51
|
Mastrangelo F, Quaresima R, Grilli A, Tettamanti L, Vinci R, Sammartino G, Tetè S, Gherlone E. A comparison of bovine bone and hydroxyapatite scaffolds during initial bone regeneration: an in vitro evaluation. IMPLANT DENT 2015; 22:613-22. [PMID: 24185465 DOI: 10.1097/id.0b013e3182a69858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To evaluate the different behavior of 3-dimensional biomaterial scaffolds-Bovine Bone (BB; Bio-Oss) and Hydroxyapatite (HA; ENGIpore)-during initial bone healing and development. MATERIALS AND METHODS Human dental papilla stem cells (hDPaSCs) were selected with FACsorter cytofluorimetric analysis, cultured with osteogenic medium, and analyzed with Alizarin red stained after differentiation. The obtained osteoblast-like cells (OCs) were cultured with BB and HA. alkaline phosphatase (ALP), OC, MEPE, and runt-related transcription factor 2 (RUNX2) expression markers were investigated performing Western blot and reverse transcription-polymerase chain reaction (RT-PCR) analysis. After 40 days, samples were analyzed by light and electron microscopy. RESULTS All the samples showed high in vitro biocompatibility and qualitative differences of OCs adhesion. RT-PCR and Western blot data exhibited similar marker rate, but ALP, OC, MEPE, and RUNX2expression, during initial healing and bone regeneration phase, was higher and faster in human dental papilla onto BB than in HA scaffolds. In biomaterials growth, RUNX2 seems to play an important role as a key regulator in human OCs from dental papilla bone development. CONCLUSION Different surface BB scaffold characteristics seem to play a critical role in OCs differentiation showing different time of bone regeneration morphological characteristics as well as higher and faster levels of all observed markers.
Collapse
Affiliation(s)
- Filiberto Mastrangelo
- *Young Researcher, Department of Oral Medical Science and Biotechnology, University of Chieti, Chieti, Italy. †Associate Professor of Biomaterial Engineering, Department of Civil Engineering, Architecture and Environment, University of L'Aquila, L'Aquila, Italy. ‡Ordinary Professor of Biology, Department of Oral Medical Science and Biotechnology, University of Chieti, Chieti, Italy; Leonardo da Vinci Telematic University, Torrevecchia Teatina (Chieti), Chieti, Italy. §Researcher of Pedodontics and Orthodontics, Department of Oral Science, Insubria University of Varese, Varese, Italy. ‖Maxillofacial Surgeon, Department of Oral Science, University Vita e Salute Milano, Milan, Italy. ¶Associate Professor of Maxillofacial Surgery, Department of Surgical Science, University Federico II Napoli, Naples, Italy. #Associate Professor of Oral Surgery, Department of Oral Medical Science and Biotechnology, University of Chieti, Chieti, Italy. **Ordinary Professor and Dean of Oral and Maxillofacial Surgery, Department of Oral Science, University Vita e Salute Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Eckhard U, Marino G, Abbey SR, Tharmarajah G, Matthew I, Overall CM. The Human Dental Pulp Proteome and N-Terminome: Levering the Unexplored Potential of Semitryptic Peptides Enriched by TAILS to Identify Missing Proteins in the Human Proteome Project in Underexplored Tissues. J Proteome Res 2015; 14:3568-82. [DOI: 10.1021/acs.jproteome.5b00579] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ulrich Eckhard
- Centre
for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Giada Marino
- Centre
for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Simon R. Abbey
- Centre
for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Grace Tharmarajah
- Department
of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ian Matthew
- Department
of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Christopher M. Overall
- Centre
for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
53
|
Proposing the use of dental pulp stem cells as a suitable biological model of neurofibromatosis type 1. Childs Nerv Syst 2015; 31:7-13. [PMID: 25480698 DOI: 10.1007/s00381-014-2599-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE This study aims to propose the dental pulp stem cells (DPSCs) as a model for studying two features related to neurofibromatosis type 1 (NF1), i.e. augmented proliferative capacity and altered osteogenic differentiation. METHODS We isolated a DPSC from the pulp of deciduous teeth of a 6-year-old NF1 patient and two other healthy children of similar age. Cell proliferation was assayed by counting with a haemocytometer after successive cell re-plating. In order to compare osteogenic differentiation, we used osteoblast-differentiating medium and quantified alizarin stain, which relates to degree of calcification, and evaluated the expression of osteoblastic markers by reverse transcription polymerase chain reaction (RT-PCR). RESULTS The DPSCs isolated from the NF1 patient displayed a greater rate of proliferation when compared to the control cells. Osteogenic differentiation occurred as expected for both NF1 and control, which concerned cell morphology and expression of osteoblast marker genes ALP, BMP2, BMP4, OCN and SPP1. However, alizarin staining denoted a markedly lower calcification level in the cells from the NF1-diagnosed child, considering that less calcium deposits were visualized under light microscopy and a smaller amount of alizarin could be quantified by spectrophotometry after extraction from the stained cells. CONCLUSION DPSCs seem to be useful as a model for studying NF1 and predicting prognosis of patients, since their in vitro behaviour seems to mimic at least two features of this disorder: higher tendency to develop bone abnormalities and neoplastic cell proliferation.
Collapse
|
54
|
Nakatsuka R, Matsuoka Y, Uemura Y, Sumide K, Iwaki R, Takahashi M, Fujioka T, Sasaki Y, Sonoda Y. Mouse Dental Pulp Stem Cells Support Human Umbilical Cord Blood-Derived Hematopoietic Stem/Progenitor Cells in Vitro. Cell Transplant 2015; 24:97-113. [DOI: 10.3727/096368913x674675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is well documented that specialized mesenchymal stem/stromal cells (MSCs) constitute the hematopoietic stem cell (HSC) niche in the bone marrow (BM), and these MSCs support/maintain the HSCs in an undifferentiated state. A number of studies have demonstrated that BM-derived MSCs (BM-MSCs) can support HSCs in vitro. However, it remains unclear whether nonhematopoietic tissue-derived MSC-like cells, such as dental pulp stem cells (DPSCs), have the ability to support HSCs. In this study, we prospectively isolated DPSCs from mouse mandibular incisors by fluorescence-activated cell sorting (FACS) using BM-MSC markers, such as PDGFRα and Sca-1. The PDGFRα and Sca-1 double-positive DPSCs and BM-MSCs showed similar morphologies and expression patterns of MSC markers. The ability of the DPSCs to support hematopoietic stem/progenitor cells (HSPCs) was then analyzed by an in vitro coculture system. Moreover, their HSC-supporting activity was evaluated by in vivo xenotransplantation assays using NOD/Shi-scid/IL-2Rγcnull (NOG) mice. Interestingly, the DPSCs supported human cord blood (CB)-derived CD34-positive (CD34+), as well as CD34-negative (CD34–), HSCs. The supporting activities of DPSCs for human CB-derived CD34+ and CD34– HSCs were comparable to those of BM-MSCs. The results of the present study demonstrated, for the first time, that prospectively isolated murine PDGFRα and Sca-1 double-positive DPSCs could support primitive human CD34+ and CD34– HSCs in vitro.
Collapse
Affiliation(s)
- Ryusuke Nakatsuka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yoshikazu Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center National Cancer Center, Kashiwa, Chiba, Japan
| | - Keisuke Sumide
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Ryuji Iwaki
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Masaya Takahashi
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tatsuya Fujioka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yutaka Sasaki
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yoshiaki Sonoda
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
55
|
Liu HJ, Wang T, Li QM, Guan XY, Xu Q. Knock-down of p300 decreases the proliferation and odontogenic differentiation potentiality of HDPCs. Int Endod J 2014; 48:976-85. [PMID: 25288362 DOI: 10.1111/iej.12392] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/02/2014] [Indexed: 01/17/2023]
Abstract
AIM To investigate the role of p300 in the regulation of proliferation and odontogenic differentiation of human dental pulp cells (HDPCs). METHODOLOGY The recombinant lentiviral vector pshRNA-copGFP was used to knock-down p300 expression in HDPCs. Protein level of acetylated H3 was detected. The proliferation of HDPCs was measured using the CCK8 assay. The cell cycle and apoptosis were analysed using flow cytometry and TUNEL staining, respectively. The expression levels of Cdc25A, p21(waf1) and the cleaved products of caspase 3 and caspase 7 were determined utilizing real-time quantitative polymerase chain reaction and Western blotting analysis. The alkaline phosphatase (ALP) activity was measured, and the formation of mineralized nodules was assessed using alizarin red staining after the induction of odontogenic differentiation of HDPCs. The expression levels of the odontogenic differentiation markers DMP-1, DSPP and DSP were detected utilizing real-time quantitative polymerase chain reaction and Western blotting analysis. RESULTS After p300 was knocked down in HDPCs, p300 was significantly down-regulated at both the mRNA and protein levels, and histone H3 acetylation was reduced. The proliferation capacity of HDPCs was suppressed in p300 knock-down groups. The cells were arrested in the G0/G1 phase of the cell cycle, and cell apoptosis was triggered. ALP activity, the formation of mineralized nodules and the expression levels of DMP-1, DSPP and DSP were all decreased in p300-knock-down HDPCs undergoing odontogenic differentiation. CONCLUSION Knocking down p300 restrains the proliferation and odontogenic differentiation potentiality of HDPCs.
Collapse
Affiliation(s)
- H J Liu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - T Wang
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Q M Li
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - X Y Guan
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Q Xu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
56
|
Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 2014; 9:1205-16. [PMID: 24850632 DOI: 10.1002/term.1899] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/16/2013] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Dental pulp stem cells (DPSCs) are a promising source of cells for numerous and varied regenerative medicine applications. Their natural function in the production of odontoblasts to create reparative dentin support applications in dentistry in the regeneration of tooth structures. However, they are also being investigated for the repair of tissues outside of the tooth. The ease of isolation of DPSCs from discarded or removed teeth offers a promising source of autologous cells, and their similarities with bone marrow stromal cells (BMSCs) suggest applications in musculoskeletal regenerative medicine. DPSCs are derived from the neural crest and, therefore, have a different developmental origin to BMSCs. These differences from BMSCs in origin and phenotype are being exploited in neurological and other applications. This review briefly highlights the source and functions of DPSCs and then focuses on in vivo applications across the breadth of regenerative medicine.
Collapse
Affiliation(s)
- Marco Tatullo
- Tecnologica Research Institute, Regenerative Medicine Section, St. E. Fermi, Crotone, Italy
| | | | - Kevin M Shakesheff
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Pharmacy, University of Nottingham, UK
| | - Lisa J White
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Pharmacy, University of Nottingham, UK
| |
Collapse
|
57
|
Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Investig 2014; 18:2103-12. [DOI: 10.1007/s00784-014-1207-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/04/2014] [Indexed: 01/08/2023]
|
58
|
JÁGR M, ECKHARDT A, PATARIDIS S, BROUKAL Z, DUŠKOVÁ J, MIKŠÍK I. Proteomics of Human Teeth and Saliva. Physiol Res 2014; 63:S141-54. [DOI: 10.33549/physiolres.932702] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Teeth have been a focus of interest for many centuries – due to medical problems with them. They are the hardest part of the human body and are composed of three mineralized parts – enamel, dentin and cementum, together with the soft pulp. However, saliva also has a significant impact on tooth quality. Proteomic research of human teeth is now accelerating, and it includes all parts of the tooth. Some methodological problems still need to be overcome in this research field – mainly connected with calcified tissues. This review will provide an overview of the current state of research with focus on the individual parts of the tooth and pellicle layer as well as saliva. These proteomic results can help not only stomatology in terms of early diagnosis, identifying risk factors, and systematic control.
Collapse
Affiliation(s)
| | | | | | | | | | - I. MIKŠÍK
- Department of Analysis of Biologically Important Compounds, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
59
|
Syed-Picard FN, Ray HL, Kumta PN, Sfeir C. Scaffoldless tissue-engineered dental pulp cell constructs for endodontic therapy. J Dent Res 2014; 93:250-5. [PMID: 24401375 DOI: 10.1177/0022034513517901] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A major cause of apical periodontitis after endodontic treatment is the bacterial infiltration which could have been challenged by the presence of a vital pulp. In this study, self-assembled, scaffoldless, three-dimensional (3D) tissues were engineered from dental pulp cells (DPCs) and assessed as a device for pulp regeneration. These engineered tissues were placed into the canal space of human tooth root segments that were capped on one end with calcium phosphate cement, and the entire system was implanted subcutaneously into mice. Histological staining indicated that after three- and five-month implantations, tooth roots containing 3D scaffoldless engineered tissues maintained a cellular, fibrous tissue throughout, whereas empty tooth roots remained predominantly empty. Immunostaining indicated that the tissue found in the root canals containing scaffoldless DPC engineered tissues was vascular, as characterized by the expression of CD31, and contained odontoblast-like cells organized along the length of the root wall as assessed by immunostaining for dentin sialoprotein. This study shows that 3D self-assembled scaffoldless DPC engineered tissues can regenerate a vital dental pulp-like tissue in a tooth root canal system and are therefore promising for endodontic therapy.
Collapse
Affiliation(s)
- F N Syed-Picard
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
60
|
Di Benedetto A, Carbone C, Mori G. Dental pulp stem cells isolation and osteogenic differentiation: a good promise for tissue engineering. Methods Mol Biol 2014; 1210:117-130. [PMID: 25173164 DOI: 10.1007/978-1-4939-1435-7_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Adult stem cells therapy can be an efficacious treatment for many diseases and disabilities. New sources of stem cells in adult organisms are continuously emerging. Dental tissues that are easily accessible by a tooth extraction have been identified as a source of postnatal mesenchymal stem cells capable of self-renewal and multipotency. Here, we describe accurately the technical procedure to isolate mesenchymal stem cells from dental pulp (DPSCs), characterize their immunophenotype, and assay their osteogenic capacity.
Collapse
Affiliation(s)
- Adriana Di Benedetto
- Department of Clinical and Experimental Medicine, University of Foggia, V.le L. Pinto 1, 71100, Foggia, Italy,
| | | | | |
Collapse
|
61
|
Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neurosci Res 2013; 78:16-20. [PMID: 24252618 DOI: 10.1016/j.neures.2013.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) often leads to persistent functional deficits due to the loss of neurons and glia and to limited axonal regeneration after such injury. Recently, three independent groups have reported marked recovery of hindlimb locomotor function after the transplantation of human adult dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) into rats or mice with acute, sub-acute or chronic SCI. This review summarizes the primary characteristics of human dental pulp stem cells and their therapeutic benefits for treating SCI. Experimental data from multiple preclinical studies suggest that pulp stem cells may promote functional recovery after SCI through multifaceted neuro-regenerative activities.
Collapse
|
62
|
Kim DS, Kim YS, Bae WJ, Lee HJ, Chang SW, Kim WS, Kim EC. The role of SDF-1 and CXCR4 on odontoblastic differentiation in human dental pulp cells. Int Endod J 2013; 47:534-41. [DOI: 10.1111/iej.12182] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/12/2013] [Indexed: 01/02/2023]
Affiliation(s)
- D. S. Kim
- Department of Conservative Dentistry; School of Dentistry; Kyung Hee University; Seoul Korea
| | - Y. S. Kim
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Regeneration (MRC); School of Dentistry; Kyung Hee University; Seoul Korea
| | - W. J. Bae
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Regeneration (MRC); School of Dentistry; Kyung Hee University; Seoul Korea
| | - H. J. Lee
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Regeneration (MRC); School of Dentistry; Kyung Hee University; Seoul Korea
| | - S. W. Chang
- Department of Conservative Dentistry; School of Dentistry; Kyung Hee University; Seoul Korea
| | - W. S. Kim
- Department of Periodontology; School of Dentistry; Wonkwang University; Iksan Korea
| | - E. C. Kim
- Department of Maxillofacial Tissue Regeneration and Research Center for Tooth and Periodontal Regeneration (MRC); School of Dentistry; Kyung Hee University; Seoul Korea
| |
Collapse
|
63
|
Egbuniwe O, Grant AD, Renton T, Di Silvio L. Phenotype-independent effects of retroviral transduction in human dental pulp stem cells. Macromol Biosci 2013; 13:851-9. [PMID: 23765615 DOI: 10.1002/mabi.201300020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/05/2013] [Indexed: 01/03/2023]
Abstract
An immortalized human dental pulp stem cell (DPSC) line of an odontoblastic phenotype is established to circumvent the normal programmed senescence and to maintain the cell line's usefulness as a tool for further study of cellular activity. DPSCs are isolated from human dental pulp tissues and transfected using hTERT. The influence of this process on the DPSC phenotype and the mRNA expression of oncogenes involved in cellular senescence is investigated. The results reveal an absence of altered DPSC morphology and phenotype following the exogenous introduction of the hTERT gene, which is coupled with a significant reduction in p16 mRNA expression. This provides insight into how to circumvent in vitro dental pulp stem cell death following the exogenous introduction of hTERT.
Collapse
Affiliation(s)
- Obi Egbuniwe
- Biomaterials, Tissue Engineering and Imaging, King's College London, Guy's Hospital, London, England.
| | | | | | | |
Collapse
|
64
|
Yang H, Shin S, Ahn J, Choi Y, Kim KH, Chung CJ. Local Injection of Pulp Cells Enhances Wound Healing during the Initial Proliferative Phase through the Stimulation of Host Angiogenesis. J Endod 2013; 39:788-94. [DOI: 10.1016/j.joen.2013.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/08/2013] [Accepted: 01/30/2013] [Indexed: 01/09/2023]
|
65
|
Lee SI, Kim DS, Lee HJ, Cha HJ, Kim EC. The role of thymosin beta 4 on odontogenic differentiation in human dental pulp cells. PLoS One 2013; 8:e61960. [PMID: 23613983 PMCID: PMC3629154 DOI: 10.1371/journal.pone.0061960] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/15/2013] [Indexed: 02/01/2023] Open
Abstract
We recently reported that overexpression of thymosin beta-4 (Tβ4) in transgenic mice promotes abnormal hair growth and tooth development, but the role of Tβ4 in dental pulp regeneration was not completely understood. The aim of this study was to investigate the role of Tβ4 on odontoblastic differentiation and the underlying mechanism regulating pulp regeneration in human dental pulp cells (HDPCs). Our results demonstrate that mRNA and protein expression of Tβ4 is upregulated during odontogenic differentiation in HDPCs. Transfection with Tβ4 siRNA decreases OM-induced odontoblastic differentiation by decreasing alkaline phosphatase (ALP) activity, mRNA expression of differentiation markers, and calcium nodule formation. In contrast, Tβ4 activation with a Tβ4 peptide promotes these processes by enhancing the phosphorylation of p38, JNK, and ERK mitogen-activated protein kinases (MAPKs), bone morphogenetic protein (BMP) 2, BMP4, phosphorylation of Smad1/5/8 and Smad2/3, and expression of transcriptional factors such as Runx2 and Osterix, which were blocked by the BMP inhibitor noggin. The expression of integrin receptors α1, α2, α3, and β1 and downstream signaling molecules including phosphorylated focal adhesion kinase (p-FAK), p-paxillin, and integrin-linked kinase (ILK) were increased by Tβ4 peptide in HDPCs. ILK siRNA blocked Tβ4-induced odontoblastic differentiation and activation of the BMP and MAPK transcription factor pathways in HDPCs. In conclusion, this study demonstrates for the first time that Tβ4 plays a key role in odontoblastic differentiation of HDPCs and activation of Tβ4 could provide a novel mechanism for regenerative endodontics.
Collapse
Affiliation(s)
- Sang-Im Lee
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Duck-Su Kim
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hwa-Jeong Lee
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetic, Kosin University College of Medicine, Busan, Republic of Korea
| | - Eun-Cheol Kim
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
66
|
Syed-Picard FN, Jayaraman T, Lam RSK, Beniash E, Sfeir C. Osteoinductivity of calcium phosphate mediated by connexin 43. Biomaterials 2013; 34:3763-74. [PMID: 23465492 DOI: 10.1016/j.biomaterials.2013.01.095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/26/2013] [Indexed: 11/25/2022]
Abstract
Recent reports have alluded to the osteoinductive properties of calcium phosphate, yet the cellular processes behind this are not well understood. To gain insight into the molecular mechanisms of this phenomenon, we have conducted a series of in vitro and in vivo experiments using a scaffoldless three dimensional (3D) dental pulp cell (DPC) construct as a physiologically relevant model. We demonstrate that amorphous calcium phosphate (ACP) alters cellular functions and 3D spatial tissue differentiation patterns by increasing local calcium concentration, which modulates connexin 43 (Cx43)-mediated gap junctions. These observations indicate a chemical mechanism for osteoinductivity of calcium phosphates. These results provide new insights for possible roles of mineral phases in bone formation and remodeling. This study also emphasizes the strong effect of scaffold materials on cellular functions and is expected to advance the design of future tissue engineering materials.
Collapse
Affiliation(s)
- Fatima N Syed-Picard
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
67
|
Abstract
Scientists have recently focused their attention on adult stem cells as new and more effective treatments for different diseases and disabilities. In fact, it is known that stem cells are capable of renewing themselves and that they can generate multiple cell types. Today, there is new evidence that stem cells are present in far more tissues and organs than once thought and that these cells are capable of developing into more kinds of cells than previously imagined. In this chapter, we focus the attention on teeth as source of stem cells. In particular, we describe the characteristic of the different types of dental stem cells and their use in tissue engineering.
Collapse
|
68
|
Pantovic A, Krstic A, Janjetovic K, Kocic J, Harhaji-Trajkovic L, Bugarski D, Trajkovic V. Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells. Bone 2013; 52:524-31. [PMID: 23111315 DOI: 10.1016/j.bone.2012.10.024] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/17/2012] [Accepted: 10/20/2012] [Indexed: 12/20/2022]
Abstract
We investigated the role of AMP-activated protein kinase (AMPK), Akt, mammalian target of rapamycin (mTOR), autophagy and their interplay in osteogenic differentiation of human dental pulp mesenchymal stem cells. The activation of various members of AMPK, Akt and mTOR signaling pathways and autophagy was analyzed by immunoblotting, while osteogenic differentiation was assessed by alkaline phosphatase staining and real-time RT-PCR/immunoblot quantification of osteocalcin, Runt-related transcription factor 2 and bone morphogenetic protein 2 mRNA and/or protein levels. Osteogenic differentiation of mesenchymal stem cells was associated with early (day 1) activation of AMPK and its target Raptor, coinciding with the inhibition of mTOR and its substrate p70S6 kinase. The early induction of autophagy was demonstrated by accumulation of autophagosome-bound LC3-II, upregulation of proautophagic beclin-1 and a decrease in the selective autophagic target p62. This was followed by the late activation of Akt/mTOR at days 3-7 of differentiation. The RNA interference-mediated silencing of AMPK, mTOR or autophagy-essential LC3β, as well as the pharmacological inhibitors of AMPK (compound C), Akt (10-DEBC hydrochloride), mTOR (rapamycin) and autophagy (bafilomycin A1, chloroquine and ammonium chloride), each suppressed mesenchymal stem cell differentiation to osteoblasts. AMPK knockdown prevented early mTOR inhibition and autophagy induction, as well as late activation of Akt/mTOR signaling, while Akt inhibition suppressed mTOR activation without affecting AMPK phosphorylation. Our data indicate that AMPK controls osteogenic differentiation of human mesenchymal stem cells through both early mTOR inhibition-mediated autophagy and late activation of Akt/mTOR signaling axis.
Collapse
Affiliation(s)
- Aleksandar Pantovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
69
|
|
70
|
|
71
|
The Effects of Tumor Necrosis Factor-α on Mineralization of Human Dental Apical Papilla Cells. J Endod 2012; 38:960-4. [DOI: 10.1016/j.joen.2012.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/30/2012] [Accepted: 04/10/2012] [Indexed: 12/18/2022]
|
72
|
Kim JJ, Kim SJ, Kim YS, Kim SY, Park SH, Kim EC. The Role of SIRT1 on Angiogenic and Odontogenic Potential in Human Dental Pulp Cells. J Endod 2012; 38:899-906. [DOI: 10.1016/j.joen.2012.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 04/06/2012] [Accepted: 04/10/2012] [Indexed: 01/09/2023]
|
73
|
Atari M, Caballé-Serrano J, Gil-Recio C, Giner-Delgado C, Martínez-Sarrà E, García-Fernández DA, Barajas M, Hernández-Alfaro F, Ferrés-Padró E, Giner-Tarrida L. The enhancement of osteogenesis through the use of dental pulp pluripotent stem cells in 3D. Bone 2012; 50:930-41. [PMID: 22270057 DOI: 10.1016/j.bone.2012.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/30/2011] [Accepted: 01/02/2012] [Indexed: 01/09/2023]
Abstract
The potential for osteogenic differentiation of dental pulp mesenchymal stem cells (DPMSCs) in vitro and in vivo has been well documented in a variety of studies. Previously, we obtained a population of cells from human dental pulp called dental pulp pluripotent stem cells (DPPSCs) that could differentiate into mesodermal, ectodermal and endodermal progenies. We compared the osteogenic capacity of DPPSCs and DPMSCs that had been isolated from the same donors (N=5) and cultivated in the same osteogenic medium in 3D (three dimensions) Cell Carrier glass scaffolds. We also compared the architecture of bone-like tissue obtained from DPPSCs and human maxillary bone tissue. Differentiation was evaluated by scanning electron microscopy, whereas the expression of bone markers such as ALP, Osteocalcin, COLL1 and Osteonectin was investigated by quantitative real time polymerase chain reaction (qRT-PCR). We also used calcium quantification, Alizarin red staining and alkaline phosphatase (ALP) activity to compare the two cell types. New bone tissue formed by DPPSCs was in perfect continuity with the trabecular host bone structure, and the restored bone network demonstrated high interconnectivity. Significant differences between DPPSCs and DPMSCs were observed for the expression of bone markers, calcium deposition and ALP activity during osteogenic differentiation; these criteria were higher for DPPSCs than DPMSCs. Both DPPSCs and differentiated tissue showed normal chromosomal dosage after being cultured in vitro and analysed using short-chromosome genomic hybridisation (short-CGH). This study demonstrates the stability and potential for the use of DPPSCs in bone tissue engineering applications.
Collapse
Affiliation(s)
- M Atari
- Laboratory for Regenerative Medicine, Department of Oral and Maxillofacial Surgery, College of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Atari M, Gil-Recio C, Fabregat M, García-Fernández D, Barajas M, Carrasco MA, Jung HS, Alfaro FH, Casals N, Prosper F, Ferrés-Padró E, Giner L. Dental pulp of the third molar: a new source of pluripotent-like stem cells. J Cell Sci 2012; 125:3343-56. [PMID: 22467856 DOI: 10.1242/jcs.096537] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However, no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work, we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF, EGF and PDGF. These cells are SSEA4(+), OCT3/4(+), NANOG(+), SOX2(+), LIN28(+), CD13(+), CD105(+), CD34(-), CD45(-), CD90(+), CD29(+), CD73(+), STRO1(+) and CD146(-), and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly, DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of GATA4, GATA6, MIXL1, NANOG, OCT3/4, SOX1 and SOX2 to determine the degree of similarity between DPPSCs, EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs, hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages, they represent an easily accessible source of stem cells, which opens a range of new possibilities for regenerative medicine.
Collapse
Affiliation(s)
- Maher Atari
- Laboratory for Regenerative Medicine, College of Dentistry, Universitat Internacional de Catalunya, Barcelona 08009, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Karfeld-Sulzer LS, Weber FE. Biomaterial development for oral and maxillofacial bone regeneration. J Korean Assoc Oral Maxillofac Surg 2012. [DOI: 10.5125/jkaoms.2012.38.5.264] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Lindsay S. Karfeld-Sulzer
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Franz E. Weber
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
76
|
Lee EH, Park HJ, Jeong JH, Kim YJ, Cha DW, Kwon DK, Lee SH, Cho JY. The role of asporin in mineralization of human dental pulp stem cells. J Cell Physiol 2011; 226:1676-82. [PMID: 21413025 DOI: 10.1002/jcp.22498] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human adult dental pulp stem cells (hDPSCs) are a unique precursor population isolated from postnatal dental pulp and have the ability to regenerate a reparative dentin-like complex. In this study, we investigated the role of Asporin in hDPSCs, which was identified as a matrix protein in our previous dentin proteomic analysis. We isolated a clonogenic, highly proliferative population of cells from adult human dental pulp. These isolated hDPSCs were confirmed by fluorescence activated cell sorting (FACS) using stem cell-specific markers and have shown multilineage differentiation potential. The localization of Asporin was identified by immunohistochemistry in the globular calcification region in the junction of predentin and dentin. The gene and protein expression levels of Asporin were enhanced at the early stage of and then reduced during the late stage of differentiation of hDPSCs in mineralization media. ASPN knock-down using a lentiviral system suppressed the mineralization of hDPSCs. These results suggest that ASPN plays positive roles in the mineralization of hDPSCs and predentin to dentin.
Collapse
Affiliation(s)
- Eun-Hyang Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W. Assessment of the impact of two different isolation methods on the osteo/odontogenic differentiation potential of human dental stem cells derived from deciduous teeth. Calcif Tissue Int 2011; 88:130-41. [PMID: 21153807 DOI: 10.1007/s00223-010-9438-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/31/2010] [Indexed: 12/13/2022]
Abstract
Human deciduous teeth have been proposed as a promising source of mesenchymal stem cells for application in bone and dental tissue engineering. We established cultures of mesenchymal stem cells from the pulp of human deciduous teeth (deciduous teeth stem cells, DTSCs) and analyzed their morphologic, growth, immunophenotypic, and osteo/odontogenic differentiation characteristics using different isolation methods and culturing environments. We compared the biologic behavior of DTSCs isolated either by enzymatic dissociation (DTSCs-ED) or by direct outgrowth from pulp tissue explants (DTSCs-OG). We found that different isolation methods give rise to different populations/lineages of cells with respect to their phenotypic and differentiation characteristics. DTSCs-ED cultures comprised heterogeneous cell populations, whereas DTSCs-OG comprised more homogenous spindle-shaped cells. We have characterized DTSCs as STRO-1(+)/CD146(+)/CD34(+)/CD45(-) cells. However, the percentage of STRO-1(+) and CD34(+) cells was higher in DTSCs-ED (STRO-1, 17.01 ± 5.04%; CD34, 19.79 ± 4.66%) compared to DTSCs-OG cultures (STRO-1, 5.18 ± 2.39%; CD34, 9.94 ± 3.41%), probably as a result of a higher release of stem/progenitor cells from the perivascular niche during enzymatic dissociation. DTSCs isolated using either method displayed an active potential for cellular migration and biomineralization, giving rise to 3D mineralized structures when challenged with dexamethasone, monopotassium phosphate, and β-glycerophosphate. These cellular aggregates progressively expressed differentiation markers of functional odontoblasts, including dentin sialophosphoprotein, bone sialoprotein, osteocalcin, and alkaline phosphatase, having the characteristics of osteodentin. However, in DTSCs-ED, the mineralization rate and the amount of mineralized matrix produced was higher compared to DTSCs-OG cultures. Therefore, DTSCs-ED cells display enhanced biomineralization potential, which might be of advantage for application in clinical therapy.
Collapse
Affiliation(s)
- Athina Bakopoulou
- Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
78
|
Sun HH, Jin T, Yu Q, Chen FM. Biological approaches toward dental pulp regeneration by tissue engineering. J Tissue Eng Regen Med 2010; 5:e1-16. [PMID: 21413154 DOI: 10.1002/term.369] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/31/2010] [Indexed: 01/07/2023]
Abstract
Root canal therapy has been the predominant approach in endodontic treatment, wherein the entire pulp is cleaned out and replaced with a gutta-percha filling. However, living pulp is critical for the maintenance of tooth homeostasis and essential for tooth longevity. An ideal form of therapy, therefore, might consist of regenerative approaches in which diseased/necrotic pulp tissues are removed and replaced with regenerated pulp tissues to revitalize the teeth. Dental pulp regeneration presents one of the most challenging issues in regenerative dentistry due to the poor intrinsic ability of pulp tissues for self-healing and regrowth. With the advent of modern tissue engineering and the discovery of dental stem cells, biological therapies have paved the way to utilize stem cells, delivered or internally recruited, to generate dental pulp tissues, where growth factors and a series of dentine extracellular matrix molecules are key mediators that regulate the complex cascade of regeneration events to be faithfully fulfilled.
Collapse
Affiliation(s)
- Hai-Hua Sun
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, People's Republic of China
| | | | | | | |
Collapse
|
79
|
Balic A, Aguila HL, Mina M. Identification of cells at early and late stages of polarization during odontoblast differentiation using pOBCol3.6GFP and pOBCol2.3GFP transgenic mice. Bone 2010; 47:948-58. [PMID: 20728593 PMCID: PMC2957651 DOI: 10.1016/j.bone.2010.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 02/09/2023]
Abstract
Transgenic mouse lines in which GFP expression is under the control of tissue- and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stage of differentiation along a lineage. In the present study, we used primary cell cultures derived from the dental pulp from pOBCol3.6GFP and pOBCol2.3GFP transgenic mice as a model to develop markers for early stages of odontoblast differentiation from progenitor cells. We analyzed the temporal and spatial expression of 2.3-GFP and 3.6-GFP during in vitro mineralization. Using FACS to separate cells based on GFP expression, we obtained relatively homogenous subpopulations of cells and analyzed their dentinogenic potentials and their progression into odontoblasts. Our observations showed that these transgenes were activated before the onset of matrix deposition and in cells at different stages of polarization. The 3.6-GFP transgene was activated in cells in early stages of polarization, whereas the 2.3-GFP transgene was activated at a later stage of polarization just before or at the time of formation of secretory odontoblast.
Collapse
Affiliation(s)
- Anamaria Balic
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| | - H. Leonardo Aguila
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Mina Mina
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
80
|
Pivoriuūnas A, Surovas A, Borutinskaite V, Matuzeviccius D, Treigyte G, Savickiene J, Tunaitis V, Aldonyte R, Jarmalavicciuūte A, Suriakaite K, Liutkeviccius E, Venalis A, Navakauskas D, Navakauskiene R, Magnusson KE. Proteomic analysis of stromal cells derived from the dental pulp of human exfoliated deciduous teeth. Stem Cells Dev 2010; 19:1081-93. [PMID: 19824824 DOI: 10.1089/scd.2009.0315] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human dental pulp derived from exfoliated deciduous teeth has been described as a promising alternative source of multipotent stem cells. While these cells share certain similarities with mesenchymal stem-like cells (MSC) isolated from other tissues, basically they are still poorly characterized. In this study, for the first time, a proteomic map of abundantly expressed proteins in stromal cells derived from the dental pulp of human exfoliated deciduous teeth (SHED) was established. We also analyzed proteomic signatures of 2 clonal strains derived from SHEDs by single-cell cloning. The SHEDs were established from enzyme-disaggregated deciduous dental pulp from 6-year-old children. They had typical fibroblastoid morphology and high colony-forming efficiency index (16.4%). Cloning was performed at the second passage using limiting dilution in a 96-well plate (0.3 cell/well). Differentiation assessment revealed strong osteogenic but no adipogenic potential of the SHEDs in either clonal strain. The cells expressed characteristic antigens of MSC-like cells, including CD73, CD90, CD105, CD146, and did not express hematopoietic markers CD14, CD34, and CD45, as assessed with FACS analysis. For proteomic studies, cytosolic and nuclear proteins were analyzed with 2-dimensional gel electrophoresis (2-DE) and identified using matrix-assisted laser desorption/ionization (MALDI)-time of fl ight (TOF)-mass spectrometry (MS). All proteins were identified with high level of confidence (the lowest sequence coverage was 27%). Identification of highly expressed proteins in SHEDs revealed proteomic profiles very similar to that of MSC-like cells derived from other tissues. We also found a high degree of similarity between proteomic signatures of primary SHEDs and clonal cell strains. Thus, our data confirm a close resemblance between SHEDs and MSC-like cells from other tissues and may serve as starting point for creating-comprehensive proteomic maps.
Collapse
Affiliation(s)
- Augustas Pivoriuūnas
- Department of Experimental Medicine, Institute of Experimental and Clinical Medicine , Vilnius, Lithuania.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Yuan GH, Yang GB, Wu LA, Chen Z, Chen S. Potential Role of Dentin Sialoprotein by Inducing Dental Pulp Mesenchymal Stem Cell Differentiation and Mineralization for Dental Tissue Repair. DENTAL HYPOTHESES 2010; 1:69-75. [PMID: 21698071 DOI: 10.5436/j.dehy.2010.1.00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION: Dentin sialoprotein (DSP) is a dentin extracellular matrix protein, a unique marker of dentinogenesis and plays a vital role in odontoblast differentiation and dentin mineralization. Recently, studies have shown that DSP induces differentiation and mineralization of periodontal ligament stem cells and dental papilla mesenchymal cells in vitro and rescues dentin deficiency and increases enamel mineralization in animal models. THE HYPOTHESIS: DSP as a nature therapeutic agent stimulates dental tissue repair by inducing endogenous dental pulp mesenchymal stem/progenitor cells into odontoblast-like cells to synthesize and to secrete dentin extracellular matrix forming new tertiary dentin as well as to regenerate a functional dentin-pulp complex. As DSP is a nature protein, and clinical procedure for DSP therapy is easy and simple, application of DSP may provide a new avenue for dentists with additional option for the treatment of substantially damaged vital teeth. EVALUATION OF THE HYPOTHESIS: Dental caries is the most common dental disease. Deep caries and pulp exposure have been treated by various restorative materials with limited success. One promising approach is dental pulp stem/progenitor-based therapies to regenerate dentin-pulp complex and restore its functions by DSP induction in vivo.
Collapse
Affiliation(s)
- Guo-Hua Yuan
- Department of Pediatric Dentistry, The University of Texas Health Science Center, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
82
|
Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 2010; 46:1639-51. [PMID: 20193787 PMCID: PMC2881695 DOI: 10.1016/j.bone.2010.02.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 12/15/2022]
Abstract
In the past few years there have been significant advances in the identification of putative stem cells also referred to as "mesenchymal stem cells" (MSC) in dental tissues including the dental pulp. It is thought that MSC in dental pulp share certain similarities with MSC isolated from other tissues. However, cells in dental pulp are still poorly characterized. This study focused on the characterization of progenitor and stem cells in dental pulps of erupted and unerupted mice molars. Our study showed that dental pulps from unerupted molars contain a significant number of cells expressing CD90+/CD45-, CD117+/CD45-, Sca-1+/CD45- and little if any CD45+ cells. Our in vitro functional studies showed that dental pulp cells from unerupted molars displayed extensive osteo-dentinogenic potential but were unable to differentiate into chondrocytes and adipocytes. Dental pulps from erupted molars displayed a reduced number of cells, contained a higher percentage of CD45+ and a lower percentage of cells expressing CD90+/CD45-, CD117+/CD45- as compared to unerupted molars. In vitro functional assays demonstrated the ability of a small fraction of cells to differentiate into odontoblasts, osteoblasts, adipocytes and chondrocytes. There was a significant reduction in the osteo-dentinogenic potential of the pulp cells derived from erupted molars compared to unerupted molars. Furthermore, the adipogenic and chondrogenic differentiation of pulp cells from erupted molars was dependent on a long induction period and were infrequent. Based on these findings we propose that the dental pulp of the erupted molars contain a small population of multipotent cells, whereas the dental pulp of the unerupted molars does not contain multipotent cells but is enriched in osteo-dentinogenic progenitors engaged in the formation of coronal and radicular odontoblasts.
Collapse
Affiliation(s)
- Anamaria Balic
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| | - H. Leonardo Aguila
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Melissa J. Caimano
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Victor P. Francone
- Department of Neuroscience, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Mina Mina
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
83
|
Wang Z, Pan J, Wright JT, Bencharit S, Zhang S, Everett ET, Teixeira FB, Preisser JS. Putative stem cells in human dental pulp with irreversible pulpitis: an exploratory study. J Endod 2010; 36:820-5. [PMID: 20416426 DOI: 10.1016/j.joen.2010.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/26/2010] [Accepted: 02/09/2010] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Although human dental pulp stem cells isolated from healthy teeth have been extensively characterized, it is unknown whether stem cells also exist in clinically compromised teeth with irreversible pulpitis. Here we explored whether cells retrieved from clinically compromised dental pulp have stem cell-like properties. METHODS Pulp cells were isolated from healthy teeth (control group) and from teeth with clinically diagnosed irreversible pulpitis (diseased group). Cell proliferation, stem cell marker STRO-1 expression, and cell odonto-osteogenic differentiation competence were compared. RESULTS Cells from the diseased group demonstrated decreased colony formation capacity and a slightly decreased cell proliferation rate, but they had similar STRO-1 expression and exhibited a similar percentage of positive ex vivo osteogenic induction and dentin sialophosphoprotein expression from STRO-1-enriched pulp cells. CONCLUSIONS Our study provides preliminary evidence that clinically compromised dental pulp might contain putative cells with certain stem cell properties. Further characterization of these cells will provide insight regarding whether they could serve as a source of endogenous multipotent cells in tissue regeneration-based dental pulp therapy.
Collapse
Affiliation(s)
- Zhengyan Wang
- Dental Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Scheven B, Shelton R, Cooper P, Walmsley A, Smith A. Therapeutic ultrasound for dental tissue repair. Med Hypotheses 2009; 73:591-3. [DOI: 10.1016/j.mehy.2009.05.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 01/26/2023]
|
85
|
Paula-Silva FWG, Ghosh A, Silva LAB, Kapila YL. TNF-alpha promotes an odontoblastic phenotype in dental pulp cells. J Dent Res 2009; 88:339-44. [PMID: 19407154 DOI: 10.1177/0022034509334070] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp cells can differentiate toward an odontoblastic phenotype to produce reparative dentin beneath caries lesions. However, the mechanisms involved in pulp cell differentiation under pro-inflammatory stimuli have not been well-explored. Thus, we hypothesized that the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) could be a mediator involved in dental pulp cell differentiation toward an odontoblastic phenotype. We observed that TNF-alpha-challenged pulp cells exhibited increased mineralization and early and increased expression of dentin phosphoprotein (DPP), dentin sialoprotein (DSP), dentin matrix protein-1, and osteocalcin during a phase of reduced matrix metalloproteinase (MMP) expression. We investigated whether these events were related and found that p38, a mitogen-activated protein kinase, differentially regulated MMP-1 and DSP/DPP expression and mediated mineralization upon TNF-alpha treatment. These findings indicate that TNF-alpha stimulates differentiation of dental pulp cells toward an odontoblastic phenotype via p38, while negatively regulating MMP-1 expression.
Collapse
Affiliation(s)
- F W G Paula-Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA
| | | | | | | |
Collapse
|
86
|
Koussoulakou DS, Margaritis LH, Koussoulakos SL. A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci 2009; 5:226-43. [PMID: 19266065 PMCID: PMC2651620 DOI: 10.7150/ijbs.5.226] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/21/2009] [Indexed: 12/28/2022] Open
Abstract
The ancestor of recent vertebrate teeth was a tooth-like structure on the outer body surface of jawless fishes. Over the course of 500,000,000 years of evolution, many of those structures migrated into the mouth cavity. In addition, the total number of teeth per dentition generally decreased and teeth morphological complexity increased. Teeth form mainly on the jaws within the mouth cavity through mutual, delicate interactions between dental epithelium and oral ectomesenchyme. These interactions involve spatially restricted expression of several, teeth-related genes and the secretion of various transcription and signaling factors. Congenital disturbances in tooth formation, acquired dental diseases and odontogenic tumors affect millions of people and rank human oral pathology as the second most frequent clinical problem. On the basis of substantial experimental evidence and advances in bioengineering, many scientists strongly believe that a deep knowledge of the evolutionary relationships and the cellular and molecular mechanisms regulating the morphogenesis of a given tooth in its natural position, in vivo, will be useful in the near future to prevent and treat teeth pathologies and malformations and for in vitro and in vivo teeth tissue regeneration.
Collapse
Affiliation(s)
- Despina S Koussoulakou
- University of Athens, Faculty of Biology, Department of Cell Biology and Biophysics, Athens, Greece
| | | | | |
Collapse
|
87
|
Abstract
INTRODUCTION It is now accepted that progenitor/stem cells reside within the post-natal dental pulp. Studies have identified several niches of multipotent mesenchymal progenitor cells, known as dental pulp stem cells, which have a high proliferative potential for self-renewal. These progenitor stem cells are now recognized as being vital to the dentine regeneration process following injury. Understanding the nature of these progenitor/stem cell populations in the pulp is important in determining their potentialities and development of isolation or recruitment strategies for use in regeneration and tissue engineering. Characterization of these cells, and determination of their potentialities in terms of specificity of regenerative response, may help direct new clinical treatment modalities. Such novel treatments may involve controlled direct recruitment of the cells in situ and possible seeding of stem cells at sites of injury for regeneration or use of the stem cells with appropriate scaffolds for tissue engineering solutions. Such approaches may provide an innovative and novel biologically based new generation of clinical materials and/or treatments for dental disease. AIM This study aimed to review the body of knowledge relating to stem cells and to consider the possibility of these cell populations, and related technology, in future clinical applications.
Collapse
Affiliation(s)
- Alastair J Sloan
- Mineralised Tissue Research Group, Tissue Engineering and Regenerative Dentistry, School of Dentistry Cardiff University, Cardiff, UK.
| | | |
Collapse
|
88
|
Takamori Y, Suzuki H, Nakakura-Ohshima K, Cai J, Cho SW, Jung HS, Ohshima H. Capacity of dental pulp differentiation in mouse molars as demonstrated by allogenic tooth transplantation. J Histochem Cytochem 2008; 56:1075-86. [PMID: 18765839 DOI: 10.1369/jhc.2008.951558] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp elaborates both bone and dentin under pathological conditions such as tooth replantation/transplantation. This study aims to clarify the capability of dental pulp to elaborate bone tissue in addition to dentin by allogenic tooth transplantation using immunohistochemistry and histochemistry. After extraction of the molars of 3-week-old mice, the roots and pulp floor were resected and immediately allografted into the sublingual region in a littermate. In addition, we studied the contribution of donor and host cells to the regenerated pulp tissue using a combination of allogenic tooth transplantation and lacZ transgenic ROSA26 mice. On Days 5-7, tubular dentin formation started next to the preexisting dentin at the pulp horn where nestin-positive odontoblast-like cells were arranged. Until Day 14, bone-like tissue formation occurred in the pulp chamber, where intense tartrate-resistant acid phosphatase-positive cells appeared. Furthermore, allogenic transplantation using ROSA26 mice clearly showed that both donor and host cells differentiated into osteoblast-like cells with the assistance of osteoclast-lineage cells, whereas newly differentiated odontoblasts were exclusively derived from donor cells. These results suggest that the odontoblast and osteoblast lineage cells reside in the dental pulp and that both donor and host cells contribute to bone-like tissue formation in the regenerated pulp tissue.
Collapse
Affiliation(s)
- Yasuhiko Takamori
- DDS, Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Niigata 951-8514, Japan
| | | | | | | | | | | | | |
Collapse
|
89
|
Yu J, Shi J, Jin Y. Current Approaches and Challenges in Making a Bio-Tooth. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:307-19. [PMID: 18665759 DOI: 10.1089/ten.teb.2008.0165] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Junnan Shi
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yan Jin
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
- Department of Oral Histology & Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
90
|
Hargreaves KM, Geisler T, Henry M, Wang Y. Regeneration Potential of the Young Permanent Tooth: What Does the Future Hold? J Endod 2008; 34:S51-6. [DOI: 10.1016/j.joen.2008.02.032] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
91
|
Yang ZH, Zhang XJ, Dang NN, Ma ZF, Xu L, Wu JJ, Sun YJ, Duan YZ, Lin Z, Jin Y. Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J Periodontal Res 2008; 44:199-210. [PMID: 18624943 DOI: 10.1111/j.1600-0765.2008.01106.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Limitations of current periodontal regeneration modalities in both predictability and extent of healing response, especially on new cementum and attachment formation, underscore the importance of restoring or providing a microenvironment that is capable of promoting the differentiation of periodontal ligament stem cells (PDLSCs) towards cementoblast-like cells and the formation of cementum/periodontal ligament-like tissues. The aim of this study was to investigate the biological effect of conditioned medium from developing apical tooth germ cells (APTG-CM) on the differentiation and cementogenesis of PDLSCs both in vitro and in vivo. MATERIAL AND METHODS Using the limiting dilution technique, single-colony-derived human PDLSCs were isolated and expanded to obtain homogeneous populations of PDLSCs. Morphological appearance, cell cycle analysis, bromodeoxyuridine incorporation, alkaline phosphatase (ALP) activity, mineralization behavior, gene expression of cementoblast phenotype and in vivo differentiation capacities of PDLSCs co-cultured with APTG-CM were evaluated. RESULTS The induced PDLSCs exhibited several characteristics of cementoblast lineages, as indicated by the morphological changes, increased proliferation, high ALP activity, and the expression of cementum-related genes and calcified nodule formation in vitro. When transplanted into immunocompromised mice, the induced PDLSCs showed tissue-regenerative capacity to produce cementum/periodontal ligament-like structures, characterized by a layer of cementum-like mineralized tissues and associated periodontal ligament-like collagen fibers connecting with the newly formed cementum-like deposits, whereas control, untreated PDLSCs transplants mainly formed connective tissues. CONCLUSION Our findings suggest that APTG-CM is able to provide a cementogenic microenvironment and induce differentiation of PDLSCs along the cementoblastic lineage. This has important implications for periodontal engineering.
Collapse
Affiliation(s)
- Z-H Yang
- Department of Orthodontics, School of Stomatology, Fourth Millitary Medical University, 145 West Changle Road, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Yen AHH, Sharpe PT. Stem cells and tooth tissue engineering. Cell Tissue Res 2007; 331:359-72. [PMID: 17938970 DOI: 10.1007/s00441-007-0467-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/04/2007] [Indexed: 01/09/2023]
Abstract
The notion that teeth contain stem cells is based on the well-known repairing ability of dentin after injury. Dental stem cells have been isolated according to their anatomical locations, colony-forming ability, expression of stem cell markers, and regeneration of pulp/dentin structures in vivo. These dental-derived stem cells are currently under increasing investigation as sources for tooth regeneration and repair. Further attempts with bone marrow mesenchymal stem cells and embryonic stem cells have demonstrated the possibility of creating teeth from non-dental stem cells by imitating embryonic development mechanisms. Although, as in tissue engineering of other organs, many challenges remain, stem-cell-based tissue engineering of teeth could be a choice for the replacement of missing teeth in the future.
Collapse
Affiliation(s)
- Amanda H-H Yen
- Department of Craniofacial Development, Dental Institute, Guy's Hospital, Kings College London, London Bridge, London, SE1 9RT, UK
| | | |
Collapse
|
93
|
Renard E, Lopez-Cazaux S, Guicheux J, Weiss P, Laboux O, Alliot-Licht B. [Stem cells of dental pulp]. C R Biol 2007; 330:635-43. [PMID: 17720580 DOI: 10.1016/j.crvi.2007.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
Any clinician dreams to obtain the regeneration of the destroyed organ for his patient. In the human being, the regeneration of complex structures is not possible, except the liver and the bone marrow, which can be regenerated because of the presence of adult stem cells in these tissues. The stem cells have two principal properties: they ensure their self-renewal and they have the ability to differentiate into several cellular types. Using specific markers allowing the identification of the stem cells in bone marrow, stem cells were observed in dental pulp tissues. Although the origin, the identification, and the localization of these stem cells of dental pulp remain under consideration, the optimism in research on stem cells permits to believe that the knowledge on dental stem cells will lead to their use in therapeutics.
Collapse
Affiliation(s)
- Emmanuelle Renard
- CHU Nantes, pôle Odontologie, 1, place Alexis-Ricordeau, 44042 Nantes, France
| | | | | | | | | | | |
Collapse
|
94
|
Moioli EK, Clark PA, Xin X, Lal S, Mao JJ. Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 2007; 59:308-24. [PMID: 17499385 PMCID: PMC4035021 DOI: 10.1016/j.addr.2007.03.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 03/28/2007] [Indexed: 12/13/2022]
Abstract
Current treatments for diseases and trauma of dental, oral and craniofacial (DOC) structures rely on durable materials such as amalgam and synthetic materials, or autologous tissue grafts. A paradigm shift has taken place to utilize tissue engineering and drug delivery approaches towards the regeneration of these structures. Several prototypes of DOC structures have been regenerated such as temporomandibular joint (TMJ) condyle, cranial sutures, tooth structures and periodontium components. However, many challenges remain when taking in consideration the high demand for esthetics of DOC structures, the complex environment and yet minimal scar formation in the oral cavity, and the need for accommodating multiple tissue phenotypes. This review highlights recent advances in the regeneration of DOC structures, including the tooth, periodontium, TMJ, cranial sutures and implant dentistry, with specific emphasis on controlled release of signaling cues for stem cells, biomaterial matrices and scaffolds, and integrated tissue engineering approaches.
Collapse
Affiliation(s)
- Eduardo K. Moioli
- Columbia University, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, 630 W. 168 St. — PH7 East, New York, NY 10032, USA
| | - Paul A. Clark
- University of Wisconsin — Madison, UW-Hospitals and Clinics, Department of Neurological Surgery, CSC K4/879, 600 Highland Ave., Madison, WI 53792, USA
| | - Xuejun Xin
- Columbia University, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, 630 W. 168 St. — PH7 East, New York, NY 10032, USA
| | - Shan Lal
- Columbia University, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, 630 W. 168 St. — PH7 East, New York, NY 10032, USA
| | - Jeremy J. Mao
- Columbia University, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, Fu Foundation School of Engineering and Applied Sciences, Department of Biomedical Engineering, 630 W. 168 St. — PH7 East, New York, NY 10032, USA
| |
Collapse
|