51
|
Hasturk O, Sivas A, Karasozen B, Demirci U, Hasirci N, Hasirci V. Quantification of Type, Timing, and Extent of Cell Body and Nucleus Deformations Caused by the Dimensions and Hydrophilicity of Square Prism Micropillars. Adv Healthc Mater 2016; 5:2972-2982. [PMID: 27925459 DOI: 10.1002/adhm.201600857] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/21/2016] [Indexed: 01/30/2023]
Abstract
Novel digital analysis strategies are developed for the quantification of changes in the cytoskeletal and nuclear morphologies of mesenchymal stem cells cultured on micropillars. Severe deformations of nucleus and distinct conformational changes of cell body ranging from extensive elongation to branching are visualized and quantified. These deformations are caused mainly by the dimensions and hydrophilicity of the micropillars.
Collapse
Affiliation(s)
- Onur Hasturk
- Graduate Department of Biotechnology; Middle East Technical University (METU); Ankara 06800 Turkey
- BIOMATEN; Center of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University (METU); Ankara 06800 Turkey
| | - Abdullah Sivas
- Institute of Applied Mathematics; Middle East Technical University (METU); Ankara 06800 Turkey
| | - Bulent Karasozen
- Institute of Applied Mathematics; Middle East Technical University (METU); Ankara 06800 Turkey
| | - Utkan Demirci
- Bio-Acoustic-MEMs in Medicine (BAMM) Laboratory; Stanford School of Medicine; Palo Alto CA 94394 USA
| | - Nesrin Hasirci
- Graduate Department of Biotechnology; Middle East Technical University (METU); Ankara 06800 Turkey
- BIOMATEN; Center of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University (METU); Ankara 06800 Turkey
- Department of Chemistry; Middle East Technical University (METU); Ankara 06800 Turkey
| | - Vasif Hasirci
- Graduate Department of Biotechnology; Middle East Technical University (METU); Ankara 06800 Turkey
- BIOMATEN; Center of Excellence in Biomaterials and Tissue Engineering; Middle East Technical University (METU); Ankara 06800 Turkey
- Department of Biological Sciences; Middle East Technical University (METU); Ankara 06800 Turkey
| |
Collapse
|
52
|
Kowalski K, Kołodziejczyk A, Sikorska M, Płaczkiewicz J, Cichosz P, Kowalewska M, Stremińska W, Jańczyk-Ilach K, Koblowska M, Fogtman A, Iwanicka-Nowicka R, Ciemerych MA, Brzoska E. Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis. Cell Adh Migr 2016; 11:384-398. [PMID: 27736296 PMCID: PMC5569967 DOI: 10.1080/19336918.2016.1227911] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The skeletal muscle regeneration occurs due to the presence of tissue specific stem cells - satellite cells. These cells, localized between sarcolemma and basal lamina, are bound to muscle fibers and remain quiescent until their activation upon muscle injury. Due to pathological conditions, such as extensive injury or dystrophy, skeletal muscle regeneration is diminished. Among the therapies aiming to ameliorate skeletal muscle diseases are transplantations of the stem cells. In our previous studies we showed that Sdf-1 (stromal derived factor −1) increased migration of stem cells and their fusion with myoblasts in vitro. Importantly, we identified that Sdf-1 caused an increase in the expression of tetraspanin CD9 - adhesion protein involved in myoblasts fusion. In the current study we aimed to uncover the details of molecular mechanism of Sdf-1 action. We focused at the Sdf-1 receptors - Cxcr4 and Cxcr7, as well as signaling pathways induced by these molecules in primary myoblasts, as well as various stem cells - mesenchymal stem cells and embryonic stem cells, i.e. the cells of different migration and myogenic potential. We showed that Sdf-1 altered actin organization via FAK (focal adhesion kinase), Cdc42 (cell division control protein 42), and Rac-1 (Ras-Related C3 Botulinum Toxin Substrate 1). Moreover, we showed that Sdf-1 modified the transcription profile of genes encoding factors engaged in cells adhesion and migration. As the result, cells such as primary myoblasts or embryonic stem cells, became characterized by more effective migration when transplanted into regenerating muscle.
Collapse
Affiliation(s)
- Kamil Kowalski
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | | | - Maria Sikorska
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Jagoda Płaczkiewicz
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Paulina Cichosz
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Magdalena Kowalewska
- b Department of Molecular and Translational Oncology , Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology , Warsaw , Poland.,c Department of Immunology, Biochemistry and Nutrition , Medical University of Warsaw , Warsaw , Poland
| | - Władysława Stremińska
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | | | - Marta Koblowska
- d Laboratory of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw , Poland.,e Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Anna Fogtman
- e Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Roksana Iwanicka-Nowicka
- d Laboratory of Systems Biology, Faculty of Biology, University of Warsaw , Warsaw , Poland.,e Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Warsaw , Poland
| | - Maria A Ciemerych
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| | - Edyta Brzoska
- a Department of Cytology , Faculty of Biology, University of Warsaw , Warsaw , Poland
| |
Collapse
|
53
|
Barabutis N, Verin A, Catravas JD. Regulation of pulmonary endothelial barrier function by kinases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L832-L845. [PMID: 27663990 DOI: 10.1152/ajplung.00233.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
The pulmonary endothelium is the target of continuous physiological and pathological stimuli that affect its crucial barrier function. The regulation, defense, and repair of endothelial barrier function require complex biochemical processes. This review examines the role of endothelial phosphorylating enzymes, kinases, a class with profound, interdigitating influences on endothelial permeability and lung function.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, Georgia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, .,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
54
|
Control of fibrotic changes through the synergistic effects of anti-fibronectin antibody and an RGDS-tagged form of the same antibody. Sci Rep 2016; 6:30872. [PMID: 27484779 PMCID: PMC4971484 DOI: 10.1038/srep30872] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/20/2016] [Indexed: 12/27/2022] Open
Abstract
TGF-β and myofibroblasts play a key role in fibrosis, characterized by aberrant synthesis and deposition of extracellular matrix (ECM) proteins, such as fibronectin (Fn) and collagen type I. There are two major roles played by integrins in the fibrotic pathology: (i) Fn-integrin interaction, coupled with cytokines like TGF-β, facilitates the self-polymerization of Fn and regulates cell-matrix fibrillar adhesions, thereby promoting fibrillogenesis; (ii) Integrin interaction with an RGD (arginine-glycine-aspartic) consensus sequence in the latent TGF-β, resulting in its activation. This study describes an anti-fibrotic strategy using a combination of two antibodies: Fn52 (targeted against the N-terminal 30 kDa region of fibronectin, a major site for Fn self-association), and its engineered form, Fn52RGDS (which binds to integrins). Interestingly, a synergistic effect of the cocktail in causing a decline in fibrotic features was confirmed in the context of fibrotic posterior capsular opacification (PCO), mediated by the lens epithelial cells (left behind after cataract surgery). Inclusion of Fn52RGDS to Fn52 aids in better diffusion of the antibodies; such combination therapies could be useful in the context of pathologies involving extensive remodeling of the fibronectin matrix, where the thick ECM offers a major challenge for efficient drug delivery.
Collapse
|
55
|
Chen SZ, Ning LF, Xu X, Jiang WY, Xing C, Jia WP, Chen XL, Tang QQ, Huang HY. The miR-181d-regulated metalloproteinase Adamts1 enzymatically impairs adipogenesis via ECM remodeling. Cell Death Differ 2016; 23:1778-1791. [PMID: 27447109 DOI: 10.1038/cdd.2016.66] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/09/2016] [Accepted: 06/13/2016] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM) maintenance is crucial to the structural integrity of adipocytes and whole adipose tissue formation. However, the potential impact of the ECM on adipocyte lineage commitment is unclear. Herein, we demonstrate that forced expression of matrix-associated metalloproteinase Adamts1 (a disintegrin and metalloproteinase with thrombospondin motifs 1), which we show is targeted by microRNA-181d (miR-181d) during BMP4-induced adipocytic lineage commitment, markedly impairs adipocyte commitment. Conversely, siRNA-induced inhibition of Adamts1 promotes adipocyte commitment. Adamst1 metalloprotease activity is required for this inhibition and is determined to function via remodeling ECM components followed by activating FAK-ERK signaling pathway during the commitment process. Furthermore, ablation of Adamts1 in adipose tissue increases adipose tissue mass, reduces insulin sensitivity, and disrupts lipid homeostasis. This finding is consistent with Adamts1 decreased expression in the adipose tissue of obese mice and an inverse correlation of Adamts1 expression with body mass index in humans. Collectively, our results indicate that Adamts1 acts as an ECM 'modifier', with miR-181d-induced downregulation, that regulates adipocyte lineage commitment and obesity.
Collapse
Affiliation(s)
- S-Z Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, China
| | - L-F Ning
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, China
| | - X Xu
- Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - W-Y Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, China
| | - C Xing
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, China
| | - W-P Jia
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - X-L Chen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Q-Q Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, China.,Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - H-Y Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, China.,Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
56
|
Liu H, Gong X, Jing X, Ding X, Yao Y, Huang Y, Fan Y. Shear stress with appropriate time-step and amplification enhances endothelial cell retention on vascular grafts. J Tissue Eng Regen Med 2016; 11:2965-2978. [DOI: 10.1002/term.2196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/09/2016] [Accepted: 03/14/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing People's Republic of China
| | - Xianghui Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing People's Republic of China
| | - Xiaohui Jing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing People's Republic of China
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing People's Republic of China
| | - Yuan Yao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing People's Republic of China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing People's Republic of China
- National Research Centre for Rehabilitation Technical Aids; Beijing People's Republic of China
| |
Collapse
|
57
|
Parveen S S, Al-Alshaikh MA, Panicker CY, El-Emam AA, Arisoy M, Temiz-Arpaci O, Van Alsenoy C. Synthesis, vibrational spectroscopic investigations, molecular docking, antibacterial and antimicrobial studies of 5-ethylsulphonyl-2-(p-aminophenyl)benzoxazole. J Mol Struct 2016; 1115:94-104. [DOI: 10.1016/j.molstruc.2016.02.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
58
|
MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene 2016; 36:491-500. [PMID: 27321183 PMCID: PMC5173450 DOI: 10.1038/onc.2016.218] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 11/12/2022]
Abstract
Although MUC13, a transmembrane mucin, is aberrantly expressed in pancreatic ductal adenocarcinoma (PDAC) and generally correlates with increased expression of HER2, the underlying mechanism remains poorly understood. Herein, we found that MUC13 co-localizes and interacts with HER2 in PDAC cells (reciprocal co-immunoprecipitation, immunofluorescence, proximity ligation, co-capping assays) and tissues (immunohistofluorescence). The results from this study demonstrate that MUC13 functionally interacts and activates HER2 at p1248 in PDAC cells, leading to stimulation of HER2 signaling cascade including, ERK1/2, FAK, AKT and PAK1 as well as regulation of the growth, cytoskeleton remodeling and motility and invasion of PDAC cells - all collectively contributing to PDAC progression. Interestingly, all of these phenotypic effects of MUC13-HER2 co-localization could be effectively compromised by depleting MUC13 and mediated by the first and second EGF-like domains of MUC13. Further, MUC13-HER2 co-localization also holds true in PDAC tissues with a strong functional correlation with events contributing to increased degree of disorder and cancer aggressiveness. In brief, findings presented here provide compelling evidence of a functional ramification of MUC13-HER2: this interaction could be potentially exploited for targeted therapeutics in a subset of patients harboring an aggressive form of PDAC.
Collapse
|
59
|
Gilani RA, Phadke S, Bao LW, Lachacz EJ, Dziubinski ML, Brandvold KR, Steffey ME, Kwarcinski FE, Graveel CR, Kidwell KM, Merajver SD, Soellner MB. UM-164: A Potent c-Src/p38 Kinase Inhibitor with In Vivo Activity against Triple-Negative Breast Cancer. Clin Cancer Res 2016; 22:5087-5096. [DOI: 10.1158/1078-0432.ccr-15-2158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/16/2016] [Indexed: 11/16/2022]
|
60
|
Hou Y, Nie Y, Cheng B, Tao J, Ma X, Jiang M, Gao J, Bai G. Qingfei Xiaoyan Wan, a traditional Chinese medicine formula, ameliorates Pseudomonas aeruginosa-induced acute lung inflammation by regulation of PI3K/AKT and Ras/MAPK pathways. Acta Pharm Sin B 2016; 6:212-21. [PMID: 27175332 PMCID: PMC4856955 DOI: 10.1016/j.apsb.2016.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 12/27/2022] Open
Abstract
Gram-negative pathogen–induced nosocomial infections and resistance are a most serious menace to global public health. Qingfei Xiaoyan Wan (QF), a traditional Chinese medicine (TCM) formula, has been used clinically in China for the treatment of upper respiratory tract infections, acute or chronic bronchitis and pulmonary infection. In this study, the effects of QF on Pseudomonas aeruginosa–induced acute pneumonia in mice were evaluated. The mechanisms by which four typical anti-inflammatory ingredients from QF, arctigenin (ATG), cholic acid (CLA), chlorogenic acid (CGA) and sinapic acid (SPA), regulate anti-inflammatory signaling pathways and related targets were investigated using molecular biology and molecular docking techniques. The results showed that pretreatment with QF significantly inhibits the release of cytokines (TNF-α and IL-6) and chemokines (IL-8 and RANTES), reduces leukocytes recruitment into inflamed tissues and ameliorates pulmonary edema and necrosis. In addition, ATG was identified as the primary anti-inflammatory agent with action on the PI3K/AKT and Ras/MAPK pathways. CLA and CGA enhanced the actions of ATG and exhibited synergistic NF-κB inactivation effects possibly via the Ras/MAPK signaling pathway. Moreover, CLA is speculated to target FGFR and MEK firstly. Overall, QF regulated the PI3K/AKT and Ras/MAPK pathways to inhibit pathogenic bacterial infections effectively.
Collapse
Key Words
- ATG, arctigenin
- Anti-inflammatory
- CGA, chlorogenic acid
- CLA, cholic acid
- DMSO, dimethylsulfoxide
- Dex, dexamethasone
- ELISA, enzyme-linked immunosorbent assay
- ESI, electrospray ionization
- GA, genetic algorithm
- HE, hematoxylin and eosin
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LB, Luria–Bertani
- LEV, levofloxacin
- Lung
- MAPK, mitogen activated protein kinase
- Mouse
- NFATc1, nuclear factor of activated T cells c1
- Network pharmacology
- Ninj1, ninjurin1
- PBS, phosphate-buffered saline
- PI3K, phosphoinositide 3-kinase
- PI3K/AKT pathway
- Pathogenic bacterial infection
- QF, Qingfei Xiaoyan Wan
- Ras/MAPK pathway
- SARS, severe acute respiratory syndrome
- SPA, sinapic acid
- TCM, traditional Chinese medicine
- TTBS, Tween 20/Tris-buffered saline
- UPLC, ultra-performance liquid chromatography
Collapse
Affiliation(s)
- Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Yan Nie
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Binfeng Cheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Jin Tao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, China
- Corresponding author.
| |
Collapse
|
61
|
Zhou Q, Bennett LL, Zhou S. Multifaceted ability of naturally occurring polyphenols against metastatic cancer. Clin Exp Pharmacol Physiol 2016; 43:394-409. [DOI: 10.1111/1440-1681.12546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Qingyu Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa Florida
| | | | - Shufeng Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa Florida
| |
Collapse
|
62
|
Castillo Sanchez R, Gomez R, Perez Salazar E. Bisphenol A Induces Migration through a GPER-, FAK-, Src-, and ERK2-Dependent Pathway in MDA-MB-231 Breast Cancer Cells. Chem Res Toxicol 2016; 29:285-95. [PMID: 26914403 DOI: 10.1021/acs.chemrestox.5b00457] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bisphenol A (BPA) is an industrial synthetic chemical utilized in the production of numerous products including food and beverage containers. Humans are exposed to BPA during ingestion of contaminated water and food because it can leach from polycarbonate containers, beverage cans, and epoxy resins. BPA has been related with the development of several diseases including breast cancer. However, the signal transduction pathways mediated by BPA and its role as a promoter of migration and invasion in breast cancer cells remain to be investigated. Here, we demonstrate that BPA promotes migration, invasion, and an increase in the number of focal contacts in MDA-MB-231 breast cancer cells. Moreover, MDA-MB-231 cells express GPER, and BPA promotes migration through a GPER-dependent pathway. BPA also induces activation of FAK, Src, and ERK2, whereas migration induced by BPA requires the activity of these kinases. In addition, BPA induces an increase on AP-1- and NFκB-DNA binding activity through an Src- and ERK2-dependent pathway. In conclusion, our findings demonstrate, that BPA induces the activation of signal transduction pathways, which mediate migration, AP-1/NFκB-DNA binding activity, and an invasion process in MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Rocio Castillo Sanchez
- Departamento de Toxicologia, ‡Departamento de Biologia Celular, Cinvestav-IPN , Mexico D.F., Mexico
| | - Rocio Gomez
- Departamento de Toxicologia, ‡Departamento de Biologia Celular, Cinvestav-IPN , Mexico D.F., Mexico
| | - Eduardo Perez Salazar
- Departamento de Toxicologia, ‡Departamento de Biologia Celular, Cinvestav-IPN , Mexico D.F., Mexico
| |
Collapse
|
63
|
Zhan JY, Zhang JL, Wang Y, Li Y, Zhang HX, Zheng QC. Exploring the interaction between human focal adhesion kinase and inhibitors: a molecular dynamic simulation and free energy calculations. J Biomol Struct Dyn 2016; 34:2351-66. [PMID: 26549408 DOI: 10.1080/07391102.2015.1115780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Focal adhesion kinase is an important target for the treatment of many kinds of cancers. Inhibitors of FAK are proposed to be the anticancer agents for multiple tumors. The interaction characteristic between FAK and its inhibitors is crucial to develop new inhibitors. In the present article, we used Molecular Dynamic (MD) simulation method to explore the characteristic of interaction between FAK and three inhibitors (PHM16, TAE226, and ligand3). The MD simulation results together with MM-GB/SA calculations show that the combinations are enthalpy-driven process. Cys502 and Asp564 are both essential residues due to the hydrogen bond interactions with inhibitors, which was in good agreement with experimental data. Glu500 can form a non-classical hydrogen bond with each inhibitor. Arg426 can form electrostatic interactions with PHM16 and ligand3, while weaker with TAE226. The electronic static potential was employed, and we found that the ortho-position methoxy of TAE226 has a weaker negative charge than the meta-position one in PHM16 or ligand3. Ile428, Val436, Ala452, Val484, Leu501, Glu505, Glu506, Leu553, Gly563 Leu567, Ser568 are all crucial residues in hydrophobic interactions. The key residues in this work will be available for further inhibitor design of FAK and also give assistance to further research of cancer.
Collapse
Affiliation(s)
- Jiu-Yu Zhan
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , P.R. China
| | - Ji-Long Zhang
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , P.R. China
| | - Yan Wang
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , P.R. China
| | - Ye Li
- c Changchun Institute of Biological Products Co. Ltd , Changchun 130012 , P.R. China
| | - Hong-Xing Zhang
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , P.R. China
| | - Qing-Chuan Zheng
- a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , P.R. China.,b Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education , Jilin University , Changchun 130023 , P.R. China
| |
Collapse
|
64
|
Huang YT, Zhao L, Fu Z, Zhao M, Song XM, Jia J, Wang S, Li JP, Zhu ZF, Lin G, Lu R, Yao Z. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin-focal adhesion kinase signal transduction. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:649-63. [PMID: 27041993 PMCID: PMC4780724 DOI: 10.2147/dddt.s86284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tyroservatide (YSV) can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin–focal adhesion kinase (FAK) signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin β1 and integrin β3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer.
Collapse
Affiliation(s)
- Yu-ting Huang
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Lan Zhao
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zheng Fu
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Meng Zhao
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiao-meng Song
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jing Jia
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Song Wang
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jin-ping Li
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhi-feng Zhu
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Gang Lin
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China; Shenzhen Kangzhe Pharmaceutical Co., Ltd., Shenzhen, People's Republic of China
| | - Rong Lu
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China; Shenzhen Kangzhe Pharmaceutical Co., Ltd., Shenzhen, People's Republic of China
| | - Zhi Yao
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China; Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
65
|
Pocheć E, Ząbczyńska M, Bubka M, Homa J, Lityńska A. β1,6-branched complex-type N-glycans affect FAK signaling in metastatic melanoma cells. Cancer Invest 2016; 34:45-56. [PMID: 26745022 DOI: 10.3109/07357907.2015.1102928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Integrin-dependent binding of the cell to extracellular matrix (ECM) is a key activator of the focal adhesion kinase (FAK) signaling pathway. N-glycosylation of integrins affects their interactions with ECM proteins. Using WM266-4 cells with overexpression of β1,6-acetylglucosaminyltransferase V, we showed that β1,6-branched N-glycans increased tyrosine phosphorylation of FAK in metastatic melanoma cells, resulting in enhanced migration on vitronectin (VN). The co-localization of αvβ3 integrin and FAK in focal adhesions of melanoma cells growing on VN indicates their interaction in signal transduction. Melanoma cell migration on VN was mediated by αvβ3 caring overexpressed β1,6-branched structures, important for FAK upregulation.
Collapse
Affiliation(s)
- Ewa Pocheć
- a Department of Glycoconjugate Biochemistry, Institute of Zoology , Jagiellonian University Krakow , Poland
| | - Marta Ząbczyńska
- a Department of Glycoconjugate Biochemistry, Institute of Zoology , Jagiellonian University Krakow , Poland
| | - Monika Bubka
- a Department of Glycoconjugate Biochemistry, Institute of Zoology , Jagiellonian University Krakow , Poland
| | - Joanna Homa
- b Department of Evolutionary Immunology, Institute of Zoology , Jagiellonian University Krakow , Poland
| | - Anna Lityńska
- a Department of Glycoconjugate Biochemistry, Institute of Zoology , Jagiellonian University Krakow , Poland
| |
Collapse
|
66
|
Wang B, Qi X, Li D, Feng M, Meng X, Fu S. Expression of pY397 FAK promotes the development of non-small cell lung cancer. Oncol Lett 2015; 11:979-983. [PMID: 26893679 PMCID: PMC4733957 DOI: 10.3892/ol.2015.3992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 06/05/2015] [Indexed: 02/06/2023] Open
Abstract
Focal adhesion kinase (FAK) expression has been identified as associated with cancer development and metastasis. Autophosphorylation of FAK at tyrosine (Y) 397 (pY397) performs a critical role in tumor cell signaling. However, few studies have evaluated the expression of pY397 FAK in non-small cell lung cancer (NSCLC). In the present study, pY397 FAK expression in NSCLC was investigated using immunohistochemistry. pY397 FAK staining scores were compared between various groups of specimens and the associations between clinical and pathological characteristics were investigated. A Kaplan-Meier survival curve was used to determine the association between pY397 FAK expression and the prognosis of NSCLC patients. The results of the present study revealed that pY397 FAK expression was localized to the cytoplasm of lung cells, and that pY397 FAK was overexpressed in NSCLC tissues, as well as associated metastatic tissues, when compared with the corresponding non-tumor tissues. However, no significant difference was identified between the pY397 FAK expression in primary lesions and lymph node metastases. Furthermore, pY397 FAK staining scores were not found to be associated with the tumor size, gender, degree of differentiation, histotypes, presence of lymph node metastases or survival rate of NSCLC patients. These results indicate that pY397 FAK is involved with the development of NSCLC, but is not a prognostic marker for the disease.
Collapse
Affiliation(s)
- Baichun Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiuying Qi
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Danyang Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Meiyan Feng
- Department of Pathology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China; Key Laboratory of Medical Genetics, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
67
|
Beck JR, Zhou X, Casey GR, Stains CI. Design and evaluation of a real-time activity probe for focal adhesion kinase. Anal Chim Acta 2015; 897:62-8. [PMID: 26515006 DOI: 10.1016/j.aca.2015.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/22/2022]
Abstract
Focal adhesion kinase (FAK) has been identified as a potential therapeutic target for the treatment of metastatic cancers. Herein we describe the design, synthesis and optimization of a direct activity sensor for FAK and its application to screening FAK inhibitors. We find that the position of the sensing moiety, a phosphorylation-sensitive sulfonamido-oxine fluorophore, can dramatically influence the performance of peptide sensors for FAK. Real-time fluorescence activity assays using an optimized sensor construct, termed FAKtide-S2, are highly reproducible (Z' = 0.91) and are capable of detecting as little as 1 nM recombinant FAK. Utilizing this robust assay format, we define conditions for the screening of FAK inhibitors and demonstrate the utility of this platform using a set of well-characterized small molecule kinase inhibitors. Additionally, we provide the selectivity profile of FAKtide-S2 among a panel of closely related enzymes, identifying conditions for selectively monitoring FAK activity in the presence of off-target enzymes. In the long term, the chemosensor platform described in this work can be used to identify novel FAK inhibitor scaffolds and potentially assess the efficacy of FAK inhibitors in disease models.
Collapse
Affiliation(s)
- Jon R Beck
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, United States
| | - Xinqi Zhou
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, United States
| | - Garrett R Casey
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, United States
| | - Cliff I Stains
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
68
|
Rico P, Rodrigo-Navarro A, Salmerón-Sánchez M. Borax-Loaded PLLA for Promotion of Myogenic Differentiation. Tissue Eng Part A 2015; 21:2662-72. [PMID: 26239605 DOI: 10.1089/ten.tea.2015.0044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Boron is an essential metalloid, which plays a key role in plant and animal metabolisms. It has been reported that boron is involved in bone mineralization, has some uses in synthetic chemistry, and its potential has been only recently exploited in medicinal chemistry. However, in the area of tissue engineering, the use of boron is limited to works involving certain bioactive glasses. In this study, we engineer poly(l-lactic acid) (PLLA) substrates with sustained release of boron. Then, we analyze for the first time the uniqueness effects of boron in cell differentiation using murine C2C12 myoblasts and discuss a potential mechanism of action in cooperation with Ca(2+). Our results demonstrate that borax-loaded materials strongly enhance myotube formation at initial steps of myogenesis. Furthermore, we demonstrate that Ca(2+) plays an essential role in combination with borax as chelating or blocking Ca(2+) entry into the cell leads to a detrimental effect on myoblast differentiation observed on borax-loaded materials. This research identifies borax-loaded materials to trigger differentiation mechanisms and it establishes a new tool to engineer microenvironments with applications in regenerative medicine for muscular diseases.
Collapse
Affiliation(s)
- Patricia Rico
- 1 Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València , Valencia, Spain .,2 Biomedical Research Networking Center in Bioengineering , Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - Aleixandre Rodrigo-Navarro
- 1 Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València , Valencia, Spain .,3 Division of Biomedical Engineering, School of Engineering, University of Glasgow , Glasgow, United Kingdom
| | - Manuel Salmerón-Sánchez
- 3 Division of Biomedical Engineering, School of Engineering, University of Glasgow , Glasgow, United Kingdom
| |
Collapse
|
69
|
Mu L, Chen W, Ma Y, Zheng W. Expression of focal adhesion kinase in the eutopic endometrium of women with adenomyosis varies with dysmenorrhea and pelvic pain. Exp Ther Med 2015; 10:1903-1907. [PMID: 26640570 DOI: 10.3892/etm.2015.2736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/31/2015] [Indexed: 01/06/2023] Open
Abstract
The aim of the present study was to examine whether the expression of focal adhesion kinase (FAK) is altered in the eutopic endometrium of female patients with adenomyosis, as compared with that of females without adenomyosis. The expression of FAK was assessed by immunohistochemical, western blot and reverse transcription-quantitative polymerase chain reaction analyses. An elevated expression of FAK mRNA and protein was identified in the eutopic endometrium of patients with adenomyosis compared with patients without adenomyosis (P<0.05). In addition, a positive correlation was detected between FAK protein expression and dysmenorrhea and pelvic pain in females with adenomyosis (P<0.05). The significant increase of FAK expression identified in the eutopic endometrium of females with adenomyosis, as well as the association of FAK protein expression with dysmenorrhea and pelvic pain, suggested that FAK may play a role in the pathogenesis of adenomyosis.
Collapse
Affiliation(s)
- Lin Mu
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Weimin Chen
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yanyan Ma
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Zheng
- Department of Gynecology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
70
|
Colinas O, Moreno-Domínguez A, Zhu HL, Walsh EJ, Pérez-García MT, Walsh MP, Cole WC. α5-Integrin-mediated cellular signaling contributes to the myogenic response of cerebral resistance arteries. Biochem Pharmacol 2015; 97:281-91. [PMID: 26278977 DOI: 10.1016/j.bcp.2015.08.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
The myogenic response of resistance arterioles and small arteries involving constriction in response to intraluminal pressure elevation and dilation on pressure reduction is fundamental to local blood flow regulation in the microcirculation. Integrins have garnered considerable attention in the context of initiating the myogenic response, but evidence indicative of mechanotransduction by integrin adhesions, for example established changes in tyrosine phosphorylation of key adhesion proteins, has not been obtained to substantiate this interpretation. Here, we evaluated the role of integrin adhesions and associated cellular signaling in the rat cerebral arterial myogenic response using function-blocking antibodies against α5β1-integrins, pharmacological inhibitors of focal adhesion kinase (FAK) and Src family kinase (SFK), an ultra-high-sensitivity western blotting technique, site-specific phosphoprotein antibodies to quantify adhesion and contractile filament protein phosphorylation, and differential centrifugation to determine G-actin levels in rat cerebral arteries at varied intraluminal pressures. Pressure-dependent increases in the levels of phosphorylation of FAK (FAK-Y397, Y576/Y577), SFK (SFK-Y416; Y527 phosphorylation was reduced), vinculin-Y1065, paxillin-Y118 and phosphoinositide-specific phospholipase C-γ1 (PLCγ1)-Y783 were detected. Treatment with α5-integrin function-blocking antibodies, FAK inhibitor FI-14 or SFK inhibitor SU6656 suppressed the changes in adhesion protein phosphorylation, and prevented pressure-dependent phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) at T855 and 20kDa myosin regulatory light chains (LC20) at S19, as well as actin polymerization that are necessary for myogenic constriction. We conclude that mechanotransduction by integrin adhesions and subsequent cellular signaling play a fundamental role in the cerebral arterial myogenic response.
Collapse
Affiliation(s)
- Olaia Colinas
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Alejandro Moreno-Domínguez
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Hai-Lei Zhu
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - Emma J Walsh
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - M Teresa Pérez-García
- Department of Physiology, Instituto de Biología y Genética Molecular, University of Valladolid, Valladolid, Spain.
| | - Michael P Walsh
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| | - William C Cole
- Smooth Muscle Research Group, Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Libin Cardiovascular Institute, University of Calgary, Alberta, Canada.
| |
Collapse
|
71
|
Nocula-Lugowska M, Lugowski M, Salgia R, Kossiakoff AA. Engineering Synthetic Antibody Inhibitors Specific for LD2 or LD4 Motifs of Paxillin. J Mol Biol 2015; 427:2532-2547. [PMID: 26087144 DOI: 10.1016/j.jmb.2015.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Focal adhesion protein paxillin links integrin and growth factor signaling to actin cytoskeleton. Most of paxillin signaling activity is regulated via leucine-rich LD motifs (LD1-LD5) located at the N-terminus. Here, we demonstrate a method to engineer highly selective synthetic antibodies (sABs) against LD2 and LD4 that are binding sites for focal adhesion kinase (FAK) and other proteins. Phage display selections against peptides were used to generate sABs recognizing each LD motif. In the obtained X-ray crystal structures of the LD-sAB complexes, the LD motifs are helical and bind sABs through a hydrophobic side, similarly as in the structures with natural paxillin partners. The sABs are capable of pulling down endogenous paxillin in complex with FAK and can visualize paxillin in focal adhesions in cells. They were also used as selective inhibitors to effectively compete with focal adhesion targeting domain of FAK for the binding to LD2 and LD4. The sABs are tools for investigation of paxillin LD binding "platforms" and are capable of inhibiting paxillin interactions, thereby useful as potential therapeutics in the future.
Collapse
Affiliation(s)
| | - Mateusz Lugowski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60607, USA
| | - Ravi Salgia
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
72
|
Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular Signaling of Cardiac Fibroblasts. Compr Physiol 2015; 5:721-60. [DOI: 10.1002/cphy.c140044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
73
|
Hwang JS, Eun SY, Ham SA, Yoo T, Lee WJ, Paek KS, Do JT, Lim DS, Seo HG. PPARδ modulates oxLDL-induced apoptosis of vascular smooth muscle cells through a TGF-β/FAK signaling axis. Int J Biochem Cell Biol 2015; 62:54-61. [PMID: 25732738 DOI: 10.1016/j.biocel.2015.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/24/2022]
Abstract
The peroxisome proliferator-activated receptor delta (PPARδ) has been implicated in the modulation of vascular homeostasis. However, its roles in the apoptotic cell death of vascular smooth muscle cells (VSMCs) are poorly understood. Here, we demonstrate that PPARδ modulates oxidized low-density lipoprotein (oxLDL)-induced apoptosis of VSMCs through the transforming growth factor-β (TGF-β) and focal adhesion kinase (FAK) signaling pathways. Activation of PPARδ by GW501516, which is a specific ligand, significantly inhibited oxLDL-induced cell death and generation of reactive oxygen species in VSMCs. These inhibitory effects were significantly reversed in the presence of small interfering (si)RNA against PPARδ, or by blockade of the TGF-β or FAK signaling pathways. Furthermore, PPARδ-mediated recovery of FAK phosphorylation suppressed by oxLDL was reversed by SB431542, a specific ALK5 receptor inhibitor, indicating that a TGF-β/FAK signaling axis is involved in the action of PPARδ. Among the protein kinases activated by oxLDL, p38 mitogen-activated protein kinase was suppressed by ligand-activated PPARδ. In addition, oxLDL-induced expression and translocation of pro-apoptotic or anti-apoptotic factors were markedly affected in the presence of GW501516. Those effects were reversed by PPARδ siRNA, or inhibitors of TGF-β or FAK, which also suggests that PPARδ exerts its anti-apoptotic effect via a TGF-β/FAK signaling axis. Taken together, these findings indicate that PPARδ plays an important role in the pathophysiology of disease associated with apoptosis of VSMC, such as atherosclerosis and restanosis.
Collapse
Affiliation(s)
- Jung Seok Hwang
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - So Young Eun
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Sun Ah Ham
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Taesik Yoo
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Won Jin Lee
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Kyung Shin Paek
- Department of Nursing, Semyung University, 65 Semyung-ro, Jecheon, Chungbuk 390-711, Republic of Korea
| | - Jeong Tae Do
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | - Dae-Seog Lim
- Department of Applied Bioscience, CHA University, 355 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 463-400, Republic of Korea
| | - Han Geuk Seo
- Department of Animal Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
74
|
Schlienger S, Ramirez RAM, Claing A. ARF1 regulates adhesion of MDA-MB-231 invasive breast cancer cells through formation of focal adhesions. Cell Signal 2014; 27:403-15. [PMID: 25530216 DOI: 10.1016/j.cellsig.2014.11.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 11/18/2022]
Abstract
Adhesion complex formation and disassembly is crucial for maintaining efficient cell movement. During migration, several proteins act in concert to promote remodeling of the actin cytoskeleton and we have previously shown that in highly invasive breast cancer cells, this process is regulated by small GTP-binding proteins of the ADP-ribosylation factor (ARF) family. These are overexpressed and highly activated in these cells. Here, we report that one mechanism by which ARF1 regulates migration is by controlling assembly of focal adhesions. In cells depleted of ARF1, paxillin is no longer colocalized with actin at focal adhesion sites. In addition, we demonstrate that this occurs through the ability of ARF1 to regulate the recruitment of key proteins such as paxillin, talin and FAK to ß1-integrin. Furthermore, we show that the interactions between paxillin and talin together and with FAK are significantly impaired in ARF1 knocked down cells. Our findings also indicate that ARF1 is essential for EGF-mediated phosphorylation of FAK and Src. Finally, we report that ARF1 can be found in complex with key focal adhesion proteins such as ß1-integrin, paxillin, talin and FAK. Together our findings uncover a new mechanism by which ARF1 regulates cell migration and provide this GTPase as a target for the development of new therapeutics in triple negative breast cancer.
Collapse
Affiliation(s)
- Sabrina Schlienger
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | | | - Audrey Claing
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
75
|
Green CJ, Fraser ST, Day ML. Insulin-like growth factor 1 increases apical fibronectin in blastocysts to increase blastocyst attachment to endometrial epithelial cells in vitro. Hum Reprod 2014; 30:284-98. [PMID: 25432925 DOI: 10.1093/humrep/deu309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
STUDY QUESTION Does insulin-like growth factor 1 (IGF1) increase adhesion competency of blastocysts to increase attachment to uterine epithelial cells in vitro? SUMMARY ANSWER IGF1 increases apical fibronectin on blastocysts to increase attachment and invasion in an in vitro model of implantation. WHAT IS KNOWN ALREADY Fibronectin integrin interactions are important in attachment of blastocysts to uterine epithelial cells at implantation. STUDY DESIGN, SIZE, DURATION Mouse blastocysts (hatched or near completion of hatching) were cultured in serum starved (SS) medium with varying treatments for 24, 48 or 72 h. Treatments included 10 ng/ml IGF1 in the presence or absence of the PI3 kinase inhibitor LY294002, an IGF1 receptor (IGF1R) neutralizing antibody or fibronectin. Effects of treatments on blastocysts were measured by attachment of blastocysts to Ishikawa cells, blastocyst outgrowth and fibronectin and focal adhesion kinase (FAK) localization and expression. Blastocysts were randomly allocated into control and treatment groups and experiments were repeated a minimum of three times with varying numbers of blastocysts used in each experiment. FAK and integrin protein expression on Ishikawa cells was quantified in the presence or absence of IGF1. PARTICIPANTS/MATERIALS, SETTING, METHODS Fibronectin expression and localization in blastocysts was studied using immunofluorescence and confocal microscopy. Global surface expression of integrin αvβ3, β3 and β1 was measured in Ishikawa cells using flow cytometry. Expression levels of phosphorylated FAK and total FAK were measured in Ishikawa cells and blastocysts by western blot and image J analysis. Blastocyst outgrowth was quantified using image J analysis. MAIN RESULTS AND THE ROLE OF CHANCE The presence of IGF1 significantly increased mouse blastocyst attachment to Ishikawa cells compared with SS conditions (P < 0.01). IGF1 treatment resulted in distinct apical fibronectin staining on blastocysts, which was reduced by the PI3 kinase inhibitor LY294002. This coincided with a significant increase in blastocyst outgrowth in the presence of IGF1 (P < 0.01) or fibronectin (P < 0.001), which was abolished by LY294002 (P < 0.001). Apical expression of integrin αvβ3, β3 and β1 in Ishikawa cells was unaltered by IGF1. However, IGF1 increased phosphorylated FAK (P < 0.05) and total FAK expression in Ishikawa cells. FAK signalling is linked to integrin activation and can affect the integrins' ability to bind and recognize extracellular matrix proteins such as fibronectin. Treatment of blastocysts with IGF1 before co-culture with Ishikawa cells increased their attachment (P < 0.05). This effect was abolished in the presence of LY294002 (P < 0.001) or an IGF1R neutralizing antibody (P < 0.05). LIMITATIONS, REASONS FOR CAUTION This study uses an in vitro model of attachment that uses mouse blastocysts and human endometrial cells. This involves a species crossover and although this use has been well documented as a model for attachment (as human embryo numbers are limited) the results should be interpreted carefully. WIDER IMPLICATIONS OF THE FINDINGS This study presents mechanisms by which IGF1 improves attachment of blastocysts to Ishikawa cells and documents for the first time how IGF1 can increase adhesion competency in blastocysts. Failure of the blastocyst to implant is the major cause of human assisted reproductive technology (ART) failure. As growth factors are absent during embryo culture, their addition to embryo culture medium is a potential avenue to improve IVF success. In particular, IGF1 could prove to be a potential treatment for blastocysts before transfer to the uterus in an ART setting.
Collapse
Affiliation(s)
- Charmaine J Green
- Discipline of Physiology, Bosch Institute, Sydney Medical School, University of Sydney, K25 - Medical Foundation Building, Sydney 2006, Australia
| | - Stuart T Fraser
- Discipline of Physiology, Bosch Institute, Sydney Medical School, University of Sydney, K25 - Medical Foundation Building, Sydney 2006, Australia Discipline of Anatomy and Histology, Sydney Medical School, University of Sydney, K25 - Medical Foundation Building, Sydney 2006, Australia
| | - Margot L Day
- Discipline of Physiology, Bosch Institute, Sydney Medical School, University of Sydney, K25 - Medical Foundation Building, Sydney 2006, Australia
| |
Collapse
|
76
|
Kadaré G, Gervasi N, Brami-Cherrier K, Blockus H, El Messari S, Arold ST, Girault JA. Conformational dynamics of the focal adhesion targeting domain control specific functions of focal adhesion kinase in cells. J Biol Chem 2014; 290:478-91. [PMID: 25391654 DOI: 10.1074/jbc.m114.593632] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Focal adhesion (FA) kinase (FAK) regulates cell survival and motility by transducing signals from membrane receptors. The C-terminal FA targeting (FAT) domain of FAK fulfils multiple functions, including recruitment to FAs through paxillin binding. Phosphorylation of FAT on Tyr(925) facilitates FA disassembly and connects to the MAPK pathway through Grb2 association, but requires dissociation of the first helix (H1) of the four-helix bundle of FAT. We investigated the importance of H1 opening in cells by comparing the properties of FAK molecules containing wild-type or mutated FAT with impaired or facilitated H1 openings. These mutations did not alter the activation of FAK, but selectively affected its cellular functions, including self-association, Tyr(925) phosphorylation, paxillin binding, and FA targeting and turnover. Phosphorylation of Tyr(861), located between the kinase and FAT domains, was also enhanced by the mutation that opened the FAT bundle. Similarly phosphorylation of Ser(910) by ERK in response to bombesin was increased by FAT opening. Although FAK molecules with the mutation favoring FAT opening were poorly recruited at FAs, they efficiently restored FA turnover and cell shape in FAK-deficient cells. In contrast, the mutation preventing H1 opening markedly impaired FAK function. Our data support the biological importance of conformational dynamics of the FAT domain and its functional interactions with other parts of the molecule.
Collapse
Affiliation(s)
- Gress Kadaré
- From the INSERM, UMR-S 839, F-75005 Paris, France, the Université Pierre & Marie Curie (UPMC), Sorbonne Universités, F-75005 Paris, France, the Institut du Fer à Moulin, F-75005 Paris, France
| | - Nicolas Gervasi
- From the INSERM, UMR-S 839, F-75005 Paris, France, the Université Pierre & Marie Curie (UPMC), Sorbonne Universités, F-75005 Paris, France, the Institut du Fer à Moulin, F-75005 Paris, France
| | - Karen Brami-Cherrier
- From the INSERM, UMR-S 839, F-75005 Paris, France, the Université Pierre & Marie Curie (UPMC), Sorbonne Universités, F-75005 Paris, France, the Institut du Fer à Moulin, F-75005 Paris, France
| | - Heike Blockus
- From the INSERM, UMR-S 839, F-75005 Paris, France, the Université Pierre & Marie Curie (UPMC), Sorbonne Universités, F-75005 Paris, France, the Institut du Fer à Moulin, F-75005 Paris, France
| | - Said El Messari
- From the INSERM, UMR-S 839, F-75005 Paris, France, the Université Pierre & Marie Curie (UPMC), Sorbonne Universités, F-75005 Paris, France, the Institut du Fer à Moulin, F-75005 Paris, France
| | - Stefan T Arold
- the King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia, and the Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Université de Montpellier I & II, Montpellier, France
| | - Jean-Antoine Girault
- From the INSERM, UMR-S 839, F-75005 Paris, France, the Université Pierre & Marie Curie (UPMC), Sorbonne Universités, F-75005 Paris, France, the Institut du Fer à Moulin, F-75005 Paris, France,
| |
Collapse
|
77
|
Serrels B, Sandilands E, Frame MC. Signaling of the direction-sensing FAK/RACK1/PDE4D5 complex to the small GTPase Rap1. Small GTPases 2014; 2:54-61. [PMID: 21686284 DOI: 10.4161/sgtp.2.1.15137] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/19/2011] [Accepted: 02/12/2011] [Indexed: 01/14/2023] Open
Abstract
We recently reported that a complex between focal adhesion kianse (FAK) and the molecular scaffold RACK1 controlled nascent integrin adhesion formation and cell polarization, via peripheral recruitment of the cAMP - degrading PDE4D5 isoform. Here we review and extend these studies by demonstrating that the FAK/RACK1/PDE4D5 'direction-sensing' complex likely functions by signaling, via the guanine nucleotide exchange factor EPAC , to its small GTPase target Rap1. Specifically, activating EPAC suppresses polarization of squamous cancer cells, while, in contrast, modulating PKA, the other major cAMP effector, has no effect. Moreover, FAK-deficient malignant keratinocytes re-expressing a FAK mutant that cannot bind to RACK1, namely FAK-E139A,D140A, display elevated Rap1 that is linked to impaired polarization. Thus, it is likely that the FAK/RACK1/PDE4D5 complex signals to keep Rap1 low at appropriate times and in a spatially-regulated manner as cells first sense their environment and make decisions about nascent adhesion stabilization and polarization. RACK1 is abundantly expressed in both normal and malignant keratinocytes, while FAK and PDE4D5 are both elevated in the cancer cells, suggesting that the FAK/RACK1/PDE4D5/Rap1 signaling axis may contribute to FAK's well documented role in tumor progression.
Collapse
Affiliation(s)
- Bryan Serrels
- Edinburgh Cancer Research UK Centre; Institute of Genetics and Molecular Medicine; University of Edinburgh; Western General Hospital; Edinburgh, UK
| | | | | |
Collapse
|
78
|
Kim YS, Kim J, Kim KM, Jung DH, Choi S, Kim CS, Kim JS. Myricetin inhibits advanced glycation end product (AGE)-induced migration of retinal pericytes through phosphorylation of ERK1/2, FAK-1, and paxillin in vitro and in vivo. Biochem Pharmacol 2014; 93:496-505. [PMID: 25450667 DOI: 10.1016/j.bcp.2014.09.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 01/24/2023]
Abstract
Advanced glycation end products (AGE) have been implicated in the development of diabetic retinopathy. Characterization of the early stages of diabetic retinopathy is retinal pericytes loss, which is the result of pericytes migration. In this study, we investigated the pathological mechanisms of AGE on the migration of retinal pericytes and confirmed the inhibitory effect of myricetin on migration in vitro and in vivo. Migration assays of bovine retinal pericytes (BRP) were induced using AGE-BSA and phosphorylation of Src, ERK1/2, focal adhesion kinase (FAK-1) and paxillin were determined using immunoblot analysis. Sprague-Dawley rats (6 weeks old) were injected intravitreally with AGE-BSA and morphological and immunohistochemical analysis of p-FAK-1 and p-paxillin were performed in the rat retina. Immunoblot analysis and siRNA transfection were used to study the molecular mechanism of myricetin on BRP migration. AGE-BSA increased BRP migration in a dose-dependent manner via receptor for AGEs (RAGE)-dependent activation of the Src kinase-ERK1/2 pathway. AGE-BSA-induced migration was inhibited by an ERK1/2 specific inhibitor (PD98059), but not by p38 and Jun N-terminal kinase inhibitors. AGE-BSA increased FAK-1 and paxillin phosphorylation in a dose- and time-dependent manner. These increases were attenuated by PD98059 and ERK1/2 siRNA. Phosphorylation of FAK-1 and paxillin was increased in response to AGE-BSA-induced migration of rat retinal pericytes. Myricetin strongly inhibited ERK1/2 phosphorylation and significantly suppressed pericytes migration in AGE-BSA-injected rats. Our results demonstrate that AGE-BSA participated in the pathophysiology of retinal pericytes migration likely through the RAGE-Src-ERK1/2-FAK-1-paxillin signaling pathway. Furthermore, myricetin suppressed phosphorylation of ERK 1/2-FAK-1-paxillin and inhibited pericytes migration.
Collapse
Affiliation(s)
- Young Sook Kim
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, South Korea.
| | - Junghyun Kim
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, South Korea
| | - Ki Mo Kim
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, South Korea
| | - Dong Ho Jung
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, South Korea
| | - Sojin Choi
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, South Korea
| | - Chan-Sik Kim
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, South Korea
| | - Jin Sook Kim
- Korean Medicine-Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
79
|
Fang X, Liu X, Yao L, Chen C, Lin J, Ni P, Zheng X, Fan Q. New insights into FAK phosphorylation based on a FAT domain-defective mutation. PLoS One 2014; 9:e107134. [PMID: 25226367 PMCID: PMC4166415 DOI: 10.1371/journal.pone.0107134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 08/11/2014] [Indexed: 01/27/2023] Open
Abstract
Mounting evidence suggests that the FAK N-terminal (FERM) domain controls FAK phosphorylation and function; however, little is known regarding the role of the C terminal (FAT) domain in FAK regulation. We identified a patient-derived FAK mutant, in which a 27-amino acid segment was deleted from the C-terminal FAT domain (named FAK-Del33). When FAK-Del33 was overexpressed in specific tumor cell lines, Y397 phosphorylation increased compared with that observed in cells expressing FAK-WT. Here, we attempt to unveil the mechanism of this increased phosphorylation. Using cell biology experiments, we show that FAK-Del33 is incapable of co-localizing with paxillin, and has constitutively high Y397 phosphorylation. With a kinase-dead mutation, it showed phosphorylation of FAK-Del33 has enhanced through auto-phosphorylation. It was also demonstrated that phosphorylation of FAK-Del33 is not Src dependent or enhanced intermolecular interactions, and that the hyperphosphorylation can be lowered using increasing amounts of transfected FERM domain. This result suggests that Del33 mutation disrupting of FAT's structural integrity and paxillin binding capacity leads to incapable of targeting Focal adhesions, but has gained the capacity for auto-phosphorylation in cis.
Collapse
Affiliation(s)
- Xuqian Fang
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Xiangfan Liu
- Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Ling Yao
- Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Changqiang Chen
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Jiafei Lin
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Peihua Ni
- Faculty of Medical Laboratory Science, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
| | - Xinmin Zheng
- Department of Biochemistry and Molecular Biology, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Qishi Fan
- Department of Clinical Laboratory, Ruijin North Hospital, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
80
|
Ray S, Fanti JA, Macedo DP, Larsen M. LIM kinase regulation of cytoskeletal dynamics is required for salivary gland branching morphogenesis. Mol Biol Cell 2014; 25:2393-407. [PMID: 24966172 PMCID: PMC4142612 DOI: 10.1091/mbc.e14-02-0705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
LIMK regulation of actin and microtubule dynamics is required for epithelial regulation of early- and late-stage cleft stabilization and progression. LIMK stimulates focal adhesion assembly and integrin β1 activation in cleft regions, causing fibronectin fibrillogenesis and promoting cleft progression during salivary gland branching morphogenesis. Coordinated actin microfilament and microtubule dynamics is required for salivary gland development, although the mechanisms by which they contribute to branching morphogenesis are not defined. Because LIM kinase (LIMK) regulates both actin and microtubule organization, we investigated the role of LIMK signaling in mouse embryonic submandibular salivary glands using ex vivo organ cultures. Both LIMK 1 and 2 were necessary for branching morphogenesis and functioned to promote epithelial early- and late-stage cleft progression through regulation of both microfilaments and microtubules. LIMK-dependent regulation of these cytoskeletal systems was required to control focal adhesion protein–dependent fibronectin assembly and integrin β1 activation, involving the LIMK effectors cofilin and TPPP/p25, for assembly of the actin- and tubulin-based cytoskeletal systems, respectively. We demonstrate that LIMK regulates the early stages of cleft formation—cleft initiation, stabilization, and progression—via establishment of actin stability. Further, we reveal a novel role for the microtubule assembly factor p25 in regulating stabilization and elongation of late-stage progressing clefts. This study demonstrates the existence of multiple actin- and microtubule-dependent stabilization steps that are controlled by LIMK and are required in cleft progression during branching morphogenesis.
Collapse
Affiliation(s)
- Shayoni Ray
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222
| | - Joseph A Fanti
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222
| | - Diego P Macedo
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222
| |
Collapse
|
81
|
Su Y, Guan XQ, Liu FQ, Wang YL. The effects of MIBG on the invasive properties of HepG2 hepatocellular carcinoma cells. Int J Mol Med 2014; 34:842-8. [PMID: 24970008 DOI: 10.3892/ijmm.2014.1819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/19/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effects of meta-iodobenzylguanidine (MIBG) on the invasive properties of hepatocellular carcinoma (HCC) cells and examine whether these effects are due to the ability of MIBG to inhibit arginine-specific mono-ADP-ribosylation. Samples from patients with HCC were divided into 2 groups, a metastatic group and a non-metastatic group. Immunohistochemistry and RT-PCR were used to detect the protein and mRNA expression of arginine-specific adenosine diphosphate-ribosyltransferase 1 (ART1) and integrin α7 in the HCC tissues. In addition, the expression of ART1 was measured in HepG2 HCC cells by immunofluorescence. The inhibition of the metastasis of HepG2 cells by MIBG at various concentrations was measured by MTT assay. In addition, the effects of MIBG on HepG2 cell metastasis were measured using a scratch wound assay and a transwell invasion assay. Western blot analysis was used to detect the protein expression of ART1, integrin α7, focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K) and urokinase-type plasminogen activator (uPA) in the HepG2 cells. The mRNA and protein levels of ART1 and integrin α7 were higher in the metastatic HCC samples than in the non-metastatic HCC samples. ART1 expression was detected in the HepG2 cells. The half maximal inhibition concentration (IC50) of MIBG in the HepG2 cells was 200 µmol/l (P<0.05). Within a certain dose range, MIBG exerted inhibitory effects on HepG2 cell migration in a dose-dependent manner. Treatment with MIBG significantly inhibited the migration and invasion of the HepG2 cells relative to the control cells (P<0.05) and reduced the protein expression of ART1, integrin α7, FAK, PI3K and uPA (P<0.05). Our data demonstrate that ART1 and integrin α7 may be involved in the invasive and metastatic properties of HCC cells. MIBG inhibited the migration and invasion of HepG2 cells, possibly through the inhibition of arginine-specific single-adenosine diphosphate ribosylation and the suppression of the protein expression of integrin α7β1, FAK and PI3K and the secretion of uPA, leading to reduced invasion by HepG2 cells.
Collapse
Affiliation(s)
- Yan Su
- Molecular Medicine and Cancer Research Center, Department of Pathology, Chongqing Medical University, Chongqing, P.R. China
| | - Xiao-Qin Guan
- Molecular Medicine and Cancer Research Center, Department of Pathology, Chongqing Medical University, Chongqing, P.R. China
| | - Feng-Qiu Liu
- Molecular Medicine and Cancer Research Center, Department of Pathology, Chongqing Medical University, Chongqing, P.R. China
| | - Ya-Lan Wang
- Molecular Medicine and Cancer Research Center, Department of Pathology, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
82
|
Zheng J, Wei CC, Hase N, Shi K, Killingsworth CR, Litovsky SH, Powell PC, Kobayashi T, Ferrario CM, Rab A, Aban I, Collawn JF, Dell'Italia LJ. Chymase mediates injury and mitochondrial damage in cardiomyocytes during acute ischemia/reperfusion in the dog. PLoS One 2014; 9:e94732. [PMID: 24733352 PMCID: PMC3986229 DOI: 10.1371/journal.pone.0094732] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/18/2014] [Indexed: 12/22/2022] Open
Abstract
Cardiac ischemia and reperfusion (I/R) injury occurs because the acute increase in oxidative/inflammatory stress during reperfusion culminates in the death of cardiomyocytes. Currently, there is no drug utilized clinically that attenuates I/R injury in patients. Previous studies have demonstrated degranulation of mast cell contents into the interstitium after I/R. Using a dog model of I/R, we tested the role of chymase, a mast cell protease, in cardiomyocyte injury using a specific oral chymase inhibitor (CI). 15 adult mongrel dogs had left anterior descending artery occlusion for 60 min and reperfusion for 100 minutes. 9 dogs received vehicle and 6 were pretreated with a specific CI. In vivo cardiac microdialysis demonstrated a 3-fold increase in interstitial fluid chymase activity in I/R region that was significantly decreased by CI. CI pretreatment significantly attenuated loss of laminin, focal adhesion complex disruption, and release of troponin I into the circulation. Microarray analysis identified an I/R induced 17-fold increase in nuclear receptor subfamily 4A1 (NR4A1) and significantly decreased by CI. NR4A1 normally resides in the nucleus but can induce cell death on migration to the cytoplasm. I/R caused significant increase in NR4A1 protein expression and cytoplasmic translocation, and mitochondrial degradation, which were decreased by CI. Immunohistochemistry also revealed a high concentration of chymase within cardiomyocytes after I/R. In vitro, chymase added to culture HL-1 cardiomyocytes entered the cytoplasm and nucleus in a dynamin-dependent fashion, and promoted cytoplasmic translocation of NR4A1 protein. shRNA knockdown of NR4A1 on pre-treatment of HL-1 cells with CI significantly decreased chymase-induced cell death and mitochondrial damage. These results suggest that the beneficial effects of an orally active CI during I/R are mediated in the cardiac interstitium as well as within the cardiomyocyte due to a heretofore-unrecognized chymase entry into cardiomyocytes.
Collapse
Affiliation(s)
- Junying Zheng
- Birmingham Veteran Affairs Medical Center and Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chih-Chang Wei
- Birmingham Veteran Affairs Medical Center and Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Naoki Hase
- Teijin Institute for Bio-Medical Research, Teijin Pharma Ltd, Tokyo, Japan
| | - Ke Shi
- Birmingham Veteran Affairs Medical Center and Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Cheryl R. Killingsworth
- Birmingham Veteran Affairs Medical Center and Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Silvio H. Litovsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Pamela C. Powell
- Birmingham Veteran Affairs Medical Center and Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Carlos M. Ferrario
- Wake Forest University, Winston Salem, North Carolina, United States of America
| | - Andras Rab
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Inmaculada Aban
- Department of Biostatistics University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Louis J. Dell'Italia
- Birmingham Veteran Affairs Medical Center and Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
83
|
Su Y, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) promotes cell migration and adhesion via focal adhesion kinase. J Surg Res 2014; 189:222-31. [PMID: 24703506 DOI: 10.1016/j.jss.2014.02.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/29/2013] [Accepted: 02/27/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cell migration and adhesion are essential in intestinal epithelial wound healing and recovery from injury. Focal adhesion kinase (FAK) plays an important role in cell-extracellular matrix signal transduction. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) promotes intestinal epithelial cell (IEC) migration and adhesion in vitro. The present study was designed to determine whether FAK is involved in HB-EGF-induced IEC migration and adhesion. MATERIALS AND METHODS A scrape wound healing model of rat IECs was used to examine the effect of HB-EGF on FAK-dependent cell migration in vitro. Immunofluorescence and Western blot analyses were performed to evaluate the effect of HB-EGF on the expression of phosphorylated FAK (p-FAK). Cell adhesion assays were performed to determine the role of FAK in HB-EGF-induced cell adhesion on fibronectin (FN). RESULTS HB-EGF significantly increased healing after scrape wounding, an effect that was reversed in the presence of an FAK inhibitor 14 (both with P < 0.05). HB-EGF increased p-FAK expression and induced p-FAK redistribution and actin reorganization in migrating rat IECs. Cell adhesion and spreading on FN were significantly increased by HB-EGF (P < 0.05). FAK inhibitor 14 significantly inhibited both intrinsic and HB-EGF-induced cell adhesion and spreading on FN (both with P < 0.05). CONCLUSIONS FAK phosphorylation and FAK-mediated signal transduction play essential roles in HB-EGF-mediated IEC migration and adhesion.
Collapse
Affiliation(s)
- Yanwei Su
- Department of Cardiovascular and Respiratory Medicine, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Pediatric Surgery, Nationwide Children's Hospital, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Gail E Besner
- Department of Pediatric Surgery, Nationwide Children's Hospital, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
84
|
Sekine Y. Adaptor Protein STAP-2 Modulates Cellular Signaling in Immune Systems. Biol Pharm Bull 2014; 37:185-94. [DOI: 10.1248/bpb.b13-00421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuichi Sekine
- Cellular Neuroscience, Neurodegeneration and Repair Program,
Departments of Neurology and Neurobiology, Yale University School of Medicine
| |
Collapse
|
85
|
Golubovskaya VM. Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci (Landmark Ed) 2014; 19:687-706. [PMID: 24389213 DOI: 10.2741/4236] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is twenty years since Focal Adhesion Kinase (FAK) was found to be overexpressed in many types of human cancer. FAK plays an important role in adhesion, spreading, motility, invasion, metastasis, survival, angiogenesis, and recently has been found to play an important role as well in epithelial to mesenchymal transition (EMT), cancer stem cells and tumor microenvironment. FAK has kinase-dependent and kinase independent scaffolding, cytoplasmic and nuclear functions. Several years ago FAK was proposed as a potential therapeutic target; the first clinical trials were just reported, and they supported further studies of FAK as a promising therapeutic target. This review discusses the main functions of FAK in cancer, and specifically focuses on recent novel findings on the role of FAK in cancer stem cells, microenvironment, epithelial-to-mesenchymal transition, invasion, metastasis, and also highlight new approaches of targeting FAK and critically discuss challenges that lie ahead for its targeted therapeutics. The review provides a summary of translational approaches of FAK-targeted and combination therapies and outline perspectives and future directions of FAK research.
Collapse
|
86
|
Mierke CT. The role of focal adhesion kinase in the regulation of cellular mechanical properties. Phys Biol 2013; 10:065005. [PMID: 24304934 DOI: 10.1088/1478-3975/10/6/065005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, D-04103 Leipzig, Germany
| |
Collapse
|
87
|
George MD, Wine RN, Lackford B, Kissling GE, Akiyama SK, Olden K, Roberts JD. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion. Biochem Cell Biol 2013; 91:404-18. [PMID: 24219282 PMCID: PMC3935246 DOI: 10.1139/bcb-2013-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to the spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV, as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia, whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading, and that this association can be regulated by factors in the tumor microenvironment.
Collapse
Affiliation(s)
- Margaret D George
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Shah A, Ahmad A. Role of MicroRNA in Mesenchymal Stem Cells Differentiation Into Osteoblasts. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2013. [DOI: 10.17795/rijm14849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
89
|
Role of MicroRNA in Mesenchymal Stem Cells Differentiation Into Osteoblasts. RAZAVI INTERNATIONAL JOURNAL OF MEDICINE 2013. [DOI: 10.5812/rijm.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
90
|
Biologic effects of dopamine on tumor vasculature in ovarian carcinoma. Neoplasia 2013; 15:502-10. [PMID: 23633922 DOI: 10.1593/neo.121412] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 02/27/2013] [Accepted: 03/04/2013] [Indexed: 12/31/2022] Open
Abstract
Chronic sympathetic nervous system activation results in increased angiogenesis and tumor growth in orthotopic mouse models of ovarian carcinoma. However, the mechanistic effects of such activation on the tumor vasculature are not well understood. Dopamine (DA), an inhibitory catecholamine, regulates the functions of normal and abnormal blood vessels. Here, we examined whether DA, an inhibitory catecholamine, could block the effects of chronic stress on tumor vasculature and tumor growth. Exogenous administration of DA not only decreased tumor microvessel density but also increased pericyte coverage of tumor vessels following daily restraint stress in mice. Daily restraint stress resulted in significantly increased tumor growth in the SKOV3ip1 and HeyA8 ovarian cancer models. DA treatment blocked stress-mediated increases in tumor growth and increased pericyte coverage of tumor endothelial cells. Whereas the antiangiogenic effect of DA is mediated by dopamine receptor 2 (DR2), our data indicate that DA, through DR1, stimulates vessel stabilization by increasing pericyte recruitment to tumor endothelial cells. DA significantly stimulated migration of mouse 10T1/2 pericyte-like cells in vitro and increased cyclic adenosine mono-phosphate (cAMP) levels in these cells. Moreover, DA or the DR1 agonist SKF 82958 increased platinum concentration in SKOV3ip1 tumor xenografts following cisplatin administration. In conclusion, DA stabilizes tumor blood vessels through activation of pericyte cAMP-protein kinase A signaling pathway by DR1. These findings could have implications for blocking the stimulatory effects of chronic stress on tumor growth.
Collapse
|
91
|
Perricone AJ, Bivona BJ, Jackson FR, Vander Heide RS. Conditional knockout of myocyte focal adhesion kinase abrogates ischemic preconditioning in adult murine hearts. J Am Heart Assoc 2013; 2:e000457. [PMID: 24080910 PMCID: PMC3835261 DOI: 10.1161/jaha.113.000457] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Our laboratory has previously demonstrated the importance of a cytoskeletal‐based survival signaling pathway using in vitro models of ischemia/reperfusion (IR). However, the importance of this pathway in mediating stress‐elicited survival signaling in vivo is unknown. Methods and Results The essential cytoskeletal signaling pathway member focal adhesion kinase (FAK) was selectively deleted in adult cardiac myocytes using a tamoxifen‐inducible Cre‐Lox system (α‐MHC‐MerCreMer). Polymerase chain reaction (PCR) and Western blot were performed to confirm FAK knockout (KO). All mice were subjected to a 40‐minute coronary occlusion followed by 24 hours of reperfusion. Ischemic preconditioning (IP) was performed using a standard protocol. Control groups included wild‐type (WT) and tamoxifen‐treated α‐MHC‐MerCreMer+/−/FAKWT/WT (experimental control) mice. Infarct size was expressed as a percentage of the risk region. In WT mice IP significantly enhanced the expression of activated/phosphorylated FAK by 36.3% compared to WT mice subjected to a sham experimental protocol (P≤0.05; n=6 hearts [sham], n=4 hearts [IP]). IP significantly reduced infarct size in both WT and experimental control mice (43.7% versus 19.8%; P≤0.001; 44.7% versus 17.5%; P≤0.001, respectively). No difference in infarct size was observed between preconditioned FAK KO and nonpreconditioned controls (37.1% versus 43.7% versus 44.7%; FAK KO versus WT versus experimental control; P=NS). IP elicited a 67.2%/88.8% increase in activated phosphatidylinositol‐3‐kinase (PI3K) p85/activated Akt expression in WT mice, but failed to enhance the expression of either in preconditioned FAK KO mice. Conclusions Our results indicate that FAK is an essential mediator of IP‐elicited cardioprotection and provide further support for the hypothesis that cytoskeletal‐based signaling is an important component of stress‐elicited survival signaling.
Collapse
Affiliation(s)
- Adam J. Perricone
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA (A.J.P., B.J.B., F.R.J., R.S.V.H.)
| | - Benjamin J. Bivona
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA (A.J.P., B.J.B., F.R.J., R.S.V.H.)
| | - Fannie R. Jackson
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA (A.J.P., B.J.B., F.R.J., R.S.V.H.)
| | - Richard S. Vander Heide
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA (A.J.P., B.J.B., F.R.J., R.S.V.H.)
- Correspondence to: Richard S. Vander Heide, MD, PhD, Department of Pathology, 1901 Perdido Street, New Orleans, LA 70112. E‐mail:
| |
Collapse
|
92
|
Benzo-[a]-pyrene induces FAK activation and cell migration in MDA-MB-231 breast cancer cells. Cell Biol Toxicol 2013; 29:303-19. [DOI: 10.1007/s10565-013-9254-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023]
|
93
|
Kang KH, Ling TY, Liou HH, Huang YK, Hour MJ, Liou HC, Fu WM. Enhancement role of host 12/15-lipoxygenase in melanoma progression. Eur J Cancer 2013; 49:2747-59. [DOI: 10.1016/j.ejca.2013.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 03/14/2013] [Accepted: 03/31/2013] [Indexed: 11/25/2022]
|
94
|
Kiyan Y, Kurselis K, Kiyan R, Haller H, Chichkov BN, Dumler I. Urokinase receptor counteracts vascular smooth muscle cell functional changes induced by surface topography. Theranostics 2013; 3:516-26. [PMID: 23843899 PMCID: PMC3706695 DOI: 10.7150/thno.4119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Current treatments for human coronary artery disease necessitate the development of the next generations of vascular bioimplants. Recent reports provide evidence that controlling cell orientation and morphology through topographical patterning might be beneficial for bioimplants and tissue engineering scaffolds. However, a concise understanding of cellular events underlying cell-biomaterial interaction remains missing. In this study, applying methods of laser material processing, we aimed to obtain useful markers to guide in the choice of better vascular biomaterials. Our data show that topographically treated human primary vascular smooth muscle cells (VSMC) have a distinct differentiation profile. In particular, cultivation of VSMC on the microgrooved biocompatible polymer E-shell induces VSMC modulation from synthetic to contractile phenotype and directs formation and maintaining of cell-cell communication and adhesion structures. We show that the urokinase receptor (uPAR) interferes with VSMC behavior on microstructured surfaces and serves as a critical regulator of VSMC functional fate. Our findings suggest that microtopography of the E-shell polymer could be important in determining VSMC phenotype and cytoskeleton organization. They further suggest uPAR as a useful target in the development of predictive models for clinical VSMC phenotyping on functional advanced biomaterials.
Collapse
Affiliation(s)
- Yulia Kiyan
- 1. Nephrology Department, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Kestutis Kurselis
- 2. Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419, Germany
| | - Roman Kiyan
- 2. Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419, Germany
| | - Hermann Haller
- 1. Nephrology Department, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Boris N. Chichkov
- 2. Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419, Germany
| | - Inna Dumler
- 1. Nephrology Department, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| |
Collapse
|
95
|
Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3481-3498. [PMID: 23830918 DOI: 10.1016/j.bbamcr.2013.06.026] [Citation(s) in RCA: 808] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 02/07/2023]
Abstract
Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix, behaving as a critical mechanism in preventing adherent-independent cell growth and attachment to an inappropriate matrix, thus avoiding colonizing of distant organs. As anchorage-independent growth and epithelial-mesenchymal transition, two features associated with anoikis resistance, are vital steps during cancer progression and metastatic colonization, the ability of cancer cells to resist anoikis has now attracted main attention from the scientific community. Cancer cells develop anoikis resistance due to several mechanisms, including change in integrins' repertoire allowing them to grow in different niches, activation of a plethora of inside-out pro-survival signals as over-activation of receptors due to sustained autocrine loops, oncogene activation, growth factor receptor overexpression, or mutation/upregulation of key enzymes involved in integrin or growth factor receptor signaling. In addition, tumor microenvironment has also been acknowledged to contribute to anoikis resistance of bystander cancer cells, by modulating matrix stiffness, enhancing oxidative stress, producing pro-survival soluble factors, triggering epithelial-mesenchymal transition and self-renewal ability, as well as leading to metabolic deregulations of cancer cells. All these events help cancer cells to inhibit the apoptosis machinery and sustain pro-survival signals after detachment, counteracting anoikis and constituting promising targets for anti-metastatic pharmacological therapy. This article is part of a Special Section entitled: Cell Death Pathways.
Collapse
Affiliation(s)
- Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; Tuscany Tumor Institute and "Center for Research, Transfer and High Education, DENOTHE", 50134 Florence, Italy.
| |
Collapse
|
96
|
Zhang P, Zhang P, Zhou M, Jiang H, Zhang H, Shi B, Pan X, Gao H, Sun H, Li Z. Exon 4 deletion variant of epidermal growth factor receptor enhances invasiveness and cisplatin resistance in epithelial ovarian cancer. Carcinogenesis 2013; 34:2639-46. [DOI: 10.1093/carcin/bgt216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
97
|
Kim SJ, Park KH, Park YG, Lee SW, Kang YG. Compressive stress induced the up-regulation of M-CSF, RANKL, TNF-α expression and the down-regulation of OPG expression in PDL cells via the integrin-FAK pathway. Arch Oral Biol 2013; 58:707-16. [DOI: 10.1016/j.archoralbio.2012.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/20/2012] [Accepted: 11/04/2012] [Indexed: 01/08/2023]
|
98
|
Kurozumi K, Ichikawa T, Onishi M, Fujii K, Date I. Cilengitide treatment for malignant glioma: current status and future direction. Neurol Med Chir (Tokyo) 2013; 52:539-47. [PMID: 22976135 DOI: 10.2176/nmc.52.539] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malignant glioma is the most common primary brain tumor and accounts for the majority of diagnoses. Treatment has involved a combination of surgery, radiation, and chemotherapy, yet these modalities rarely extend the life of the patient to more than one year from diagnosis. Integrins are expressed in tumor cells and tumor endothelial cells, and are important in angiogenesis and invasion in glioma. αvβ3 and αvβ5 integrins regulate cell adhesion, and inhibitors of these integrins suppress tumor growth in certain pre-clinical models. Several integrin-targeted drugs are in clinical trials as potential compounds for the treatment of cancer. Among them, cilengitide is a novel integrin antagonist for the treatment of glioblastoma. The multimodal anti-glioma effects are based on its cytotoxic, anti-angiogenic, anti-invasive, and synergetic effects. Preclinical studies showed a promising synergy between cilengitide and radiochemotherapy in order to normalize tumor vasculature and attenuate tumor invasion. Cilengitide is currently being assessed in phase III trials for patients with glioblastoma multiforme and in phase II trials for other types of cancers, demonstrating promising therapeutic outcomes to date. The results of these and other clinical studies are expected with great hope and interest. A more clear understanding of the benefits and pitfalls of each approach can then lead to the design of strategies to derive maximal benefit from these therapies.
Collapse
Affiliation(s)
- Kazuhiko Kurozumi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan.
| | | | | | | | | |
Collapse
|
99
|
Golubovskaya V, Palma NL, Zheng M, Ho B, Magis A, Ostrov D, Cance WG. A small-molecule inhibitor, 5'-O-tritylthymidine, targets FAK and Mdm-2 interaction, and blocks breast and colon tumorigenesis in vivo. Anticancer Agents Med Chem 2013; 13:532-45. [PMID: 22292771 PMCID: PMC3625481 DOI: 10.2174/1871520611313040002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/06/2012] [Accepted: 01/08/2012] [Indexed: 12/18/2022]
Abstract
Focal Adhesion Kinase (FAK) is overexpressed in many types of tumors and plays an important role in survival. We developed a novel approach, targeting FAK-protein interactions by computer modeling and screening of NCI small molecule drug database. In this report we targeted FAK and Mdm-2 protein interaction to decrease tumor growth. By macromolecular modeling we found a model of FAK and Mdm-2 interaction and performed screening of > 200,000 small molecule compounds from NCI database with drug-like characteristics, targeting the FAK-Mdm-2 interaction. We identified 5';-O-Tritylthymidine, called M13 compound that significantly decreased viability in different cancer cells. M13 was docked into the pocket of FAK and Mdm-2 interaction and was directly bound to the FAK-N terminal domain by ForteBio Octet assay. In addition, M13 compound affected FAK and Mdm-2 levels and decreased complex of FAK and Mdm-2 proteins in breast and colon cancer cells. M13 re-activated p53 activity inhibited by FAK with Mdm-2 promoter. M13 decreased viability, clonogenicity, increased detachment and apoptosis in a dose-dependent manner in BT474 breast and in HCT116 colon cancer cells in vitro. M13 decreased FAK, activated p53 and caspase-8 in both cell lines. In addition, M13 decreased breast and colon tumor growth in vivo. M13 activated p53 and decreased FAK in tumor samples consistent with decreased tumor growth. The data demonstrate a novel approach for targeting FAK and Mdm-2 protein interaction, provide a model of FAK and Mdm-2 interaction, identify M13 compound targeting this interaction and decreasing tumor growth that is critical for future targeted therapeutics.
Collapse
Affiliation(s)
- Vita Golubovskaya
- Department of Surgical Oncology, Roswell Park Cancer Research Institute, Buffalo, NY 14263, USA
| | | | - Min Zheng
- UF Shands Cancer Center, Gainesville, FL, USA
| | - Baotran Ho
- Department of Surgical Oncology, Roswell Park Cancer Research Institute, Buffalo, NY 14263, USA
| | - Andrew Magis
- Department of Pathology, UF Shands Cancer center, Gainesville, FL, USA
| | - David Ostrov
- Department of Pathology, UF Shands Cancer center, Gainesville, FL, USA
| | - William G. Cance
- Department of Surgical Oncology, Roswell Park Cancer Research Institute, Buffalo, NY 14263, USA
| |
Collapse
|
100
|
Carraher CL, Schwarzbauer JE. Regulation of matrix assembly through rigidity-dependent fibronectin conformational changes. J Biol Chem 2013; 288:14805-14. [PMID: 23589296 DOI: 10.1074/jbc.m112.435271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cells sense and respond to the mechanical properties of their microenvironment. We investigated whether these properties affect the ability of cells to assemble a fibrillar fibronectin (FN) matrix. Analysis of matrix assembled by cells grown on FN-coated polyacrylamide gels of varying stiffnesses showed that rigid substrates stimulate FN matrix assembly and activation of focal adhesion kinase (FAK) compared with the level of assembly and FAK signaling on softer substrates. Stimulating integrins with Mn(2+) treatment increased FN assembly on softer gels, suggesting that integrin binding is deficient on soft substrates. Guanidine hydrochloride-induced extension of the substrate-bound FN rescued assembly on soft substrates to a degree similar to that of Mn(2+) treatment and increased activation of FAK along with the initiation of assembly at FN matrix assembly sites. In contrast, increasing actin-mediated cell contractility did not rescue FN matrix assembly on soft substrates. Thus, rigidity-dependent FN matrix assembly is determined by extracellular events, namely the engagement of FN by cells and the induction of FN conformational changes. Extensibility of FN in response to substrate stiffness may serve as a mechanosensing mechanism whereby cells use pericellular FN to probe the stiffness of their environment.
Collapse
Affiliation(s)
- Cara L Carraher
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|