51
|
Silva JPN, Oliveira ACN, Casal MPPA, Gomes AC, Coutinho PJG, Coutinho OP, Oliveira MECDR. DODAB:monoolein-based lipoplexes as non-viral vectors for transfection of mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2440-9. [PMID: 21787746 DOI: 10.1016/j.bbamem.2011.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 10/17/2022]
Abstract
DNA/Cationic liposome complexes (lipoplexes) have been widely used as non-viral vectors for transfection. Neutral lipids in liposomal formulation are determinant for transfection efficiency using these vectors. In this work, we studied the potential of monoolein (MO) as helper lipid for cellular transfection. Lipoplexes composed of pDNA and dioctadecyldimethylammonium bromide (DODAB)/1-monooleoyl-rac-glycerol (MO) at different molar ratios (4:1, 2:1 and 1:1) and at different cationic lipid/DNA ratios were investigated. The physicochemical properties of the lipoplexes (size, charge and structure), were studied by Dynamic Light Scattering (DLS), Zeta Potential (ζ) and cryo-transmission electron microscopy (cryo-TEM). The effect of MO on pDNA condensation and the effect of heparin and heparan sulphate on the percentage of pDNA release from the lipoplexes were also studied by Ethidium Bromide (EtBr) exclusion assays and electrophoresis. Cytotoxicity and transfection efficiency of these lipoplexes were evaluated using 293T cells and compared with the golden standard helper lipids 1,2-dioleoyl-sn-glycero-3-hosphoethanolamine (DOPE) and cholesterol (Chol) as well as with a commercial transfection agent (Lipofectamine™ LTX). The internalization of transfected fluorescently-labeled pDNA was also visualized using the same cell line. The results demonstrate that the presence of MO not only increases pDNA compactation efficiency, but also affects the physicochemical properties of the lipoplexes, which can interfere with lipoplex-cell interactions. The DODAB:MO formulations tested showed little toxicity and successfully mediated in vitro cell transfection. These results were supported by fluorescence microscopy studies, which illustrated that lipoplexes were able to access the cytosol and deliver pDNA to the nucleus. DODAB:MO-based lipoplexes were thus validated as non-toxic, efficient lipofection vectors for genetic modification of mammalian cells. Understanding the relation between structure and activity of MO-based lipoplexes will further strengthen the development of these novel delivery systems.
Collapse
Affiliation(s)
- J P Neves Silva
- Centre of Physics, University of Minho, CP, Campus of Gualtar, Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
52
|
Asymmetric 1-alkyl-2-acyl phosphatidylcholine: a helper lipid for enhanced non-viral gene delivery. Int J Pharm 2011; 427:64-70. [PMID: 21718766 DOI: 10.1016/j.ijpharm.2011.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022]
Abstract
Rationally designed asymmetrical alkylacyl phosphatidylcholines (APC) have been synthesized and evaluated as helper lipids for non-viral gene delivery. A long aliphatic chain (C22-C24) was introduced at the 1-position of glycerol backbone, a branched lipid chain (C18) at the 2-position, and a phosphocholine head group at the 3-position. The fusogenicity of APC depends on the length and degree of saturation of the alkyl chain. Cationic lipids were formulated with APC as either lipoplexes or nanolipoparticles, and evaluated for their stability, transfection efficiency, and cytotoxicity. APC mediated high in vitro transfection efficiency, and had low cytotoxicity. Small nanolipoparticles (less than 100 nm) can be obtained with APC by applying as low as 0.1% PEG-lipid. Our study extends the type of helper lipids that are suitable for gene transfer and points the way to improve non-viral nucleic acid delivery system other than the traditional cationic lipids optimization.
Collapse
|
53
|
Dittrich M, Heinze M, Wölk C, Funari SS, Dobner B, Möhwald H, Brezesinski G. Structure-Function Relationships of New Lipids Designed for DNA Transfection. Chemphyschem 2011; 12:2328-37. [DOI: 10.1002/cphc.201100065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/29/2011] [Indexed: 11/12/2022]
|
54
|
Wölk C, Heinze M, Kreideweiß P, Dittrich M, Brezesinski G, Langner A, Dobner B. Synthesis and DNA transfection properties of new head group modified malonic acid diamides. Int J Pharm 2011; 409:46-56. [DOI: 10.1016/j.ijpharm.2011.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 12/19/2022]
|
55
|
Abstract
IMPORTANCE OF THE FIELD Nucleic acids such as plasmid DNA, antisense oligonucleotide, and RNA interference (RNAi) molecules, have a great potential to be used as therapeutics for the treatment of various genetic and acquired diseases. To design a successful nucleic acid delivery system, the pharmacological effect of nucleic acids, the physiological condition of the subjects or sites, and the physicochemical properties of nucleic acid and carriers have to be thoroughly examined. AREAS COVERED IN THIS REVIEW The commonly used lipids, polymers and corresponding delivery systems are reviewed in terms of their characteristics, applications, advantages and limitations. WHAT THE READER WILL GAIN This article aims to provide an overview of biological barriers and strategies to overcome these barriers by properly designing effective synthetic carriers for nucleic acid delivery. TAKE HOME MESSAGE A thorough understanding of biological barriers and the structure-activity relationship of lipid and polymeric carriers is the key for effective nucleic acid therapy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 19 South Manassas St, Cancer Research Building RM 226, Memphis, TN 38103, USA
| | | |
Collapse
|
56
|
Adler AF, Leong KW. Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery. NANO TODAY 2010; 5:553-569. [PMID: 21383869 PMCID: PMC3048656 DOI: 10.1016/j.nantod.2010.10.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Significant effort continues to be exerted toward the improvement of transfection mediated by nonviral vectors. These endeavors are often focused on the design of particulate carriers with properties that encourage efficient accumulation at the membrane surface, particle uptake, and endosomal escape. Despite its demonstrated importance in successful nonviral transfection, relatively little investigation has been done to understand the pressures driving internalized vectors into favorable nondegradative endocytic pathways. Improvements in transfection efficiency have been noted for complexes delivered with a substrate-mediated approach, but the reasons behind such enhancements remain unclear. The phenotypic changes exhibited by cells interacting with nano- and micro-featured substrates offer hints that may explain these effects. This review describes nanoscale particulate and substrate parameters that influence both the uptake of nonviral gene carriers and the endocytic phenotype of interacting cells, and explores the molecular links that may mediate these interactions. Substrate-mediated control of endocytosis represents an exciting new design parameter that will guide the creation of efficient transgene carriers.
Collapse
Affiliation(s)
- Andrew F. Adler
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| |
Collapse
|
57
|
Oliveira ACN, Neves Silva JP, Coutinho PJG, Gomes AA, Coutinho OP, Real Oliveira MECD. Monoolein as helper lipid for non-viral transfection in mammals. J Control Release 2010; 148:e91-2. [PMID: 21529654 DOI: 10.1016/j.jconrel.2010.07.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- A C N Oliveira
- Center of Molecular & Environmental Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | | | |
Collapse
|
58
|
Tros de Ilarduya C, García L, Düzgünes N. Liposomes and lipopolymeric carriers for gene delivery. J Microencapsul 2010; 27:602-8. [DOI: 10.3109/02652048.2010.501396] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
59
|
Heinze M, Brezesinski G, Dobner B, Langner A. Novel Cationic Lipids Based on Malonic Acid Amides Backbone: Transfection Efficacy and Cell Toxicity Properties. Bioconjug Chem 2010; 21:696-708. [DOI: 10.1021/bc9004624] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Heinze
- Institute of Pharmacy, Department of Biochemical Pharmacy, Martin-Luther-University, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany, and Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Gerald Brezesinski
- Institute of Pharmacy, Department of Biochemical Pharmacy, Martin-Luther-University, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany, and Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Bodo Dobner
- Institute of Pharmacy, Department of Biochemical Pharmacy, Martin-Luther-University, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany, and Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Andreas Langner
- Institute of Pharmacy, Department of Biochemical Pharmacy, Martin-Luther-University, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany, and Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
60
|
Rao NM. Cationic lipid-mediated nucleic acid delivery: beyond being cationic. Chem Phys Lipids 2010; 163:245-52. [DOI: 10.1016/j.chemphyslip.2010.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/25/2009] [Accepted: 01/03/2010] [Indexed: 10/20/2022]
|
61
|
Zhi D, Zhang S, Wang B, Zhao Y, Yang B, Yu S. Transfection Efficiency of Cationic Lipids with Different Hydrophobic Domains in Gene Delivery. Bioconjug Chem 2010; 21:563-77. [DOI: 10.1021/bc900393r] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- DeFu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - ShuBiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - Bing Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - YiNan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - BaoLing Yang
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| | - ShiJun Yu
- Key Laboratory of Biotechnology and Bioresources Utilization, The State Ethnic Affairs Commission-Ministry of Education, College of Life Science, Dalian Nationalities University, Dalian, Liaoning, China 116600, and School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning, China 116029
| |
Collapse
|
62
|
Tarahovsky YS. Cell transfection by DNA-lipid complexes — Lipoplexes. BIOCHEMISTRY (MOSCOW) 2010; 74:1293-304. [DOI: 10.1134/s0006297909120013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
63
|
Cationic lipids: molecular structure/ transfection activity relationships and interactions with biomembranes. Top Curr Chem (Cham) 2010; 296:51-93. [PMID: 21504100 DOI: 10.1007/128_2010_67] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical. Here we summarize data on the relationships between transfection activity and cationic lipid molecular structure and demonstrate that the transfection activity depends in a systematic way on the lipid hydrocarbon chain structure. A number of examples, including a large series of cationic phosphatidylcholine derivatives, show that optimum transfection is displayed by lipids with chain length of approximately 14 carbon atoms and that the transfection efficiency strongly increases with increase of chain unsaturation, specifically upon replacement of saturated with monounsaturated chains.
Collapse
|
64
|
Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 2009; 61:721-31. [PMID: 19328215 DOI: 10.1016/j.addr.2009.03.003] [Citation(s) in RCA: 365] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/10/2009] [Indexed: 01/13/2023]
Abstract
RNAi technology has brought a new category of treatments for various diseases including genetic diseases, viral diseases, and cancer. Despite the great versatility of RNAi that can down regulate almost any protein in the cells, the delicate and precise machinery used for silencing is the same. The major challenge indeed for RNAi-based therapy is the delivery system. In this review, we start with the uniqueness and mechanism of RNAi machinery and the utility of RNAi in therapeutics. Then we discuss the challenges in systemic siRNA delivery by dividing them into two categories-kinetic and physical barriers. At the end, we discuss different strategies to overcome these barriers, especially focusing on the step of endosome escape. Toxicity issues and current successful examples for lipid-based delivery are also included in the review.
Collapse
|
65
|
Marchini C, Montani M, Amici A, Amenitsch H, Marianecci C, Pozzi D, Caracciolo G. Structural stability and increase in size rationalize the efficiency of lipoplexes in serum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:3013-3021. [PMID: 19437770 DOI: 10.1021/la8033726] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have investigated the effect of serum on nanometric structure, size, surface potential, DNA-binding capacity, and transfection efficiency of DDAB-DOPE/DNA and DC-Chol-DOPE/DNA lipoplexes as a function of membrane charge density and cationic lipid/DNA charge ratio. In the absence of serum, the nanometric structure and DNA binding capacity of lipoplexes determined the transfection efficiency. When serum was added, the transfection efficiency of all lipoplex formulations was found to increase. We identified structural stability and an increase in size in serum as major parameters regulating the efficiency of lipofection. By extrapolation, we propose that serum, regulating the size of resistant lipid-DNA complexes, can control the mechanism of internalization of lipoplexes and, in turn, their efficiency.
Collapse
Affiliation(s)
- Cristina Marchini
- Genetic Immunization Laboratory, Department of Molecular Cellular and Animal Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino MC, Italy
| | | | | | | | | | | | | |
Collapse
|
66
|
A structure–activity investigation of hemifluorinated bifunctional bolaamphiphiles designed for gene delivery. CR CHIM 2009. [DOI: 10.1016/j.crci.2008.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
67
|
Sobral CN, Soto MA, Carmona-Ribeiro AM. Characterization of DODAB/DPPC vesicles. Chem Phys Lipids 2008; 152:38-45. [DOI: 10.1016/j.chemphyslip.2007.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 11/23/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
|
68
|
Transferrin-Associated Lipoplexes as Gene Delivery Systems: Relevance of Mode of Preparation and Biophysical Properties. J Membr Biol 2008; 221:141-52. [DOI: 10.1007/s00232-008-9092-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
|
69
|
Ma B, Zhang S, Jiang H, Zhao B, Lv H. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release 2007; 123:184-94. [PMID: 17913276 DOI: 10.1016/j.jconrel.2007.08.022] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 08/09/2007] [Indexed: 01/05/2023]
Abstract
Cationic lipid-mediated gene transfer is widely used for their advantages over viral gene transfer because it is non-immunogenic, easy to produce and not oncogenic. The main drawback of the application of cationic lipids is their low transfection efficiency. Many reports about transfection efficiency of cationic lipids have been published in recent years. In this review, the current status and prospects for transfection efficiency of different morphologies of lipoplexes are discussed. High transfection activity will be acquired for H(C)(II) structure when membrane fusion is dominant, but when serum is present L(C)(alpha) lipoplexes show great superiority for their inhibition dissociation by serum during lipoplexes transporting. Increasing DOPE often gains high activity for the H(C)(II) structure promoted by DOPE. High lipofection will be gained from large lipoplexes when endocytosis is dominant, because large particles facilitate membrane contact and fusion. We suggest morphologies of lipoplex should be characterized at two levels, lipoplex size and self-assemble structures of lipoplexes, and understanding these would be very important for scientists to prepare novel cationic lipids and design novel formulations with high transfection efficiency.
Collapse
Affiliation(s)
- Baichao Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | | | | | | | | |
Collapse
|
70
|
van der Gun BTF, Monami A, Laarmann S, Raskó T, Slaska-Kiss K, Weinhold E, Wasserkort R, de Leij LFMH, Ruiters MHJ, Kiss A, McLaughlin PMJ. Serum insensitive, intranuclear protein delivery by the multipurpose cationic lipid SAINT-2. J Control Release 2007; 123:228-38. [PMID: 17884225 DOI: 10.1016/j.jconrel.2007.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/18/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
Cationic liposomal compounds are widely used to introduce DNA and siRNA into viable cells, but none of these compounds are also capable of introducing proteins. Here we describe the use of a cationic amphiphilic lipid SAINT-2:DOPE for the efficient delivery of proteins into cells (profection). Labeling studies demonstrated equal delivery efficiency for protein as for DNA and siRNA. Moreover, proteins complexed with Saint-2:DOPE were successfully delivered, irrespective of the presence of serum, and the profection efficiency was not influenced by the size or the charge of the protein:cationic liposomal complex. Using beta-galactosidase as a reporter protein, enzymatic activity was detected in up to 98% of the adherent cells, up to 83% of the suspension cells and up to 70% of the primary cells after profection. A delivered antibody was detected in the cytoplasm for up to 7 days after profection. Delivery of the methyltransferase M.SssI resulted in DNA methylation, leading to a decrease in E-cadherin expression. The lipid-mediated multipurpose transport system reported here can introduce proteins into the cell with an equal delivery efficiency as for nucleotides. Delivery is irrespective of the presence of serum, and the protein can exert its function both in the cytoplasm and in the nucleus. Furthermore, DNA methylation by M.SssI delivery as a novel tool for gene silencing has potential applications in basic research and therapy.
Collapse
Affiliation(s)
- Bernardina T F van der Gun
- Department of Pathology and Laboratory Medicine, Section Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Chen H, Zhang H, McCallum CM, Szoka FC, Guo X. Unsaturated Cationic Ortho Esters for Endosome Permeation in Gene Delivery. J Med Chem 2007; 50:4269-78. [PMID: 17691717 DOI: 10.1021/jm060128c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two cleavable cationic lipids were designed to trigger the fusogenicity and membrane permeation of their lipoplexes in endosomes via the formation of inverted hexagonal phases (HII). Both lipids contain a cationic head group and an unsaturated hydrophobic dioleylglycerol moiety joined together by a linear or a cyclic ortho ester linker. At pH 7.4, the lipids formed stable complexes with plasmid DNA together with the conelike helper lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). The decrease of pH enhanced the hydrolysis of the ortho ester linkers, which removed the cationic head groups and caused the aggregation of the lipoplexes. At pH 5.5, the cationic lipid N-[2-methyl-2-(1',2'-dioleylglyceroxy)dioxolan-4-yl]methyl-N,N,N-trimethylammonium iodide (2) with a cyclic ortho ester linker showed exceptional pH-sensitivity and triggered its lipoplex to permeate model biomembranes within the time span of endosome processing prior to lysosomal degradation. Lipid 2 significantly improved gene transfection in cultured cells compared to the pH-insensitive control lipid 1,2-dioleoyl-3-trimethylammoniopropane (DOTAP).
Collapse
Affiliation(s)
- Haigang Chen
- Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, California 95211, USA
| | | | | | | | | |
Collapse
|
72
|
Hoekstra D, Rejman J, Wasungu L, Shi F, Zuhorn I. Gene delivery by cationic lipids: in and out of an endosome. Biochem Soc Trans 2007; 35:68-71. [PMID: 17233603 DOI: 10.1042/bst0350068] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cationic lipids are exploited as vectors ('lipoplexes') for delivering nucleic acids, including genes, into cells for both therapeutic and cell biological purposes. However, to meet therapeutic requirements, their efficacy needs major improvement, and better defining the mechanism of entry in relation to eventual transfection efficiency could be part of such a strategy. Endocytosis is the major pathway of entry, but the relative contribution of distinct endocytic pathways, including clathrin- and caveolae-mediated endocytosis and/or macropinocytosis is as yet poorly defined. Escape of DNA/RNA from endosomal compartments is thought to represent a major obstacle. Evidence is accumulating that non-lamellar phase changes of the lipoplexes, facilitated by intracellular lipids, which allow DNA to dissociate from the vector and destabilize endosomal membranes, are instrumental in plasmid translocation into the cytosol, a prerequisite for nuclear delivery. To further clarify molecular mechanisms and to appreciate and overcome intracellular hurdles in lipoplex-mediated gene delivery, quantification of distinct steps in overall transfection and proper model systems are required.
Collapse
Affiliation(s)
- D Hoekstra
- Department of Cell Biology, Section Membrane Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
73
|
Theoharis S, Manunta M, Tan PH. Gene delivery to vascular endothelium using chemical vectors: implications for cardiovascular gene therapy. Expert Opin Biol Ther 2007; 7:627-43. [PMID: 17477801 DOI: 10.1517/14712598.7.5.627] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascular endothelium is an attractive target for gene therapy because of its accessibility and its importance in the pathophysiology of a wide range of cardiovascular conditions. In general, viral methods have been shown to be very effective at delivering genes to endothelium. The immunogenicity and pathogenicity associated with viral vectors have led increased efforts to seek alternative means of 'ferrying' therapeutic genes to endothelium or to decrease the short-comings of viral vectors. This paper reviews developments in non-viral technology. In addition, discussion also covers the mechanisms whereby existing chemical vectors deliver DNA to cells. Understanding the pathways of vector internalisation and intracellular traffic is important in developing strategies to improve vector technology. The authors propose that the chemical vector may represent a robust and versatile technology to 'ferry' therapeutic genes to vascular endothelium in order to modify the endothelial dysfunction associated with many cardiovascular diseases.
Collapse
Affiliation(s)
- Stefanos Theoharis
- Imperial College London, Department of Immunology, Division of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | | | | |
Collapse
|
74
|
Thomas M, Lu JJ, Chen J, Klibanov AM. Non-viral siRNA delivery to the lung. Adv Drug Deliv Rev 2007; 59:124-33. [PMID: 17459519 PMCID: PMC7103292 DOI: 10.1016/j.addr.2007.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Accepted: 03/04/2007] [Indexed: 01/13/2023]
Abstract
SiRNAs exert their biological effect by guiding the degradation of their cognate mRNA sequence, thereby shutting down the corresponding protein production (gene silencing by RNA interference or RNAi). Due to this property, siRNAs are emerging as promising therapeutic agents for the treatment of inherited and acquired diseases, as well as research tools for the elucidation of gene function in both health and disease. Because of their lethality and prevalence, lung diseases have attracted particular attention as targets of siRNA-mediated cures. In addition, lung is accessible to therapeutic agents via multiple routes, e.g., through the nose and the mouth, thus obviating the need for targeting and making it an appealing target for RNAi-based therapeutic strategies. The clinical success of siRNA-mediated interventions critically depends upon the safety and efficacy of the delivery methods and agents. Delivery of siRNAs relevant to lung diseases has been attempted through multiple routes and using various carriers in animal models. This review focuses on the recent progress in non-viral delivery of siRNAs for the treatment of lung diseases, particularly infectious diseases. The rapid progress will put siRNA-based therapeutics on fast track to the clinic.
Collapse
Affiliation(s)
- Mini Thomas
- Department of Chemistry and Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
75
|
Hokey DA, Weiner DB. DNA vaccines for HIV: challenges and opportunities. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2006; 28:267-79. [PMID: 17031649 DOI: 10.1007/s00281-006-0046-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 09/19/2006] [Indexed: 01/05/2023]
Abstract
In December 2005, the UNAIDS and WHO reported that the global epidemic known as acquired immunodeficiency syndrome (AIDS) has claimed the lives of more than 25 million adults and children over the past 26 years. These figures included an estimated 3.1 million AIDS-related deaths in 2005. Despite enormous efforts to control the spread of human immunodeficiency virus (HIV) new infection rates are on the rise. An estimated 40.3 million people are now living with HIV, including 4.9 million new infections this past year. Nearly half of new HIV infections are in young people between the ages of 15 and 24. While drug therapies have helped sustain the lives of infected individuals in wealthy regions, they are relatively unavailable to the poorest global regions. This includes sub-Saharan Africa which has approximately 25.8 million infected individuals, more than triple the number of infections of any other region in the world. It is widely believed that the greatest hope for controlling this devastating pandemic is a vaccine. In this review, we will discuss the current state of DNA-based vaccines and how they compare to other vaccination methods currently under investigation. We will also discuss innovative ideas for enhancing DNA vaccine efficacy and the progress being made toward developing an effective vaccine.
Collapse
Affiliation(s)
- David A Hokey
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
76
|
Wasungu L, Stuart MCA, Scarzello M, Engberts JBFN, Hoekstra D. Lipoplexes formed from sugar-based gemini surfactants undergo a lamellar-to-micellar phase transition at acidic pH. Evidence for a non-inverted membrane-destabilizing hexagonal phase of lipoplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1677-84. [PMID: 16930530 DOI: 10.1016/j.bbamem.2006.06.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 06/07/2006] [Accepted: 06/13/2006] [Indexed: 11/23/2022]
Abstract
The present study aims at a better understanding of the mechanism of transfection mediated by two sugar-based gemini surfactants GS1 and GS2. Previously, these gemini surfactants have been shown to be efficient gene vectors for transfection both in vitro and in vivo. Here, using Nile Red, a solvatochromic fluorescent probe, we investigated the phase behavior of these gemini surfactants in complexes with plasmid DNA, so-called lipoplexes. We found that these lipoplexes undergo a lamellar-to-non-inverted micellar phase transition upon decreasing the pH from neutral to mildly acidic. This normal (non-inverted) phase at acidic pH is confirmed by the colloidal stability of the lipoplexes as shown by turbidity measurements. We therefore propose a normal hexagonal phase, H(I), for the gemini surfactant lipoplexes at acidic endosomal pH. Thus, we suggest that besides an inverted hexagonal (H(II)) phase as reported for several transfection-potent cationic lipid systems, another type of non-inverted non-bilayer structure, different from H(II), may destabilize the endosomal membrane, necessary for cytosolic DNA delivery and ultimately, cellular transfection.
Collapse
Affiliation(s)
- Luc Wasungu
- Department of Cell Biology/Section Membrane Cell Biology, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
77
|
Zuhorn IS, Engberts JBFN, Hoekstra D. Gene delivery by cationic lipid vectors: overcoming cellular barriers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 36:349-62. [PMID: 17019592 DOI: 10.1007/s00249-006-0092-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 08/16/2006] [Accepted: 08/25/2006] [Indexed: 12/11/2022]
Abstract
Non-viral vectors such as cationic lipids are capable of delivering nucleic acids, including genes, siRNA or antisense RNA into cells, thus potentially resulting in their functional expression. These vectors are considered as an attractive alternative for virus-based delivery systems, which may suffer from immunological and mutational hazards. However, the efficiency of cationic-mediated gene delivery, although often sufficient for cell biological purposes, runs seriously short from a therapeutics point of view, as realizing this objective requires a higher level of transfection than attained thus far. To develop strategies for improvement, there is not so much a need for novel delivery systems. Rather, better insight is needed into the mechanism of delivery, including lipoplex-cell surface interaction, route of internalization and concomitant escape of DNA/RNA into the cytosol, and transport into the nucleus. Current work indicates that a major obstacle involves the relative inefficient destabilization of membrane-bounded compartments in which lipoplexes reside after their internalization by the cell. Such an activity requires the capacity of lipoplexes of undergoing polymorphic transitions such as a membrane destabilizing hexagonal phase, while cellular components may aid in this process. A consequence of the latter notion is that for development of a novel generation of delivery devices, entry pathways have to be triggered by specific targeting to select delivery into intracellular compartments which are most susceptible to lipoplex-induced destabilization, thereby allowing the most efficient release of DNA, a minimal requirement for optimizing non-viral vector-mediated transfection.
Collapse
Affiliation(s)
- Inge S Zuhorn
- Department of Cell Biology, Section Membrane Cell Biology, University Medical Center Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
78
|
Meidan VM, Glezer J, Salomon S, Sidi Y, Barenholz Y, Cohen JS, Lilling G. Specific lipoplex-mediated antisense against Bcl-2 in breast cancer cells: a comparison between different formulations. J Liposome Res 2006; 16:27-43. [PMID: 16556548 DOI: 10.1080/08982100500528685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
G3139 is an antisense oligonucleotide (ODN) that can down-regulate bcl-2, thus potentially acting as a potent anticancer drug. However, effective therapy requires efficient ODN delivery, which may be achieved by employing G3139 lipoplexes. Yet, lipofection is a complex, multifactorial process that is still poorly understood. In order to shed more light on this issue, we prepared 18 different G3139 lipoplex formulations and compared them in terms of their capability to transfect MCF-7 breast cancer cells. Each formulation was composed of a cationic lipid and sometimes a helper lipid. The cationic lipid was either DOTAP (N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride), DC-CHOL (3ss[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol), or CCS (ceramide carbomoyl spermine). The helper lipid was either DOPC, DOPE, or cholesterol. Each lipid combination existed in two different structural forms--either large unilamellar vesicles (approximately 100 nm LUV) or unsized heterolamellar vesicles (UHV). Cell proliferation assays were used to evaluate the cytotoxicity of G3139 lipoplexes, control cationic lipid assemblies, and free G3139. Western blots were used to confirm the specific activity of G3139 as an anti-bcl-2 antisense agent. We determined that treatment of MCF-7 cells with G3139:CCS lipoplexes (UHV-derived) produced a maximal 50-fold improvement in antisense efficacy compared to treatment with free G3139. The other G3139 lipoplexes were not superior to free G3139. Thus, successful lipofection requires precise optimization of lipoplex lipid composition, structure, and concentration.
Collapse
Affiliation(s)
- Victor M Meidan
- Department of Pharmaceutical Sciences, SIBS, University of Strathclyde, Glasgow, G4 0NR, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Thomas M, Ge Q, Lu JJ, Klibanov AM, Chen J. Polycation-mediated delivery of siRNAs for prophylaxis and treatment of influenza virus infection. Expert Opin Biol Ther 2006; 5:495-505. [PMID: 15934828 DOI: 10.1517/14712598.5.4.495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Influenza A virus causes one of the most prevalent infections in humans. In a typical year, 10-20% of the population of the US is infected by influenza virus, resulting in up to 40,000 deaths and 200,000 hospitalisations. Vaccination is the most effective preventative measure that can protect 70-90% of healthy adults aged < 65; however, the protection rate is much lower in those most susceptible to infection, namely infants, the elderly and individuals with weakened immune systems. Although four drugs have been approved by the FDA for use as prophylaxis and/or treatment of influenza, concerns about their side effects and the emergence of drug-resistant viruses persist. RNA interference (RNAi), an emerging method of post transcriptional gene silencing, appears ideal for the prevention and treatment of influenza. RNAi in mammals can be mediated by short interfering RNAs (siRNAs) of approximately 21-27 nucleotides in length. The authors have previously shown that siRNAs specific for conserved regions of the influenza virus genome are potent inhibitors of influenza virus replication in both cell lines and chicken embryos. This review discusses the recent progress in the in vivo inhibition of influenza virus by the delivery of siRNAs mediated by non-viral vectors, and the prospects of this strategy for prophylaxis and treatment of influenza infection in humans.
Collapse
Affiliation(s)
- Mini Thomas
- Division of Biological Engineering, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
81
|
Sainlos M, Hauchecorne M, Oudrhiri N, Zertal-Zidani S, Aissaoui A, Vigneron JP, Lehn JM, Lehn P. Kanamycin A-derived cationic lipids as vectors for gene transfection. Chembiochem 2005; 6:1023-33. [PMID: 15883979 DOI: 10.1002/cbic.200400344] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cationic lipids nowadays constitute a promising alternative to recombinant viruses for gene transfer. We have recently explored the transfection potential of a new class of lipids based upon the use of aminoglycosides as cationic polar headgroups. The encouraging results obtained with a first cholesterol derivative of kanamycin A prompted us to investigate this family of vectors further, by modulating the constituent structural units of the cationic lipid. For this study, we have investigated the transfection properties of a series of new derivatives based on a kanamycin A scaffold. The results primarily confirm that aminoglycoside-based lipids are efficient vectors for gene transfection both in vitro and in vivo (mouse airways). Furthermore, a combination of transfection and physicochemical data revealed that some modifications of the constitutive subunits of kanamycin A-based vectors were associated with substantial changes in their transfection properties.
Collapse
Affiliation(s)
- Matthieu Sainlos
- Laboratoire de Chimie des Interactions Moléculaires, Collège de France, CNRS UPR 285, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Scarzello M, Smisterová J, Wagenaar A, Stuart MCA, Hoekstra D, Engberts JBFN, Hulst R. Sunfish Cationic Amphiphiles: Toward an Adaptative Lipoplex Morphology. J Am Chem Soc 2005; 127:10420-9. [PMID: 16028956 DOI: 10.1021/ja0515147] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A detailed physicochemical study is presented on a new class of cationic amphiphiles, Sunfish amphiphiles, recently designed, synthesized, and tested for gene delivery. These materials have two hydrophobic tails, connected to the cationic pyridinium headgroup at the 1- and 4-positions. Two extreme morphologies can be visualized, i.e. one by back-folding involving association of both tails at one side of the pyridinium ring and one by independent unfolding of the tails, the two molecular geometries leading to considerable differences in the aggregate morphology. The behavior of six members of the Sunfish family in mixtures with DOPE, applying different conditions relevant for transfection, has been studied by a combination of techniques (DLS, DSC, NMR, SAXS, Cryo-TEM, fluorescence, etc.). The effects of structural parameters such as the presence of unsaturation in the tails and length of the alkyl chains on the properties of the aggregates have been assessed. A correlation of these structural data with cellular transfection efficiencies reveals that the highest transfection efficiency is obtained with those amphiphiles that are easily hydrated, form fluid aggregates, and undergo a transition to the inverted hexagonal phase in the presence of plasmid DNA (p-DNA) at physiological ionic strength.
Collapse
Affiliation(s)
- Marco Scarzello
- Physical Organic Chemistry Unit, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
83
|
Tabatt K, Kneuer C, Sameti M, Olbrich C, Müller RH, Lehr CM, Bakowsky U. Transfection with different colloidal systems: comparison of solid lipid nanoparticles and liposomes. J Control Release 2005; 97:321-32. [PMID: 15196759 DOI: 10.1016/j.jconrel.2004.02.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 02/23/2004] [Indexed: 12/01/2022]
Abstract
Cationic solid lipid nanoparticles (SLN) for gene transfer are formulated using the same cationic lipids as for liposomal transfection agents. To investigate the differences and similarities in structure and performance between SLN and liposomes, a SLN preparation (S1), its counterpart formulation without matrix lipid (L1), a commercially available liposomal preparation (DLTR)--all based on the cationic lipid DOTAP--and a liposomal formulation that additionally contained the helper lipid dioleoylphosphatidylethanolamine (DOPE) (Escort) were compared. Photon correlation spectroscopy (PCS) showed that the SLN were smaller in diameter than the corresponding liposomes (88 vs. 148 nm) and atomic force microscopy (AFM) supported the expected structural differences. Desoxy ribonuclein acid (DNA) binding differed only marginally. Surprisingly, reporter gene expression was comparable between all DOTAP based formulations (S1, L1, DLTR), surpassed only by the DOPE containing liposomes (Escort). In conclusion, cationic lipid composition seems to be more dominant for in vitro transfection performance than the kind of colloidal structure it is arranged in. Hence, cationic SLN extend the range of highly potent non-viral transfection agents by one with favourable and distinct technological properties. Further SLN optimisation should be facilitated by the accumulated knowledge about cationic lipids in liposomal formulations.
Collapse
Affiliation(s)
- Kerstin Tabatt
- Department of Pharmaceutical Technology, Biopharmacy and Biotechnology, Free University of Berlin, 12169 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
84
|
Shi F, Hoekstra D. Effective intracellular delivery of oligonucleotides in order to make sense of antisense. J Control Release 2005; 97:189-209. [PMID: 15196747 DOI: 10.1016/j.jconrel.2004.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 03/12/2004] [Indexed: 01/28/2023]
Abstract
For more than two decades, antisense oligonucleotides (ODNs) have been used to modulate gene expression for the purpose of applications in cell biology and for development of novel sophisticated medical therapeutics. Conceptually, the antisense approach represents an elegant strategy, involving the targeting to and association of an ODN sequence with a specific mRNA via base-pairing, resulting in an impairment of functional and/or harmful protein expression in normal and diseased cells/tissue, respectively. Apart from ODN stability, its efficiency very much depends on intracellular delivery and release/access to the target side, issues that are still relatively poorly understood. Since free ODNs enter cells relatively poorly, appropriate carriers, often composed of polymers and cationic lipids, have been developed. Such carriers allow efficient delivery of ODNs into cells in vitro, and the mechanisms of delivery, both in terms of biophysical requirements for the carrier and cell biological features of uptake, are gradually becoming apparent. To become effective, ODNs require delivery into the nucleus, which necessitates release of internalized ODNs from endosomal compartments, an event that seems to depend on the nature of the delivery vehicle and distinct structural shape changes. Interestingly, evidence is accumulating which suggests that by modulating the surface properties of the carrier, the kinetics of such changes can be controlled, thus providing possibilities for programmable release of the carrier contents. Here, consideration will also be given to antisense design and chemistry, and the challenge of extra- and intracellular barriers to be overcome in the delivery process.
Collapse
Affiliation(s)
- Fuxin Shi
- Department of Membrane Cell Biology, Faculty of Medical Sciences, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
85
|
Zuhorn IS, Bakowsky U, Polushkin E, Visser WH, Stuart MCA, Engberts JBFN, Hoekstra D. Nonbilayer phase of lipoplex–membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol Ther 2005; 11:801-10. [PMID: 15851018 DOI: 10.1016/j.ymthe.2004.12.018] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 12/27/2004] [Indexed: 11/28/2022] Open
Abstract
Cationic lipids are widely used for gene delivery, and inclusion of dioleoylphosphatidylethanolamine (DOPE) as a helper lipid in cationic lipid-DNA formulations often promotes transfection efficacy. To investigate the significance of DOPE's preference to adopt a hexagonal phase in the mechanism of transfection, the properties and transfection efficiencies of SAINT-2/DOPE lipoplexes were compared to those of lipoplexes containing lamellar-phase-forming dipalmitoylphosphatidylethanolamine (DPPE). After interaction with anionic vesicles, to simulate lipoplex-endosomal membrane interaction, SAINT-2/DOPE lipoplexes show a perfect hexagonal phase, whereas SAINT-2/DPPE lipoplexes form a mixed lamellar-hexagonal phase. The transition to the hexagonal phase is crucial for dissociation of DNA or oligonucleotides (ODN) from the lipoplexes. However, while the efficiencies of nucleic acid release from either complex were similar, SAINT-2/DOPE lipoplexes displayed a two- to threefold higher transfection efficiency or nuclear ODN delivery. Interestingly, rupture of endosomes following a cellular incubation with ODN-containing SAINT-2/DPPE complexes dramatically improved nuclear ODN delivery to a level that was similar to that observed for SAINT-2/DOPE complexes. Our data demonstrate that although hexagonal phase formation in lipoplexes is a prerequisite for nucleic acid release from the complex, it appears highly critical for accomplishing efficient translocation of nucleic acids across the endosomal membrane into the cytosol for transport to the nucleus.
Collapse
Affiliation(s)
- Inge S Zuhorn
- Department of Membrane Cell Biology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
86
|
Fumoto S, Kawakami S, Ito Y, Shigeta K, Yamashita F, Hashida M. Enhanced hepatocyte-selective in vivo gene expression by stabilized galactosylated liposome/plasmid DNA complex using sodium chloride for complex formation. Mol Ther 2005; 10:719-29. [PMID: 15451456 DOI: 10.1016/j.ymthe.2004.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 07/13/2004] [Indexed: 11/27/2022] Open
Abstract
In this study, we demonstrated that the presence of an essential amount of sodium chloride (NaCl) during the formation of cationic liposome/plasmid DNA complexes (lipoplexes) stabilizes the lipoplexes according to the surface charge regulation (SCR) theory. Fluorescence resonance energy transfer analysis revealed that cationic liposomes in an SCR lipoplex (5 and 10 mM NaCl solution in lipoplex) increased fusion. Also, aggregation of SCR lipoplexes was significantly delayed after exposure to saline (150 mM NaCl) as a model of physiological conditions. After intraportal administration, the hepatic transfection activity of galactosylated SCR lipoplexes (5 and 10 mM NaCl solution in lipoplex) was approximately 10- to 20-fold higher than that of galactosylated conventional lipoplexes in mice. The transfection activity in hepatocytes of galactosylated SCR lipoplexes was significantly higher than that of conventional lipoplexes, and preexposure to competitive asialoglycoprotein-receptor blocker significantly reduced the hepatic gene expression, suggesting that hepatocytes are responsible for high hepatic transgene expression of the galactosylated SCR lipoplexes. Pharmacokinetic studies both in situ and in vivo demonstrated a higher tissue binding affinity and a greater expanse of intrahepatic distribution by galactosylated SCR lipoplexes. Moreover, enhanced transfection activity of galactosylated SCR lipoplexes was observed in HepG2 cells, and investigation of confocal microscopic images showed that the release of plasmid DNA in the cell was markedly accelerated. These characteristics partly explain the mechanism of enhanced in vivo transfection efficacy by galactosylated SCR lipoplexes. Hence, information in this study will be valuable for the future use, design, and development of ligand-modified lipoplexes for in vivo applications.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
87
|
Mirska D, Schirmer K, Funari SS, Langner A, Dobner B, Brezesinski G. Biophysical and biochemical properties of a binary lipid mixture for DNA transfection. Colloids Surf B Biointerfaces 2005; 40:51-9. [PMID: 15620840 DOI: 10.1016/j.colsurfb.2004.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/11/2004] [Accepted: 10/12/2004] [Indexed: 11/22/2022]
Abstract
The phase and miscibility behavior of a triple-chain phosphatidylcholine (TPHPC) and a single-chain surfactant (CTAB) were investigated in aqueous dispersions and in monolayers at the air/water interface. CTAB can be incorporated in the TPHPC monolayer because of its complementary molecule shape and reduces the tilt angle of TPHPC. The type of phases and the phase sequence (L2 - LS) are the same in the pure TPHPC monolayer and in the TPHPC/CTAB (80:20 mol:mol) mixture. No indication of any ordering of adsorbed DNA was observed. In the aqueous dispersions, TPHPC exhibits an inverted hexagonal phase above the chain melting. The addition of 30 mol% CTAB leads to the appearance of a lamellar Lalpha phase. The binding of DNA to the mixture is obvious but this is accompanied by a separation of the two lipids what is supported by monolayer experiments. The system has no long-term stability. The main reason seems to be not only the stronger interaction of DNA with CTAB, but also especially the unexpected weak interaction between CTAB and TPHPC. The transfection efficiency is lower compared with lipofectamine. The main disadvantage of this system is the cytotoxicity of CTAB, which could not be lowered by incorporation of CTAB in the TPHPC bilayer.
Collapse
Affiliation(s)
- D Mirska
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Golm/Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
88
|
Scarzello M, Chupin V, Wagenaar A, Stuart MCA, Engberts JBFN, Hulst R. Polymorphism of pyridinium amphiphiles for gene delivery: influence of ionic strength, helper lipid content, and plasmid DNA complexation. Biophys J 2004; 88:2104-13. [PMID: 15613636 PMCID: PMC1305262 DOI: 10.1529/biophysj.104.053983] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two double-tailed pyridinium cationic amphiphiles, differing only in the degree of unsaturation of the alkyl chains, have been selected for a detailed study of their aggregation behavior, under conditions employed for transfection experiments. The transfection efficiencies of the two molecules are remarkably different, especially when combined with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as helper lipid. The phase behavior of the cationic amphiphile/DOPE mixtures have been studied using (31)P- and (2)H-NMR (on deuterated cationic amphiphiles) as main techniques, to monitor independently the behavior of the two components. In water, the lamellar organization is dominant for both the surfactants in their mixtures with the helper lipid. In HEPES saline buffer (HBS), the mixtures of the unsaturated surfactant form inverted phases and, in particular, stable H(II) phases for DOPE contents > or =30 mol %. By contrast, the saturated surfactant does not form homogeneously mixed inverted phases in mixtures with DOPE at room temperature. However, mixed inverted phases are observed for this system at higher temperatures and, after mixing has been achieved by heating, the metastable mixed phases remain present for several hours at 5 degrees C. At 35 degrees C the dominant phase is the cubic phase. The lipoplex composed of equimolar mixtures of the unsaturated surfactant with DOPE and plasmid DNA was found to be organized in highly curved bilayers.
Collapse
Affiliation(s)
- Marco Scarzello
- Physical Organic Chemistry Unit, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
89
|
Natali F, Castellano C, Pozzi D, Congiu Castellano A. Dynamic properties of an oriented lipid/DNA complex studied by neutron scattering. Biophys J 2004; 88:1081-90. [PMID: 15542564 PMCID: PMC1305114 DOI: 10.1529/biophysj.104.042788] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of lipid-DNA (CL-DNA) complexes called lipoplexes, proposed as DNA vectors in gene therapy, is obtained by adding DNA to a solution containing liposomes composed of cationic and neutral lipids. The structural and dynamic properties of such lipoplexes are determined by a coupling between the electrostatic interactions and the elastic parameters of the lipid mixture. An attempt to achieve a better understanding of the structure-dynamics relationship is reported herein. In particular, an elastic neutron scattering investigation of DOTAP-DOPC (dioleoyl trimethylammonium propane-dioleoyl phosphatidylcoline) complexed with DNA is described. Proton dynamics in this oriented CL-DNA lipoplex is found to be strongly dependent upon DNA concentration. Our results show that a substantial modification of the membrane dynamics is accompanied by the balancing of the total net charge inside the complex, together with the consequent displacement of interlayer water molecules.
Collapse
|
90
|
Gordon SP, Berezhna S, Scherfeld D, Kahya N, Schwille P. Characterization of interaction between cationic lipid-oligonucleotide complexes and cellular membrane lipids using confocal imaging and fluorescence correlation spectroscopy. Biophys J 2004; 88:305-16. [PMID: 15516528 PMCID: PMC1305008 DOI: 10.1529/biophysj.104.043133] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Complexes formed by cationic liposomes and single-strand oligodeoxynucleotides (CL-ODN) are promising delivery systems for antisense therapy. ODN release from the complexes is an essential step for inhibiting activity of antisense drugs. We applied fluorescence correlation spectroscopy and confocal laser scanning microscopy to monitor CL-ODN complex interaction with membrane lipids leading to ODN release. To model cellular membranes we used giant unilamellar vesicles and investigated the transport of Cy-5-labeled ODNs across DiO-labeled membranes. For the first time, we directly observed that ODN molecules are transferred across the lipid bilayers and are kept inside the giant unilamellar vesicles after release from the carriers. ODN dissociation from the carrier was assessed by comparing diffusion constants of CL-ODN complexes and ODNs before complexation and after release. Freely diffusing Cy-5-labeled ODN (16-nt) has diffusion constant D(ODN) = 1.3 +/- 0.1 x 10(-6) cm2/s. Fluorescence correlation spectroscopy curves for CL-ODN complexes were fitted with two components, which both have significantly slower diffusion in the range of D(CL-ODN) = approximately 1.5 x 10(-8) cm2/s. Released ODN has the mean diffusion constant D = 1.1 +/- 0.2 x 10(-6) cm2/s, which signifies that ODN is dissociated from cationic lipids. In contrast to earlier studies, we report that phosphatidylethanolamine can trigger ODN release from the carrier in the full absence of anionic phosphatidylserine in the target membrane and that phosphatidylethanolamine-mediated release is as extensive as in the case of phosphatidylserine. The presented methodology provides an effective tool for probing a delivery potential of newly created lipid formulations of CL-ODN complexes for optimal design of carriers.
Collapse
Affiliation(s)
- Sean Patrick Gordon
- International Max Planck Research School for Molecular Biology, University of Goettingen, Goettingen, Germany; Experimental Biophysics Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany; and Institute of Biophysics/Biotec, Dresden University of Technology, Dresden, Germany
| | - Svitlana Berezhna
- International Max Planck Research School for Molecular Biology, University of Goettingen, Goettingen, Germany; Experimental Biophysics Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany; and Institute of Biophysics/Biotec, Dresden University of Technology, Dresden, Germany
| | - Dag Scherfeld
- International Max Planck Research School for Molecular Biology, University of Goettingen, Goettingen, Germany; Experimental Biophysics Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany; and Institute of Biophysics/Biotec, Dresden University of Technology, Dresden, Germany
| | - Nicoletta Kahya
- International Max Planck Research School for Molecular Biology, University of Goettingen, Goettingen, Germany; Experimental Biophysics Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany; and Institute of Biophysics/Biotec, Dresden University of Technology, Dresden, Germany
| | - Petra Schwille
- International Max Planck Research School for Molecular Biology, University of Goettingen, Goettingen, Germany; Experimental Biophysics Group, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany; and Institute of Biophysics/Biotec, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
91
|
Koynova R, MacDonald RC. Mixtures of cationic lipid O-ethylphosphatidylcholine with membrane lipids and DNA: phase diagrams. Biophys J 2004; 85:2449-65. [PMID: 14507708 PMCID: PMC1303469 DOI: 10.1016/s0006-3495(03)74668-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ethylphosphatidylcholines are positively charged membrane lipid derivatives, which effectively transfect DNA into cells and are metabolized by the cells. For this reason, they are promising nonviral transfection agents. With the aim of revealing the kinds of lipid phases that may arise when lipoplexes interact with cellular lipids during DNA transfection, temperature-composition phase diagrams of mixtures of the O-ethyldipalmitoylphosphatidylcholine with representatives of the major lipid classes (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, cholesterol) were constructed. Phase boundaries were determined using differential scanning calorimetry and synchrotron x-ray diffraction. The effects of ionic strength and of DNA presence were examined. A large variety of polymorphic and mesomorphic structures were observed. Surprisingly, marked enhancement of the affinity for nonlamellar phases was observed in mixtures with phosphatidylethanolamine and cholesterol as well as with phosphatidylglycerol (previously reported). Because of the potential relevance to transfection, it is noteworthy that such phases form at close to physiological conditions, and in the presence of DNA. All four mixtures exhibit a tendency to molecular clustering in the gel phase, presumably due to the specific interdigitated molecular arrangement of the O-ethyldipalmitoylphosphatidylcholine gel bilayers. It is evident that a remarkably broad array of lipid phases could arise in transfected cells and that these could have significant effects on transfection efficiency. The data may be particularly useful for selecting possible "helper" lipids in the lipoplex formulations, and in searches for correlations between lipoplex structure and transfection activity.
Collapse
Affiliation(s)
- Rumiana Koynova
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
92
|
Santhakumaran LM, Thomas T, Thomas TJ. Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers. Nucleic Acids Res 2004; 32:2102-12. [PMID: 15087489 PMCID: PMC407813 DOI: 10.1093/nar/gkh526] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We used polypropylenimine dendrimers for delivering a 31 nt triplex-forming oligonucleotide (ODN) in breast, prostate and ovarian cancer cell lines, using 32P-labeled ODN. Dendrimers enhanced the uptake of ODN by approximately 14-fold in MDA-MB-231 breast cancer cells, compared with control ODN uptake. Dendrimers exerted their effect in a concentration- and molecular weight-dependent manner, with generation 4 (G-4) dendrimer having maximum efficacy. A similar increase in ODN uptake was found with MCF-7 and SK-BR-3 (breast), LNCaP (prostate) and SK-OV-3 (ovarian) cancer cells. The dendrimers had no significant effect on cell viability at concentrations at which maximum ODN uptake occurred. [3H]Thymidine incorporation showed that complexing the ODN with G-4 significantly increased the growth-inhibitory effect of the ODN. Western blot analysis showed a significant 65% reduction of c-myc protein level in ODN-G-4 treated cells compared with that of ODN-treated/control cells. Gel electrophoretic analysis showed that ODN remained intact in cells even after 48 h of treatment. The hydrodynamic radii of nanoparticles formed from ODN in the presence of the dendrimers were in the range of 130-280 nm, as determined by dynamic laser light scattering. Taken together, our results indicate that polypropylenimine dendrimers might be useful vehicles for delivering therapeutic oligonucleotides in cancer cells.
Collapse
Affiliation(s)
- Latha M Santhakumaran
- Department of Medicine, Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|
93
|
Rejman J, Wagenaar A, Engberts JBFN, Hoekstra D. Characterization and transfection properties of lipoplexes stabilized with novel exchangeable polyethylene glycol-lipid conjugates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1660:41-52. [PMID: 14757219 DOI: 10.1016/j.bbamem.2003.10.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The positive charge of cationic-lipid/DNA complexes (lipoplexes) renders them highly susceptible to interactions with the biological milieu, leading to aggregation and destabilization, and rapid clearance from the blood circulation. In this study we synthesized and characterized a set of novel amphiphiles, based on N-methyl-4-alkylpyridinium chlorides (SAINTs), to which a PEG moiety is coupled. Plasmids were fully protected in lipoplexes prepared from cationic SAINT-2 lipid and stabilized with SAINT-PEGs. Our results demonstrate that SAINT-PEG stabilization is transient, and permits DNA to be released from these lipoplexes. The rate of SAINT-PEG transfer from lipoplexes to acceptor liposomes was determined by the nature of the lipid anchor. Increased hydrophobicity, by lengthening the alkyl chain, resulted in a decrease of the rate of DNA release from the lipoplexes. Chain unsaturation had the opposite effect. Similarly, the in vitro transfection potency of lipoplexes containing PEG-SAINT derivatives was sensitive to the length and (un)saturation of the alkyl chain. However, the internalization of SAINT-PEG stabilized lipoplexes is determined by their charge, rather than by the concentration of the polymer conjugate. Lipoplexes targeted to cell-surface epithelial glycoprotein 2, by means of a covalently coupled monoclonal antibody, were specifically internalized by cells expressing this antigen.
Collapse
Affiliation(s)
- Joanna Rejman
- Department of Membrane Cell Biology, University of Groningen, A Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
94
|
van Zanten J, Doornbos-Van der Meer B, Audouy S, Kok RJ, de Leij L. A nonviral carrier for targeted gene delivery to tumor cells. Cancer Gene Ther 2003; 11:156-64. [PMID: 14695757 DOI: 10.1038/sj.cgt.7700668] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we developed a nonviral, cationic, targeted DNA-carrier system by coupling SAINT/DOPE lipids to monoclonal antibodies. The two monoclonal antibodies used were both tumor specific, that is, MOC31 recognizes the epithelial glycoprotein EGP-2 present in carcinomas and Herceptin recognizes the HER-2/neu protein in breast and ovarian cancers. Coupling was performed under nonreducing conditions by covalent attachment. The coupling procedure appeared to be reproducible and the binding capacity of the antibody was not affected by linking them to the cationic lipid. Binding and transfection efficiency was assayed with target cells and nontarget cells. SAINT/DOPE lipoplexes as such appeared to be an effective transfection reagent for various cell lines. After coupling SAINT/DOPE to the monoclonal antibodies or F(ab)2 fragments, it was shown that the targeted MoAb-SAINT/DOPE lipoplexes preferably bound to target cells, compared to binding to the nontarget cells, especially for the Herceptin-SAINT/DOPE lipoplexes. More importantly, transfection of the target cells could also be improved with these targeted lipoplexes. In conclusion, we have shown that by using monoclonal antibody-coupled SAINT/DOPE lipoplexes cells targeted gene delivery can be achieved, and also a higher number of transfected target cells was seen.
Collapse
Affiliation(s)
- Jacoba van Zanten
- Department of PLG/Medical Biology, Academic Hospital Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
95
|
Kostarelos K. Rational design and engineering of delivery systems for therapeutics: biomedical exercises in colloid and surface science. Adv Colloid Interface Sci 2003; 106:147-68. [PMID: 14672846 DOI: 10.1016/s0001-8686(03)00109-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Engineering delivery systems of therapeutic agents has grown into an independent field, transcending the scope of traditional disciplines and capturing the interest of both academic and industrial research. At the same time, the acceleration in the discovery of new therapeutic moieties (chemical, biological, genetic and radiological) has led to an increasing demand for delivery systems capable of protecting, transporting, and selectively depositing those therapeutic agents to desired sites. The vast majority of delivery systems physically reside in the colloidal domain, while their surface properties and interfacial interactions with the biological milieu critically determine the pharmacological profiles of the delivered therapeutic agents. Interestingly though, the colloidal and surface properties of delivery systems are commonly overlooked in view of the predominant attention placed on the therapeutic effectiveness achieved. Moreover, the development and evaluation of novel delivery systems towards clinical use is often progressed by serendipity rather than a systematic design process, often leading to failure. The present article will attempt to illustrate the colloid and interfacial perspective of a delivery event, as well as exemplify the vast opportunities offered by treating, analysing and manipulating delivery systems as colloidal systems. Exploring and defining the colloid and surface nature of the interactions taking place between the biological moieties in the body and an administered delivery vehicle will allow for the rational engineering of effective delivery systems. A design scheme is also proposed on the way in which the engineering of advanced delivery systems should be practiced towards their transformation from laboratory inventions to clinically viable therapeutics. Lastly, three case studies are presented, demonstrating how rational manipulation of the colloidal and surface properties of delivery systems can lead to newly engineered systems relevant to chemotherapy, gene therapy and radiotherapy.
Collapse
Affiliation(s)
- Kostas Kostarelos
- Imperial College Genetic Therapies Centre, Flowers Building, South Kensington Campus, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
96
|
Simberg D, Weisman S, Talmon Y, Faerman A, Shoshani T, Barenholz Y. The role of organ vascularization and lipoplex-serum initial contact in intravenous murine lipofection. J Biol Chem 2003; 278:39858-65. [PMID: 12869564 DOI: 10.1074/jbc.m302232200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Following intravenous administration of cationic lipid-DNA complexes (lipoplexes) into mice, transfection (lipofection) occurs predominantly in the lungs. This was attributed to high entrapment of lipoplexes in the extended lung vascular tree. To determine whether lipofection in other organs could be enhanced by increasing the degree of vascularization, we used a transgenic mouse model with tissue-specific angiogenesis in liver. Tail vein injection of N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP)/cholesterol lipoplexes resulted in increased lipoplex entrapment in hypervascularized liver but did not boost luciferase expression, suggesting that lipoplex delivery is not a sufficient condition for efficient organ lipofection. Because the intravenously injected lipoplexes migrated within seconds to lungs, we checked whether the effects of immediate contact with serum correlate with lung lipofection efficiency of different DOTAP-based formulations. Under conditions mimicking the injection environment, the lipoplex-serum interaction was strongly dependent on helper lipid and ionic strength: lipoplexes prepared in 150 mM NaCl or lipoplexes with high (>33 mol%) cholesterol were found to aggregate immediately. This aggregation process was irreversible and was inversely correlated with the percentage of lung cells that took up lipoplexes and with the efficiency of lipofection. No other structural changes in serum were observed for cholesterol-based lipoplexes. Dioleoyl phosphatidylethanolamine-based lipoplexes were found to give low expression, apparently because of an immediate loss of integrity in serum, without lipid-DNA dissociation. Our study suggests that efficient in vivo lipofection is the result of cross-talk between lipoplex composition, interaction with serum, hemodynamics, and target tissue "susceptibility" to transfection.
Collapse
Affiliation(s)
- Dmitri Simberg
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University-Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
97
|
Lee CH, Ni YH, Chen CC, Chou CK, Chang FH. Synergistic effect of polyethylenimine and cationic liposomes in nucleic acid delivery to human cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1611:55-62. [PMID: 12659945 DOI: 10.1016/s0005-2736(03)00027-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyethylenimine (PEI) and other polycations are good vehicles for transferring genes into the cells. In earlier reports, poly-L-lysine and protamine have been shown to improve gene delivery with cationic liposomes. In this study, PEI, combined with different cationic liposomes, was studied to determine the optimal conditions for gene delivery. The reporter genes, luciferase and green fluorescent protein, were used to transfect human HeLa, HepG2 and hepatoma 2.2.15 cells with various combinations of PEIs (0.8 and 25 kDa), poly-L-lysine (15-30 kDa), protamine and cationic liposomes. The highest expression level was achieved by using the combination of PEI 25 kDa (0.65 microg/microg of DNA, nitrogen-to-DNA phosphate (N/P) ratio=4.5) with 10 nmol of DOTAP-cholesterol (DOTAP-Chol, 1:1 w/w). This DNA complex formulation dramatically increased the luciferase expression 10- to 100-fold, which was much higher than those of other polycations alone, cationic liposomes alone or the combination. In addition, PEI/DOTAP-Chol combination had little cytotoxicity than DOTAP-Chol or other cationic liposomes alone. The effect of oligonucleotide (ODN) delivery facilitated by PEI and cationic liposomes was also studied in the hepatoma cell lines. We demonstrated an antisense ODN of p53 delivered by PEI/DOTAP-Chol combination effectively inhibited the biosynthesis of p53 protein in HepG2 (68% inhibiton) and 2.2.15 cells (43% inhibition). Thus, the large PEI could synergistically increase the transfection efficiency when combined with the cationic liposomes.
Collapse
Affiliation(s)
- Chien-Hsin Lee
- Institute of Biochemistry and Molecular Biology, College of Medicine, Room 911, National Taiwan University, No 1, Sec 1, Jen-Ai Rd, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
98
|
Bell PC, Bergsma M, Dolbnya IP, Bras W, Stuart MCA, Rowan AE, Feiters MC, Engberts JBFN. Transfection mediated by gemini surfactants: engineered escape from the endosomal compartment. J Am Chem Soc 2003; 125:1551-8. [PMID: 12568615 DOI: 10.1021/ja020707g] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure of the lipoplex formed from DNA and the sugar-based cationic gemini surfactant 1, which exhibits excellent transfection efficiency, has been investigated in the pH range 8.8-3.0 utilizing small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-TEM). Uniquely, three well-defined morphologies of the lipoplex were observed upon gradual acidification: a lamellar phase, a condensed lamellar phase, and an inverted hexagonal (H(II)) columnar phase. Using molecular modeling, we link the observed lipoplex morphologies and physical behavior to specific structural features in the individual surfactant, illuminating key factors in future surfactant design, viz., a spacer of six methylene groups, the presence of two nitrogens that can be protonated in the physiological pH range, two unsaturated alkyl tails, and hydrophilic sugar headgroups. Assuming that the mechanism of transfection by synthetic cationic surfactants involves endocytosis, we contend that the efficacy of gemini surfactant 1 as a gene delivery vehicle can be explained by the unprecedented observation of a pH-induced formation of the inverted hexagonal phase of the lipoplex in the endosomal pH range. This change in morphology leads to destabilization of the endosome through fusion of the lipoplex with the endosomal wall, resulting in release of DNA into the cytoplasm.
Collapse
Affiliation(s)
- Paul C Bell
- Contribution from the Physical Organic Chemistry Unit, Stratingh Institute, University of Groningen, 4 Nijenborgh, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Cationic Lipid-Nucleic Acid Complexes (Lipoplexes): from Physicochemical Properties to In Vitro and In Vivo Transfection Kits. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-94-007-0958-4_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|