51
|
Shiraishi K, Imai Y, Yoshizaki S, Ikeda H. Rep helicase suppresses short-homology-dependent illegitimate recombination in Escherichia coli. Genes Cells 2005; 10:1015-23. [PMID: 16236131 DOI: 10.1111/j.1365-2443.2005.00901.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To study roles of Rep helicase in short-homology-dependent illegitimate recombination, we examined the effect of a rep mutation on illegitimate recombination and found that the frequency of spontaneous illegitimate recombination is enhanced by the rep mutation. In addition, illegitimate recombination was synergistically enhanced by the rep mutation and UV irradiation, showing that Rep helicase plays a role in suppression of spontaneous as well as UV-induced illegitimate recombination. The defect in RecQ helicase also has a synergistic effect on the increased illegitimate recombination in the rep mutant. It was also found that the illegitimate recombination induced by the rep mutation is independent of the RecA function with or without UV irradiation. Nucleotide sequence analyses of the recombination junctions showed that the illegitimate recombination induced by the rep mutation mostly takes place between short homologous sequences. Based on the fact that the defect of Rep helicase induces replication arrest during replication, resulting in the formation of DNA double-strand breaks, we propose a model for illegitimate recombination, in which double-strand breaks caused by defect of Rep helicase promotes illegitimate recombination via short-homology-dependent-end-joining. In addition, the mechanism of synergistic action between the rep mutation and UV irradiation on illegitimate recombination is discussed.
Collapse
Affiliation(s)
- Kouya Shiraishi
- Institute of Medical Science, Medinet, Tamagawadai 2-2-8, Tokyo 158-0096, Japan
| | | | | | | |
Collapse
|
52
|
Van Houten B, Croteau DL, DellaVecchia MJ, Wang H, Kisker C. 'Close-fitting sleeves': DNA damage recognition by the UvrABC nuclease system. Mutat Res 2005; 577:92-117. [PMID: 15927210 DOI: 10.1016/j.mrfmmm.2005.03.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/11/2005] [Accepted: 03/11/2005] [Indexed: 05/02/2023]
Abstract
DNA damage recognition represents a long-standing problem in the field of protein-DNA interactions. This article reviews our current knowledge of how damage recognition is achieved in bacterial nucleotide excision repair through the concerted action of the UvrA, UvrB, and UvrC proteins.
Collapse
Affiliation(s)
- Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, MD D3-01, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
53
|
Truglio JJ, Rhau B, Croteau DL, Wang L, Skorvaga M, Karakas E, DellaVecchia MJ, Wang H, Van Houten B, Kisker C. Structural insights into the first incision reaction during nucleotide excision repair. EMBO J 2005; 24:885-94. [PMID: 15692561 PMCID: PMC554121 DOI: 10.1038/sj.emboj.7600568] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 01/07/2005] [Indexed: 01/07/2023] Open
Abstract
Nucleotide excision repair is a highly conserved DNA repair mechanism present in all kingdoms of life. The incision reaction is a critical step for damage removal and is accomplished by the UvrC protein in eubacteria. No structural information is so far available for the 3' incision reaction. Here we report the crystal structure of the N-terminal catalytic domain of UvrC at 1.5 A resolution, which catalyzes the 3' incision reaction and shares homology with the catalytic domain of the GIY-YIG family of intron-encoded homing endonucleases. The structure reveals a patch of highly conserved residues surrounding a catalytic magnesium-water cluster, suggesting that the metal binding site is an essential feature of UvrC and all GIY-YIG endonuclease domains. Structural and biochemical data strongly suggest that the N-terminal endonuclease domain of UvrC utilizes a novel one-metal mechanism to cleave the phosphodiester bond.
Collapse
Affiliation(s)
- James J Truglio
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Benjamin Rhau
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Deborah L Croteau
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Liqun Wang
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Milan Skorvaga
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Erkan Karakas
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Matthew J DellaVecchia
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Hong Wang
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Bennett Van Houten
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Caroline Kisker
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY, USA
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-5115, USA. Tel.: +1 631 632 1465; Fax: +1 631 632 1555; E-mail:
| |
Collapse
|
54
|
Reardon JT, Sancar A. Nucleotide Excision Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:183-235. [PMID: 16096029 DOI: 10.1016/s0079-6603(04)79004-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
55
|
Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA. UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 2004; 24:180-9. [PMID: 15565170 PMCID: PMC544901 DOI: 10.1038/sj.emboj.7600485] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 10/27/2004] [Indexed: 12/17/2022] Open
Abstract
The roles of UvrD and Rep DNA helicases of Escherichia coli are not yet fully understood. In particular, the reason for rep uvrD double mutant lethality remains obscure. We reported earlier that mutations in recF, recO or recR genes suppress the lethality of uvrD rep, and proposed that an essential activity common to UvrD and Rep is either to participate in the removal of toxic recombination intermediates or to favour the proper progression of replication. Here, we show that UvrD, but not Rep, directly prevents homologous recombination in vivo. In addition to RecFOR, we provide evidence that RecA contributes to toxicity in the rep uvrD mutant. In vitro, UvrD dismantles the RecA nucleoprotein filament, while Rep has only a marginal activity. We conclude that UvrD and Rep do not share a common activity that is essential in vivo: while Rep appears to act at the replication stage, UvrD plays a role of RecA nucleoprotein filament remover. This activity of UvrD is similar to that of the yeast Srs2 helicase.
Collapse
Affiliation(s)
- Xavier Veaute
- CEA, DSV, DRR, UMR217 CNRS/CEA, Fontenay aux roses, France
- These two authors contributed equally to this work
- CEA, INSERM, DRR, UMR217 CNRS/CEA, BP6, 92265 Fontenay aux roses, France. Tel.: +33 1 46 54 93 43; Fax: +33 1 46 54 95 98; E-mail:
| | - Stéphane Delmas
- U571, INSERM, Faculté de Médecine Necker-Enfants, Malades, Paris, France
- These two authors contributed equally to this work
| | - Marjorie Selva
- U571, INSERM, Faculté de Médecine Necker-Enfants, Malades, Paris, France
| | - Josette Jeusset
- Interactions moléculaires et cancer, UMR 8126 CNRS/IGR/UPS, Institut Gustave Roussy, Villejuif, France
| | - Eric Le Cam
- Interactions moléculaires et cancer, UMR 8126 CNRS/IGR/UPS, Institut Gustave Roussy, Villejuif, France
| | - Ivan Matic
- U571, INSERM, Faculté de Médecine Necker-Enfants, Malades, Paris, France
| | - Francis Fabre
- CEA, DSV, DRR, UMR217 CNRS/CEA, Fontenay aux roses, France
| | - Marie-Agnès Petit
- U571, INSERM, Faculté de Médecine Necker-Enfants, Malades, Paris, France
- Present address: URLGA, INRA, 78352 Jouy en Josas, France. Tel.: +33 1 34 65 20 64; Fax: +33 1 34 65 20 65
- CEA, INSERM, DRR, UMR217 CNRS/CEA, BP6, 92265 Fontenay aux roses, France. Tel.: +33 1 46 54 93 43; Fax: +33 1 46 54 95 98; E-mail:
| |
Collapse
|
56
|
DellaVecchia MJ, Croteau DL, Skorvaga M, Dezhurov SV, Lavrik OI, Van Houten B. Analyzing the handoff of DNA from UvrA to UvrB utilizing DNA-protein photoaffinity labeling. J Biol Chem 2004; 279:45245-56. [PMID: 15308661 DOI: 10.1074/jbc.m408659200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better define the molecular architecture of nucleotide excision repair intermediates it is necessary to identify the specific domains of UvrA, UvrB, and UvrC that are in close proximity to DNA damage during the repair process. One key step of nucleotide excision repair that is poorly understood is the transfer of damaged DNA from UvrA to UvrB, prior to incision by UvrC. To study this transfer, we have utilized two types of arylazido-modified photoaffinity reagents that probe residues in the Uvr proteins that are closest to either the damaged or non-damaged strands. The damaged strand probes consisted of dNTP analogs linked to a terminal arylazido moiety. These analogs were incorporated into double-stranded DNA using DNA polymerase beta and functioned as both the damage site and the cross-linking reagent. The non-damaged strand probe contained an arylazido moiety coupled to a phosphorothioate-modified backbone of an oligonucleotide opposite the damaged strand, which contained an internal fluorescein adduct. Six site-directed mutants of Bacillus caldotenax UvrB located in different domains within the protein (Y96A, E99A, R123A, R183E, F249A, and D510A), and two domain deletions (Delta2 and Deltabeta-hairpin), were assayed. Data gleaned from these mutants suggest that the handoff of damaged DNA from UvrA to UvrB proceeds in a three-step process: 1) UvrA and UvrB bind to the damaged site, with UvrA in direct contact; 2) a transfer reaction with UvrB contacting mostly the non-damaged DNA strand; 3) lesion engagement by the damage recognition pocket of UvrB with concomitant release of UvrA.
Collapse
Affiliation(s)
- Matthew J DellaVecchia
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
57
|
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints. Annu Rev Biochem 2004; 73:39-85. [PMID: 15189136 DOI: 10.1146/annurev.biochem.73.011303.073723] [Citation(s) in RCA: 2394] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA.
| | | | | | | |
Collapse
|
58
|
Gómez-Pinto I, Cubero E, Kalko SG, Monaco V, van der Marel G, van Boom JH, Orozco M, González C. Effect of bulky lesions on DNA: solution structure of a DNA duplex containing a cholesterol adduct. J Biol Chem 2004; 279:24552-60. [PMID: 15047709 DOI: 10.1074/jbc.m311751200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional solution structure of two DNA decamers of sequence d(CCACXGGAAC)-(GTTCCGGTGG) with a modified nucleotide containing a cholesterol derivative (X) in its C1 '(chol)alpha or C1 '(chol)beta diastereoisomer form has been determined by using NMR and restrained molecular dynamics. This DNA derivative is recognized with high efficiency by the UvrB protein, which is part of the bacterial nucleotide excision repair, and the alpha anomer is repaired more efficiently than the beta one. The structures of the two decamers have been determined from accurate distance constraints obtained from a complete relaxation matrix analysis of the NOE intensities and torsion angle constraints derived from J-coupling constants. The structures have been refined with molecular dynamics methods, including explicit solvent and applying the particle mesh Ewald method to properly evaluate the long range electrostatic interactions. These calculations converge to well defined structures whose conformation is intermediate between the A- and B-DNA families as judged by the root mean square deviation but with sugar puckerings and groove shapes corresponding to a distorted B-conformation. Both duplex adducts exhibit intercalation of the cholesterol group from the major groove of the helix and displacement of the guanine base opposite the modified nucleotide. Based on these structures and molecular dynamics calculations, we propose a tentative model for the recognition of damaged DNA substrates by the UvrB protein.
Collapse
Affiliation(s)
- Irene Gómez-Pinto
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, C/. Serrano 119, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Sancar A, Reardon JT. Nucleotide excision repair in E. coli and man. ADVANCES IN PROTEIN CHEMISTRY 2004; 69:43-71. [PMID: 15588839 DOI: 10.1016/s0065-3233(04)69002-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
60
|
Bienstock RJ, Skorvaga M, Mandavilli BS, Van Houten B. Structural and functional characterization of the human DNA repair helicase XPD by comparative molecular modeling and site-directed mutagenesis of the bacterial repair protein UvrB. J Biol Chem 2003; 278:5309-16. [PMID: 12458209 DOI: 10.1074/jbc.m210159200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A molecular model for the human nucleotide excision repair protein, XPD, was developed based on the structural and functional relationship of the protein with a bacterial nucleotide excision repair (NER) protein, UvrB. Whereas XPD does not share significant sequence identity with UvrB, the proteins share seven highly conserved helicase motifs that define a common protein structural template. They also have similar functional roles in their ATPase activity and the ability to unwind DNA and verify damaged strands in the process of NER. The validity of using the crystal structure of UvrB as a template for the development of an XPD model was tested by mimicking human disease-causing mutations (XPD: R112H, D234N, R601L) in UvrB (E110R, D338N, R506A) and by mutating two highly conserved residues (XPD, His-237 and Asp-609; UvrB, H341A and D510A). The XPD structural model can be employed in understanding the molecular mechanism of XPD human disease causing mutations. The value of this XPD model demonstrates the generalized approach for the prediction of the structure of a mammalian protein based on the crystal structure of a structurally and functionally related bacterial protein sharing extremely low sequence identity (<15%).
Collapse
Affiliation(s)
- Rachelle J Bienstock
- Scientific Computing Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
61
|
Reardon JT, Sancar A. Molecular anatomy of the human excision nuclease assembled at sites of DNA damage. Mol Cell Biol 2002; 22:5938-45. [PMID: 12138203 PMCID: PMC133982 DOI: 10.1128/mcb.22.16.5938-5945.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2002] [Revised: 05/20/2002] [Accepted: 05/23/2002] [Indexed: 11/20/2022] Open
Abstract
Human nucleotide excision repair is initiated by six repair factors (XPA, RPA, XPC-HR23B, TFIIH, XPF-ERCC1, and XPG) which sequentially assemble at sites of DNA damage and effect excision of damage-containing oligonucleotides. We here describe the molecular anatomy of the human excision nuclease assembled at the site of a psoralen-adducted thymine. Three polypeptides, primarily positioned 5' to the damage, are in close physical proximity to the psoralen lesion and thus are cross-linked to the damaged DNA: these proteins are RPA70, RPA32, and the XPD subunit of TFIIH. While both XPA and XPC bind damaged DNA and are required for XPD cross-linking to the psoralen-adducted base, neither XPA nor XPC is cross-linked to the psoralen adduct. The presence of other repair factors, in particular TFIIH, alters the mode of RPA binding and the position of its subunits relative to the psoralen lesion. Based on these results, we propose that RPA70 makes the initial contact with psoralen-damaged DNA but that within preincision complexes, it is RPA32 and XPD that are in close contact with the lesion.
Collapse
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599,USA
| | | |
Collapse
|
62
|
Skorvaga M, Theis K, Mandavilli BS, Kisker C, Van Houten B. The beta -hairpin motif of UvrB is essential for DNA binding, damage processing, and UvrC-mediated incisions. J Biol Chem 2002; 277:1553-9. [PMID: 11687584 DOI: 10.1074/jbc.m108847200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UvrB plays a major role in recognition and processing of DNA lesions during nucleotide excision repair. The crystal structure of UvrB revealed a similar fold as found in monomeric DNA helicases. Homology modeling suggested that the beta-hairpin motif of UvrB might be involved in DNA binding (Theis, K., Chen, P. J., Skorvaga, M., Van Houten, B., and Kisker, C. (1999) EMBO J. 18, 6899-6907). To determine a role of the beta-hairpin of Bacillus caldotenax UvrB, we have constructed a deletion mutant, Deltabetah UvrB, which lacks residues Gln-97-Asp-112 of the beta-hairpin. Deltabetah UvrB does not form a stable UvrB-DNA pre-incision complex and is inactive in UvrABC-mediated incision. However, Deltabetah UvrB is able to bind to UvrA and form a complex with UvrA and damaged DNA, competing with wild type UvrB. In addition, Deltabetah UvrB shows wild type-like ATPase activity in complex with UvrA that is stimulated by damaged DNA. In contrast to wild type UvrB, the ATPase activity of mutant UvrB does not lead to a destabilization of the damaged duplex. These results indicate that the conserved beta-hairpin motif is a major factor in DNA binding.
Collapse
Affiliation(s)
- Milan Skorvaga
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
63
|
Crowley DJ, Hanawalt PC. The SOS-dependent upregulation of uvrD is not required for efficient nucleotide excision repair of ultraviolet light induced DNA photoproducts in Escherichia coli. Mutat Res 2001; 485:319-29. [PMID: 11585364 DOI: 10.1016/s0921-8777(01)00068-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have shown previously that induction of the SOS response is required for efficient nucleotide excision repair (NER) of the major ultraviolet light (UV) induced DNA lesion, the cyclobutane pyrimidine dimer (CPD), but not for repair of 6-4 photoproducts (6-4PP) or for transcription-coupled repair of CPDs [1]. We have proposed that the upregulation of cellular NER capacity occurs in the early stages of the SOS response and enhances the rate of repair of the abundant yet poorly recognized genomic CPDs. The expression of three NER genes, uvrA, uvrB, and uvrD, is upregulated as part of the SOS response. UvrD differs from the others in that it is not involved in lesion recognition but rather in promoting the post-incision steps of NER, including turnover of the UvrBC incision complex. Since uvrC is not induced during the SOS response, its turnover would seem to be of great importance in promoting efficient NER. Here we show that the constitutive level of UvrD is adequate for carrying out efficient NER of both CPDs and 6-4PPs. Thus, the upregulation of uvrA and uvrB genes during the SOS response is sufficient for inducible NER of CPDs. We also show that cells with a limited NER capacity, in this case due to deletion of the uvrD gene, repair 6-4PPs but cannot perform transcription-coupled repair of CPDs, indicating that the 6-4PP is a better substrate for NER than is a CPD targeted for transcription-coupled repair.
Collapse
Affiliation(s)
- D J Crowley
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA.
| | | |
Collapse
|
64
|
Böse G, Kuhlmann J, Plass M, Müller O. Microplate enzyme-linked immunosorbent assay for the detection of primary DNA alterations based on the interaction with UvrA/UvrB. Anal Biochem 2001; 292:1-7. [PMID: 11319810 DOI: 10.1006/abio.2001.5054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An enzyme-linked microplate immunoassay for the analysis of primary DNA lesions is described. The assay principle is based on the interaction of the bacterial DNA repair proteins UvrA and UvrB with DNA and on the immunodetection of UvrB forming a stable complex with covalently modified nucleotides. Using this technique we were able to detect damages in genomic DNA induced by uv light and by several different genotoxic agents. The detection sensitivity of the method reaches down to the nanomolar range of the mutagenic compound depending on the type of the DNA alteration. The method might be used in automated high-throughput studies.
Collapse
Affiliation(s)
- G Böse
- Max-Planck-Institut für molekulare Physiologie, Dortmund, D-44227, Germany
| | | | | | | |
Collapse
|
65
|
Hoare S, Zou Y, Purohit V, Krishnasamy R, Skorvaga M, Van Houten B, Geacintov NE, Basu AK. Differential incision of bulky carcinogen-DNA adducts by the UvrABC nuclease: comparison of incision rates and the interactions of Uvr subunits with lesions of different structures. Biochemistry 2000; 39:12252-61. [PMID: 11015204 DOI: 10.1021/bi0013187] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The UvrABC nuclease system from Escherichia coli removes DNA damages induced by a wide range of chemical carcinogens with variable efficiencies. The interactions with UvrABC proteins of the following three lesions site-specifically positioned in DNA, and of known conformations, were investigated: (i) adducts derived from the binding of the (-)-(7S,8R,9R,10S) enantiomer of 7,8-dihydroxy-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-anti-BPDE] by cis-covalent addition to N(2)-2'-deoxyguanosine [(-)-cis-anti-BP-N(2)-dG], (ii) an adduct derived from the binding of the (+)-(1R,2S,3S,4R) enantiomer of 1,2-dihydroxy-3,4-epoxy-1,2,3, 4-tetrahydro-5-methylchrysene [(+)-anti-5-MeCDE] by trans addition to N(2)-2'-deoxyguanosine [(+)-trans-anti-MC-N(2)-dG], and (iii) a C8-2'-deoxyguanosine adduct (C8-AP-dG) formed by reductively activated 1-nitropyrene (1-NP). The influence of these three different adducts on UvrA binding affinities, formation of UvrB-DNA complexes by quantitative gel mobility shift analyses, and the rates of UvrABC incision were investigated. The binding affinities of UvrA varied among the three adducts. UvrA bound to the DNA adduct (+)-trans-anti-MC-N(2)-dG with the highest affinity (K(d) = 17 +/- 2 nM) and to the DNA containing C8-AP-dG with the least affinity (K(d) = 28 +/- 1 nM). The extent of complex formation with UvrB was also the lowest with the C8-AP-dG adduct. 5' Incisions occurred at the eighth phosphate from the modified guanine. The major 3' incision site corresponded to the fifth phosphodiester bond for all three adducts. However, additional 3' incisions were observed at the fourth and sixth phosphates in the case of the C8-AP-dG adduct, whereas in the case of the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG lesions additional 3' cleavage occurred at the sixth and seventh phosphodiester bonds. Both the initial rate and the extent of 5' and 3' incisions revealed that C8-AP-dG was repaired less efficiently in comparison to the (-)-cis-anti-BP-N(2)-dG and (+)-trans-anti-MC-N(2)-dG containing DNA adducts. Our study showed that UvrA recognizes conformational changes induced by structurally different lesions and that in certain cases the binding affinities of UvrA and UvrB can be correlated with the incision rates. The size of the bubble formed around the damaged site with mismatched bases also appears to influence the incision rates. A particularly noteworthy finding in this study is that UvrABC repair of a substrate with no base opposite C8-AP-dG was quite inefficient as compared to the same adduct with a C opposite it. These findings are discussed in terms of the available NMR solution structures.
Collapse
Affiliation(s)
- S Hoare
- Department of Chemistry, University of Connecticut, Box U-60, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Theis K, Skorvaga M, Machius M, Nakagawa N, Van Houten B, Kisker C. The nucleotide excision repair protein UvrB, a helicase-like enzyme with a catch. Mutat Res 2000; 460:277-300. [PMID: 10946234 DOI: 10.1016/s0921-8777(00)00032-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleotide excision repair (NER) is a universal DNA repair mechanism found in all three kingdoms of life. Its ability to repair a broad range of DNA lesions sets NER apart from other repair mechanisms. NER systems recognize the damaged DNA strand and cleave it 3', then 5' to the lesion. After the oligonucleotide containing the lesion is removed, repair synthesis fills the resulting gap. UvrB is the central component of bacterial NER. It is directly involved in distinguishing damaged from undamaged DNA and guides the DNA from recognition to repair synthesis. Recently solved structures of UvrB from different organisms represent the first high-resolution view into bacterial NER. The structures provide detailed insight into the domain architecture of UvrB and, through comparison, suggest possible domain movements. The structure of UvrB consists of five domains. Domains 1a and 3 bind ATP at the inter-domain interface and share high structural similarity to helicases of superfamilies I and II. Not related to helicase structures, domains 2 and 4 are involved in interactions with either UvrA or UvrC, whereas domain 1b was implicated for DNA binding. The structures indicate that ATP binding and hydrolysis is associated with domain motions. UvrB's ATPase activity, however, is not coupled to the separation of long DNA duplexes as in helicases, but rather leads to the formation of the preincision complex with the damaged DNA substrate. The location of conserved residues and structural comparisons with helicase-DNA structures suggest how UvrB might bind to DNA. A model of the UvrB-DNA interaction in which a beta-hairpin of UvrB inserts between the DNA double strand has been proposed recently. This padlock model is developed further to suggest two distinct consequences of domain motion: in the UvrA(2)B-DNA complex, domain motions lead to translocation along the DNA, whereas in the tight UvrB-DNA pre-incision complex, they lead to distortion of the 3' incision site.
Collapse
Affiliation(s)
- K Theis
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | | | | | | | | | |
Collapse
|
67
|
SaiSree L, Reddy M, Gowrishankar J. lon incompatibility associated with mutations causing SOS induction: null uvrD alleles induce an SOS response in Escherichia coli. J Bacteriol 2000; 182:3151-7. [PMID: 10809694 PMCID: PMC94501 DOI: 10.1128/jb.182.11.3151-3157.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The uvrD gene in Escherichia coli encodes a 720-amino-acid 3'-5' DNA helicase which, although nonessential for viability, is required for methyl-directed mismatch repair and nucleotide excision repair and furthermore is believed to participate in recombination and DNA replication. We have shown in this study that null mutations in uvrD are incompatible with lon, the incompatibility being a consequence of the chronic induction of SOS in uvrD strains and the resultant accumulation of the cell septation inhibitor SulA (which is a normal target for degradation by Lon protease). uvrD-lon incompatibility was suppressed by sulA, lexA3(Ind(-)), or recA (Def) mutations. Other mutations, such as priA, dam, polA, and dnaQ (mutD) mutations, which lead to persistent SOS induction, were also lon incompatible. SOS induction was not observed in uvrC and mutH (or mutS) mutants defective, respectively, in excision repair and mismatch repair. Nor was uvrD-mediated SOS induction abolished by mutations in genes that affect mismatch repair (mutH), excision repair (uvrC), or recombination (recB and recF). These data suggest that SOS induction in uvrD mutants is not a consequence of defects in these three pathways. We propose that the UvrD helicase participates in DNA replication to unwind secondary structures on the lagging strand immediately behind the progressing replication fork, and that it is the absence of this function which contributes to SOS induction in uvrD strains.
Collapse
Affiliation(s)
- L SaiSree
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | | | |
Collapse
|
68
|
Abstract
The Escherichia coli UvrD helicase (or helicase II) is known for its involvement in DNA repair. We report that UvrD is required for DNA replication of several different rolling-circle plasmids in E. coli, whereas its homologue, the Rep helicase, is not. Lack of UvrD helicase does not impair the first step of plasmid replication, nicking of the double-stranded origin by the plasmid initiator protein. However, replication proceeds no further without UvrD. Indeed, the nicked plasmid molecules accumulate to a high level in uvrD mutants. We conclude that UvrD is the replicative helicase of various rolling-circle plasmids. This is the first description of a direct implication of UvrD in DNA replication in vivo.
Collapse
Affiliation(s)
- C Bruand
- Laboratoire de G¿en¿etique Microbienne, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France.
| | | |
Collapse
|
69
|
Machius M, Henry L, Palnitkar M, Deisenhofer J. Crystal structure of the DNA nucleotide excision repair enzyme UvrB from Thermus thermophilus. Proc Natl Acad Sci U S A 1999; 96:11717-22. [PMID: 10518516 PMCID: PMC18352 DOI: 10.1073/pnas.96.21.11717] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) is the most important DNA-repair mechanism in living organisms. In prokaryotes, three enzymes forming the UvrABC system initiate NER of a variety of structurally different DNA lesions. UvrB, the central component of this system, is responsible for the ultimate DNA damage recognition and participates in the incision of the damaged DNA strand. The crystal structure of Thermus thermophilus UvrB reveals a core that is structurally similar to core regions found in helicases, where they constitute molecular motors. Additional domains implicated in binding to DNA and various components of the NER system are attached to this central core. The architecture and distribution of DNA binding sites suggest a possible model for the DNA damage recognition process.
Collapse
Affiliation(s)
- M Machius
- Howard Hughes Medical Institute, Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75235-9050, USA
| | | | | | | |
Collapse
|
70
|
Mechanic LE, Latta ME, Matson SW. A region near the C-terminal end of Escherichia coli DNA helicase II is required for single-stranded DNA binding. J Bacteriol 1999; 181:2519-26. [PMID: 10198018 PMCID: PMC93680 DOI: 10.1128/jb.181.8.2519-2526.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of the C terminus of Escherichia coli DNA helicase II (UvrD), a region outside the conserved helicase motifs, was investigated by using three mutants: UvrDDelta107C (deletion of the last 107 C-terminal amino acids), UvrDDelta102C, and UvrDDelta40C. This region, which lacks sequence similarity with other helicases, may function to tailor UvrD for its specific in vivo roles. Genetic complementation assays demonstrated that mutant proteins UvrDDelta107C and UvrDDelta102C failed to substitute for the wild-type protein in methyl-directed mismatch repair and nucleotide excision repair. UvrDDelta40C protein fully complemented the loss of helicase II in both repair pathways. UvrDDelta102C and UvrDDelta40C were purified to apparent homogeneity and characterized biochemically. UvrDDelta102C was unable to bind single-stranded DNA and exhibited a greatly reduced single-stranded DNA-stimulated ATPase activity in comparison to the wild-type protein (kcat = 0.01% of the wild-type level). UvrDDelta40C was slightly defective for DNA binding and was essentially indistinguishable from wild-type UvrD when single-stranded DNA-stimulated ATP hydrolysis and helicase activities were measured. These results suggest a role for a region near the C terminus of helicase II in binding to single-stranded DNA.
Collapse
Affiliation(s)
- L E Mechanic
- Department of Biochemistry and Biophysics, Protein Engineering and Molecular Genetics Training Program, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
71
|
Abstract
Nucleotide excision repair is both a 'wide spectrum' DNA repair pathway and the sole system for repairing bulky damages such as UV lesions or benzo[a]pyrene adducts. The mechanisms of nucleotide excision repair are known in considerable detail in Escherichia coli. Similarly, in the past 5 years important advances have been made towards understanding the biochemical mechanisms of excision repair in humans. The overall strategy of the repair is the same in the two species: damage recognition through a multistep mechanism involving a molecular matchmaker and an ATP-dependent unwinding of the damaged duplex; dual incisions at both sides of the lesion by two different nucleases, the 3' incision being followed by the 5'; removal of the damaged oligomer; resynthesis of the repair patch, whose length matches the gap size. Despite these similarities, the two systems are biochemically different and do not even share structural homology. E. coli excinuclease employs three proteins in contrast to 16/17 polypeptides in man; the excised fragment is longer in man: the procaryotic excinuclease is not able by itself to remove the excised oligomer whereas the human enzyme does. Thus, the excinuclease mode of action is well conserved throughout evolution, but not the biochemical tools: this represents a case of evolutionary convergence.
Collapse
Affiliation(s)
- C Petit
- University of North Carolina at Chapel Hill, School of Medicine, Department of Biochemistry and Biophysics, 27599-7260, USA
| | | |
Collapse
|
72
|
Petit MA, Dervyn E, Rose M, Entian KD, McGovern S, Ehrlich SD, Bruand C. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol Microbiol 1998; 29:261-73. [PMID: 9701819 DOI: 10.1046/j.1365-2958.1998.00927.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The only DNA helicase essential for Escherichia coli viability is DnaB, the chromosome replication for helicase. In contrast, in Bacillus subtilis, in addition to the DnaB counterpart called DnaC, we have found a second essential DNA helicase, called PcrA. It is 40% identical to the Rep and UvrD DNA helicases of E. coli and 61% identical to the PcrA helicase of Staphylococcus aureus. This gene is located at 55 degree on the chromosome and belongs to a putative operon together with a ligase gene (lig) and two unknown genes named pcrB and yerH. As PcrA was essential for cell viability, conditional mutants were constructed. In such mutants, chromosomal DNA synthesis was slightly decreased upon PcrA depletion, and rolling-circle replication of the plasmid pT181 was inhibited. Analysis of the replication intermediates showed that leading-strand synthesis of pT181 was prevented upon PcrA depletion. To compare PcrA with Rep and UvrD directly, the protein was produced in rep and uvrD mutants of E. coli. PcrA suppressed the UV sensitivity defect at a uvrD mutant but not its mutator phenotype. Furthermore, it conferred a Rep-phenotype on E. coli. Altogether, these results show that PcrA is an helicase used for plasmid rolling-circle replication and suggest that it is also involved in UV repair.
Collapse
Affiliation(s)
- M A Petit
- Laboratoire de Génétique Microbienne, INRA, Jouy en Josas, France.
| | | | | | | | | | | | | |
Collapse
|
73
|
Wakasugi M, Sancar A. Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc Natl Acad Sci U S A 1998; 95:6669-74. [PMID: 9618470 PMCID: PMC22593 DOI: 10.1073/pnas.95.12.6669] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The assembly and composition of human excision nuclease were investigated by electrophoretic mobility shift assay and DNase I footprinting. Individual repair factors or any combination of up to four repair factors failed to form DNA-protein complexes of high specificity and stability. A stable complex of high specificity can be detected only when XPA/RPA, transcription factor IIH, XPC.HHR23B, and XPG and ATP are present in the reaction mixture. The XPF.ERCC1 heterodimer changes the electrophoretic mobility of the DNA-protein complex formed with the other five repair factors, but it does not confer additional specificity. By using proteins with peptide tags or antibodies to the repair factors in electrophoretic mobility shift assays, it was found that XPA, replication protein A, transcription factor IIH, XPG, and XPF.excision repair cross-complementing 1 but not XPC.HHR23B were present in the penultimate and ultimate dual incision complexes. Thus, it appears that XPC.HHR23B is a molecular matchmaker that participates in the assembly of the excision nuclease but is not present in the ultimate dual incision complex. The excision nuclease makes an assymmetric DNase I footprint of approximately 30 bp around the damage and increases the DNase I sensitivity of the DNA on both sides of the footprint.
Collapse
Affiliation(s)
- M Wakasugi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
74
|
Zou Y, Crowley DJ, Van Houten B. Involvement of molecular chaperonins in nucleotide excision repair. Dnak leads to increased thermal stability of UvrA, catalytic UvrB loading, enhanced repair, and increased UV resistance. J Biol Chem 1998; 273:12887-92. [PMID: 9582319 DOI: 10.1074/jbc.273.21.12887] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UvrA is one of the key Escherichia coli proteins involved in removing DNA damage during the process of nucleotide excision repair. The relatively low concentrations (nanomolar) of the protein in the normal cells raise the potential questions about its stability in vivo under both normal and stress conditions. In vitro, UvrA at low concentrations is shown to be stabilized to heat inactivation by E. coli molecular chaperones DnaK or the combination of DnaK, DnaJ, and GrpE. These chaperone proteins allow sub-nanomolar concentrations of UvrA to load UvrB through >10 cycles of incision. Guanidine hydrochloride-denatured UvrA was reactivated by DnaK, DnaJ, and GrpE to as much as 50% of the native protein activity. Co-immunoprecipitation assays showed that DnaK bound denatured UvrA in the absence of ATP. UV survival studies of a DnaK-deficient strain indicated an 80-fold increased sensitivity to 100 J/m2 of ultraviolet light (254 nm) as compared with an isogenic wild-type strain. Global repair analysis indicated a reduction in the extent of pyrimidine dimer and 6-4 photoproduct removal in the DnaK-deficient cells. These results suggest that molecular chaperonins participate in nucleotide excision repair by maintaining repair proteins in their properly folded state.
Collapse
Affiliation(s)
- Y Zou
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1071, USA
| | | | | |
Collapse
|
75
|
Duval-Valentin G, Takasugi M, Hélène C, Sage E. Triple helix-directed psoralen crosslinks are recognized by Uvr(A)BC excinuclease. J Mol Biol 1998; 278:815-25. [PMID: 9614944 DOI: 10.1006/jmbi.1998.1728] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyrimidine oligonucleotides bind to the major groove of an oligopyrimidine-oligopurine DNA sequence by triple helix formation. A 14-mer oligopyrimidine 3'-psoralen-conjugate (P) and a doubly modified 5'-acridine/3'-psoralen-oligonucleotide (PA) were photo-crosslinked to their target site. The crosslinked complexes were tested regarding their sensitivity to Uvr(A)BC excinuclease/DNA complex formation and excision, and compared to free psoralen crosslinked to the same site (M). An electrophoretic mobility-shift assay showed that the crosslinked triple-helix did not hamper formation of the (A)2B complex under conditions where the third strand was bound to its target. In vitro excision experiments performed on damaged DNA fragments containing crosslinked 5-methoxypsoralen (M-target) confirmed that the psoralen photoadduct was recognized by Uvr(A)BC and that excision occurred at the crosslinked site. The major cleavage reaction took place on the 5'-side of oligopurine strand. The excision was less efficient on the 5'-side of the pyrimidine strand. The 3'-side incision either on the purine or pyrimidine strand was even weaker. With optimal Uvr(A) concentrations, it was observed that the incision reaction on (P)- and (PA)-modified targets was clearly inhibited compared to the (M)-modified target, reflecting an effect of the oligonucleotide on the recognition/excision process. These results demonstrate that a triple helix is efficient in promoting inhibition of Uvr(A)BC excision nuclease activity. These results could account for divergent findings concerning the effects of triple helix-forming oligonucleotides on repair systems and open new perspectives to study DNA repair processes through the use of bi-substituted triple helix-forming oligonucleotides.
Collapse
Affiliation(s)
- G Duval-Valentin
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U201, CNRS UA 481, Paris, France.
| | | | | | | |
Collapse
|
76
|
Mekhovich O, Tang MS, Romano LJ. Rate of incision of N-acetyl-2-aminofluorene and N-2-aminofluorene adducts by UvrABC nuclease is adduct- and sequence-specific: comparison of the rates of UvrABC nuclease incision and protein-DNA complex formation. Biochemistry 1998; 37:571-9. [PMID: 9425079 DOI: 10.1021/bi971544p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The UvrABC nuclease, the nucleotide excision repair complex from Escherichia coli, is able to incise a variety of types of DNA damage and the repair efficiency of this enzyme complex appears to be influenced by the structure of the damage and the sequence context within which the damage is positioned. In order to better establish these relationships, we have constructed two DNA sequences each containing a site-specifically positioned N-2-aminofluorene (AF) or N-acetyl-2-aminofluorene (AAF) adduct and have determined both the kinetics of UvrABC nuclease incision and the kinetics of UvrABC nuclease-substrate complex formation. It is well established that these two adducts induce very different structures in the DNA and that these structures also depend on the sequence context. We have found that the rate of incision of both AAF- and AF-DNA adducts is significantly faster when they are positioned in the mutation hotspot NarI sequence (5-GGCG*CC-3') than when located in a normal or non-NarI sequence (5'-GATG*ATA-3') and that the rate of incision for AAF-DNA adducts is faster that for AF adducts in both sequences. Most siginificantly, we find that the rate of UvrB and UvrBC-substrate complex formation correlates with the rate of UvrABC nuclease incision.
Collapse
Affiliation(s)
- O Mekhovich
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
77
|
|
78
|
Zhang G, Deng E, Baugh L, Kushner SR. Identification and characterization of Escherichia coli DNA helicase II mutants that exhibit increased unwinding efficiency. J Bacteriol 1998; 180:377-87. [PMID: 9440527 PMCID: PMC106893 DOI: 10.1128/jb.180.2.377-387.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Using a combination of both ethyl methanesulfonate and site-directed mutagenesis, we have identified a region in DNA helicase II (UvrD) from Escherichia coli that is required for biological function but lies outside of any of the seven conserved motifs (T. C. Hodgman, Nature 333:22-23, 1988) associated with the superfamily of proteins of which it is a member. Located between amino acids 403 and 409, alterations in the amino acid sequence DDAAFER lead to both temperature-sensitive and dominant uvrD mutations. The uvrD300 (A406T) and uvrD301 (A406V) alleles produce UV sensitivity at 44 degrees C but do not affect sensitivity to methyl methanesulfonate (MMS). In contrast, the uvrD303 mutation (D403AD404A) causes increased sensitivity to both UV and MMS and is dominant to uvrD+ when present at six to eight copies per cell. Several of the alleles demonstrated a strong antimutator phenotype. In addition, conjugal recombination is reduced 10-fold in uvrD303 strains. Of all of the amino acid substitutions tested, only an alanine-to-serine change at position 406 (uvrD302) was neutral. To determine the biochemical basis for the observed phenotypes, we overexpressed and purified the UvrD303 protein from a uvrD delta294 deletion background and characterized its enzymatic activities. The highly unusual UvrD303 protein exhibits a higher specific activity for ATP hydrolysis than the wild-type control, while its Km for ATP binding remains unchanged. More importantly, the UvrD303 protein unwinds partial duplex DNA up to 10 times more efficiently than wild-type UvrD. The DNA binding affinities of the two proteins appear comparable. Based on these results, we propose that the region located between amino acids 403 and 409 serves to regulate the unwinding activity of DNA helicase II to provide the proper balance between speed and overall effectiveness in the various DNA repair systems in which the protein participates.
Collapse
Affiliation(s)
- G Zhang
- Department of Genetics, University of Georgia, Athens 30602, USA
| | | | | | | |
Collapse
|
79
|
Zhang G, Deng E, Baugh LR, Hamilton CM, Maples VF, Kushner SR. Conserved motifs II to VI of DNA helicase II from Escherichia coli are all required for biological activity. J Bacteriol 1997; 179:7544-50. [PMID: 9393722 PMCID: PMC179708 DOI: 10.1128/jb.179.23.7544-7550.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
There are seven conserved motifs (IA, IB, and II to VI) in DNA helicase II of Escherichia coli that have high homology among a large family of proteins involved in DNA metabolism. To address the functional importance of motifs II to VI, we employed site-directed mutagenesis to replace the charged amino acid residues in each motif with alanines. Cells carrying these mutant alleles exhibited higher UV and methyl methanesulfonate sensitivity, increased rates of spontaneous mutagenesis, and elevated levels of homologous recombination, indicating defects in both the excision repair and mismatch repair pathways. In addition, we also changed the highly conserved tyrosine(600) in motif VI to phenylalanine (uvrD309, Y600F). This mutant displayed a moderate increase in UV sensitivity but a decrease in spontaneous mutation rate, suggesting that DNA helicase II may have different functions in the two DNA repair pathways. Furthermore, a mutation in domain IV (uvrD307, R284A) significantly reduced the viability of some E. coli K-12 strains at 30 degrees C but not at 37 degrees C. The implications of these observations are discussed.
Collapse
Affiliation(s)
- G Zhang
- Department of Genetics, University of Georgia, Athens 30602, USA
| | | | | | | | | | | |
Collapse
|
80
|
Brosh RM, Matson SW. A point mutation in Escherichia coli DNA helicase II renders the enzyme nonfunctional in two DNA repair pathways. Evidence for initiation of unwinding from a nick in vivo. J Biol Chem 1997; 272:572-9. [PMID: 8995299 DOI: 10.1074/jbc.272.1.572] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biosynthetic errors and DNA damage introduce mismatches and lesions in DNA that can lead to mutations. These abnormalities are susceptible to correction by a number of DNA repair mechanisms, each of which requires a distinct set of proteins. Escherichia coli DNA helicase II has been demonstrated to function in two DNA repair pathways, methyl-directed mismatch repair and UvrABC-mediated nucleotide excision repair. To define further the role of UvrD in DNA repair a site-specific mutant was characterized. The mutation, uvrDQ251E, resides within helicase motif III, a conserved segment of amino acid homology found in a superfamily of prokaryotic and eukaryotic DNA helicases. The UvrD-Q251E protein failed to complement the mutator and ultraviolet light-sensitive phenotypes of a uvrD deletion strain indicating that the mutant protein is inactive in both mismatch repair and excision repair. Biochemical characterization revealed a significant defect in the ability of the mutant enzyme to initiate unwinding at a nick. The elongation phase of the unwinding reaction was nearly normal. Together, the biochemical and genetic data provide evidence that UvrD-Q251E is dysfunctional because the mutant protein fails to initiate unwinding at the nick(s) used to initiate excision and subsequent repair synthesis. These results provide direct evidence to support the notion that helicase II initiates unwinding from a nick in vivo in mismatch repair and excision repair.
Collapse
Affiliation(s)
- R M Brosh
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | |
Collapse
|
81
|
Kovalsky OI, Grossman L, Ahn B. The topodynamics of incision of UV-irradiated covalently closed DNA by the Escherichia coli Uvr(A)BC endonuclease. J Biol Chem 1996; 271:33236-41. [PMID: 8969181 DOI: 10.1074/jbc.271.52.33236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Escherichia coli Uvr(A)BC endonuclease (Uvr(A)BC) initiates nucleotide excision repair of a large variety of DNA damages. The damage recognition and incision steps by the Uvr(A)BC is a complex process utilizing an ATP-dependent DNA helix-tracking activity associated with the UvrA2B1 complex. The latter activity leads to the generation of highly positively supercoiled DNA in the presence of E. coli topoisomerase I in vitro. Such highly positively supercoiled DNA, containing ultraviolet irradiation-induced photoproducts (uvDNA), is resistant to the incision by Uvr(A)BC, whereas the negatively supercoiled and relaxed forms of the uvDNA are effectively incised. The E. coli gyrase can contribute to the above reaction by abolishing the accumulation of highly positively supercoiled uvDNA thereby restoring Uvr(A)BC-catalyzed incision. Eukaryotic (calf thymus) topoisomerase I is able to substitute for gyrase in restoring this Uvr(A)BC-mediated incision reaction. The inability of Uvr(A)BC to incise highly positively supercoiled uvDNA results from the failure of the formation of UvrAB-dependent obligatory intermediates associated with the DNA conformational change. In contrast to Uvr(A)BC, the Micrococcus luteus UV endonuclease efficiently incises uvDNA regardless of its topological state. The in vitro topodynamic system proposed in this study may provide a simple model for studying a topological aspect of nucleotide excision repair and its interaction with other DNA topology-related processes in E. coli.
Collapse
Affiliation(s)
- O I Kovalsky
- Department of Biochemistry, School of Hygiene and Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
82
|
Brosh RM, Matson SW. A partially functional DNA helicase II mutant defective in forming stable binary complexes with ATP and DNA. A role for helicase motif III. J Biol Chem 1996; 271:25360-8. [PMID: 8810301 DOI: 10.1074/jbc.271.41.25360] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To address the functional significance of motif III in Escherichia coli DNA helicase II, the conserved aspartic acid at position 248 was changed to asparagine. UvrDD248N failed to form stable binary complexes with either DNA or ATP. However, UvrDD248N was capable of forming an active ternary complex when both ATP and single-stranded DNA were present. The DNA-stimulated ATPase activity of UvrDD248N was reduced relative to that of wild-type UvrD with no significant change in the apparent Km for ATP. The mutant protein also demonstrated a reduced DNA unwinding activity. The requirement for high concentrations of UvrDD248N to achieve unwinding of long duplex substrates likely reflects the reduced stability of various binary and ternary complexes that must exist in the catalytic cycle of a helicase. The data suggest that motif III may act as an interface between the ATP binding and DNA binding domains of a helicase. The uvrDD248N allele was also characterized in genetic assays. The D248N protein complemented the UV-sensitive phenotype of a uvrD deletion strain to levels nearly equivalent to wild-type helicase II. In contrast, the mutant protein only partially complemented the mutator phenotype. A correlation between the level of genetic complementation and the helicase activity of UvrDD248N is discussed.
Collapse
Affiliation(s)
- R M Brosh
- Department of, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|
83
|
Abstract
Nucleotide excision repair consists of removal of the damaged nucleotide(s) from DNA by dual incision of the damaged strand on both sides of the lesion, followed by filling of the resulting gap and ligation. In humans, 14-16 polypeptides are required for the dual incision step. We have purified the required proteins to homogeneity and reconstituted the dual incision activity (excision nuclease) in a defined enzyme/substrate system. The system was highly efficient, removing >30% of the thymine dimers under optimal conditions. All of the six fractions that constitute the excision nuclease were required for dual incision of the thymine dimer substrate. However, when a cholesterol-substituted oligonucleotide was used as substrate, excision occurred in the absence of the XPC-HHR23B complex, reminiscent of transcription-coupled repair in the XP-C mutant cell line. Replication protein A is absolutely required for both incisions. The XPG subunit is essential to the formation of the preincision complex, but the repair complex can assemble and produce normal levels of 3'-incision in the absence of XPF-ERCC1. Kinetic experiments revealed that the 3'-incision precedes the 5'-incision. Consistent with the kinetic data, uncoupled 5'-incision was never observed in the reconstituted system. Two forms of TFIIH were used in the reconstitution reaction, one containing the CDK7-cyclin H pair and one lacking it. Both forms were equally active in excision. The excised oligomer dissociated from the gapped DNA in a nucleoprotein complex. In total, these results provide a detailed account of the reactions occurring during damage removal by human excision nuclease.
Collapse
Affiliation(s)
- D Mu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, 27599-7260, USA
| | | | | |
Collapse
|
84
|
Allan JM, Routledge MN, Garner RC. The Escherichia coli DNA repair protein UvrA can re-associate with the UvrB: aflatoxin B1-DNA complex in vitro. Mutat Res 1996; 362:261-8. [PMID: 8637504 DOI: 10.1016/0921-8777(95)00057-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The UvrA and UvrB proteins form part of the UvrABc endonuclease, which is responsible for nucleotide excision repair in Escherichia coli. Using a mobility shift gel assay we have studied the binding of UvrA dimer, UvrB monomer and UvA(2)B trimer complexes with 40, 50 and 136 bp (32)P-end-labelled DNA fragments adducted with aflatoxin B(1). UvrA was shown to re-associate with adduct specific UvrB: DNA complexes, a phenomenon which could be reversed by the addition of 500 mM potassium chloride or anti-UvrA anti-sera. Re-association was shown to be UvrA concentration dependent. Re-association of UvrA(2)B to the UvrB:DNA complex was not seen. We have also shown that the UvrB:DNA complex, in the case of aflatoxin B(1), is extremely stable with a half-life excess of 400 min and that fragment termini are not a specific substrate for UvrA binding.
Collapse
Affiliation(s)
- J M Allan
- The Jack Birch Unit for Environmental Carcinogenesis, Biology Department, University of York, Heslington, UK
| | | | | |
Collapse
|
85
|
Moolenaar GF, Franken KL, Dijkstra DM, Thomas-Oates JE, Visse R, van de Putte P, Goosen N. The C-terminal region of the UvrB protein of Escherichia coli contains an important determinant for UvrC binding to the preincision complex but not the catalytic site for 3'-incision. J Biol Chem 1995; 270:30508-15. [PMID: 8530482 DOI: 10.1074/jbc.270.51.30508] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The UvrABC endonuclease from Escherichia coli repairs damage in the DNA by dual incision of the damaged strand on both sides of the lesion. The incisions are in an ordered fashion, first on the 3'-side and next on the 5'-side of the damage, and they are the result of binding of UvrC to the UvrB-DNA preincision complex. In this paper, we show that at least the C-terminal 24 amino acids of UvrB are involved in interaction with UvrC and that this binding is important for the 3'-incision. The C-terminal region of UvrB, which shows homology with a domain of the UvrC protein, is part of a region that is predicted to be able to form a coiled-coil. We therefore propose that UvrB and UvrC interact through the formation of such a structure. The C-terminal region of UvrB only interacts with UvrC when present in the preincision complex, indicating that the conformational change in UvrB accompanying the formation of this complex exposes the UvrC binding domain. Binding of UvrC to the C-terminal region of UvrB is not important for the 5'-incision, suggesting that for this incision a different interaction of UvrC with the UvrB-DNA complex is required. Truncated UvrB mutants that lack up to 99 amino acids from the C terminus still give rise to significant incision (1-2%), indicating that this C-terminal region of UvrB does not participate in the formation of the active site for 3'-incision. This region, however, contains the residue (Glu-640) that was proposed to be involved in 3'-catalysis, since a mutation of the residue (E640A) fails to promote 3'-incision (Lin, J.J., Phillips, A.M., Hearst, J.E., and Sancar, A. (1992) J. Biol. Chem. 267, 17693-17700). We have isolated a mutant UvrB with the same E640A substitution, but this protein shows normal UvrC binding and incision in vitro and also results in normal survival after UV irradiation in vivo. As a consequence of these results, it is still an open question as to whether the catalytic site for 3'-incision is located in UvrB, in UvrC, or is formed by both proteins.
Collapse
Affiliation(s)
- G F Moolenaar
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
86
|
Ma L, Hoeijmakers JH, van der Eb AJ. Mammalian nucleotide excision repair. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1242:137-63. [PMID: 7492568 DOI: 10.1016/0304-419x(95)00008-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- L Ma
- Department of Medical Biochemistry, Leiden University, The Netherlands
| | | | | |
Collapse
|
87
|
Brosh RM, Matson SW. Mutations in motif II of Escherichia coli DNA helicase II render the enzyme nonfunctional in both mismatch repair and excision repair with differential effects on the unwinding reaction. J Bacteriol 1995; 177:5612-21. [PMID: 7559350 PMCID: PMC177372 DOI: 10.1128/jb.177.19.5612-5621.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Site-directed mutagenesis has been employed to address the functional significance of the highly conserved aspartic and glutamic acid residues present in the Walker B (also called motif II) sequence in Escherichia coli DNA helicase II. Two mutant proteins, UvrDE221Q and UvrDD220NE221Q, were expressed and purified to apparent homogeneity. Biochemical characterization of the DNA-dependent ATPase activity of each mutant protein demonstrated a kcat that was < 0.5% of that of the wild-type protein, with no significant change in the apparent Km for ATP. The E221Q mutant protein exhibited no detectable unwinding of either partial duplex or blunt duplex DNA substrates. The D220NE221Q mutant, however, catalyzed unwinding of both partial duplex and blunt duplex substrates, but at a greatly reduced rate compared with that of the wild-type enzyme. Both mutants were able to bind DNA. Thus, the motif II mutants E221Q and D220NE221Q were able to bind ATP and DNA to the same extent as wild-type helicase II but demonstrate a significant reduction in ATP hydrolysis and helicase functions. The mutant uvrD alleles were also characterized by examining their abilities to complement the mutator and UV light-sensitive phenotypes of a uvrD deletion mutant. Neither the uvrDE221Q nor the uvrDD220NE221Q allele, supplied on a plasmid, was able to complement either phenotype. Further genetic characterization of the mutant uvrD alleles demonstrated that uvrDE221Q confers a dominant negative growth phenotype; the uvrDD220NE221Q allele does not exhibit this effect. The observed difference in effect on viability may reflect the gene products' dissimilar kinetics for unwinding duplex DNA substrates in vitro.
Collapse
Affiliation(s)
- R M Brosh
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | |
Collapse
|
88
|
Abstract
UvrB plays a central role in (A)BC excinuclease. To identify the regions of UvrB which are involved in interacting with UvrA, UvrC, and DNA, deletion mutants, point mutants, and various fusion forms of UvrB were constructed and characterized. We found that the region encompassing amino acid residues 115-250 of UvrB binds to UvrA, while the region encompassing amino acid residues 547-673 binds to both UvrA and UvrC. In addition, the region between these two domains, which contains the helicase motifs II-VI, was found to be involved in binding to DNA. Within this DNA-binding region, two point mutants, E265A and E338A, were found to be unable to bind DNA while two residues, Phe-365 and Phe-496, were identified to interact with DNA. Furthermore, fluorescence quenching studies with mutants F365W and F496W and repair of thymine cyclobutane dimers by photoinduced electron transfer by these mutants suggest that residues Phe-365 and Phe-496 interact with DNA most likely through stacking interactions.
Collapse
Affiliation(s)
- D S Hsu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
89
|
Affiliation(s)
- P C Hanawalt
- Department of Biological Sciences, Stanford University, CA 94305-5020
| |
Collapse
|
90
|
Visse R, King A, Moolenaar GF, Goosen N, van de Putte P. Protein-DNA interactions and alterations in the DNA structure upon UvrB-DNA preincision complex formation during nucleotide excision repair in Escherichia coli. Biochemistry 1994; 33:9881-8. [PMID: 8060995 DOI: 10.1021/bi00199a009] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The UvrB-DNA preincision complex is a key intermediate in the repair of damaged DNA by the UvrABC endonuclease from Escherichia coli. DNaseI footprinting of this complex on DNA with a cis-[Pt(NH3)2[d(GpG)-N7(1),N7(2)]] adduct provided global information on the protein binding site on this substrate [Visse, R., et al. (1991) J. Biol. Chem. 266, 7609-7617]. By applying a method developed by Fairall and Rhodes [Fairall, L., & Rhodes, D. (1992) Nucleic Acids Res. 20, 4727-4731], who have used the size and shape of DNasI for the interpretation of a footprint, we were able to define in more detail the region where UvrB-DNA interactions in the preincision complex occur. The potential interactions with phosphate groups could be reduced to less then 14 in the damaged and to 12 in the nondamaged strand. The main UvrB-DNA interactions seem restricted to the major groove on both sides of the lesion. As a consequence UvrB crosses the minor groove just downstream of the damage. Such a binding of UvrB orients the protein away from the damage. The more detailed interpretation of UvrB-DNA interactions was supported by methylation protection experiments. The structure of the DNA in the preincision complex formed on cis-[Pt(NH3)2[GpG-N7(1),N7(2)]] is altered as could be shown diethylpyrocarbonate sensitivity of adenines just downstream of the lesion. However the adenines just downstream of another cisplatin adduct, cis-[Pt(NH3)2[d(GpCpG)-N7(1),N7(3)]], did not become diethylpyrocarbonate sensitive in the preincision complex although this complex is incision proficient.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Visse
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
91
|
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405
| | | |
Collapse
|
92
|
Visse R, van Gool AJ, Moolenaar GF, de Ruijter M, van de Putte P. The actual incision determines the efficiency of repair of cisplatin-damaged DNA by the Escherichia coli UvrABC endonuclease. Biochemistry 1994; 33:1804-11. [PMID: 8110782 DOI: 10.1021/bi00173a025] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The UvrABC endonuclease from Escherichia coli repairs a broad spectrum of DNA lesions with variable efficiencies. The effectiveness of repair is influenced by the nature of the lesion, the local DNA sequence, and/or the topology of the DNA. To get a better understanding of the aspects of this multistep repair reaction that determine the effectiveness of repair, we compared the incision efficiencies of linear DNA fragments containing either a site-specific cis-[Pt(NH3)2(d(GpG)-N7(1),-N7(2)]] or a cis- Pt(NH3)2[d(GpCpG)-N7(1),-N7(3)]] adduct. Overall the DNA with the cis-PtGG adduct was incised about 3.5 times more efficiently than the cis-Pt.GCG-containing DNA. The rate of UvrB-DNA preincision complex formation for both lesions was similar and high in relation to the incision. DNase I footprints, however, showed that the local structure of the two preincision complexes is different. An assay was developed to measure the binding of UvrC to the preincision complexes and it was found that the binding rate of UvrC to the more slowly incised cis-Pt.GCG preincision complex was higher than to the cis-Pt.GG preincision complex. This most likely reflects a qualitative difference in preincision complex structures. For both lesions the binding of UvrC to the preincision complex was fast compared to the kinetics of actual incision. Apparently, direct incision of cisplatin damage requires an additional conformational change after the binding of UvrC.
Collapse
Affiliation(s)
- R Visse
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
93
|
|
94
|
Hanawalt PC. Evolution of concepts in DNA repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 1994; 23 Suppl 24:78-85. [PMID: 8162914 DOI: 10.1002/em.2850230617] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A short personalized history of the development of the field of DNA excision repair is presented, beginning with the early insights of radiation biologists and extending to the present-day convergence of the fields of DNA repair and transcription. It is becoming increasingly clear that excision repair is not merely an extraordinary scheme to help UV-exposed cells survive but rather one that operates upon a wide range of structural defects in DNA, some of which are due to environmental chemicals and others are a consequence of normal metabolic activities. It is an important challenge to researchers and risk assessors to determine the relative contributions to biological endpoints from endogenous events and the intrinsic instability of DNA as compared to exogenous environmental exposures. This should be one of the goals of the Environmental Mutagen Society as it embarks upon its second quarter-century.
Collapse
Affiliation(s)
- P C Hanawalt
- Department of Biological Sciences, Stanford University, California
| |
Collapse
|
95
|
Matson SW, Bean DW, George JW. DNA helicases: enzymes with essential roles in all aspects of DNA metabolism. Bioessays 1994; 16:13-22. [PMID: 8141804 DOI: 10.1002/bies.950160103] [Citation(s) in RCA: 237] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
DNA helicases catalyze the disruption of the hydrogen bonds that hold the two strands of double-stranded DNA together. This energy-requiring unwinding reaction results in the formation of the single-stranded DNA required as a template or reaction intermediate in DNA replication, repair and recombination. A combination of biochemical and genetic studies have been used to probe and define the roles of the multiple DNA helicases found in E. coli. This work and similar efforts in eukaryotic cells, although far from complete, have established that DNA helicases are essential components of the machinery that interacts with the DNA molecule.
Collapse
Affiliation(s)
- S W Matson
- Department of Biology, University of North Carolina at Chapel Hill 27599
| | | | | |
Collapse
|
96
|
Visse R, de Ruijter M, Ubbink M, Brandsma JA, van de Putte P. The first zinc-binding domain of UvrA is not essential for UvrABC-mediated DNA excision repair. Mutat Res 1993; 294:263-74. [PMID: 7692266 DOI: 10.1016/0921-8777(93)90009-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Specific mutations in uvrA were introduced to analyze the role of the zinc-binding domains of the protein in DNA excision repair. Zinc-coordinating cysteines were substituted into non-coordinating serine or glycine residues. Mutations leading to changes in the second zinc-binding domain had a profound effect on UV survival in vivo; however these mutant proteins could not be isolated for in vitro analyses. Amino acid substitutions in the first zinc-binding domain had very little effect on UV survival in vivo. In vitro analyses showed that although this domain no longer coordinates zinc, ATPase activity, helicase activity, DNA binding, incision of damaged DNA and DNA repair synthesis appeared to be normal. Therefore it seems that the first zinc-binding domain of UvrA is not essential for DNA excision repair.
Collapse
Affiliation(s)
- R Visse
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
97
|
Abstract
The first step in the ubiquitous cellular process of nucleotide excision-repair must involve the recognition of a lesion or structural distortion in DNA. This is followed by incision in the strand perceived as damaged; and then coordinated steps of local degradation and re-synthesis occur to replace the defective DNA segment with a new stretch of nucleotides, making use of the intact complementary strand as template. The repair patch is ultimately ligated at its 3' end to the contiguous preexisting DNA strand to restore the integrity of the normal DNA structure. Crucial to this repair scheme is the fact that the genome consists of double-stranded DNA, so that when one strand is damaged the information for its repair can, in principle, be recovered from the other strand. We will review a bit of the early speculation about the nature of the damage recognition step and then discuss the complexity of that event as we currently understand it. An important conceptual contribution to this field resulted from my collaboration with Robert Haynes in which we suggested that "the recognition step in the repair mechanism could be formally equivalent to threading the DNA through a close-fitting 'sleeve' which gauges the closeness-of-fit to the Watson-Crick structure" (Hanawalt and Haynes, 1965).
Collapse
Affiliation(s)
- P C Hanawalt
- Department of Biological Sciences, Herrin Laboratories, Stanford University, CA 94305-5020
| |
Collapse
|
98
|
Wong I, Amaratunga M, Lohman T. Heterodimer formation between Escherichia coli Rep and UvrD proteins. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80740-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
99
|
Mendonca VM, Kaiser-Rogers K, Matson SW. Double helicase II (uvrD)-helicase IV (helD) deletion mutants are defective in the recombination pathways of Escherichia coli. J Bacteriol 1993; 175:4641-51. [PMID: 8335623 PMCID: PMC204915 DOI: 10.1128/jb.175.15.4641-4651.1993] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Escherichia coli helD (encoding helicase IV) and uvrD (encoding helicase II) genes have been deleted, independently and in combination, from the chromosome and replaced with genes encoding antibiotic resistance. Each deletion was verified by Southern blots, and the location of each deletion was confirmed by P1-mediated transduction. Cell strains containing the single and double deletions were viable, indicating that helicases II and IV are not essential for viability. Cell strains lacking helicase IV (delta helD) exhibited no increase in sensitivity to UV irradiation but were slightly more resistant to methyl methanesulfonate (MMS) than the isogenic wild-type cell strain. As expected, cell strains containing the helicase II deletion (delta uvrD) were sensitive to both UV irradiation and MMS. The introduction of the helicase IV deletion into a delta uvrD background had essentially no effect on the UV and MMS sensitivity of the cell strains analyzed. The double deletions, however, conferred a Rec- mutant phenotype for conjugational and transductional recombination in both recBC sbcB(C) and recBC sbcA backgrounds. The Rec- mutant phenotype was more profound in the recBC sbcB(C) background than in the recBC sbcA background. The recombination-deficient phenotype indicates the direct involvement of helicase II and/or helicase IV in the RecF pathway [recBC sbcB(C) background] and RecE pathway (recBC sbcA background) of recombination. The modest decrease in the recombination frequency observed in single-deletion mutants in the recBC sbcB(C) background suggests that either helicase is sufficient. In addition, helicase IV has been overexpressed in a tightly regulated system. The data suggest that even modest overexpression of helicase IV is lethal to the cell.
Collapse
Affiliation(s)
- V M Mendonca
- Department of Biology, University of North Carolina, Chapel Hill 27599
| | | | | |
Collapse
|
100
|
Abstract
Nucleotide excision repair is the major DNA repair mechanism in all species tested. This repair system is the sole mechanism for removing bulky adducts from DNA, but it repairs essentially all DNA lesions, and thus, in addition to its main function, it plays a back-up role for other repair systems. In both pro- and eukaryotes nucleotide excision is accomplished by a multisubunit ATP-dependent nuclease. The excision nuclease of prokaryotes incises the eighth phosphodiester bond 5' and the fourth or fifth phosphodiester bond 3' to the modified nucleotide and thus excises a 12-13-mer. The excision nuclease of eukaryotes incises the 22nd, 23rd, or 24th phosphodiester bond 5' and the fifth phosphodiester bond 3' to the lesion and thus removes the adduct in a 27-29-mer. A transcription repair coupling factor encoded by the mfd gene in Escherichia coli and the ERCC6 gene in humans directs the excision nuclease to RNA polymerase stalled at a lesion in the transcribed strand and thus ensures preferential repair of this strand compared to the nontranscribed strand.
Collapse
Affiliation(s)
- A Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|