51
|
|
52
|
Li N, DeMarco VG, West CM, Neu J. Glutamine supports recovery from loss of transepithelial resistance and increase of permeability induced by media change in Caco-2 cells. J Nutr Biochem 2003; 14:401-8. [PMID: 12915221 DOI: 10.1016/s0955-2863(03)00071-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent evidence suggests that the conditionally essential amino acid glutamine is important for intestinal barrier function. However, the mechanism remains undefined. To determine the effects of glutamine on permeability of intestinal epithelial cell monolayers, Caco-2 cells were grown on membrane filters and exposed to 4 mmol/L sodium butyrate in order to rapidly achieve high levels of alkaline phosphatase and high transepithelial resistance as seen in functionally mature enterocytes. A standard method of medium exchange consisting of removal and replacement resulted in a catastrophic loss of transepithelial resistance and increase of mannitol and dextran fluxes that required 2-4 hrs and protein synthesis to recover. The effect was attributed to exposure of the upper monolayer surface to atmosphere and could be avoided by refeeding by incremental perfusion. Spontaneously-differentiated Caco-2 monolayers were resistant to this stress. This novel stress test was employed as a sensitive assay for the requirement of glutamine for monolayer transepithelial resistance and mannitol permeability. Pre-stress glutamine availability was more important than Gln-availability during the recovery phase. Thus the transepithelial resistance and permeability of butyrate-induced monolayers is dynamically-regulated in response to atmospheric exposure, by a mechanism that depends on threshold levels of glutamine availability.
Collapse
Affiliation(s)
- Nan Li
- Department of Pediatrics, University of Florida, College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
53
|
Wu XT, Li JS, Zhao XF, Li N, Ma YK, Zhuang W, Zhou Y, Yang G. Effects of n-3 fatty acid, fructose-1, 6-diphosphate and glutamine on mucosal cell proliferation and apoptosis of small bowel graft after transplantation in rats. World J Gastroenterol 2003; 9:1323-6. [PMID: 12800249 PMCID: PMC4611809 DOI: 10.3748/wjg.v9.i6.1323] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effects of n-3 fatty acids (n-3FA), fructose-1, 6-diphosphate (FDP) and glutamine (GLN) on mucosal cell proliferation and apoptosis of small bowel graft.
METHODS: One hundred and ninety-six inbred strain Wistar rats were grouped as donors and recipients, and underwent heterotopic small bowel transplantation (SBT). n-3FA, FDP and GLN were administered via gastric tube as well as venous infusion for 10 d before and after surgery, respectively. The proliferation and apoptosis of mucosal cells were analyzed with flow cytometry and in situ cell death detection kits.
RESULTS: Apparent apoptosis and minor proliferation of mucosal cells of small bowel graft after transplantation were observed. A higher mucosal cell proliferative index and lower apoptotic index were found in all small bowel grafts after supplying with n-3FA, FDP and GLN.
CONCLUSION: Nutritional support with n-3FA, FDP and GLN promotes mucosal cell proliferation significantly, and prevents mucosal cell from undergoing apoptosis with different degrees. These regulatory effects on the apoptosis alter the structure and absorption function of transplanted small bowel favorably.
Collapse
Affiliation(s)
- Xiao-Ting Wu
- Department of General Surgery, West China Hospital, Sichuan University, 37 Guo Xue Rd., Chengdu 610041, Sichuan Province, China.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Xia Y, Wen HY, Young ME, Guthrie PH, Taegtmeyer H, Kellems RE. Mammalian target of rapamycin and protein kinase A signaling mediate the cardiac transcriptional response to glutamine. J Biol Chem 2003; 278:13143-50. [PMID: 12522136 DOI: 10.1074/jbc.m208500200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The addition of glutamine as a major nutrient to cultured neonatal rat cardiomyocytes produced an increase in myocyte size and the organization of actin into myofibrillar arrays. The cellular response was associated with increased abundance of the mRNAs encoding the contractile proteins, alpha-myosin heavy chain and cardiac alpha-actin, and the metabolic enzymes, muscle carnitine palmitoyl transferase I and muscle adenylosuccinate synthetase (ADSS1). Adss1 gene expression was induced approximately 5-fold in glutamine-treated rat neonatal cardiac myocytes. The induction was mediated through the protein kinase A and mammalian target of rapamycin signaling pathways and required a cyclic AMP response element associated with the promoter region of the Adss1 gene. These results highlight glutamine as a major nutrient regulator of cardiac gene expression and identify protein kinase A and mammalian target of rapamycin signaling pathways as mediators of the cardiomyocyte transcriptional response.
Collapse
Affiliation(s)
- Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas, Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
55
|
Spoto G, Fioroni M, Rubini C, Contento A, Di Nicola M, Forcella S, Piattelli A. Cyclic guanosine monophosphate phosphodiesterase activity in human gingival carcinoma. J Oral Pathol Med 2003; 32:189-94. [PMID: 12653856 DOI: 10.1034/j.1600-0714.2003.00083.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Cyclic guanosine monophosphate (cGMP) is an essential second messenger metabolized by phosphodiesterases (PDEs). OBJECTIVES We looked for a possible correlation of PDE activities in human oral squamous cell carcinoma (OSCC) with and without lymph node metastases. MATERIALS AND METHODS The analysis of phosphodiesterase activity and the cGMP assay were done by reverse-phase HPLC on samples of fresh or frozen gingival tissues. Analysis of cGMP was confirmed with the enzyme-linked immunoabsorption assay. RESULTS AND CONCLUSIONS cGMP PDE activity was 34.92 +/- 7.17 SD, 12.89 +/- 4.43 SD, and 35.88 +/- 8.76 SD (nmols/mg of protein), respectively, in controls, samples without lymph node involvement (N-), and specimens with lymph node metastases (N+). cGMP values were 1.97 +/- 0.63 SD, 3.30 +/- 1.47 SD, and 3.49 +/- 1.47 SD (nmols/mg of protein). Our data support the hypothesis of a role for cGMP and PDE in the progression of OSCC.
Collapse
Affiliation(s)
- Giuseppe Spoto
- Department of Applied Sciences of Oral and Dental Diseases, G. D'Annunzio University, Via dei Vestini 31, 66013 Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|
56
|
Carneiro-Filho BA, Bushen OY, Brito GA, Lima AA, Guerrant RL. Glutamine Analogues As Adjunctive Therapy for Infectious Diarrhea. Curr Infect Dis Rep 2003; 5:114-119. [PMID: 12641996 DOI: 10.1007/s11908-003-0046-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Glutamine is the major fuel for the gut as well as for many cells in the immune system that becomes conditionally essential during catabolic states. Glutamine supplementation improves intestinal mucosal repair and function. Glutamine, even at high doses, is without side effects and is well tolerated. Though unstable in solution, this is overcome by creating stable dipeptides such as alanyl-glutamine. In HIV-positive patients with wasting, glutamine enhances intestinal absorptive function and weight gain. Glutamine enhances sodium and water absorption in a rabbit model of cholera and Cryptosporidium-infected piglet intestine. Both glutamine and alanyl-glutamine have recently proven effective in a bovine model of Cryptosporidium as well. Finally, a rat model of cholera toxin-induced diarrhea also showed that alanyl-glutamine enhanced water and electrolyte intestinal absorption even better than the traditional glucose solutions. Clearly glutamine and its stabler derivatives hold promise for enhancing repair of mucosal injury by a wide range of infections or toxic agents, and hence have great potential as a new oral rehydration and nutrition therapy for patients with enteric infection, malnutrition, or chemotherapy- or radiation-induced enteritis.
Collapse
Affiliation(s)
- Benedito A. Carneiro-Filho
- *Center for Global Health, School of Medicine, University of Virginia, MR4, Lane Road, Room 3148, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
57
|
Potsic B, Holliday N, Lewis P, Samuelson D, DeMarco V, Neu J. Glutamine supplementation and deprivation: effect on artificially reared rat small intestinal morphology. Pediatr Res 2002; 52:430-6. [PMID: 12193680 DOI: 10.1203/00006450-200209000-00021] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mechanisms of how glutamine benefits critically ill patients have not been established. The purpose of this study was to determine the effects of dietary and endogenously produced glutamine on small intestinal morphology using light and transmission electron microscopy in artificially reared rat pups. It was hypothesized that deprivation of dietary glutamine leads to intestinal disease that is exacerbated by inhibition of glutamine synthetase by methionine sulfoximine (MS). Rat pups were placed into five different test groups: The first was a reference group that was reared by their mother. The other four groups were reared artificially and received a 10% Travasol amino acid solution at 5 g/kg per day, which does not contain glutamine, added to a mixture containing carbohydrates, lipids, and vitamins. This dose was chosen because it represents an approximation of the amount of glutamine these rats would be receiving in a normal rat diet (approximately 40 g/kg per day total protein, 10 to 15% of which is glutamine + glutamate). The glutamine was manipulated by adding glutamine (Q) or MS or both. The four groups were as follows: MS-Q-, MS-Q+, MS+Q-, and MS+Q+. Light microscopy revealed the greatest blunting of villus height in the ileum of rats from the MS+Q- group when compared with the MS-Q+ group (123 +/- 48.9 micro m versus 207 +/- 36 microm, p < 0.05). The other two groups exhibited intermediate villus heights, but all were shorter than the villi from the mother-reared animals. The number of villi per unit length of bowel was also lowest in the animals that were treated with MS and not provided with dietary glutamine. Transmission electron microscopy demonstrated breakdown of the epithelial junctions in the glutamine-deprived and glutamine synthetase-inhibited intestines. Glutamine-deprived animals also displayed sloughing of microvilli, decreased actin cores, and degeneration of the terminal web. In summary, these studies support the hypothesis that glutamine is involved with maintenance of intestinal epithelial integrity.
Collapse
Affiliation(s)
- Bradley Potsic
- Division of Neonatology, Department of Pediatrics, J. Hillis Miller Health Center, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
58
|
Lau HKF, Ho J. Regulation of plasminogen activator inhibitor-1 secretion by growth factors in smooth muscle cells. Blood Coagul Fibrinolysis 2002; 13:541-9. [PMID: 12192306 DOI: 10.1097/00001721-200209000-00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epithelioid-type vascular smooth muscle cells are metabolically active and secrete many proteases and protease inhibitors. We have previously cloned epithelioid-type smooth muscle cells from rat carotid arteries, and showed that polypeptide growth factors basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) could dose-dependently induce plasminogen activator inhibitor-1 (PAI-1) secretion from these cells. In the present study, we have used these cells to investigate the growth factor-induced signal transduction pathways leading to PAI-1 secretion. We report here that PAI-1 induction was dependent on protein kinase C (PKC) and tyrosine kinase but not on protein kinase A (PKA), ras and phosphoinositol-3-kinase inhibitor. Induction of PAI-1 by bFGF and PDGF was also accompanied by activation of a mitogen-activated protein kinase pathway involving Raf/Mek/Erk1/2, and the family non-receptor tyrosine kinases., another non-receptor tyrosine kinase, on the contrary, behaved differently from in that it was part of a pathway leading to PAI-1 induction by bFGF, but not when PDGF was used as the stimulating reagent. Activation of a PKA-dependent pathway(s) opposed PAI-1 induction. One mechanism for PKA activators to inhibit PAI-1 secretion was that they markedly inhibited the phosphorylations of Mek and mitogen-activated protein kinase that were up-regulated in the presence of bFGF and PDGF.
Collapse
Affiliation(s)
- H K F Lau
- Division of Hematology, Department of Medicine, St Michael's and University of Toronto, Ontario, Canada.
| | | |
Collapse
|
59
|
Cynober L. [Nitrogenous pharmacologic nutrients: from the laboratory to the bedside of the patient]. Rev Med Interne 2002; 23 Suppl 2:359s-368s. [PMID: 12108208 DOI: 10.1016/s0248-8663(02)80050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
60
|
Matés JM, Pérez-Gómez C, Núñez de Castro I, Asenjo M, Márquez J. Glutamine and its relationship with intracellular redox status, oxidative stress and cell proliferation/death. Int J Biochem Cell Biol 2002; 34:439-58. [PMID: 11906817 DOI: 10.1016/s1357-2725(01)00143-1] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glutamine is a multifaceted amino acid used for hepatic urea synthesis, renal ammoniagenesis, gluconeogenesis in both liver and kidney, and as a major respiratory fuel for many cells. Decreased glutamine concentrations are found during catabolic stress and are related to susceptibility to infections. Besides, glutamine is not only an important energy source in mitochondria, but is also a precursor of the brain neurotransmitter glutamate, which is likewise used for biosynthesis of the cellular antioxidant glutathione. Reactive oxygen species, such as superoxide anions and hydrogen peroxide, function as intracellular second messengers activating, among others, apoptosis, whereas glutamine is an apoptosis suppressor. In fact, it could contribute to block apoptosis induced by exogenous agents or by intracellular stimuli. In conclusion, this article shows evidences for the important role of glutamine in the regulation of the cellular redox balance, including brain oxidative metabolism, apoptosis and tumour cell proliferation.
Collapse
Affiliation(s)
- José M Matés
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n 29071 Málaga, Spain.
| | | | | | | | | |
Collapse
|
61
|
Lau HKF, Ho J. Regulation of plasminogen activator inhibitor-1 secretion by urokinase and tissue plasminogen activator in rat epithelioid-type smooth muscle cells. Br J Haematol 2002; 117:151-8. [PMID: 11918547 DOI: 10.1046/j.1365-2141.2002.03402.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue plasminogen activator (tPA) and urokinase (uPA) are targets of plasminogen activator inhibitor-1 (PAI-1) inhibition. We have previously shown that both proteases can also induce PAI-1 secretion in rat smooth muscle cells (SMCs). We now report that both proteases appear to use very similar cellular mechanisms for signal transduction. They induced PAI-1 secretion using a pathway(s) involving protein kinase C (PKC). They also activated the Raf/Mek/mitogen-activated protein kinase (MAPK) pathway, which lies downstream of PKC activation. Activation of protein kinase A (PKA), however, lowered PAI-1 secretion induced by uPA and tPA, as a result of an inhibition of the PKC pathway and inhibition of Raf, Mek and MAPK phosphorylations. Src and syk family non-receptor tyrosine kinases (TK) were also involved in PAI-1 induction. The mechanisms of interaction of these tyrosine kinases with other pathways appeared to be quite different: src appeared to act within the PKC and PKA pathways, while syk operated independently of these pathways. Furthermore, whereas src inhibition resulted in inhibition of Raf/Mek/Erk phosphorylations, syk inhibition could only inhibit Mek and Erk phosphorylations but not the phosphorylation of Raf. These multiple pathways utilized by uPA and tPA to modulate PAI-1 secretion might be involved in determining the proteolytic or antiproteolytic potential of the SMCs under different pathophysiological conditions.
Collapse
Affiliation(s)
- Herbert K F Lau
- Division of Hematology, Department of Medicine, St. Michael's Hospital and University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
62
|
Abstract
AIM: To determine whether the gastrin stimulated intestinal crypt cell (IEC-6) proliferation by induction of ornithine decarboxylase (ODC).
METHODS: IEC-6 cells were grown in DMEM containing 50 mL·L-1 dialyzed fetal bovine serum for 24 h and then were treated with gastrin. The proliferative capability of the cells was monitored subsequently on d 1, 2, 3, and 4 after treatment with MTT assay at aborbance 570 nm. The cellular ODC mRNA expression, ODC activity, and putrescine content were examined by RT-PCR method, radiometric technique and high-performance liquid chromatography(HPLC) analysis respectively after 12 h of treatment.
RESULTS: On d1 after exposure of IEC-6 cells to pentagastrin, the proliferation increased initially and reached a peak on d3 at 250 μg·L-1 concentration. Pentagastrin 500 μg·L-1 increased cell proliferation on day 1 and day 2, and then decreased. Compared with control group, pentagastrin 250 μg·L-1 increased ODC mRNA level by 1.09-fold (P < 0.05), ODC activity by 1.71-fold(P < 0.01), and putrescine content 5.30-fold (P < 0.01), respectively. Similarly, pentagastrin of 500 μg·L-1 also increased ODC mRNA level by 1.16-fold (P < 0.05), ODC activity 1.63-fold(P < 0.05), and putrescine content 4.41-fold (P < 0.01), respectively. But there was not significant difference between them.
CONCLUSION: Gastrin is an agent which promotes IEC-6 cell proliferation involved in regulating ODC activity mechanism.
Collapse
Affiliation(s)
- Zi-Li Zhang
- Piei Institute,Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, China
| | | |
Collapse
|
63
|
Burrin D. Chapter 24 Gastrointestinal protein and amino acid metabolism in growing animals. BIOLOGY OF GROWING ANIMALS 2002. [DOI: 10.1016/s1877-1823(09)70140-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
64
|
Abstract
Supplementation of the conditionally essential amino acid glutamine may be beneficial for individuals who are highly stressed and have minimal energy and protein reserves. This includes elderly individuals, postoperative patients, individuals with cancer and very low birthweight infants. Individuals who are undergoing treatment with catabolic glucocorticoids may also benefit. Unfortunately, confusion exists as to situations in which glutamine may be beneficial because a clearly defined "glutamine deficiency syndrome" has not been described as for some other nutrients. In this review, we will discuss how glutamine affects protein metabolism under certain stressful conditions, how it affects intestinal mucosal integrity and how this might relate to sepsis and systemic inflammation. We will also discuss nutrients that are closely related to glutamine such as glutamate, nucleotides, arginine, glucosamines, and ornithine alpha-ketoglutarate and how and why they might be used as substitutes for glutamine.
Collapse
Affiliation(s)
- Josef Neu
- Department of Pediatrics/Division of Neonatology, University of Florida, Gainesville, FL 326-0296, USA.
| | | | | |
Collapse
|
65
|
Kim JK, Takahashi I, Kai Y, Kiyono H. Influence of enterotoxin on mucosal intranet: selective inhibition of extrathymic T cell development in intestinal intraepithelial lymphocytes by oral exposure to heat-labile toxin. Eur J Immunol 2001; 31:2960-9. [PMID: 11592072 DOI: 10.1002/1521-4141(2001010)31:10<2960::aid-immu2960>3.0.co;2-u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We tested the possibility that heat-labile enterotoxin of Escherichia coli (LT) affects the development of extrathymic T cells in the intraepithelial lymphocyte (IEL) compartment. After oral administration of LT, the number of extrathymic CD8alphaalpha+ IEL was selectively and significantly diminished when compared with the corresponding cells in phosphate-buffered saline-fed control mice. To clarify the mechanism behind this selective reduction of CD8alphaalpha+ IEL, we analyzed the expression of essential cytokines and their corresponding receptors for the mucosal intranet formed by intestinal epithelial cells (IEC) and IEL. The expression levels of stem cell factor, interleukin (IL)-7, and IL-15 in IEC, and their corresponding receptors, i. e. c-kit, IL-7 receptor, and IL-15 receptor, in CD8alphaalpha+ IEL were reduced following oral feeding with LT. These findings suggest that LT negatively regulates development of CD8alphaalpha+ IEL via the disruption of mucosal intranet-associated cytokine and cytokine receptors, which are required for the development and/or expansion of extrathymically developed T cells. Further, LT-induced destruction of the mucosal intranet resulted in the impairment of IEC generation via an increase of apoptosis.
Collapse
Affiliation(s)
- J K Kim
- Department of Mucosal Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
66
|
Häussinger D, Graf D, Weiergräber OH. Glutamine and cell signaling in liver. J Nutr 2001; 131:2509S-14S; discussion 2523S-4S. [PMID: 11533303 DOI: 10.1093/jn/131.9.2509s] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the liver, glutamine plays an important role in ammonia detoxication and the regulation of pH homeostasis ("intercellular glutamine cycle"). In addition, this amino acid regulates liver metabolism and transport by mechanisms that cannot be attributed to its metabolism. Examples include the stimulation of protein and glycogen synthesis and bile acid secretion and the inhibition of proteolysis in liver. The major trigger for such effects is an increased hepatocyte hydration due to the cumulative uptake of glutamine into the cells, which activates osmosignaling pathways involving mitogen-activated protein kinases (MAPK). Glutamine- and hypoosmolarity-induced cell swelling activates extracellular signal-regulated kinases (ERK) and p38(MAPK). Activation of these MAPK results in an increased capacity of bile acid excretion into bile due to a rapid translocation of canalicular transport ATPases from a subcanalicular storage compartment to the canalicular membrane. Similarly, glutamine augments biliary excretion of cysteinyl leukotrienes in endotoxin-treated rat livers. Also, the antiproteolytic effect of glutamine is largely due to glutamine-induced cell swelling, which activates osmosignaling pathways. Here, the glutamine-induced p38(MAPK) activation mediates the inhibition of autophagic proteolysis at the level of autophagosome formation.
Collapse
Affiliation(s)
- D Häussinger
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Düsseldorf, Germany.
| | | | | |
Collapse
|
67
|
Abstract
Since the pioneering work of Windmueller and Spaeth, the importance of glutamine to the support of intestinal mucosal metabolic function has become generally accepted. Nevertheless, the mechanisms underlying this role still remain obscure. This paper explores a number of questions: 1) Is glutamine essential for intestinal function? 2) To what extent does this relate to its intermediary metabolism? 3) What is the importance of glutamine as a biosynthetic precursor? 4) Is glutamine supplementation of the nutrient mixture presented to patients of any metabolic or clinical benefit? As a result of this exploratory exercise, the following general conclusions were reached: 1) Much suggestive biochemical and physiologic evidence exists that implies that glutamine, especially systemic glutamine, supports the function of the intestinal mucosal system. 2) Despite the extensive metabolism of this amino acid by the intestinal tissues, most evidence suggests that if glutamine does play a physiologic role in the bowel, it is not compellingly related to its intermediary metabolism. 3) There is, on the other hand, evidence that the mucosal cells not only utilize extracellular glutamine but synthesize the amino acid. Given that inhibition of glutamine synthesis inhibits both proliferation and differentiation of mucosal cell cultures, this suggests some more subtle regulatory role. This notion is supported by the demonstration that glutamine will activate a number of genes associated with cell cycle progression in the mucosa. 4) Despite the accumulated evidence, the mechanisms underlying glutamine's function and the question whether glutamine supplementation uniformly benefits mucosal health remain equivocal at best.
Collapse
Affiliation(s)
- P J Reeds
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
68
|
Rhoads M. Session III: Physiological Aspects of Glutamine Metabolism II—Discussion Summary. J Nutr 2001; 131:2532S-2534S. [DOI: 10.1093/jn/131.9.2532s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
|
69
|
Pitari GM, Di Guglielmo MD, Park J, Schulz S, Waldman SA. Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells. Proc Natl Acad Sci U S A 2001; 98:7846-51. [PMID: 11438734 PMCID: PMC35430 DOI: 10.1073/pnas.141124698] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The effects of Escherichia coli heat-stable enterotoxin (ST) and uroguanylin were examined on the proliferation of T84 and Caco2 human colon carcinoma cells that express guanylyl cyclase C (GC-C) and SW480 human colon carcinoma cells that do not express this receptor. ST or uroguanylin inhibited proliferation of T84 and Caco2 cells, but not SW480 cells, in a concentration-dependent fashion, assessed by quantifying cell number, cell protein, and [(3)H]thymidine incorporation into DNA. These agonists did not inhibit proliferation by induction of apoptosis, assessed by TUNEL (terminal deoxynucleotidyl transferase-mediated dNTP-biotin nick end labeling of DNA fragments) assay and DNA laddering, or necrosis, assessed by trypan blue exclusion and lactate dehydrogenase release. Rather, ST prolonged the cell cycle, assessed by flow cytometry and [(3)H]thymidine incorporation into DNA. The cytostatic effects of GC-C agonists were associated with accumulation of intracellular cGMP, mimicked by the cell-permeant analog 8-Br-cGMP, and reproduced and potentiated by the cGMP-specific phosphodiesterase inhibitor zaprinast but not the inactive ST analog TJU 1-103. Thus, GC-C agonists regulate the proliferation of intestinal cells through cGMP-dependent mechanisms by delaying progression of the cell cycle. These data suggest that endogenous agonists of GC-C, such as uroguanylin, may play a role in regulating the balance between epithelial proliferation and differentiation in normal intestinal physiology. Therefore, GC-C ligands may be novel therapeutic agents for the treatment of patients with colorectal cancer.
Collapse
Affiliation(s)
- G M Pitari
- Division of Clinical Pharmacology, Department of Medicine, Thomas Jefferson University, 132 South 10th Street, 1170 Main, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
70
|
Ko YG, Kim EY, Kim T, Park H, Park HS, Choi EJ, Kim S. Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J Biol Chem 2001; 276:6030-6. [PMID: 11096076 DOI: 10.1074/jbc.m006189200] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glutamine has been known to be an apoptosis suppressor, since it blocks apoptosis induced by heat shock, irradiation, and c-Myc overexpression. Here, we demonstrated that HeLa cells were susceptible to Fas-mediated apoptosis under the condition of glutamine deprivation. Fas ligation activated apoptosis signal-regulating kinase 1 (ASK1) and c-Jun N-terminal kinase (JNK; also known as stress-activated protein kinase (SAPK)) in Gln-deprived cells but not in normal cells, suggesting that Gln might be involved in the activity control of ASK1 and JNK/SAPK. As one of the possible mechanisms for the suppressive effect of Gln on ASK1, we investigated the molecular interaction between human glutaminyl-tRNA synthetase (QRS) and ASK1 and found the Gln-dependent association of the two molecules. While their association was enhanced by the elevation of Gln concentration, they were dissociated by Fas ligation within 5 min. The association involved the catalytic domains of the two enzymes. The ASK1 activity was inhibited by the interaction with QRS as determined by in vitro kinase and transcription assays. Finally, we have shown that QRS inhibited the cell death induced by ASK1, and this antiapoptotic function of QRS was weakened by the deprivation of Gln. Thus, the antiapoptotic interaction of QRS with ASK1 is controlled positively by the cellular concentration of Gln and negatively by Fas ligation. The results of this work provide one possible explanation for the working mechanism of the antiapoptotic activity of Gln and suggest a novel function of mammalian ARSs.
Collapse
Affiliation(s)
- Y G Ko
- National Creative Research Initiatives Center for ARS Network, Sung Kyun Kwan University, Suwon, Kyunggido 440-746, Korea
| | | | | | | | | | | | | |
Collapse
|
71
|
|
72
|
Abstract
The amino acid glutamine has become one of the most intensively studied nutrients in the field of nutrition and metabolic support. A variety of studies in cell culture systems, animal models of gut mucosal atrophy, injury/repair and adaptation and a limited number of clinical trials demonstrate trophic and cytoprotective effects of glutamine in small bowel and colonic mucosal cells. Although the routine clinical use of glutamine-enriched parenteral and enteral nutrient solutions remains controversial, available data demonstrate both the safety and metabolic and clinical efficacy of glutamine treatment in selected patient groups. Basic investigations are elucidating underlying mechanisms of glutamine action in intestinal cells. These will inform preclinical and clinical investigations designed to determine glutamine efficacy in selected gastrointestinal disorders. Emerging clinical trials will further define the utility of adjunctive glutamine supplementation as a component of specialized nutrition support in gastrointestinal disease.
Collapse
Affiliation(s)
- T R Ziegler
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|