51
|
Arnould S, Rodier G, Matar G, Vincent C, Pirot N, Delorme Y, Berthet C, Buscail Y, Noël JY, Lachambre S, Jarlier M, Bernex F, Delpech H, Vidalain PO, Janin YL, Theillet C, Sardet C. Checkpoint kinase 1 inhibition sensitises transformed cells to dihydroorotate dehydrogenase inhibition. Oncotarget 2017; 8:95206-95222. [PMID: 29221122 PMCID: PMC5707016 DOI: 10.18632/oncotarget.19199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/17/2017] [Indexed: 12/17/2022] Open
Abstract
Reduction in nucleotide pools through the inhibition of mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) has been demonstrated to effectively reduce cancer cell proliferation and tumour growth. The current study sought to investigate whether this antiproliferative effect could be enhanced by combining Chk1 kinase inhibition. The pharmacological activity of DHODH inhibitor teriflunomide was more selective towards transformed mouse embryonic fibroblasts than their primary or immortalised counterparts, and this effect was amplified when cells were subsequently exposed to PF477736 Chk1 inhibitor. Flow cytometry analyses revealed substantial accumulations of cells in S and G2/M phases, followed by increased cytotoxicity which was characterised by caspase 3-dependent induction of cell death. Associating PF477736 with teriflunomide also significantly sensitised SUM159 and HCC1937 human triple negative breast cancer cell lines to dihydroorotate dehydrogenase inhibition. The main characteristic of this effect was the sustained accumulation of teriflunomide-induced DNA damage as cells displayed increased phospho serine 139 H2AX (γH2AX) levels and concentration-dependent phosphorylation of Chk1 on serine 345 upon exposure to the combination as compared with either inhibitor alone. Importantly a similar significant increase in cell death was observed upon dual siRNA mediated depletion of Chk1 and DHODH in both murine and human cancer cell models. Altogether these results suggest that combining DHODH and Chk1 inhibitions may be a strategy worth considering as a potential alternative to conventional chemotherapies.
Collapse
Affiliation(s)
- Stéphanie Arnould
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Geneviève Rodier
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Gisèle Matar
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Charles Vincent
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Nelly Pirot
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Yoann Delorme
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Charlène Berthet
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Yoan Buscail
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Jean Yohan Noël
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Simon Lachambre
- Montpellier RIO Imaging, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Marta Jarlier
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Florence Bernex
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
- Réseau d'Histologie Expérimentale de Montpellier, BioCampus, UMS3426 CNRS-US009 INSERM-UM, Montpellier, France
| | - Hélène Delpech
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Pierre Olivier Vidalain
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Equipe Chimie and Biologie, Modélisation et Immunologie pour la Thérapie, CNRS UMR 8601 CNRS-Université Paris Descartes, Paris, France
| | - Yves L. Janin
- Institut Pasteur, Unité de Chimie et Biocatalyse, CNRS UMR3523, Paris, France
| | - Charles Theillet
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
52
|
Pai CC, Kishkevich A, Deegan RS, Keszthelyi A, Folkes L, Kearsey SE, De León N, Soriano I, de Bruin RAM, Carr AM, Humphrey TC. Set2 Methyltransferase Facilitates DNA Replication and Promotes Genotoxic Stress Responses through MBF-Dependent Transcription. Cell Rep 2017; 20:2693-2705. [PMID: 28903048 PMCID: PMC5608972 DOI: 10.1016/j.celrep.2017.08.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 06/10/2017] [Accepted: 08/17/2017] [Indexed: 11/24/2022] Open
Abstract
Chromatin modification through histone H3 lysine 36 methylation by the SETD2 tumor suppressor plays a key role in maintaining genome stability. Here, we describe a role for Set2-dependent H3K36 methylation in facilitating DNA replication and the transcriptional responses to both replication stress and DNA damage through promoting MluI cell-cycle box (MCB) binding factor (MBF)-complex-dependent transcription in fission yeast. Set2 loss leads to reduced MBF-dependent ribonucleotide reductase (RNR) expression, reduced deoxyribonucleoside triphosphate (dNTP) synthesis, altered replication origin firing, and a checkpoint-dependent S-phase delay. Accordingly, prolonged S phase in the absence of Set2 is suppressed by increasing dNTP synthesis. Furthermore, H3K36 is di- and tri-methylated at these MBF gene promoters, and Set2 loss leads to reduced MBF binding and transcription in response to genotoxic stress. Together, these findings provide new insights into how H3K36 methylation facilitates DNA replication and promotes genotoxic stress responses in fission yeast.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Anastasiya Kishkevich
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6B, UK
| | - Rachel S Deegan
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Andrea Keszthelyi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Lisa Folkes
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Nagore De León
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Ignacio Soriano
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9RQ, UK
| | - Timothy C Humphrey
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
53
|
Hoory E, Budassi J, Pfeffer E, Cho N, Thalappillil J, Andersen J, Rafailovich M, Sokolov J. Discrimination of Adsorbed Double-Stranded and Single-Stranded DNA Molecules on Surfaces by Fluorescence Emission Spectroscopy Using Acridine Orange Dye. J Fluoresc 2017; 27:2153-2158. [DOI: 10.1007/s10895-017-2154-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
54
|
Iyer DR, Rhind N. Replication fork slowing and stalling are distinct, checkpoint-independent consequences of replicating damaged DNA. PLoS Genet 2017; 13:e1006958. [PMID: 28806726 PMCID: PMC5570505 DOI: 10.1371/journal.pgen.1006958] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/24/2017] [Accepted: 08/04/2017] [Indexed: 11/30/2022] Open
Abstract
In response to DNA damage during S phase, cells slow DNA replication. This slowing is orchestrated by the intra-S checkpoint and involves inhibition of origin firing and reduction of replication fork speed. Slowing of replication allows for tolerance of DNA damage and suppresses genomic instability. Although the mechanisms of origin inhibition by the intra-S checkpoint are understood, major questions remain about how the checkpoint regulates replication forks: Does the checkpoint regulate the rate of fork progression? Does the checkpoint affect all forks, or only those encountering damage? Does the checkpoint facilitate the replication of polymerase-blocking lesions? To address these questions, we have analyzed the checkpoint in the fission yeast Schizosaccharomyces pombe using a single-molecule DNA combing assay, which allows us to unambiguously separate the contribution of origin and fork regulation towards replication slowing, and allows us to investigate the behavior of individual forks. Moreover, we have interrogated the role of forks interacting with individual sites of damage by using three damaging agents-MMS, 4NQO and bleomycin-that cause similar levels of replication slowing with very different frequency of DNA lesions. We find that the checkpoint slows replication by inhibiting origin firing, but not by decreasing fork rates. However, the checkpoint appears to facilitate replication of damaged templates, allowing forks to more quickly pass lesions. Finally, using a novel analytic approach, we rigorously identify fork stalling events in our combing data and show that they play a previously unappreciated role in shaping replication kinetics in response to DNA damage.
Collapse
Affiliation(s)
- Divya Ramalingam Iyer
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nicholas Rhind
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
55
|
Utani K, Fu H, Jang SM, Marks AB, Smith OK, Zhang Y, Redon CE, Shimizu N, Aladjem MI. Phosphorylated SIRT1 associates with replication origins to prevent excess replication initiation and preserve genomic stability. Nucleic Acids Res 2017; 45:7807-7824. [PMID: 28549174 PMCID: PMC5570034 DOI: 10.1093/nar/gkx468] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Chromatin structure affects DNA replication patterns, but the role of specific chromatin modifiers in regulating the replication process is yet unclear. We report that phosphorylation of the human SIRT1 deacetylase on Threonine 530 (T530-pSIRT1) modulates DNA synthesis. T530-pSIRT1 associates with replication origins and inhibits replication from a group of 'dormant' potential replication origins, which initiate replication only when cells are subject to replication stress. Although both active and dormant origins bind T530-pSIRT1, active origins are distinguished from dormant origins by their unique association with an open chromatin mark, histone H3 methylated on lysine 4. SIRT1 phosphorylation also facilitates replication fork elongation. SIRT1 T530 phosphorylation is essential to prevent DNA breakage upon replication stress and cells harboring SIRT1 that cannot be phosphorylated exhibit a high prevalence of extrachromosomal elements, hallmarks of perturbed replication. These observations suggest that SIRT1 phosphorylation modulates the distribution of replication initiation events to insure genomic stability.
Collapse
Affiliation(s)
- Koichi Utani
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna B. Marks
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Owen K. Smith
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8521, Japan
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
56
|
The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet 2017; 18:535-550. [DOI: 10.1038/nrg.2017.46] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
57
|
Abstract
Genomic instability plays a key role in driving cancer development. It is already found in precancerous lesions and allows the acquisition of additional cancerous features. A major source of genomic instability in early stages of tumorigenesis is DNA replication stress. Normally, origin licensing and activation, as well as replication fork progression, are tightly regulated to allow faithful duplication of the genome. Aberrant origin usage and/or perturbed replication fork progression leads to DNA damage and genomic instability. Oncogene activation is an endogenous source of replication stress, disrupting replication regulation and inducing DNA damage. Oncogene-induced replication stress and its role in cancer development have been studied comprehensively, however its molecular basis is still unclear. Here, we review the current understanding of replication regulation, its potential disruption and how oncogenes perturb the replication and induce DNA damage leading to genomic instability in cancer.
Collapse
Affiliation(s)
| | - Batsheva Kerem
- Correspondence: ; Tel.: +972-2-658-5678; Fax: +972-2-658-4810
| |
Collapse
|
58
|
Single-molecule analysis reveals that DNA replication dynamics vary across the course of schizogony in the malaria parasite Plasmodium falciparum. Sci Rep 2017. [PMID: 28638076 PMCID: PMC5479783 DOI: 10.1038/s41598-017-04407-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mechanics of DNA replication and cell cycling are well-characterized in model organisms, but less is known about these basic aspects of cell biology in early-diverging Apicomplexan parasites, which do not divide by canonical binary fission but undergo unconventional cycles. Schizogony in the malaria parasite, Plasmodium, generates ~16–24 new nuclei via independent, asynchronous rounds of genome replication prior to cytokinesis and little is known about the control of DNA replication that facilitates this. We have characterised replication dynamics in P. falciparum throughout schizogony, using DNA fibre labelling and combing to visualise replication forks at a single-molecule level. We show that origins are very closely spaced in Plasmodium compared to most model systems, and that replication dynamics vary across the course of schizogony, from faster synthesis rates and more widely-spaced origins through to slower synthesis rates and closer-spaced origins. This is the opposite of the pattern usually seen across S-phase in human cells, when a single genome is replicated. Replication forks also appear to stall at an unusually high rate throughout schizogony. Our work explores Plasmodium DNA replication in unprecedented detail and opens up tremendous scope for analysing cell cycle dynamics and developing interventions targetting this unique aspect of malaria biology.
Collapse
|
59
|
Shortage of dNTPs underlies altered replication dynamics and DNA breakage in the absence of the APC/C cofactor Cdh1. Oncogene 2017; 36:5808-5818. [PMID: 28604743 DOI: 10.1038/onc.2017.186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/27/2022]
Abstract
The APC/C-Cdh1 ubiquitin-ligase complex targets cell cycle regulators for proteosomal degradation and helps prevent tumor development and accumulation of chromosomal aberrations. Replication stress has been proposed to be the main driver of genomic instability in the absence of Cdh1, but the real contribution of APC/C-Cdh1 to efficient replication, especially in normal cells, remains unclear. Here we show that, in primary MEFs, acute depletion or permanent ablation of Cdh1 slowed down replication fork movement and increased origin activity. Partial inhibition of origin firing does not accelerate replication forks, suggesting that fork progression is intrinsically limited in the absence of Cdh1. Moreover, exogenous supply of nucleotide precursors, or ectopic overexpression of RRM2, the regulatory subunit of Ribonucleotide Reductase, restore replication efficiency, indicating that dNTP availability could be impaired upon Cdh1 loss. Indeed, we found reduced dNTP levels in Cdh1-deficient MEFs. Importantly, DNA breakage is also significantly alleviated by increasing intracellular dNTP pools, strongly suggesting that genomic instability is the result of aberrant replication. These observations highlight the relevance of APC/C-Cdh1 activity during G1 to ensure an adequate supply of dNTPs to the replisome, prevent replication stress and the resulting chromosomal breaks and, ultimately, suppress tumorigenesis.
Collapse
|
60
|
The Effects of Replication Stress on S Phase Histone Management and Epigenetic Memory. J Mol Biol 2017; 429:2011-2029. [DOI: 10.1016/j.jmb.2016.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
|
61
|
Kim J, Hu Z, Cai L, Li K, Choi E, Faubert B, Bezwada D, Rodriguez-Canales J, Villalobos P, Lin YF, Ni M, Huffman KE, Girard L, Byers LA, Unsal-Kacmaz K, Peña CG, Heymach JV, Wauters E, Vansteenkiste J, Castrillon DH, Chen BPC, Wistuba I, Lambrechts D, Xu J, Minna JD, DeBerardinis RJ. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature 2017; 546:168-172. [PMID: 28538732 PMCID: PMC5472349 DOI: 10.1038/nature22359] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/10/2017] [Indexed: 01/05/2023]
Abstract
Metabolic reprogramming by oncogenic signals promotes cancer initiation and progression. The oncogene KRAS and tumour suppressor STK11, which encodes the kinase LKB1, regulate metabolism and are frequently mutated in non-small-cell lung cancer (NSCLC). Concurrent occurrence of oncogenic KRAS and loss of LKB1 (KL) in cells specifies aggressive oncological behaviour. Here we show that human KL cells and tumours share metabolomic signatures of perturbed nitrogen handling. KL cells express the urea cycle enzyme carbamoyl phosphate synthetase-1 (CPS1), which produces carbamoyl phosphate in the mitochondria from ammonia and bicarbonate, initiating nitrogen disposal. Transcription of CPS1 is suppressed by LKB1 through AMPK, and CPS1 expression correlates inversely with LKB1 in human NSCLC. Silencing CPS1 in KL cells induces cell death and reduces tumour growth. Notably, cell death results from pyrimidine depletion rather than ammonia toxicity, as CPS1 enables an unconventional pathway of nitrogen flow from ammonia into pyrimidines. CPS1 loss reduces the pyrimidine to purine ratio, compromises S-phase progression and induces DNA-polymerase stalling and DNA damage. Exogenous pyrimidines reverse DNA damage and rescue growth. The data indicate that the KL oncological genotype imposes a metabolic vulnerability related to a dependence on a cross-compartmental pathway of pyrimidine metabolism in an aggressive subset of NSCLC.
Collapse
Affiliation(s)
- Jiyeon Kim
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zeping Hu
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ling Cai
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kailong Li
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eunhee Choi
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brandon Faubert
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, Texas 77030, USA
| | - Pamela Villalobos
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, Texas 77030, USA
| | - Yu-Fen Lin
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Min Ni
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kenneth E Huffman
- Hamon Center for Therapeutic Oncology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Luc Girard
- Hamon Center for Therapeutic Oncology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, Texas 77030, USA
| | - Keziban Unsal-Kacmaz
- Oncology Research Unit, Pfizer, 401 North Middletown Road, Pearl River, New York 10965, USA
| | - Christopher G Peña
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, Texas 77030, USA
| | - Els Wauters
- Respiratory Division, University of Gasthuisberg, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Johan Vansteenkiste
- Respiratory Division, University of Gasthuisberg, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Diego H Castrillon
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Benjamin P C Chen
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, Texas 77030, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, O&N 4 Herestraat 49 - box 912, 3000 Leuven, Belgium.,VIB Center for Cancer Biology, KU Leuven, O&N 4 Herestraat 49 - box 912, 3000 Leuven, Belgium
| | - Jian Xu
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
62
|
Abstract
In this review, Prioleau and MacAlpine summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages.
Collapse
Affiliation(s)
- Marie-Noëlle Prioleau
- Institut Jacques Monod, UMR7592, Centre National de la Recherche Scientifique, Universite Paris Diderot, Equipe Labellisee Association pour la Recherche sur le Cancer, Paris 75013, France
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710. USA
| |
Collapse
|
63
|
Cottineau J, Kottemann MC, Lach FP, Kang YH, Vély F, Deenick EK, Lazarov T, Gineau L, Wang Y, Farina A, Chansel M, Lorenzo L, Piperoglou C, Ma CS, Nitschke P, Belkadi A, Itan Y, Boisson B, Jabot-Hanin F, Picard C, Bustamante J, Eidenschenk C, Boucherit S, Aladjidi N, Lacombe D, Barat P, Qasim W, Hurst JA, Pollard AJ, Uhlig HH, Fieschi C, Michon J, Bermudez VP, Abel L, de Villartay JP, Geissmann F, Tangye SG, Hurwitz J, Vivier E, Casanova JL, Smogorzewska A, Jouanguy E. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J Clin Invest 2017; 127:1991-2006. [PMID: 28414293 DOI: 10.1172/jci90727] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/16/2017] [Indexed: 12/21/2022] Open
Abstract
Inborn errors of DNA repair or replication underlie a variety of clinical phenotypes. We studied 5 patients from 4 kindreds, all of whom displayed intrauterine growth retardation, chronic neutropenia, and NK cell deficiency. Four of the 5 patients also had postnatal growth retardation. The association of neutropenia and NK cell deficiency, which is unusual among primary immunodeficiencies and bone marrow failures, was due to a blockade in the bone marrow and was mildly symptomatic. We discovered compound heterozygous rare mutations in Go-Ichi-Ni-San (GINS) complex subunit 1 (GINS1, also known as PSF1) in the 5 patients. The GINS complex is essential for eukaryotic DNA replication, and homozygous null mutations of GINS component-encoding genes are embryonic lethal in mice. The patients' fibroblasts displayed impaired GINS complex assembly, basal replication stress, impaired checkpoint signaling, defective cell cycle control, and genomic instability, which was rescued by WT GINS1. The residual levels of GINS1 activity reached 3% to 16% in patients' cells, depending on their GINS1 genotype, and correlated with the severity of growth retardation and the in vitro cellular phenotype. The levels of GINS1 activity did not influence the immunological phenotype, which was uniform. Autosomal recessive, partial GINS1 deficiency impairs DNA replication and underlies intra-uterine (and postnatal) growth retardation, chronic neutropenia, and NK cell deficiency.
Collapse
|
64
|
So A, Le Guen T, Lopez BS, Guirouilh-Barbat J. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells. FEBS J 2017; 284:2324-2344. [PMID: 28244221 DOI: 10.1111/febs.14053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/02/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to profound genome rearrangements and/or cell death. They routinely occur in genomes due to endogenous or exogenous stresses. Efficient repair systems, canonical non-homologous end-joining and homologous recombination exist in the cell and not only ensure the maintenance of genome integrity but also, via specific programmed DNA double-strand breaks, permit its diversity and plasticity. However, these repair systems need to be tightly controlled because they can also generate genomic rearrangements. Thus, when DSB repair is not properly regulated, genome integrity is no longer guaranteed. In this review, we will focus on non-programmed genome rearrangements generated by DSB repair, in somatic cells. We first discuss genome rearrangements induced by homologous recombination and end-joining. We then discuss recently described rearrangement mechanisms, driven by microhomologies, that do not involve the joining of DNA ends but rather initiate DNA synthesis (microhomology-mediated break-induced replication, fork stalling and template switching and microhomology-mediated template switching). Finally, we discuss chromothripsis, which is the shattering of a localized region of the genome followed by erratic rejoining.
Collapse
Affiliation(s)
- Ayeong So
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Tangui Le Guen
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Bernard S Lopez
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Josée Guirouilh-Barbat
- CNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, Villejuif, France
| |
Collapse
|
65
|
Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies. Biomolecules 2017; 7:biom7010019. [PMID: 28230817 PMCID: PMC5372731 DOI: 10.3390/biom7010019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.
Collapse
|
66
|
The Intra-S Checkpoint Responses to DNA Damage. Genes (Basel) 2017; 8:genes8020074. [PMID: 28218681 PMCID: PMC5333063 DOI: 10.3390/genes8020074] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 02/03/2023] Open
Abstract
Faithful duplication of the genome is a challenge because DNA is susceptible to damage by a number of intrinsic and extrinsic genotoxins, such as free radicals and UV light. Cells activate the intra-S checkpoint in response to damage during S phase to protect genomic integrity and ensure replication fidelity. The checkpoint prevents genomic instability mainly by regulating origin firing, fork progression, and transcription of G1/S genes in response to DNA damage. Several studies hint that regulation of forks is perhaps the most critical function of the intra-S checkpoint. However, the exact role of the checkpoint at replication forks has remained elusive and controversial. Is the checkpoint required for fork stability, or fork restart, or to prevent fork reversal or fork collapse, or activate repair at replication forks? What are the factors that the checkpoint targets at stalled replication forks? In this review, we will discuss the various pathways activated by the intra-S checkpoint in response to damage to prevent genomic instability.
Collapse
|
67
|
Abstract
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Collapse
Affiliation(s)
- Michalis Fragkos
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| | - Valeria Naim
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| |
Collapse
|
68
|
Aladjem MI, Redon CE. Order from clutter: selective interactions at mammalian replication origins. Nat Rev Genet 2017; 18:101-116. [PMID: 27867195 PMCID: PMC6596300 DOI: 10.1038/nrg.2016.141] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian chromosome duplication progresses in a precise order and is subject to constraints that are often relaxed in developmental disorders and malignancies. Molecular information about the regulation of DNA replication at the chromatin level is lacking because protein complexes that initiate replication seem to bind chromatin indiscriminately. High-throughput sequencing and mathematical modelling have yielded detailed genome-wide replication initiation maps. Combining these maps and models with functional genetic analyses suggests that distinct DNA-protein interactions at subgroups of replication initiation sites (replication origins) modulate the ubiquitous replication machinery and supports an emerging model that delineates how indiscriminate DNA-binding patterns translate into a consistent, organized replication programme.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
69
|
Pai CC, Kearsey SE. A Critical Balance: dNTPs and the Maintenance of Genome Stability. Genes (Basel) 2017; 8:genes8020057. [PMID: 28146119 PMCID: PMC5333046 DOI: 10.3390/genes8020057] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/24/2017] [Indexed: 01/14/2023] Open
Abstract
A crucial factor in maintaining genome stability is establishing deoxynucleoside triphosphate (dNTP) levels within a range that is optimal for chromosomal replication. Since DNA replication is relevant to a wide range of other chromosomal activities, these may all be directly or indirectly affected when dNTP concentrations deviate from a physiologically normal range. The importance of understanding these consequences is relevant to genetic disorders that disturb dNTP levels, and strategies that inhibit dNTP synthesis in cancer chemotherapy and for treatment of other disorders. We review here how abnormal dNTP levels affect DNA replication and discuss the consequences for genome stability.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
70
|
Marks AB, Fu H, Aladjem MI. Regulation of Replication Origins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:43-59. [PMID: 29357052 DOI: 10.1007/978-981-10-6955-0_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In eukaryotes, genome duplication starts concomitantly at many replication initiation sites termed replication origins. The replication initiation program is spatially and temporally coordinated to ensure accurate, efficient DNA synthesis that duplicates the entire genome while maintaining other chromatin-dependent functions. Unlike in prokaryotes, not all potential replication origins in eukaryotes are needed for complete genome duplication during each cell cycle. Instead, eukaryotic cells vary the use of initiation sites so that only a fraction of potential replication origins initiate replication each cell cycle. Flexibility in origin choice allows each eukaryotic cell type to utilize different initiation sites, corresponding to unique nuclear DNA packaging patterns. These patterns coordinate replication with gene expression and chromatin condensation. Budding yeast replication origins share a consensus sequence that marks potential initiation sites. Metazoan origins, on the other hand, lack a consensus sequence. Rather, they are associated with a collection of structural features, chromatin packaging features, histone modifications, transcription, and DNA-DNA/DNA-protein interactions. These features confer cell type-specific replication and expression and play an essential role in maintaining genomic stability.
Collapse
Affiliation(s)
- Anna B Marks
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
71
|
Vindigni A, Lopes M. Combining electron microscopy with single molecule DNA fiber approaches to study DNA replication dynamics. Biophys Chem 2016; 225:3-9. [PMID: 27939387 DOI: 10.1016/j.bpc.2016.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
Abstract
Replication stress is a crucial driver of genomic instability. Understanding the mechanisms of replication stress response is instrumental to improve diagnosis and treatment of human disease. Electron microscopy (EM) is currently the technique of choice to directly visualize a high number of replication intermediates and to monitor their remodeling upon stress. At the same time, DNA fiber analysis is useful to gain mechanistic insight on how genotoxic agents perturb replication fork dynamics genome-wide at single-molecule resolution. Combining these techniques has proven invaluable to achieve a comprehensive view of the mechanisms that ensure error-free processing of damaged replication forks. Here, we review how EM and single-molecule DNA fiber approaches can be used together to shed light into the mechanisms of replication stress response and discuss important cautions to be taken into account when comparing results obtained by EM and DNA fiber.
Collapse
Affiliation(s)
- Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
72
|
Grañé-Boladeras N, Spring CM, Hanna WJB, Pastor-Anglada M, Coe IR. Novel nuclear hENT2 isoforms regulate cell cycle progression via controlling nucleoside transport and nuclear reservoir. Cell Mol Life Sci 2016; 73:4559-4575. [PMID: 27271752 PMCID: PMC11108336 DOI: 10.1007/s00018-016-2288-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 10/25/2022]
Abstract
Nucleosides participate in many cellular processes and are the fundamental building blocks of nucleic acids. Nucleoside transporters translocate nucleosides across plasma membranes although the mechanism by which nucleos(t)ides are translocated into the nucleus during DNA replication is unknown. Here, we identify two novel functional splice variants of equilibrative nucleoside transporter 2 (ENT2), which are present at the nuclear envelope. Under proliferative conditions, these splice variants are up-regulated and recruit wild-type ENT2 to the nuclear envelope to translocate nucleosides into the nucleus for incorporation into DNA during replication. Reduced presence of hENT2 splice variants resulted in a dramatic decrease in cell proliferation and dysregulation of cell cycle due to a lower incorporation of nucleotides into DNA. Our findings support a novel model of nucleoside compartmentalisation at the nuclear envelope and translocation into the nucleus through hENT2 and its variants, which are essential for effective DNA synthesis and cell proliferation.
Collapse
Affiliation(s)
- Natalia Grañé-Boladeras
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain.
- Oncology Program, CIBER EHD, Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.
| | - Christopher M Spring
- Research Core Facilities, Keenan Research Centre, Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - W J Brad Hanna
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Marçal Pastor-Anglada
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain
- Oncology Program, CIBER EHD, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Imogen R Coe
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
73
|
Gerhardt J, Bhalla AD, Butler JS, Puckett JW, Dervan PB, Rosenwaks Z, Napierala M. Stalled DNA Replication Forks at the Endogenous GAA Repeats Drive Repeat Expansion in Friedreich's Ataxia Cells. Cell Rep 2016; 16:1218-1227. [PMID: 27425605 PMCID: PMC5028224 DOI: 10.1016/j.celrep.2016.06.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022] Open
Abstract
Friedreich's ataxia (FRDA) is caused by the expansion of GAA repeats located in the Frataxin (FXN) gene. The GAA repeats continue to expand in FRDA patients, aggravating symptoms and contributing to disease progression. The mechanism leading to repeat expansion and decreased FXN transcription remains unclear. Using single-molecule analysis of replicated DNA, we detected that expanded GAA repeats present a substantial obstacle for the replication machinery at the FXN locus in FRDA cells. Furthermore, aberrant origin activation and lack of a proper stress response to rescue the stalled forks in FRDA cells cause an increase in 3'-5' progressing forks, which could enhance repeat expansion and hinder FXN transcription by head-on collision with RNA polymerases. Treatment of FRDA cells with GAA-specific polyamides rescues DNA replication fork stalling and alleviates expansion of the GAA repeats, implicating DNA triplexes as a replication impediment and suggesting that fork stalling might be a therapeutic target for FRDA.
Collapse
Affiliation(s)
- Jeannine Gerhardt
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Angela D Bhalla
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama, Birmingham, AL 35294, USA
| | - Jill Sergesketter Butler
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama, Birmingham, AL 35294, USA
| | - James W Puckett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter B Dervan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zev Rosenwaks
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama, Birmingham, AL 35294, USA; Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61 704, Poland.
| |
Collapse
|
74
|
PERK inhibits DNA replication during the Unfolded Protein Response via Claspin and Chk1. Oncogene 2016; 36:678-686. [DOI: 10.1038/onc.2016.239] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
|
75
|
Stevanoni M, Palumbo E, Russo A. The Replication of Frataxin Gene Is Assured by Activation of Dormant Origins in the Presence of a GAA-Repeat Expansion. PLoS Genet 2016; 12:e1006201. [PMID: 27447727 PMCID: PMC4957762 DOI: 10.1371/journal.pgen.1006201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/27/2016] [Indexed: 12/17/2022] Open
Abstract
It is well known that DNA replication affects the stability of several trinucleotide repeats, but whether replication profiles of human loci carrying an expanded repeat differ from those of normal alleles is poorly understood in the endogenous context. We investigated this issue using cell lines from Friedreich's ataxia patients, homozygous for a GAA-repeat expansion in intron 1 of the Frataxin gene. By interphase, FISH we found that in comparison to the normal Frataxin sequence the replication of expanded alleles is slowed or delayed. According to molecular combing, origins never fired within the normal Frataxin allele. In contrast, in mutant alleles dormant origins are recruited within the gene, causing a switch of the prevalent fork direction through the expanded repeat. Furthermore, a global modification of the replication profile, involving origin choice and a differential distribution of unidirectional forks, was observed in the surrounding 850 kb region. These data provide a wide-view of the interplay of events occurring during replication of genes carrying an expanded repeat.
Collapse
Affiliation(s)
| | - Elisa Palumbo
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
76
|
Lamm N, Maoz K, Bester AC, Im MM, Shewach DS, Karni R, Kerem B. Folate levels modulate oncogene-induced replication stress and tumorigenicity. EMBO Mol Med 2016. [PMID: 26197802 PMCID: PMC4568948 DOI: 10.15252/emmm.201404824] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development.
Collapse
Affiliation(s)
- Noa Lamm
- Department of Genetics, The Alexander Silberman Institute of Life Sciences Edmond J. Safra Campus The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karin Maoz
- Department of Genetics, The Alexander Silberman Institute of Life Sciences Edmond J. Safra Campus The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf C Bester
- Department of Genetics, The Alexander Silberman Institute of Life Sciences Edmond J. Safra Campus The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael M Im
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Donna S Shewach
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Batsheva Kerem
- Department of Genetics, The Alexander Silberman Institute of Life Sciences Edmond J. Safra Campus The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
77
|
Rybak P, Waligórska A, Bujnowicz Ł, Hoang A, Dobrucki JW. Activation of new replication foci under conditions of replication stress. Cell Cycle 2016. [PMID: 26212617 DOI: 10.1080/15384101.2015.1064566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
DNA damage, binding of drugs to DNA or a shortage of nucleotides can decrease the rate or completely halt the progress of replication forks. Although the global rate of replication decreases, mammalian cells can respond to replication stress by activating new replication origins. We demonstrate that a moderate level of stress induced by inhibitors of topoisomerase I, commencing in early, mid or late S-phase, induces activation of new sites of replication located within or in the immediate vicinity of the original replication factories; only in early S some of these new sites are also activated at a distance greater than 300 nm. Under high stress levels very few new replication sites are activated; such sites are located within the original replication regions. There is a large variation in cellular response to stress - while in some cells the number of replication sites increases even threefold, it decreases almost twofold in other cells. Replication stress results in a loss of PCNA from replication factories and a twofold increase in nuclear volume. These observations suggest that activation of new replication origins from the pool of dormant origins within replication cluster under conditions of mild stress is generally restricted to the original replication clusters (factories) active at a time of stress initiation, while activation of distant origins and new replication factories is suppressed.
Collapse
Affiliation(s)
- P Rybak
- a Division of Cell Biophysics, and Department of Molecular Biophysics; Faculty of Biochemistry; Jagiellonian University ; Krakow , Poland
| | | | | | | | | |
Collapse
|
78
|
Wilhelm T, Ragu S, Magdalou I, Machon C, Dardillac E, Técher H, Guitton J, Debatisse M, Lopez BS. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress. PLoS Genet 2016; 12:e1006007. [PMID: 27135742 PMCID: PMC4852921 DOI: 10.1371/journal.pgen.1006007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/05/2016] [Indexed: 01/01/2023] Open
Abstract
Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation, and emphasize the importance of homologous recombination as a barrier against spontaneous genetic instability triggered by the endogenous oxidative/replication stress axis. Endogenous stress is an important stress because it challenges cells daily. However, endogenous stress is difficult to apprehend. Replication forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Here we identify endogenous oxidative stress among the different potential endogenous stresses as being responsible for spontaneous replication defects in homologous recombination-defective cells. Therefore, oxidative and replication stresses, which are both evoked during tumorigenesis and senescence initiation, are linked, and homologous recombination acts as a barrier against spontaneous genetic instability triggered by endogenous oxidative/replication stress.
Collapse
Affiliation(s)
- Therese Wilhelm
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Sandrine Ragu
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Indiana Magdalou
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Christelle Machon
- Laboratoire de Biochimie et Toxicologie, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
- Laboratoire de Chimie Analytique, Université de Lyon, Université Lyon 1, ISPB Faculté de Pharmacie, Lyon, France
| | - Elodie Dardillac
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
| | - Hervé Técher
- Institut Curie, Centre de Recherche, Paris, France, UPMC Université Paris 06, Paris, France, CNRS UMR 3244, Paris, France
| | - Jérôme Guitton
- Laboratoire de Biochimie et Toxicologie, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
- Laboratoire de Toxicologie, Université Lyon 1, ISPB, Faculté de Pharmacie, Lyon, France
| | - Michelle Debatisse
- Institut Curie, Centre de Recherche, Paris, France, UPMC Université Paris 06, Paris, France, CNRS UMR 3244, Paris, France
| | - Bernard S. Lopez
- CNRS UMR 8200, Gustave Roussy Cancer Institute, Université Paris-Saclay, Team labeled “Ligue 2014”, Villejuif, France
- * E-mail:
| |
Collapse
|
79
|
Marks AB, Smith OK, Aladjem MI. Replication origins: determinants or consequences of nuclear organization? Curr Opin Genet Dev 2016; 37:67-75. [PMID: 26845042 PMCID: PMC4914405 DOI: 10.1016/j.gde.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Chromosome replication, gene expression and chromatin assembly all occur on the same template, necessitating a tight spatial and temporal coordination to maintain genomic stability. The distribution of replication initiation events is responsive to local and global changes in chromatin structure and is affected by transcriptional activity. Concomitantly, replication origin sequences, which determine the locations of replication initiation events, can affect chromatin structure and modulate transcriptional efficiency. The flexibility observed in the replication initiation landscape might help achieve complete and accurate genome duplication while coordinating the DNA replication program with transcription and other nuclear processes in a cell-type specific manner. This review discusses the relationships among replication origin distribution, local and global chromatin structures and concomitant nuclear metabolic processes.
Collapse
Affiliation(s)
- Anna B Marks
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA
| | - Owen K Smith
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
80
|
Stanojcic S, Sollelis L, Kuk N, Crobu L, Balard Y, Schwob E, Bastien P, Pagès M, Sterkers Y. Single-molecule analysis of DNA replication reveals novel features in the divergent eukaryotes Leishmania and Trypanosoma brucei versus mammalian cells. Sci Rep 2016; 6:23142. [PMID: 26976742 PMCID: PMC4791591 DOI: 10.1038/srep23142] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/17/2016] [Indexed: 01/29/2023] Open
Abstract
Leishmania and Trypanosoma are unicellular parasites that possess markedly original biological features as compared to other eukaryotes. The Leishmania genome displays a constitutive 'mosaic aneuploidy', whereas in Trypanosoma brucei, the megabase-sized chromosomes are diploid. We accurately analysed DNA replication parameters in three Leishmania species and Trypanosoma brucei as well as mouse embryonic fibroblasts (MEF). Active replication origins were visualized at the single molecule level using DNA molecular combing. More than one active origin was found on most DNA fibres, showing that the chromosomes are replicated from multiple origins. Inter-origin distances (IODs) were measured and found very large in trypanosomatids: the mean IOD was 160 kb in T. brucei and 226 kb in L. mexicana. Moreover, the progression of replication forks was faster than in any other eukaryote analyzed so far (mean velocity 1.9 kb/min in T. brucei and 2.4-2.6 kb/min in Leishmania). The estimated total number of active DNA replication origins in trypanosomatids is ~170. Finally, 14.4% of unidirectional replication forks were observed in T. brucei, in contrast to 1.5-1.7% in Leishmania and 4% in MEF cells. The biological significance of these original features is discussed.
Collapse
Affiliation(s)
- Slavica Stanojcic
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France
| | - Lauriane Sollelis
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France
| | - Nada Kuk
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France
| | - Lucien Crobu
- CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), Montpellier, F34090, France
| | - Yves Balard
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France
| | - Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR5535 &University of Montpellier, Montpellier, F34293, France
| | - Patrick Bastien
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France.,CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), Montpellier, F34090, France.,University Hospital Centre (CHU), Department of Parasitology-Mycology, Montpellier, F34090, France
| | - Michel Pagès
- CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), Montpellier, F34090, France
| | - Yvon Sterkers
- University of Montpellier, Faculty of Medicine, Laboratory of Parasitology-Mycology, Montpellier, F34090, France.,CNRS 5290 - IRD 224 - University of Montpellier (UMR "MiVEGEC"), Montpellier, F34090, France.,University Hospital Centre (CHU), Department of Parasitology-Mycology, Montpellier, F34090, France
| |
Collapse
|
81
|
Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R, Agell N. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res 2016; 44:4745-62. [PMID: 26939887 PMCID: PMC4889930 DOI: 10.1093/nar/gkw132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/23/2016] [Indexed: 01/28/2023] Open
Abstract
Defects in DNA replication and repair are known to promote genomic instability, a hallmark of cancer cells. Thus, eukaryotic cells have developed complex mechanisms to ensure accurate duplication of their genomes. While DNA damage response has been extensively studied in tumour cells, the pathways implicated in the response to replication stress are less well understood especially in non-transformed cells. Here we show that in non-transformed cells, APC/C(Cdh1) is activated upon severe replication stress. Activation of APC/C(Cdh1) prevents new origin firing and induces permanent arrest in S-phase. Moreover, Rad51-mediated homologous recombination is also impaired under these conditions. APC/C(Cdh1) activation in S-phase occurs after replication forks have been processed into double strand breaks. Remarkably, this activation, which correlates with decreased Emi1 levels, is not prevented by ATR/ATM inhibition, but it is abrogated in cells depleted of p53 or p21. Importantly, we found that the lack of APC/C(Cdh1) activity correlated with an increase in genomic instability. Taken together, our results define a new APC/C(Cdh1) function that prevents cell cycle resumption after prolonged replication stress by inhibiting origin firing, which may act as an additional mechanism in safeguarding genome integrity.
Collapse
Affiliation(s)
- Amaia Ercilla
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | - Alba Llopis
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | - Sonia Feu
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| | - Sergi Aranda
- Center for Genomic Regulation (CRG), C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Patrik Ernfors
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Neus Agell
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, C/ Casanova 143, 08036 Barcelona, Spain
| |
Collapse
|
82
|
Abstract
Nucleoli are formed on the basis of ribosomal genes coding for RNAs of ribosomal particles, but also include a great variety of other DNA regions. In this article, we discuss the characteristics of ribosomal DNA: the structure of the rDNA locus, complex organization and functions of the intergenic spacer, multiplicity of gene copies in one cell, selective silencing of genes and whole gene clusters, relation to components of nucleolar ultrastructure, specific problems associated with replication. We also review current data on the role of non-ribosomal DNA in the organization and function of nucleoli. Finally, we discuss probable causes preventing efficient visualization of DNA in nucleoli.
Collapse
|
83
|
Abstract
The mechanism that duplicates the nuclear genome during the trillions of cell divisions required to develop from zygote to adult is the same throughout the eukarya, but the mechanisms that determine where, when and how much nuclear genome duplication occur regulate development and differ among the eukarya. They allow organisms to change the rate of cell proliferation during development, to activate zygotic gene expression independently of DNA replication, and to restrict nuclear DNA replication to once per cell division. They allow specialized cells to exit their mitotic cell cycle and differentiate into polyploid cells, and in some cases, to amplify the number of copies of specific genes. It is genome duplication that drives evolution, by virtue of the errors that inevitably occur when the same process is repeated trillions of times. It is, unfortunately, the same errors that produce age-related genetic disorders such as cancer.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
84
|
Molecular Combing of Single DNA Molecules on the 10 Megabase Scale. Sci Rep 2016; 6:19636. [PMID: 26781994 PMCID: PMC4726065 DOI: 10.1038/srep19636] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
DNA combing allows the investigation of DNA replication on genomic single DNA molecules, but the lengths that can be analysed have been restricted to molecules of 200-500 kb. We have improved the DNA combing procedure so that DNA molecules can be analysed up to the length of entire chromosomes in fission yeast and up to 12 Mb fragments in human cells. Combing multi-Mb-scale DNA molecules revealed previously undetected origin clusters in fission yeast and shows that in human cells replication origins fire stochastically forming clusters of fired origins with an average size of 370 kb. We estimate that a single human cell forms around 3200 clusters at mid S-phase and fires approximately 100,000 origins to complete genome duplication. The procedure presented here will be adaptable to other organisms and experimental conditions.
Collapse
|
85
|
Chagin VO, Reinhart M, Cardoso MC. High-resolution analysis of Mammalian DNA replication units. Methods Mol Biol 2016; 1300:43-65. [PMID: 25916704 DOI: 10.1007/978-1-4939-2596-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Genomic DNA of a eukaryotic cell is replicated once during the S-phase of the cell cycle to precisely maintain the complete genetic information. In the course of S-phase, semiconservative DNA synthesis is sequentially initiated and performed at thousands of discrete patches of the DNA helix termed replicons. At any given moment of S-phase, multiple replicons are active in parallel in different parts of the genome. In the last decades, tools and methods to visualize DNA synthesis inside cells have been developed. Pulse labeling with nucleotides as well as detecting components of the replication machinery yielded an overall picture of multiple discrete sites of active DNA synthesis termed replication foci (RFi) and forming spatiotemporal patterns within the cell nucleus. Recent advances in fluorescence microscopy and digital imaging in combination with computational image analysis allow a comprehensive quantitative analysis of RFi and provide valuable insights into the organization of the genomic DNA replication process and also of the genome itself. In this chapter, we describe in detail protocols for the visualization and quantification of RFi at different levels of optical and physical resolution.
Collapse
Affiliation(s)
- Vadim O Chagin
- Institute of Cytology, Russian Academy of Science, Saint Petersburg, Russia
| | | | | |
Collapse
|
86
|
de Lima Neto QA, Duarte Junior FF, Bueno PSA, Seixas FAV, Kowalski MP, Kheir E, Krude T, Fernandez MA. Structural and functional analysis of four non-coding Y RNAs from Chinese hamster cells: identification, molecular dynamics simulations and DNA replication initiation assays. BMC Mol Biol 2016; 17:1. [PMID: 26733090 PMCID: PMC4702372 DOI: 10.1186/s12867-015-0053-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/21/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The genes coding for Y RNAs are evolutionarily conserved in vertebrates. These non-coding RNAs are essential for the initiation of chromosomal DNA replication in vertebrate cells. However thus far, no information is available about Y RNAs in Chinese hamster cells, which have already been used to detect replication origins and alternative DNA structures around these sites. Here, we report the gene sequences and predicted structural characteristics of the Chinese hamster Y RNAs, and analyze their ability to support the initiation of chromosomal DNA replication in vitro. RESULTS We identified DNA sequences in the Chinese hamster genome of four Y RNAs (chY1, chY3, chY4 and chY5) with upstream promoter sequences, which are homologous to the four main types of vertebrate Y RNAs. The chY1, chY3 and chY5 genes were highly conserved with their vertebrate counterparts, whilst the chY4 gene showed a relatively high degree of diversification from the other vertebrate Y4 genes. Molecular dynamics simulations suggest that chY4 RNA is structurally stable despite its evolutionarily divergent predicted stem structure. Of the four Y RNA genes present in the hamster genome, we found that only the chY1 and chY3 RNA were strongly expressed in the Chinese hamster GMA32 cell line, while expression of the chY4 and chY5 RNA genes was five orders of magnitude lower, suggesting that they may in fact not be expressed. We synthesized all four chY RNAs and showed that any of these four could support the initiation of DNA replication in an established human cell-free system. CONCLUSIONS These data therefore establish that non-coding chY RNAs are stable structures and can substitute for human Y RNAs in a reconstituted cell-free DNA replication initiation system. The pattern of Y RNA expression and functionality is consistent with Y RNAs of other rodents, including mouse and rat.
Collapse
Affiliation(s)
- Quirino Alves de Lima Neto
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.
| | - Francisco Ferreira Duarte Junior
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.
| | | | | | | | - Eyemen Kheir
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Maria Aparecida Fernandez
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.
| |
Collapse
|
87
|
|
88
|
Papadopoulou C, Guilbaud G, Schiavone D, Sale JE. Nucleotide Pool Depletion Induces G-Quadruplex-Dependent Perturbation of Gene Expression. Cell Rep 2015; 13:2491-2503. [PMID: 26686635 PMCID: PMC4695339 DOI: 10.1016/j.celrep.2015.11.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 09/28/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
Nucleotide pool imbalance has been proposed to drive genetic instability in cancer. Here, we show that slowing replication forks by depleting nucleotide pools with hydroxyurea (HU) can also give rise to both transient and permanent epigenetic instability of a reporter locus, BU-1, in DT40 cells. HU induces stochastic formation of Bu-1(low) variants in dividing cells, which have lost the H3K4me3 present in untreated cells. This instability is potentiated by an intragenic G quadruplex, which also promotes local H2Ax phosphorylation and transient heterochromatinization. Genome-wide, gene expression changes induced by HU significantly overlap with those resulting from loss of the G4-helicases FANCJ, WRN, and BLM. Thus, the effects of global replication stress induced by nucleotide pool depletion can be focused by local replication impediments caused by G quadruplex formation to induce epigenetic instability and changes in gene expression, a mechanism that may contribute to selectable transcriptional changes in cancer.
Collapse
Affiliation(s)
- Charikleia Papadopoulou
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Guillaume Guilbaud
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Davide Schiavone
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
89
|
Elevated levels of TRF2 induce telomeric ultrafine anaphase bridges and rapid telomere deletions. Nat Commun 2015; 6:10132. [PMID: 26640040 PMCID: PMC4686832 DOI: 10.1038/ncomms10132] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/05/2015] [Indexed: 01/23/2023] Open
Abstract
The shelterin protein TRF2 is essential for chromosome-end protection. Depletion of TRF2 causes chromosome end-to-end fusions, initiating genomic instability that can be cancer promoting. Paradoxically, significant increased levels of TRF2 are observed in a subset of human cancers. Experimental overexpression of TRF2 has also been shown to induce telomere shortening, through an unknown mechanism. Here we report that TRF2 overexpression results in replication stalling in duplex telomeric repeat tracts and the subsequent formation of telomeric ultrafine anaphase bridges (UFBs), ultimately leading to stochastic loss of telomeric sequences. These TRF2 overexpression-induced telomere deletions generate chromosome fusions resembling those detected in human cancers and in mammalian cells containing critically shortened telomeres. Therefore, our findings have uncovered a second pathway by which altered TRF2 protein levels can induce end-to-end fusions. The observations also provide mechanistic insight into the molecular basis of genomic instability in tumour cells containing significantly increased TRF2 levels.
Collapse
|
90
|
Abstract
There is an extensive and growing body of evidence that DNA replication stress is a major driver in the development and progression of many cancers, and that these cancers rely heavily on replication stress response pathways for their continued proliferation. This raises the possibility that the pathways that ordinarily protect cells from the accumulation of cancer-causing mutations may actually prove to be effective therapeutic targets for a wide range of malignancies. In this review, we explore the mechanisms by which sustained proliferation can lead to replication stress and genome instability, and discuss how the pattern of mutations observed in human cancers is supportive of this oncogene-induced replication stress model. Finally, we go on to consider the implications of replication stress both as a prognostic indicator and, more encouragingly, as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Elaine M Taylor
- Lancaster Medical School, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Howard D Lindsay
- Lancaster Medical School, Faculty of Health & Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| |
Collapse
|
91
|
Parplys AC, Zhao W, Sharma N, Groesser T, Liang F, Maranon DG, Leung SG, Grundt K, Dray E, Idate R, Østvold AC, Schild D, Sung P, Wiese C. NUCKS1 is a novel RAD51AP1 paralog important for homologous recombination and genome stability. Nucleic Acids Res 2015; 43:9817-34. [PMID: 26323318 PMCID: PMC4787752 DOI: 10.1093/nar/gkv859] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/09/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023] Open
Abstract
NUCKS1 (nuclear casein kinase and cyclin-dependent kinase substrate 1) is a 27 kD chromosomal, vertebrate-specific protein, for which limited functional data exist. Here, we demonstrate that NUCKS1 shares extensive sequence homology with RAD51AP1 (RAD51 associated protein 1), suggesting that these two proteins are paralogs. Similar to the phenotypic effects of RAD51AP1 knockdown, we find that depletion of NUCKS1 in human cells impairs DNA repair by homologous recombination (HR) and chromosome stability. Depletion of NUCKS1 also results in greatly increased cellular sensitivity to mitomycin C (MMC), and in increased levels of spontaneous and MMC-induced chromatid breaks. NUCKS1 is critical to maintaining wild type HR capacity, and, as observed for a number of proteins involved in the HR pathway, functional loss of NUCKS1 leads to a slow down in DNA replication fork progression with a concomitant increase in the utilization of new replication origins. Interestingly, recombinant NUCKS1 shares the same DNA binding preference as RAD51AP1, but binds to DNA with reduced affinity when compared to RAD51AP1. Our results show that NUCKS1 is a chromatin-associated protein with a role in the DNA damage response and in HR, a DNA repair pathway critical for tumor suppression.
Collapse
Affiliation(s)
- Ann C Parplys
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Neelam Sharma
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Torsten Groesser
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David G Maranon
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Stanley G Leung
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kirsten Grundt
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - Eloïse Dray
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rupa Idate
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Anne Carine Østvold
- Department of Molecular Medicine, Institute of Basic Medical Science, University of Oslo, 0317 Oslo, Norway
| | - David Schild
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claudia Wiese
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
92
|
Kuriya K, Higashiyama E, Avşar-Ban E, Tamaru Y, Ogata S, Takebayashi SI, Ogata M, Okumura K. Direct Visualization of DNA Replication Dynamics in Zebrafish Cells. Zebrafish 2015; 12:432-9. [PMID: 26540100 DOI: 10.1089/zeb.2015.1151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Spatiotemporal regulation of DNA replication in the S-phase nucleus has been extensively studied in mammalian cells because it is tightly coupled with the regulation of other nuclear processes such as transcription. However, little is known about the replication dynamics in nonmammalian cells. Here, we analyzed the DNA replication processes of zebrafish (Danio rerio) cells through the direct visualization of replicating DNA in the nucleus and on DNA fiber molecules isolated from the nucleus. We found that zebrafish chromosomal DNA at the nuclear interior was replicated first, followed by replication of DNA at the nuclear periphery, which is reminiscent of the spatiotemporal regulation of mammalian DNA replication. However, the relative duration of interior DNA replication in zebrafish cells was longer compared to mammalian cells, possibly reflecting zebrafish-specific genomic organization. The rate of replication fork progression and ori-to-ori distance measured by the DNA combing technique were ∼ 1.4 kb/min and 100 kb, respectively, which are comparable to those in mammalian cells. To our knowledge, this is a first report that measures replication dynamics in zebrafish cells.
Collapse
Affiliation(s)
- Kenji Kuriya
- 1 Laboratory of Molecular and Cellular Biology, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Eriko Higashiyama
- 1 Laboratory of Molecular and Cellular Biology, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Eriko Avşar-Ban
- 2 Laboratory for the Utilization of Aquatic Bioresources, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Yutaka Tamaru
- 2 Laboratory for the Utilization of Aquatic Bioresources, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Shin Ogata
- 1 Laboratory of Molecular and Cellular Biology, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| | - Shin-ichiro Takebayashi
- 3 Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University , Tsu, Japan
| | - Masato Ogata
- 3 Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University , Tsu, Japan
| | - Katsuzumi Okumura
- 1 Laboratory of Molecular and Cellular Biology, Department of Life Sciences, Graduate School of Bioresources, Mie University , Tsu, Japan
| |
Collapse
|
93
|
Graindorge D, Martineau S, Machon C, Arnoux P, Guitton J, Francesconi S, Frochot C, Sage E, Girard PM. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication. PLoS One 2015; 10:e0140645. [PMID: 26485711 PMCID: PMC4618472 DOI: 10.1371/journal.pone.0140645] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023] Open
Abstract
UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.
Collapse
Affiliation(s)
- Dany Graindorge
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Sylvain Martineau
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Christelle Machon
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de chimie analytique, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Philippe Arnoux
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Jérôme Guitton
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de Toxicologie, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Stefania Francesconi
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Céline Frochot
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Evelyne Sage
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Pierre-Marie Girard
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
- * E-mail:
| |
Collapse
|
94
|
Abstract
DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.
Collapse
|
95
|
Abstract
The intra-S phase checkpoint kinase of metazoa and yeast, ATR/MEC1, protects chromosomes from DNA damage and replication stress by phosphorylating subunits of the replicative helicase, MCM2-7. Here we describe an unprecedented ATR-dependent pathway in Tetrahymena thermophila in which the essential pre-replicative complex proteins, Orc1p, Orc2p and Mcm6p are degraded in hydroxyurea-treated S phase cells. Chromosomes undergo global changes during HU-arrest, including phosphorylation of histone H2A.X, deacetylation of histone H3, and an apparent diminution in DNA content that can be blocked by the deacetylase inhibitor sodium butyrate. Most remarkably, the cell cycle rapidly resumes upon hydroxyurea removal, and the entire genome is replicated prior to replenishment of ORC and MCMs. While stalled replication forks are elongated under these conditions, DNA fiber imaging revealed that most replicating molecules are produced by new initiation events. Furthermore, the sole origin in the ribosomal DNA minichromosome is inactive and replication appears to initiate near the rRNA promoter. The collective data raise the possibility that replication initiation occurs by an ORC-independent mechanism during the recovery from HU-induced replication stress. DNA damage and replication stress activate cell cycle checkpoint responses that protect the integrity of eukaryotic chromosomes. A well-conserved response involves the reversible phosphorylation of the replicative helicase, MCM2-7, which together with the origin recognition complex (ORC) dictates when and where replication initiates in chromosomes. The central role of ORC and MCMs in DNA replication is illustrated by the fact that small changes in abundance of these pre-replicative complex (pre-RC) components are poorly tolerated from yeast to humans. Here we describe an unprecedented replication stress checkpoint response in the early branching eukaryote, Tetrahymena thermophila, that is triggered by the depletion of dNTP pools with hydroxyurea (HU). Instead of transiently phosphorylating MCM subunits, ORC and MCM proteins are physically degraded in HU-treated Tetrahymena. Unexpectedly, upon HU removal the genome is completely and effortlessly replicated prior to replenishment of ORC and MCM components. Using DNA fiber imaging and 2D gel electrophoresis, we show that ORC-dependent mechanisms are bypassed during the recovery phase to produce bidirectional replication forks throughout the genome. Our findings suggest that Tetrahymena enlists an alternative mechanism for replication initiation, and that the underlying process can operate on a genome-wide scale.
Collapse
Affiliation(s)
- Pamela Y. Sandoval
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
| | - Po-Hsuen Lee
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xiangzhou Meng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Geoffrey M. Kapler
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
96
|
Gitlin AD, Mayer CT, Oliveira TY, Shulman Z, Jones MJK, Koren A, Nussenzweig MC. HUMORAL IMMUNITY. T cell help controls the speed of the cell cycle in germinal center B cells. Science 2015; 349:643-6. [PMID: 26184917 DOI: 10.1126/science.aac4919] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/08/2015] [Indexed: 12/20/2022]
Abstract
The germinal center (GC) is a microanatomical compartment wherein high-affinity antibody-producing B cells are selectively expanded. B cells proliferate and mutate their antibody genes in the dark zone (DZ) of the GC and are then selected by T cells in the light zone (LZ) on the basis of affinity. Here, we show that T cell help regulates the speed of cell cycle phase transitions and DNA replication of GC B cells. Genome sequencing and single-molecule analyses revealed that T cell help shortens S phase by regulating replication fork progression, while preserving the relative order of replication origin activation. Thus, high-affinity GC B cells are selected by a mechanism that involves prolonged dwell time in the DZ where selected cells undergo accelerated cell cycles.
Collapse
Affiliation(s)
- Alexander D Gitlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ziv Shulman
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mathew J K Jones
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Amnon Koren
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
97
|
Martín Sánchez C, Pérez Martín JM, Jin JS, Dávalos A, Zhang W, de la Peña G, Martínez-Botas J, Rodríguez-Acebes S, Suárez Y, Hazen MJ, Gómez-Coronado D, Busto R, Cheng YC, Lasunción MA. Disruption of the mevalonate pathway induces dNTP depletion and DNA damage. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1240-53. [PMID: 26055626 DOI: 10.1016/j.bbalip.2015.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/23/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022]
Abstract
The mevalonate pathway is tightly linked to cell division. Mevalonate derived non-sterol isoprenoids and cholesterol are essential for cell cycle progression and mitosis completion respectively. In the present work, we studied the effects of fluoromevalonate, a competitive inhibitor of mevalonate diphosphate decarboxylase, on cell proliferation and cell cycle progression in both HL-60 and MOLT-4 cells. This enzyme catalyzes the synthesis of isopentenyl diphosphate, the first isoprenoid in the cholesterol biosynthesis pathway, consuming ATP at the same time. Inhibition of mevalonate diphosphate decarboxylase was followed by a rapid accumulation of mevalonate diphosphate and the reduction of ATP concentrations, while the cell content of cholesterol was barely affected. Strikingly, mevalonate diphosphate decarboxylase inhibition also resulted in the depletion of dNTP pools, which has never been reported before. These effects were accompanied by inhibition of cell proliferation and cell cycle arrest at S phase, together with the appearance of γ-H2AX foci and Chk1 activation. Inhibition of Chk1 in cells treated with fluoromevalonate resulted in premature entry into mitosis and massive cell death, indicating that the inhibition of mevalonate diphosphate decarboxylase triggered a DNA damage response. Notably, the supply of exogenously deoxyribonucleosides abolished γ-H2AX formation and prevented the effects of mevalonate diphosphate decarboxylase inhibition on DNA replication and cell growth. The results indicate that dNTP pool depletion caused by mevalonate diphosphate decarboxylase inhibition hampered DNA replication with subsequent DNA damage, which may have important consequences for replication stress and genomic instability.
Collapse
Affiliation(s)
- Covadonga Martín Sánchez
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, 28034 Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - José Manuel Pérez Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jong-Sik Jin
- Department of Pharmacology, Section of Medical Oncology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Oriental Medicine Resources, College of Environmental & Bioresource Sciences, Chonbuk National University, Jeonju, Jeonbuk, Republic of Korea.
| | - Alberto Dávalos
- Laboratory of Functional Foods, IMDEA-Food, 28036 Madrid, Spain.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China.
| | - Gema de la Peña
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, 28034 Madrid, Spain.
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, 28034 Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Sara Rodríguez-Acebes
- DNA Replication Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain.
| | - Yajaira Suárez
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - María José Hazen
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, 28034 Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, 28034 Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Yung-Chi Cheng
- Department of Pharmacology, Section of Medical Oncology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, 28034 Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
98
|
Replication stress in Mammalian cells and its consequences for mitosis. Genes (Basel) 2015; 6:267-98. [PMID: 26010955 PMCID: PMC4488665 DOI: 10.3390/genes6020267] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/23/2022] Open
Abstract
The faithful transmission of genetic information to daughter cells is central to maintaining genomic stability and relies on the accurate and complete duplication of genetic material during each cell cycle. However, the genome is routinely exposed to endogenous and exogenous stresses that can impede the progression of replication. Such replication stress can be an early cause of cancer or initiate senescence. Replication stress, which primarily occurs during S phase, results in consequences during mitosis, jeopardizing chromosome segregation and, in turn, genomic stability. The traces of replication stress can be detected in the daughter cells during G1 phase. Alterations in mitosis occur in two types: 1) local alterations that correspond to breaks, rearrangements, intertwined DNA molecules or non-separated sister chromatids that are confined to the region of the replication dysfunction; 2) genome-wide chromosome segregation resulting from centrosome amplification (although centrosomes do not contain DNA), which amplifies the local replication stress to the entire genome. Here, we discuss the endogenous causes of replication perturbations, the mechanisms of replication fork restart and the consequences for mitosis, chromosome segregation and genomic stability.
Collapse
|
99
|
Baldeyron C, Brisson A, Tesson B, Némati F, Koundrioukoff S, Saliba E, De Koning L, Martel E, Ye M, Rigaill G, Meseure D, Nicolas A, Gentien D, Decaudin D, Debatisse M, Depil S, Cruzalegui F, Pierré A, Roman-Roman S, Tucker GC, Dubois T. TIPIN depletion leads to apoptosis in breast cancer cells. Mol Oncol 2015; 9:1580-98. [PMID: 26004086 DOI: 10.1016/j.molonc.2015.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/10/2015] [Accepted: 04/23/2015] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the breast cancer subgroup with the most aggressive clinical behavior. Alternatives to conventional chemotherapy are required to improve the survival of TNBC patients. Gene-expression analyses for different breast cancer subtypes revealed significant overexpression of the Timeless-interacting protein (TIPIN), which is involved in the stability of DNA replication forks, in the highly proliferative associated TNBC samples. Immunohistochemistry analysis showed higher expression of TIPIN in the most proliferative and aggressive breast cancer subtypes including TNBC, and no TIPIN expression in healthy breast tissues. The depletion of TIPIN by RNA interference impairs the proliferation of both human breast cancer and non-tumorigenic cell lines. However, this effect may be specifically associated with apoptosis in breast cancer cells. TIPIN silencing results in higher levels of single-stranded DNA (ssDNA), indicative of replicative stress (RS), in TNBC compared to non-tumorigenic cells. Upon TIPIN depletion, the speed of DNA replication fork was significantly decreased in all BC cells. However, TIPIN-depleted TNBC cells are unable to fire additional replication origins in response to RS and therefore undergo apoptosis. TIPIN knockdown in TNBC cells decreases tumorigenicity in vitro and delays tumor growth in vivo. Our findings suggest that TIPIN is important for the maintenance of DNA replication and represents a potential treatment target for the worst prognosis associated breast cancers, such as TNBC.
Collapse
Affiliation(s)
- Céline Baldeyron
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Amélie Brisson
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Bruno Tesson
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France; INSERM, U900, Bioinformatics, Biostatistics, Epidemiology and Computational Systems Biology of Cancer, Paris, F-75248, France; Mines ParisTech, Fontainebleau, F-77300, France
| | - Fariba Némati
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Laboratory of Preclinical Investigation, Department of Translational Research, Paris, F-75248, France
| | - Stéphane Koundrioukoff
- Institut Curie, Centre de Recherche, Paris, F-75248, France; CNRS, UMR 3244, Paris, F-75248, France; Université Pierre and Marie Curie Paris VI, Paris, F-75005, France
| | - Elie Saliba
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Leanne De Koning
- Institut Curie, Centre de Recherche, Paris, F-75248, France; RPPA Platform, Department of Translational Research, Paris, F-75248, France
| | - Elise Martel
- Institut Curie, Investigative Pathology Platform, Paris, F-75248, France
| | - Mengliang Ye
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Guillem Rigaill
- Unité de Recherche en Génomique Végétale, INRA-CNRS-Université d'Evry Val d'Essonne, Evry, F-91057, France
| | - Didier Meseure
- Institut Curie, Investigative Pathology Platform, Paris, F-75248, France
| | - André Nicolas
- Institut Curie, Investigative Pathology Platform, Paris, F-75248, France
| | - David Gentien
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Platform of Molecular Biology Facilities, Department of Translational Research, Paris, F-75248, France
| | - Didier Decaudin
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Laboratory of Preclinical Investigation, Department of Translational Research, Paris, F-75248, France
| | - Michelle Debatisse
- Institut Curie, Centre de Recherche, Paris, F-75248, France; CNRS, UMR 3244, Paris, F-75248, France; Université Pierre and Marie Curie Paris VI, Paris, F-75005, France
| | - Stéphane Depil
- Institut de Recherches SERVIER, Pôle Innovation Thérapeutique Oncologie, Croissy-sur-Seine, F-78290, France
| | - Francisco Cruzalegui
- Institut de Recherches SERVIER, Pôle Innovation Thérapeutique Oncologie, Croissy-sur-Seine, F-78290, France
| | - Alain Pierré
- Institut de Recherches SERVIER, Pôle Innovation Thérapeutique Oncologie, Croissy-sur-Seine, F-78290, France
| | - Sergio Roman-Roman
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France
| | - Gordon C Tucker
- Institut de Recherches SERVIER, Pôle Innovation Thérapeutique Oncologie, Croissy-sur-Seine, F-78290, France
| | - Thierry Dubois
- Institut Curie, Centre de Recherche, Paris, F-75248, France; Breast Cancer Biology Group, Department of Translational Research, Paris, F-75248, France.
| |
Collapse
|
100
|
Fu H, Martin MM, Regairaz M, Huang L, You Y, Lin CM, Ryan M, Kim R, Shimura T, Pommier Y, Aladjem MI. The DNA repair endonuclease Mus81 facilitates fast DNA replication in the absence of exogenous damage. Nat Commun 2015; 6:6746. [PMID: 25879486 PMCID: PMC4400873 DOI: 10.1038/ncomms7746] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022] Open
Abstract
The Mus81 endonuclease resolves recombination intermediates and mediates cellular responses to exogenous replicative stress. Here, we show that Mus81 also regulates the rate of DNA replication during normal growth by promoting replication fork progression while reducing the frequency of replication initiation events. In the absence of Mus81 endonuclease activity, DNA synthesis is slowed and replication initiation events are more frequent. In addition, Mus81-deficient cells fail to recover from exposure to low doses of replication inhibitors and cell viability is dependent on the XPF endonuclease. Despite an increase in replication initiation frequency, cells lacking Mus81 use the same pool of replication origins as Mus81-expressing cells. Therefore, decelerated DNA replication in Mus81-deficient cells does not initiate from cryptic or latent origins not used during normal growth. These results indicate that Mus81 plays a key role in determining the rate of DNA replication without activating a novel group of replication origins.
Collapse
Affiliation(s)
- Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melvenia M. Martin
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Regairaz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liang Huang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yang You
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chi-Mei Lin
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Ryan
- InSilico Solutions, 11781 Lee Jackson Highway, Fairfax, VA 22033, USA
| | - RyangGuk Kim
- InSilico Solutions, 11781 Lee Jackson Highway, Fairfax, VA 22033, USA
| | - Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|