycin C has been reported to induce p53-dependent HIF-1α degradation. In this study we demonstrate that the inhibitory effect of mitomycin C on HIF-1α protein expression is not dependent on p53 and protein degradation, but also involves HIF-1α translational regulation. Initiation of a DNA damage response with the small molecule p53 activator NSC-652287 (RITA) has been reported to inhibit HIF-1α protein synthesis by increasing the phosphorylation of eIF2α. However, we show here that even when eIF2α phosphorylation is prevented, the DNA damage inducing drugs mitomycin C, camptothecin and NSC-652287 still inhibit HIF-1α protein synthesis to the same extent. The inhibitory effects of camptothecin on HIF-1α expression but not that of mitomycin C and NSC-652287 were dependent on cyclin-dependent kinase activity. In conclusion, specific types of DNA damage can bring about selective inhibition of HIF-1α protein synthesis. Further characterization of the involved mechanisms may reveal important novel therapeutic targets.
Collapse
Affiliation(s)
- Jessica Jie Wei Lou
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yee Liu Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng Hui Chew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jie Gao
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Martin Bushell
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
70
|
Endotoxin-induced HIF-1α stabilisation in equine endothelial cells: synergistic action with hypoxia. Inflamm Res 2010; 59:689-98. [DOI: 10.1007/s00011-010-0180-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/08/2010] [Accepted: 02/15/2010] [Indexed: 10/19/2022] Open
|
71
|
DeNiro M, Al-Halafi A, Al-Mohanna FH, Alsmadi O, Al-Mohanna FA. Pleiotropic effects of YC-1 selectively inhibit pathological retinal neovascularization and promote physiological revascularization in a mouse model of oxygen-induced retinopathy. Mol Pharmacol 2010; 77:348-67. [PMID: 20008515 DOI: 10.1124/mol.109.061366] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and inducible nitric-oxide synthase (iNOS) have been implicated in ischemia-induced retinal neovascularization. Retinal ischemia has been shown to induce VEGF and iNOS expression. It has been postulated that one of the crucial consequences of iNOS expression in the ischemic retina is the inhibition of angiogenesis. Furthermore, iNOS was shown to be overexpressed in Müller cells from patients with diabetic retinopathy. YC-1, a small molecule inhibitor of hypoxia-inducible factor (HIF)-1 alpha, has been shown to inhibit iNOS expression in various tissue models. Our aim was to assess the pleiotropic effects of YC-1 in an oxygen-induced retinopathy (OIR) mouse model and evaluate its therapeutic potential in HIF-1- and iNOS-mediated retinal pathologies. Dual-injections of YC-1 into the neovascular retinas decreased the total retinopathy score, inhibited vaso-obliteration and pathologic tuft formation, and concomitantly promoted physiological retinal revascularization, compared with dimethyl sulfoxide (DMSO)-treated group. Furthermore, YC-1-treated retinas exhibited a marked increase in immunoreactivities for CD31 and von Willebrand factor and displayed significant inhibition in HIF-1alpha protein expression. Furthermore, YC-1 down-regulated VEGF, erythropoietin, endothelin-1, matrix metalloproteinase-9, and iNOS message and protein levels. When hypoxic Müller and neuoroglial cells were treated with YC-1, iNOS mRNA and protein levels were reduced in a dose-dependent fashion. We demonstrate that YC-1 inhibits pathological retinal neovascularization by exhibiting antineovascular activities, which impaired ischemia-induced expression of HIF-1 and its downstream angiogenic molecules. Furthermore, YC-1 enhanced physiological revascularization of the retinal vascular plexuses via the inhibition of iNOS mRNA and protein expressions. The pleiotropic effects of YC-1 allude to its possible use as a promising therapeutic iNOS inhibitor candidate for the treatment of retinal neovascularization.
Collapse
Affiliation(s)
- M DeNiro
- Research Department, King Khaled Eye Specialist Hospital, Aruba Street, P.O. Box.7191, Riyadh 11462, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
72
|
Chu PWY, Beart PM, Jones NM. Preconditioning protects against oxidative injury involving hypoxia-inducible factor-1 and vascular endothelial growth factor in cultured astrocytes. Eur J Pharmacol 2010; 633:24-32. [PMID: 20153315 DOI: 10.1016/j.ejphar.2010.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/18/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
Tolerance to brain injury involves hypoxia-inducible factor-1 (HIF-1) and its target genes as the key pathway mediating a cascade of events including cell survival, energetics, and angiogenesis. In this study, we established the treatment paradigms for an in vitro model of tolerance to oxidative injury in primary astrocytic cultures and further examined the roles for the HIF-1 signalling cascade. Isolated murine astrocytes were preconditioned with sub-toxic concentrations of HIF-1 inducers and subsequently exposed to a H(2)O(2) insult, where changes in cell viability and protein expression were determined. Preconditioning with non-damaging concentrations of desferrioxamine (DFO) and ethyl-3,4-dihydroxybenzoate (EDHB) significantly improved cellular viability after H(2)O(2) injury treatment. Time course studies revealed that DFO and EDHB treatments alone induced sequential activation of HIF-1 signal transduction where nuclear HIF-1alpha protein accumulation was detected as early as 2h, followed by downstream upregulation of intracellular and released VEGF from 4h and 8h onwards, respectively. The protective effects of DFO and EDHB preconditioning against H(2)O(2) injury were abolished by co-treatment with cycloheximide, an inhibitor of protein synthesis. Importantly, when the anti-HIF-1 compound, 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) was used, the cytoprotection and VEGF accumulation produced by DFO and EDHB preconditioning were diminished. These results indicate the essential role of the HIF-1 pathway in our model of tolerance against oxidative injury in cultured astrocytes, and suggest roles for astrocytic HIF-1 expression and VEGF release which may influence the function of surrounding cells and vasculature during oxidative stress-related brain diseases.
Collapse
Affiliation(s)
- Percy W Y Chu
- Molecular Neuropharmacology, Florey Neuroscience Institutes, University of Melbourne, VIC 3010, Australia
| | | | | |
Collapse
|
73
|
Yun S, Lee SH, Kang YH, Jeong M, Kim MJ, Kim MS, Piao ZH, Suh HW, Kim TD, Myung PK, Yoon SR, Choi I. YC-1 enhances natural killer cell differentiation from hematopoietic stem cells. Int Immunopharmacol 2010; 10:481-6. [PMID: 20116458 DOI: 10.1016/j.intimp.2010.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
NK cells play crucial roles in innate immunity and adaptive immunity. The detailed mechanisms, however, governing NK cell development remains unclear. In this study, we report that YC-1 significantly enhances NK cell populations differentiated from human umbilical cord blood hematopoietic stem cells (HSCs). NK cells increased by YC-1 display both phenotypic and functional features of fully mature NK (mNK) cells, but YC-1 does not affect the activation of mNK cells. YC-1 did not affect cGMP production and phosphorylation of STAT-5 which is essential for IL-15R signaling. On the other hand, YC-1 increased p38 MAPK phosphorylation during NK cell differentiation. Furthermore, p38 inhibitor SB203580 inhibited the differentiation of NK cells enhanced by YC-1. Taken together, these data suggest that YC-1 enhances NK cell differentiation through the activation of p38 MAPK which is involved in NK cell differentiation.
Collapse
Affiliation(s)
- Sohyun Yun
- Cell Therapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Cho IR, Koh SS, Min HJ, Park EH, Ratakorn S, Jhun BH, Jeong SH, Yoo YH, Youn HD, Johnston RN, Chung YH. Down-regulation of HIF-1α by oncolytic reovirus infection independently of VHL and p53. Cancer Gene Ther 2010; 17:365-72. [DOI: 10.1038/cgt.2009.84] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
75
|
Abstract
Most solid tumors develop regions of hypoxia as they grow and outstrip their blood supply. In order to survive in the stressful hypoxic environment, tumor cells have developed a coordinated set of responses orchestrating their adaptation to hypoxia. The outcomes of the cellular responses to hypoxia are aggressive disease, resistance to therapy, and decreased patient survival. A critical mediator of the hypoxic response is the transcription factor hypoxia-inducible factor 1 (HIF-1) that upregulates expression of proteins that promote angiogenesis, anaerobic metabolism, and many other survival pathways. Regulation of HIF-1alpha, a component of the HIF-1 heterodimer, occurs at multiple levels including translation, degradation, and transcriptional activation, and serves as a testimony to the central role of HIF-1. Studies demonstrating the importance of HIF-1alpha expression for tumor survival have made HIF-1alpha an attractive target for cancer therapy. The growing l.ist of pharmacological inhibitors of HIF-1 and their varied targets mirrors the complex molecular mechanisms controlling HIF-1. In this chapter, we summarize recent findings regarding the regulation of HIF-1alpha and the progress made in identifying new therapeutic agents that inhibit HIF-1alpha.
Collapse
Affiliation(s)
- Mei Yee Koh
- Department of Experimental Therapeutics, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
76
|
DeNiro M, Alsmadi O, Al-Mohanna F. Modulating the hypoxia-inducible factor signaling pathway as a therapeutic modality to regulate retinal angiogenesis. Exp Eye Res 2009; 89:700-17. [DOI: 10.1016/j.exer.2009.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 06/08/2009] [Accepted: 06/24/2009] [Indexed: 11/29/2022]
|
77
|
Hypoxia-inducible factor-1α suppresses the expression of macrophage scavenger receptor 1. Pflugers Arch 2009; 459:93-103. [DOI: 10.1007/s00424-009-0702-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 06/24/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
|
78
|
Moon SY, Chang HW, Roh JL, Kim GC, Choi SH, Lee SW, Cho KJ, Nam SY, Kim SY. Using YC-1 to overcome the radioresistance of hypoxic cancer cells. Oral Oncol 2009; 45:915-9. [PMID: 19457706 DOI: 10.1016/j.oraloncology.2009.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 11/18/2022]
Abstract
Targeting hypoxia-inducible factor-1 (HIF-1) active cells in tumors may be an excellent strategy to improve the outcome of radiation therapy. On the basis of the reported role of YC-1 as a HIF-1 inhibitor with anti-cancer activity, we tested the therapeutic efficacy of YC-1 against radioresistance in vitro. The AMC-HN3 cancer cell line, developed from squamous cell carcinoma of the larynx, was cultured under hypoxic conditions or in the presence of cobalt chloride. Both treatments induced nuclear accumulation of HIF-1alpha protein. Cells cultured under normoxic or hypoxic conditions with and without YC-1 treatment were irradiated and analyzed using flow cytometry and clonogenic assays. In the absence of YC-1 treatment, irradiation induced a greater cytotoxic effect in normoxic cells than in cobalt-treated cells. Treatment of cobalt-treated cells with YC-1 effectively inhibited HIF-1alpha expression, and enhanced the sensitivity of cells to radiation, decreasing the surviving fraction to that of normoxic cells. Flow cytometry confirmed these results, showing that the sub-G1 fraction was increased in YC-1-treated hypoxic cells after irradiation. Our results suggest that YC-1 treatment may be an effective therapeutic strategy for overcoming the radioresistance of HIF-1alpha-expressing, hypoxic cancer cells.
Collapse
Affiliation(s)
- So Young Moon
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, 388-1, Pungnap-dong, Songpa-gu, Seoul 138-736, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Amann T, Maegdefrau U, Hartmann A, Agaimy A, Marienhagen J, Weiss TS, Stoeltzing O, Warnecke C, Schölmerich J, Oefner PJ, Kreutz M, Bosserhoff AK, Hellerbrand C. GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1544-52. [PMID: 19286567 DOI: 10.2353/ajpath.2009.080596] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Accelerated glycolysis is one of the biochemical characteristics of cancer cells. The glucose transporter isoform 1 (GLUT1) gene encodes a key rate-limiting factor in glucose transport into cancer cells. However, its expression level and functional significance in hepatocellular cancer (HCC) are still disputed. Therefore, we aimed to analyze the expression and function of the GLUT1 gene in cases of HCC. We found significantly higher GLUT1 mRNA expression levels in HCC tissues and cell lines compared with primary human hepatocytes and matched nontumor tissue. Immunohistochemical analysis of a tissue microarray of 152 HCC cases revealed a significant correlation between Glut1 protein expression levels and a higher Ki-67 labeling index, advanced tumor stages, and poor differentiation. Accordingly, suppression of GLUT1 expression by siRNA significantly impaired both the growth and migratory potential of HCC cells. Furthermore, inhibition of GLUT1 expression reduced both glucose uptake and lactate secretion. Hypoxic conditions further increased GLUT1 expression levels in HCC cells, and this induction was dependent on the activation of the transcription factor hypoxia-inducible factor-1alpha. In summary, our findings suggest that increased GLUT1 expression levels in HCC cells functionally affect tumorigenicity, and thus, we propose GLUT1 as an innovative therapeutic target for this highly aggressive tumor.
Collapse
Affiliation(s)
- Thomas Amann
- University of Regensburg, Department of Internal Medicine I, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Li SH, Shin DH, Chun YS, Lee MK, Kim MS, Park JW. A novel mode of action of YC-1 in HIF inhibition: stimulation of FIH-dependent p300 dissociation from HIF-1{alpha}. Mol Cancer Ther 2009; 7:3729-38. [PMID: 19074848 DOI: 10.1158/1535-7163.mct-08-0074] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia-inducible factor (HIF)-1 plays a key role in tumor promotion by inducing approximately 60 genes required for tumor adaptation to hypoxia; thus, it is viewed as a target for cancer therapy. For this reason, YC-1, which down-regulates HIF-1alpha and HIF-2alpha at the post-translational level, is being developed as a novel anticancer drug. We here found that YC-1 acts in a novel manner to inhibit HIF-1. In the Gal4 reporter system, which is not degraded by YC-1, YC-1 was found to significantly inactivate the COOH-terminal transactivation domain (CAD) of HIF-1alpha, whereas it failed to inactivate CAD(N803A) mutant. In coimmunoprecipitation assays, YC-1 stimulated factor inhibiting HIF (FIH) binding to CAD even in hypoxia, whereas it failed to increase the cellular levels of hydroxylated Asn803 of CAD. It was also found that YC-1 prevented p300 recruitment by CAD in mammalian two-hybrid and coimmunoprecipitation assays. The involvement of FIH in YC-1-induced CAD inactivation was confirmed in EPO-enhancer and Gal4 reporter systems using FIH small interfering RNA and dimethyloxalylglycine FIH inhibitor. Indeed, FIH inhibition rescued HIF target gene expressions repressed by YC-1. In cancer cell lines other than Hep3B, YC-1 inhibits HIF-1alpha via the FIH-dependent CAD inactivation as well as via the protein down-regulation. Given these results, we suggest that the functional inactivation of HIF-alpha contributes to the YC-1-induced deregulation of hypoxia-induced genes.
Collapse
Affiliation(s)
- Shan Hua Li
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
The nitric oxide (NO) signalling pathway is altered in cardiovascular diseases, including systemic and pulmonary hypertension, stroke, and atherosclerosis. The vasodilatory properties of NO have been exploited for over a century in cardiovascular disease, but NO donor drugs and inhaled NO are associated with significant shortcomings, including resistance to NO in some disease states, the development of tolerance during long-term treatment, and non-specific effects such as post-translational modification of proteins. The development of pharmacological agents capable of directly stimulating the NO receptor, soluble guanylate cyclase (sGC), is therefore highly desirable. The benzylindazole compound YC-1 was the first sGC stimulator to be identified; this compound formed a lead structure for the development of optimized sGC stimulators with improved potency and specificity for sGC, including CFM-1571, BAY 41-2272, BAY 41-8543, and BAY 63-2521. In contrast to the NO- and haem-independent sGC activators such as BAY 58-2667, these compounds stimulate sGC activity independent of NO and also act in synergy with NO to produce anti-aggregatory, anti-proliferative, and vasodilatory effects. Recently, aryl-acrylamide compounds were identified independent of YC-1 as sGC stimulators; although structurally dissimilar to YC-1, they have a similar mode of action and promote smooth muscle relaxation. Pharmacological stimulators of sGC may be beneficial in the treatment of a range of diseases, including systemic and pulmonary hypertension, heart failure, atherosclerosis, erectile dysfunction, and renal fibrosis. An sGC stimulator, BAY 63-2521, is currently in clinical development as an oral therapy for patients with pulmonary hypertension. It has demonstrated efficacy in a proof-of-concept study, reducing pulmonary vascular resistance and increasing cardiac output from baseline. A full, phase 2 trial of BAY 63-2521 in pulmonary hypertension is underway.
Collapse
Affiliation(s)
- Johannes-Peter Stasch
- Bayer Schering Pharma AG, Cardiology Research, Pharma Research Center, Wuppertal, 42096, Germany.
| | | |
Collapse
|
82
|
Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K, Harada K, Kubo A, Akai Y, Rankin EB, Neilson EG, Haase VH, Saito Y. Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol 2008; 295:F1023-9. [PMID: 18667485 DOI: 10.1152/ajprenal.90209.2008] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia accelerates renal fibrosis. The chief mediator of the hypoxic response is hypoxia-inducible factor 1 (HIF-1) and its oxygen-sensitive component HIF-1alpha. HIF-1 regulates a wide variety of genes, some of which are closely associated with tissue fibrosis. To determine the specific role of HIF-1 in renal fibrosis, we generated a knockout mouse in which tubular epithelial expression of von Hippel-Lindau tumor suppressor (VHL), which acts as a ubiquitin ligase to promote proteolysis of HIF-1alpha, was targeted. We investigated the effect of VHL deletion (i.e., stable expression of HIF-1alpha) histologically and used the anti-HIF-1alpha agent [3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole] (YC-1) to test whether inhibition of HIF-1alpha could represent a novel approach to treating renal fibrosis. The area of renal fibrosis was significantly increased in a 5/6 renal ablation model of VHL-/- mice and in all VHL-/- mice at least 60 wk of age. Injection of YC-1 inhibited the progression of renal fibrosis in unilateral ureteral obstruction model mice. In conclusion, HIF-1alpha appears to be a critical contributor to the progression of renal fibrosis and could be a useful target for its treatment.
Collapse
Affiliation(s)
- Kuniko Kimura
- First Department of Internal Medicine, Nara Medical University, 840 Shijo, Kashihara, Nara 634-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Wu SY, Pan SL, Chen TH, Liao CH, Huang DY, Guh JH, Chang YL, Kuo SC, Lee FY, Teng CM. YC-1 induces apoptosis of human renal carcinoma A498 cells in vitro and in vivo through activation of the JNK pathway. Br J Pharmacol 2008; 155:505-13. [PMID: 18641674 DOI: 10.1038/bjp.2008.292] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to elucidate the mechanism of YC-1{3-(5'-hydroxy methyl-2'-furyl)-1-benzylindazole}-induced human renal carcinoma cells apoptosis and to evaluate the potency of YC-1 in models of tumour growth in mice. EXPERIMENTAL APPROACH YC-1-mediated apoptosis was assessed by analysis of MTT, SRB, DAPI staining and flow cytometry analysis. Knockdown of JNK protein was achieved by transient transfection using siRNA. The mechanisms of action of YC-1 on different signalling pathways involved were studied using western blot. Fas clustering was analysed by confocal microscopy and in vivo efficacy was examined in a A498 xenograft model. KEY RESULTS YC-1 displayed cytotoxicity in renal carcinoma cells at 10(-7)-10(-8) M. Increased condensation of chromatin was observed and an increase in the cell population in subG1 phase. Moreover, YC-1 triggered mitochondria-mediated and caspase-dependent pathways. YC-1 significantly induced Fas ligand expression, but did not modify either the protein levels of death receptors or ligands. In addition, Fas clustering in cells responsive to YC-1 was observed, suggesting involvement of a Fas-mediated pathway. Furthermore, YC-1 markedly induced phosphorylation of JNK and a JNK inhibitor, SP600125, and siRNA JNK1/2 significantly reversed YC-1-induced cytotoxicity and protein expression. We suggest that YC-1 induced JNK phosphorylation, the upregulation of FasL and Fas receptor clustering to promote the activation of caspases 8 and 3, resulting in apoptosis. Finally, we demonstrated the antitumour effect of YC-1 in vivo. CONCLUSIONS AND IMPLICATIONS These data suggest that YC-1 is a good candidate for development as an anticancer drug.
Collapse
Affiliation(s)
- S Y Wu
- Department of Pharmacology, College of Medicine, Pharmacological Institute, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Luciano JA, Tan T, Zhang Q, Huang E, Scholz P, Weiss HR. Hypoxia inducible factor-1 improves the actions of nitric oxide and natriuretic peptides after simulated ischemia-reperfusion. Cell Physiol Biochem 2008; 21:421-8. [PMID: 18453749 DOI: 10.1159/000129634] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2008] [Indexed: 11/19/2022] Open
Abstract
Ischemia-reperfusion reduces the negative functional effects of cyclic GMP in cardiac myocytes. In this study, we tested the hypothesis that upregulation of hypoxic inducible factor-1 (HIF-1) would improve the actions of cyclic GMP signaling following simulated ischemia-reperfusion. HIF-1 alpha was increased with deferoxamine (150 mg/kg for 2 days). Rabbit cardiac myocytes were subjected to simulated ischemia [15 min 95% N(2)-5% CO(2)] and reperfusion [reoxygenation] to produce myocyte stunning. Cell function was measured utilizing a video-edge detector. Shortening was examined at baseline and after brain natriuretic peptide (BNP, 10(-8), 10(-7)M) or S-nitroso-N-acetyl-penicillamine (SNAP, 10(-6), 10(-5)M) followed by KT5823 (cyclic GMP protein kinase inhibitor, 10(-6)M). Kinase activity was measured via a protein phosphorylation assay. Under control conditions, BNP (-30%) and SNAP (-41%) reduced percent shortening, while KT5823 partially restored function (+18%). Deferoxamine treated control myocytes responded similarly. In stunned myocytes, BNP (-21%) and SNAP (-25%) reduced shortening less and KT5823 did not increase function (+2%). Deferoxamine increased the effects of BNP (-38%) and SNAP (-41%) in stunning and restored the effects of KT5823 (+12%). The cyclic GMP protein kinase increased phosphorylation of several proteins in control HIF-1 +/- cells. Phosphorylation was reduced in stunned cells and was restored in deferoxamine treated stunned cells. This study demonstrated that simulated ischemia-reperfusion reduced the negative functional effects of increasing cyclic GMP and this was related to reduced effects of the cyclic GMP protein kinase. Increased HIF-1 alpha protects the functional effects of cyclic GMP thorough maintenance of cyclic GMP protein kinase activity after ischemic-reperfusion.
Collapse
Affiliation(s)
- Jason A Luciano
- Heart and Brain Circulation Laboratory, Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
| | | | | | | | | | | |
Collapse
|
85
|
Abstract
BACKGROUND: Renal cell carcinoma is a disease marked by a unique biology which has governed it's long history of poor response to conventional cancer treatments. The discovery of the signaling pathway activated as a result of inappropriate constitutive activation of the hypoxia inducible factors (HIF), transcription factors physiologically and transiently stabilized in response to low oxygen, has provided a primary opportunity to devise treatment strategies to target this oncogenic pathway. OBJECTIVE: A review of the molecular pathogenesis of renal cell cancer as well as molecularly targeted therapies, both those currently available and those in development, will be provided. In addition, trials involving combination or sequential targeted therapy are discussed. METHODS: A detailed review of the literature describing the molecular biology of renal cell cancer and novel therapies was performed and summarized. RESULTS/CONCLUSION: Therapeutics targeting angiogenesis have provided the first class of agents which provide clinical benefit in a large majority of patients and heralded renal cell carcinoma as a solid tumor paradigm for the development of novel therapeutics. Multiple strategies targeting this pathway and now other identified pathways in renal cell carcinoma provide numerous potential opportunities to make major improvements in treating this historically devastating cancer.
Collapse
Affiliation(s)
- C Lance Cowey
- Department of Medicine, Division of Hematology and Oncology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill
| | | |
Collapse
|
86
|
Triantafyllou A, Mylonis I, Simos G, Bonanou S, Tsakalof A. Flavonoids induce HIF-1alpha but impair its nuclear accumulation and activity. Free Radic Biol Med 2008; 44:657-70. [PMID: 18061585 DOI: 10.1016/j.freeradbiomed.2007.10.050] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 09/28/2007] [Accepted: 10/29/2007] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) is the regulatory subunit of the transcription factor HIF-1, which is highly involved in the pathology of diseases associated with tissue hypoxia. In this study we investigated the ability of plant flavonoids to induce HIF-1alpha and regulate HIF-1 transcriptional activity in HeLa cells. We demonstrate for the first time that the flavonoids baicalein, luteolin and fisetin, as well as the previously investigated quercetin, induce HIF-1alpha under normal oxygen pressure, whereas kaempferol, taxifolin, and rutin are inactive. We further reveal that the capability of flavonoids to bind efficiently intracellular iron and their lipophilicity are essential for HIF-1alpha induction. Despite the ability of flavonoids to stabilize HIF-1alpha, the transcriptional activity of HIF-1 induced by flavonoids was significantly lower than that observed with the iron chelator and known HIF-1 inducer, desferrioxamine (DFO). Furthermore, when cells in which HIF-1 had been induced by DFO were also treated with flavonoids, the transcriptional activity of HIF-1 was strongly impaired without simultaneous reduction in HIF-1alpha protein levels. Localization of HIF-1alpha by immuno- and direct fluorescence microscopy and in vitro phosphorylation assays suggest that flavonoids inhibit HIF-1 activity by impairing the MAPK-dependent phosphorylation of HIF-1alpha, thereby decreasing its nuclear accumulation.
Collapse
Affiliation(s)
- Anastasia Triantafyllou
- Department of Medicine, School of Health Sciences, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece
| | | | | | | | | |
Collapse
|
87
|
Adamski JK, Estlin EJ, Makin GWJ. The cellular adaptations to hypoxia as novel therapeutic targets in childhood cancer. Cancer Treat Rev 2008; 34:231-46. [PMID: 18207646 DOI: 10.1016/j.ctrv.2007.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/26/2007] [Accepted: 11/27/2007] [Indexed: 01/19/2023]
Abstract
Exposure of tumour cells to reduced levels of oxygen (hypoxia) is a common finding in adult tumours. Hypoxia induces a myriad of adaptive changes within tumour cells which result in increased anaerobic glycolysis, new blood vessel formation, genetic instability and a decreased responsiveness to both radio and chemotherapy. Hypoxia correlates with disease stage and outcome in adult epithelial tumours and increasingly it is becoming apparent that hypoxia is also important in paediatric tumours. Despite its adverse effects upon tumour response to treatment hypoxia offers several avenues for new drug development. Bioreductive agents already exist, which are preferentially activated in areas of hypoxia, and thus have less toxicity for normal tissue. Additionally the adaptive cellular response to hypoxia offers several novel targets, including vascular endothelial growth factor (VEGF), carbonic anhydrase, and the central regulator of the cellular response to hypoxia, hypoxia inducible factor-1 (HIF-1). Novel agents have emerged against all of these targets and are at various stages of clinical and pre-clinical development. Hypoxia offers an exciting opportunity for new drug development that can include paediatric tumours at an early stage.
Collapse
Affiliation(s)
- J K Adamski
- School of Cancer and Imaging Studies, Faculty of Medical and Human Studies, University of Manchester, United Kingdom.
| | | | | |
Collapse
|
88
|
Cook KM, Schofield CJ. Therapeutic Strategies that Target the HIF System. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
89
|
Song SJ, Chung H, Yu HG. Inhibitory Effect of YC-1, 3-(5′-Hydroxymethyl-2′-Furyl)-1-Benzylindazole, on Experimental Choroidal Neovascularization in Rat. Ophthalmic Res 2007; 40:35-40. [DOI: 10.1159/000111157] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 06/20/2007] [Indexed: 12/31/2022]
|
90
|
Abstract
Hypoxia, a decrease in oxygen levels, is a hallmark of solid tumors. Hypoxic cells are more resistant to killing by ionizing radiation and chemotherapy, are more invasive and metastatic, resistant to apoptosis, and genetically unstable. Over the last two decades, the discovery of Hypoxia Inducible Factors, a family of transcription factors crucially involved in the response of mammalian cells to oxygen deprivation, has led to the identification of a molecular target associated with hypoxia suitable for the development of cancer therapeutics. These features of solid tumors may offer a unique opportunity for selective therapeutic approaches. A number of strategies targeting hypoxia and/or Hypoxia Inducible Factors (HIF) have been developed over the last several years and will be described. The exponentially growing interest in therapeutic strategies targeting hypoxia/HIF will undoubtedly generate more active compounds for preclinical and clinical development. A rational development plan aimed to validate target inhibition in preclinical models and early clinical trials is essential for a rapid translation of these agents to the treatment of human cancers.
Collapse
Affiliation(s)
- Giovanni Melillo
- Developmental Therapeutics Program, SAIC Frederick, Inc, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
91
|
Chung JG, Yang JS, Huang LJ, Lee FY, Teng CM, Tsai SC, Lin KL, Wang SF, Kuo SC. Proteomic approach to studying the cytotoxicity of YC-1 on U937 leukemia cells and antileukemia activity in orthotopic model of leukemia mice. Proteomics 2007; 7:3305-17. [PMID: 17849408 DOI: 10.1002/pmic.200700200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To evaluate the effects of YC-1 on leukemia cell lines, PI incorporation was used to determine cell viability. YC-1 induced a dose- and time-dependent decrease in viability and apoptosis in YC-1-treated U937 cells. YC-1-induced apoptosis is a cyclic guanosine monophosphate (cGMP)-independent pathway. Proteomic analysis showed that the altered proteins include the significant regulation of HSP70, chaperonin, ATP synthase beta chains, and Chain F. Western blotting and immuno-cytochemistry stain showed that YC-1 treatment caused a time-dependent increase in cytosolic Cytochrome c, pro-caspase-9, Apaf-1, and the activation of caspase-9 and -3. Importantly, the in vivo antileukemia effects of YC-1 were evaluated in BALB/c mice inoculated with WEHI-3B orthotopic model. YC-1 enhanced survival rate and prevented the body weight loss in leukemia mice. The enlargement of spleen and lymph nodes were reduced in YC-1 treated than that in leukemia mice. H-E stain of spleen sections revealed that infiltration of immature myeloblastic cells into red pulp was reduced in YC-1-treated group. The apoptotic cells of splenocyte were significantly increased in YC-1 treated than that in leukemia mice by Tdt-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay. Taken together, we conclude that YC-1 acted against U937 cells in vitro via a mitochondrial-dependent apoptosis pathway, and in orthotopic leukemia model, YC-1 administered antileukemia activity.
Collapse
Affiliation(s)
- Jing-Gung Chung
- Departments of Microbiology, School of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Shin DH, Kim JH, Jung YJ, Kim KE, Jeong JM, Chun YS, Park JW. Preclinical evaluation of YC-1, a HIF inhibitor, for the prevention of tumor spreading. Cancer Lett 2007; 255:107-16. [PMID: 17502124 DOI: 10.1016/j.canlet.2007.03.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 03/30/2007] [Accepted: 03/30/2007] [Indexed: 02/07/2023]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) is believed to promote tumor growth, and thus, is viewed as one of the most compelling cancer therapy targets. YC-1 is widely used as a potent inhibitor of HIF-1alpha both in vitro and in vivo, and is also being developed as a novel anticancer drug. However, little is known about the effects of YC-1 on tumor invasion or metastasis. In the present study, we found that the Hep3B cell migration-stimulatory effect of hypoxia was abolished by HIF-1alpha siRNA or YC-1. YC-1 also significantly inhibited the migrations of other cancer cells. Furthermore, YC-1 effectively inhibited cell invasion through Matrigel. In nude mice, GFP-expressing stable cell-lines of Hep3B or H1299 were inoculated into spleens to induce liver metastasis or into the pleural cavity to induce lung invasion. In untreated mice, many tumor lesions emitting strong fluorescence were found in livers or lungs, and fluorescence intensities and tumor lesion numbers were markedly reduced in YC-1-treated mice. These results suggest that YC-1 effectively inhibits tumor invasion and metastasis, and imply that YC-1 is worth while to further develop as a multipurpose anticancer drug.
Collapse
Affiliation(s)
- Dong Hoon Shin
- Department of Pharmacology, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
93
|
Creighton-Gutteridge M, Cardellina JH, Stephen AG, Rapisarda A, Uranchimeg B, Hite K, Denny WA, Shoemaker RH, Melillo G. Cell type-specific, topoisomerase II-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation by NSC 644221. Clin Cancer Res 2007; 13:1010-8. [PMID: 17289897 DOI: 10.1158/1078-0432.ccr-06-2301] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The discovery and development of small-molecule inhibitors of hypoxia-inducible factor-1 (HIF-1) is an attractive, yet challenging, strategy for the development of new cancer therapeutic agents. Here, we report on a novel tricyclic carboxamide inhibitor of HIF-1alpha, NSC 644221. EXPERIMENTAL DESIGN We investigated the mechanism by which the novel compound NSC 644221 inhibited HIF-1alpha. RESULTS NSC 644221 inhibited HIF-1-dependent, but not constitutive, luciferase expression in U251-HRE and U251-pGL3 cells, respectively, as well as hypoxic induction of vascular endothelial growth factor mRNA expression in U251 cells. HIF-1alpha, but not HIF-1beta, protein expression was inhibited by NSC 644221 in a time- and dose-dependent fashion. Interestingly, NSC 644221 was unable to inhibit HIF-1alpha protein accumulation in the presence of the proteasome inhibitors MG132 or PS341, yet it did not directly affect the degradation of HIF-1alpha as shown by experiments done in the presence of cyclohexamide or pulse-chase labeling using [35S]methionine. In contrast, NSC 644221 decreased the rate of HIF-1alpha translation relative to untreated controls. Silencing of topoisomerase (topo) IIalpha, but not topo I, by specific small interfering RNA completely blocked the ability of NSC 644221 to inhibit HIF-1alpha. The data presented show that topo II is required for the inhibition of HIF-1alpha by NSC 644221. Furthermore, although NSC 644221 induced p21 expression, gammaH2A.X, and G2-M arrest in the majority of cell lines tested, it only inhibited HIF-1alpha in a distinct subset of cells, raising the possibility of pathway-specific "resistance" to HIF-1 inhibition in cancer cells. CONCLUSIONS NSC 644221 is a novel HIF-1 inhibitor with potential for use as both an analytic tool and a therapeutic agent. Our data provide a strong rationale for pursuing the preclinical development of NSC 644221 as a HIF-1 inhibitor.
Collapse
Affiliation(s)
- Mark Creighton-Gutteridge
- Screening Technologies Branch, Developmental Therapeutics Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Meng F, Nguyen XT, Cai X, Duan J, Matteucci M, Hart CP. ARC-111 inhibits hypoxia-mediated hypoxia-inducible factor-1alpha accumulation. Anticancer Drugs 2007; 18:435-45. [PMID: 17351396 DOI: 10.1097/cad.0b013e328013ffed] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ARC-111, a small-molecule topoisomerase I inhibitor, is a potent cytotoxic drug against multiple human cancer cell lines under normoxic conditions (Li et al., Cancer Res 2003; 63:8400-8407). In this study, we explore the potential of ARC-111 as a hypoxia-inducible factor-1alpha inhibitor under hypoxic conditions. The transcription factor, hypoxia-inducible factor-1alpha, is an essential regulator of tumorigenesis and an attractive molecular target for cancer therapy. We demonstrate that ARC-111 specifically inhibits hypoxia-induced accumulation of hypoxia-inducible factor-1alpha, but not other short half-life proteins in multiple human cancer cell lines. ARC-111 inhibits hypoxia-inducible factor-1alpha protein synthesis specifically and does not inhibit protein synthesis globally. We demonstrate that inhibition of hypoxia-inducible factor-1alpha accumulation by ARC-111 is independent of proteasomal degradation. In addition, we demonstrate using topoisomerase I-resistant cell lines that topoisomerase I is required for ARC-111-mediated hypoxia-inducible factor-1alpha inhibition. Experiments performed with nocodazole indicate that ARC-111 inhibits hypoxia-inducible factor-1alpha accumulation in a cell-cycle-independent manner. Analysis of AKT and mammalian target of rapamycin phosphorylation reveals that ARC-111 does not exhibit inhibitory effect on the phosphatidylinositol-3-kinase AKT mammalian target of rapamycin signaling pathway. It has been previously shown that topotecan, a topoisomerase I inhibitor, can also modulate hypoxia-induced hypoxia-inducible factor-1alpha accumulation (Rapisarda et al., Cancer Res 2003; 64:1475-1482). In addition to inhibiting hypoxia-induced accumulation of hypoxia-inducible factor-1alpha, ARC-111 exhibits antiproliferative effects against multiple human cancer cell lines. We demonstrate that topoisomerase I is required for the antiproliferative effects of ARC-111. Antiproliferative effects of ARC-111, however, are oxygen-independent, which is distinguishable from inhibition of hypoxia-inducible factor-1alpha accumulation by ARC-111, which is only observed under hypoxia. The results indicate that inhibiting hypoxia-inducible factor-1alpha accumulation and exhibiting antiproliferation of ARC-111 are through distinct mechanisms of action, which reinforce the potential anticancer effect of ARC-111 on hypoxic tumors.
Collapse
Affiliation(s)
- Fanying Meng
- Threshold Pharmaceuticals, Redwood City, California 94063, USA.
| | | | | | | | | | | |
Collapse
|
95
|
Sun HL, Liu YN, Huang YT, Pan SL, Huang DY, Guh JH, Lee FY, Kuo SC, Teng CM. YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia. Oncogene 2007; 26:3941-51. [PMID: 17213816 DOI: 10.1038/sj.onc.1210169] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1), a transcription factor that is critical for tumor adaptation to microenvironmental stimuli, represents an attractive chemotherapeutic target. YC-1 is a novel antitumor agent that inhibits HIF-1 through previously unexplained mechanisms. In the present study, YC-1 was found to prevent HIF-1alpha and HIF-1beta accumulation in response to hypoxia or mitogen treatment in PC-3 prostate cancer cells. Neither HIF-1alpha protein half-life nor mRNA level was affected by YC-1. However, YC-1 was found to suppress the PI3K/Akt/mTOR/4E-BP pathway, which serves to regulate HIF-1alpha expression at the translational step. We demonstrated that YC-1 also inhibited hypoxia-induced activation of nuclear factor (NF)-kappaB, a downstream target of Akt. Two modulators of the Akt/NF-kappaB pathway, caffeic acid phenethyl ester and evodiamine, were observed to decrease HIF-1alpha expression. Additionally, overexpression of NF-kappaB partly reversed the ability of wortmannin to inhibit HIF-1alpha-dependent transcriptional activity, suggesting that NF-kappaB contributes to Akt-mediated HIF-1alpha accumulation during hypoxia. Overall, we identify a potential molecular mechanism whereby YC-1 serves to reduce HIF-1 expression.
Collapse
Affiliation(s)
- H-L Sun
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Adesida AB, Grady LM, Khan WS, Millward-Sadler SJ, Salter DM, Hardingham TE. Human meniscus cells express hypoxia inducible factor-1alpha and increased SOX9 in response to low oxygen tension in cell aggregate culture. Arthritis Res Ther 2007; 9:R69. [PMID: 17640365 PMCID: PMC2206369 DOI: 10.1186/ar2267] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 07/06/2007] [Accepted: 07/18/2007] [Indexed: 12/19/2022] Open
Abstract
In previous work we demonstrated that the matrix-forming phenotype of cultured human cells from whole meniscus was enhanced by hypoxia (5% oxygen). Because the meniscus contains an inner region that is devoid of vasculature and an outer vascular region, here we investigate, by gene expression analysis, the separate responses of cells isolated from the inner and outer meniscus to lowered oxygen, and compared it with the response of articular chondrocytes. In aggregate culture of outer meniscus cells, hypoxia (5% oxygen) increased the expression of type II collagen and SOX9 (Sry-related HMG box-9), and decreased the expression of type I collagen. In contrast, with inner meniscus cells, there was no increase in SOX9, but type II collagen and type I collagen increased. The articular chondrocytes exhibited little response to 5% oxygen in aggregate culture, with no significant differences in the expression of these matrix genes and SOX9. In both aggregate cultures of outer and inner meniscus cells, but not in chondrocytes, there was increased expression of collagen prolyl 4-hydroxylase (P4H)alpha(I) in response to 5% oxygen, and this hypoxia-induced expression of P4H alpha(I) was blocked in monolayer cultures of meniscus cells by the hypoxia-inducible factor (HIF)-1alpha inhibitor (YC-1). In fresh tissue from the outer and inner meniscus, the levels of expression of the HIF-1alpha gene and downstream target genes (namely, those encoding P4H alpha(I) and HIF prolyl 4-hydroxylase) were significantly higher in the inner meniscus than in the outer meniscus. Thus, this study revealed that inner meniscus cells were less responsive to 5% oxygen tension than were outer meniscus cells, and they were both more sensitive than articular chondrocytes from a similar joint. These results suggest that the vasculature and greater oxygen tension in the outer meniscus may help to suppress cartilage-like matrix formation.
Collapse
Affiliation(s)
- Adetola B Adesida
- UK Centre for Tissue Engineering (UKCTE) and The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
- CellCoTec, Professor Bronkhorstlaan 10-D, Bilthoven 3723 MB, The Netherlands
| | - Lisa M Grady
- UK Centre for Tissue Engineering (UKCTE) and The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Wasim S Khan
- UK Centre for Tissue Engineering (UKCTE) and The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - S Jane Millward-Sadler
- The University of Edinburgh, Queens Medical Research Inst, Little France Crescent, Edinburgh, EH16 4TJ, UK
- Division of Regenerative Medicine, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Donald M Salter
- The University of Edinburgh, Queens Medical Research Inst, Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Timothy E Hardingham
- UK Centre for Tissue Engineering (UKCTE) and The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
97
|
Abstract
Tumor hypoxia is a feature common to almost all solid tumors due to malformed vasculature and inadequate perfusion. Tumor cells have evolved mechanisms that allow them to respond and adapt to a hypoxic microenvironment. The hypoxia-inducible transcription factor (HIF) family is comprised of oxygen-sensitive alpha (alpha) subunits that respond rapidly to decreased oxygen levels and oxygen-insensitive beta (beta) subunits. HIF binds to specific recognition sequences in the genome and increases the transcription of genes involved in a variety of metabolic and enzymatic pathways that are necessary for cells to respond to an oxygen-poor environment. The critical role of this family of transcriptional regulators in maintaining oxygen homeostasis is supported by multiple regulatory mechanisms that allow the cell to control the levels of HIF as well as its transcriptional activity. This review will focus on how the transcriptional activity of HIF is studied and how it can be exploited for cancer therapy.
Collapse
Affiliation(s)
- Denise A Chan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | |
Collapse
|
98
|
Semenza GL. Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets 2006; 10:267-80. [PMID: 16548775 DOI: 10.1517/14728222.10.2.267] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activity of hypoxia-inducible factor 1 (HIF-1) is increased in human cancers as a result of the physiological induction of HIF-1alpha in response to intratumoural hypoxia and as a result of genetic alterations that activate oncogenes and inactivate tumour suppressor genes. In many cancer types, increased HIF-1alpha expression is associated with increased risk of patient mortality. HIF-1 plays important roles in every major aspect of cancer biology through the transcriptional regulation of hundreds of genes. The efficacy of many novel anticancer agents that target signal transduction pathways may be due in part to their indirect inhibition of HIF-1. Several novel compounds with anticancer activity have been shown to inhibit HIF-1 and may be useful as components of individualised multidrug therapeutic regimens chosen based on molecular analyses of tumour biopsies.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Biology Program of the Johns Hopkins Institute for Cell Engineering, Broadway Research Building, Suite 671, 733 North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
99
|
O'Donnell JL, Joyce MR, Shannon AM, Harmey J, Geraghty J, Bouchier-Hayes D. Oncological implications of hypoxia inducible factor-1alpha (HIF-1alpha) expression. Cancer Treat Rev 2006; 32:407-16. [PMID: 16889900 DOI: 10.1016/j.ctrv.2006.05.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/01/2006] [Accepted: 05/03/2006] [Indexed: 01/23/2023]
Abstract
Solid tumours contain regions of hypoxia, which may be a prognostic indicator and determinant of malignant progression, metastatic development and chemoradio-resistance. The degree of intra-tumoural hypoxia has been shown to be positively correlated with the expression of the transcription factor hypoxia-inducible factor 1. HIF-1 is composed of 2 sub-units, namely HIF-1alpha and HIF-1beta. The production of hypoxia inducible factor 1-alpha has been identified as a key element in allowing cells to adapt and survive in a hostile hypoxic environment via a variety of pathways. HIF-1alpha is stabilised by hypoxia at the protein level, and also by the oncogenes HER2neu, v-src and ras. There are over 60 target genes for HIF-1, many of which are activated in cancers in comparison to equivalent normal tissues. Chemotherapeutic modulation of HIF-1 pathways has shown promise for patients with chemo-radio resistant or recurrent tumours in Phase II clinical trials. We herein review the existing literature on hypoxia inducible factor-1alpha, particularly its role in carcinogenesis and clinical implications of its over-expression.
Collapse
Affiliation(s)
- Jill L O'Donnell
- RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
100
|
McMahon S, Charbonneau M, Grandmont S, Richard DE, Dubois CM. Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem 2006; 281:24171-81. [PMID: 16815840 DOI: 10.1074/jbc.m604507200] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The hypoxia-inducible transcription factor-1 (HIF-1) is central to a number of pathological processes through the induction of specific genes such as vascular endothelial growth factor (VEGF). Even though HIF-1 is highly regulated by cellular oxygen levels, other elements of the inflammatory and tumor microenvironment were shown to influence its activity under normal oxygen concentration. Among others, recent studies indicated that transforming growth factor (TGF) beta increases the expression of the regulatory HIF-1alpha subunit, and induces HIF-1 DNA binding activity. Here, we demonstrate that TGFbeta acts on HIF-1alpha accumulation and activity by increasing HIF-1alpha protein stability. In particular, we demonstrate that TGFbeta markedly and specifically decreases both mRNA and protein levels of a HIF-1alpha-associated prolyl hydroxylase (PHD), PHD2, through the Smad signaling pathway. As a consequence, the degradation of HIF-1alpha was inhibited as determined by impaired degradation of a reporter protein containing the HIF-1alpha oxygen-dependent degradation domain encompassing the PHD-targeted prolines. Moreover, inhibition of the TGFbeta1 converting enzyme, furin, resulted in increased PHD2 expression, and decreased basal HIF-1alpha and VEGF levels, suggesting that endogenous production of bioactive TGFbeta1 efficiently regulates HIF-1-targeted genes. This was reinforced by results from HIF-1alpha knock-out or HIF-1alpha-inhibited cells that show impairment in VEGF production in response to TGFbeta. This study reveals a novel mechanism by which a growth factor controls HIF-1 stability, and thereby drives the expression of specific genes, through the regulation of PHD2 levels.
Collapse
Affiliation(s)
- Stephanie McMahon
- Immunology Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|