51
|
Fujii Y, Wakahara S, Nakao T, Hara T, Ohtake H, Komurasaki T, Kitamura K, Tatsuno A, Fujiwara N, Hozumi N, Ra C, Kitamura D, Goitsuka R. Targeting of MIST to Src-family kinases via SKAP55-SLAP-130 adaptor complex in mast cells. FEBS Lett 2003; 540:111-6. [PMID: 12681493 DOI: 10.1016/s0014-5793(03)00234-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
MIST (mast cell immunoreceptor signal transducer; also termed Clnk) is an adaptor protein structurally related to SLP-76-family hematopoietic cell-specific adaptor proteins. We demonstrate here that two major MIST-associated phosphoproteins expressed in mast cell lines are SLAP-130 and SKAP55, adaptors known to interact with the Src-homology (SH) 2 domain of Src-family protein tyrosine kinases (PTKs). MIST directly associated with SLAP-130 via its SH2 domain, and collaboration of SLAP-130 with SKAP55 was required for the recruitment of MIST to Lyn. Furthermore, MIST was preferentially recruited to Fyn rather than Lyn, which is regulated by higher affinity binding of SLAP-130 and SKAP55 with the Fyn-SH2 domain than the Lyn-SH2 domain. Our results suggest that the MIST-SLAP-130-SKAP55 adaptor complex functions downstream of high-affinity IgE receptor-associated Src-PTKs in mast cells.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Molecular Biology Laboratory, Medicinal Research Laboratories, Taisho Pharmaceutical Co Ltd, 1-403 Yoshino-cho, Saitama-shi, Saitama 330-8530, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Stimulation of T cells through their antigen receptor induces a multitude of signaling networks that regulate T cell activation in the form of cytokine production and T cell proliferation. Multiple signal integration sites exist along these pathways in the form of multiprotein signaling complexes, the formation of which is facilitated by adapter and scaffold molecules. In recent years a number of adapter and scaffold molecules have been described in T cells and shown to play an integral part in T cell function. Among these molecules are proteins that function as positive or negative regulators of T cell activation downstream of the activated T cell receptor (TCR). Here, we discuss the role of a small family of multiadapter proteins on T cell activation, the p130Cas family, with emphasis on one of its members, Sin (Src-interacting protein). Our results suggest that Sin inhibits thymocyte development and T cell activation and is a novel negative regulator of T lymphocyte function.
Collapse
Affiliation(s)
- Konstantina Alexandropoulos
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
53
|
Kane LP, Weiss A. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol Rev 2003; 192:7-20. [PMID: 12670391 DOI: 10.1034/j.1600-065x.2003.00008.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ligation of the T cell receptor for antigen (TCR) and/or costimulatory receptor CD28 results in rapid activation of phosphoinositide-3 kinase (PI-3 kinase). It remains unclear, however, precisely how this activation occurs and also how the newly generated phospholipid products trigger the various events associated with T cell activation. Here we discuss the current understanding of how PI-3 kinase is activated by the TCR and CD28 and what roles its products play in T cell activation. We also review recent advances in understanding the function of Akt in particular, especially its role in CD28 costimulation. Several functional targets of Akt are discussed in this regard: inducible transcription, cell survival, glucose metabolism, and the cellular translational machinery. These pathways have been associated with TCR/CD28 costimulation, and they have also been implicated as targets of Akt.
Collapse
Affiliation(s)
- Lawrence P Kane
- Department of Medicine, The Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
54
|
Subczynski WK, Kusumi A. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:231-43. [PMID: 12648777 DOI: 10.1016/s0005-2736(03)00021-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lipid rafts in the plasma membrane, domains rich in cholesterol and sphingolipids, have been implicated in a number of important membrane functions. Detergent insolubility has been used to define membrane "rafts" biochemically. However, such an approach does not directly contribute to the understanding of the size and the lifetime of rafts, dynamics of the raft-constituent molecules, and the function of rafts in the membrane in situ. To address these issues, we have developed pulse EPR spin labeling and single molecule tracking optical techniques for studies of rafts in both artificial and cell membranes. In this review, we summarize our results and perspectives obtained by using these methods. We emphasize the importance of clearly distinguishing small/unstable rafts (lifetime shorter than a millisecond) in unstimulated cells and stabilized rafts induced by liganded and oligomerized (GPI-anchored) receptor molecules (core receptor rafts, lifetime over a few minutes). We propose that these stabilized rafts further induce temporal, greater rafts (signaling rafts, lifetime on the order of a second) for signaling by coalescing other small/unstable rafts, including those in the inner leaflet of the membrane, each containing perhaps one molecule of the downstream effector molecules. At variance with the general view, we emphasize the importance of cholesterol segregation from the liquid-crystalline unsaturated bulk-phase membrane for formation of the rafts, rather than the affinity of cholesterol and saturated alkyl chains. In the binary mixture of cholesterol and an unsaturated phospholipid, cholesterol is segregated out from the bulk unsaturated liquid-crystalline phase, forming cholesterol-enriched domains or clustered cholesterol domains, probably due to the lateral nonconformability between the rigid planar transfused ring structure of cholesterol and the rigid bend of the unsaturated alkyl chain at C9-C10. However, such cholesterol-rich domains are small, perhaps consisting of only several cholesterol molecules, and are short-lived, on the order of 1-100 ns. We speculate that these cholesterol-enriched domains may be stabilized by the presence of saturated alkyl chains of sphingomyelin or glycosphingolipids, and also by clustered raft proteins. In the influenza viral membrane, one of the simplest forms of a biological membrane, the lifetime of a protein and cholesterol-rich domain was evaluated to be on the order of 100 micro, again showing the short lifetime of rafts in an unstimulated state. Finally, we propose a thermal Lego model for rafts as the basic building blocks for signaling pathways in the plasma membrane.
Collapse
Affiliation(s)
- Witold K Subczynski
- National Biomedical EPR Center, Biophysics Research Institute, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
55
|
Foucault I, Liu YC, Bernard A, Deckert M. The chaperone protein 14-3-3 interacts with 3BP2/SH3BP2 and regulates its adapter function. J Biol Chem 2003; 278:7146-53. [PMID: 12501243 DOI: 10.1074/jbc.m209509200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lymphocyte stimulation by immunoreceptors is achieved through the activation of multiple signaling pathways leading to cytokine gene transcription. Adapter proteins are critical signaling components that can integrate multiple pathways by allowing the assembly of multimolecular signaling complexes. We previously showed that the cytoplasmic adapter 3BP2 (also known as SH3BP2) promotes NFAT/AP-1 transcriptional activities in T cells through the activation of Ras- and calcineurin-dependent pathways. However, the molecular mechanisms by which 3BP2/SH3BP2 regulates cell signaling and activation remain poorly documented. In this study, using a combination of yeast two-hybrid analysis and biochemical approaches, we present evidence for a physical interaction between 3BP2 and the chaperone protein 14-3-3. This interaction was direct and constitutively detected in yeast and in mammalian cells. Phorbol ester, pervanadate, and forskolin/isobutylmethylxanthine stimulations enhanced this interaction, as well as co-expression of constitutive active mutants of serine/threonine kinases, including protein kinase C. We found that dephosphorylation of 3BP2 by alkaline phosphatase disrupted its interaction with 14-3-3 and that 3BP2 was a substrate of purified protein kinase C in vitro, suggesting that the phosphorylation of 3BP2 by upstream kinases was required for 14-3-3 binding. Using deletion mutants of 3BP2, two 14-3-3 binding domains were mapped to two proline-rich (residues 201-240 and 270-310) domains of 3BP2. These domains were shown to contain two 14-3-3 consensus binding motifs. We identified residues Ser(225) and Ser(277) of 3BP2 as being essential for interaction with 14-3-3 family proteins, optimal 3BP2 serine phosphorylation, and then for 3BP2-dependent function. Indeed, a 3BP2 mutant protein incapable of binding 14-3-3 showed increased capacity to stimulate NFAT transcriptional activities, suggesting that 14-3-3 binding to 3BP2 negatively regulates 3BP2 adapter function in lymphocytes.
Collapse
Affiliation(s)
- Isabelle Foucault
- INSERM U343 and Laboratoire d'Immunologie, Hôpital de l'Archet I, Nice 06202, France
| | | | | | | |
Collapse
|
56
|
Abstract
Shc is a prototype adapter protein that is expressed from the earliest stages of T-cell development. Shc becomes rapidly tyrosine phosphorylated after T-cell receptor (TCR) engagement. Expression of dominant negative forms of Shc in T-cell lines had also suggested a role for this adapter downstream of the TCR. However, until recently, the relative significance of Shc compared to several other adapters in T cells was unclear. Mice lacking Shc expression specifically in the T-cell lineage together with inducible expression of dominant negative Shc in transgenic mice have revealed an essential and nonredundant role for Shc in thymic T-cell development. Functional defects in a Jurkat T-cell line lacking Shc expression also suggest a role for Shc in mature T-cell functions. While the requirement of Shc in T-cell signaling is now established, precisely what signaling pathways downstream of Shc make this adapter unique are less clear. Although the Shc-mediated activation of the extracellular signal regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathway could be one component, Shc likely signals to other pathways in T cells that are not yet discovered. A better molecular understanding of Shc function in the future could provide insights into how multiple adapters coordinate the various outcomes downstream of the TCR.
Collapse
Affiliation(s)
- Li Zhang
- Department of Microbiology and the Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
57
|
Flemming A, Brummer T, Reth M, Jumaa H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat Immunol 2003; 4:38-43. [PMID: 12436112 DOI: 10.1038/ni862] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 10/16/2002] [Indexed: 11/08/2022]
Abstract
Mice deficient in the adaptor protein SLP-65 (also known as BLNK) have reduced numbers of mature B cells, but an increased pre-B cell compartment. We show here that compared to wild-type cells, SLP-65(-/-) pre-B cells show an enhanced ex vivo proliferative capacity. This proliferation requires interleukin 7 and expression of the pre-B cell receptor (pre-BCR). In addition, SLP-65(-/-) mice have a high incidence of pre-B cell lymphoma. Reintroduction of SLP-65 into SLP-65(-/-) pre-B cells led to pre-BCR down-regulation and enhanced differentiation. Our results indicate that SLP-65 regulates a developmental program that promotes differentiation and limits pre-B cell expansion, thereby acting as a tumor suppressor.
Collapse
Affiliation(s)
- Alexandra Flemming
- Institute for Biology III, Albert-Ludwigs University of Freiburg and Max Planck Institute for Immunobiology, Stuebeweg 51, 79108 Freiburg, Germany
| | | | | | | |
Collapse
|
58
|
Donlin LT, Roman CA, Adlam M, Regelmann AG, Alexandropoulos K. Defective thymocyte maturation by transgenic expression of a truncated form of the T lymphocyte adapter molecule and Fyn substrate, Sin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6900-9. [PMID: 12471123 DOI: 10.4049/jimmunol.169.12.6900] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adapter molecules that promote protein-protein interactions play a central role in T lymphocyte differentiation and activation. In this study, we examined the role of the T lymphocyte-expressed adapter protein and Src kinase substrate, Sin, on thymocyte function using transgenic mice expressing an activated, truncated allele of Sin (SinDeltaC). We found that SinDeltaC expression led to reduced numbers of CD4(+) and CD8(+) single-positive cells and reduced thymic cellularity due to increased thymocyte apoptosis. Because the adapter properties of Sin are mediated by tyrosine-based motifs and given that Sin is a substrate for Src tyrosine kinases, we examined the involvement of these kinases in the inhibitory effects of SinDeltaC. We found that in transgenic thymocytes, SinDeltaC was constitutively phosphorylated by the Src kinase Fyn, but not by the related kinase Lck. Using SinDeltaC and fyn(-/-) animals, we also found that the expression of Fyn was required for the inhibitory effect of SinDeltaC on thymocyte apoptosis but not for SinDeltaC-mediated inhibition of T cell maturation. The inhibitory effect of SinDeltaC on thymocyte maturation correlated with defective activation of the mitogen-activated protein kinase extracellular signal-regulated kinase. Our results suggest that the Sin mutant inhibits thymocyte differentiation through Fyn-dependent and -independent mechanisms and that endogenous Sin may be an important regulator of thymocyte development.
Collapse
Affiliation(s)
- Laura T Donlin
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
59
|
Naramura M, Jang IK, Kole H, Huang F, Haines D, Gu H. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol 2002; 3:1192-9. [PMID: 12415267 DOI: 10.1038/ni855] [Citation(s) in RCA: 310] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2002] [Accepted: 09/19/2002] [Indexed: 01/08/2023]
Abstract
How Cbl family proteins regulate T cell responses is unclear. We found that c-Cbl Cbl-b double knock-out (dKO) T cells became hyperresponsive upon anti-CD3 stimulation, even though the major T cell antigen receptor (TCR) signaling pathways were not enhanced. The dKO T cells did not down-modulate surface TCR after ligand engagement, which resulted in sustained TCR signaling. However, these cells showed normal ligand-independent TCR internalization, and trafficking of internalized TCR to the lysosome compartment after ligand engagement was reduced. These findings show that Cbl family proteins negatively regulate T cell activation by promoting clearance of engaged TCR from the cell surface, a process that is apparently essential for the termination of TCR signals.
Collapse
Affiliation(s)
- Mayumi Naramura
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
60
|
Gringhuis SI, Breedveld FC, Verweij CL. Linker for activation of T cells: sensing redox imbalance. Methods Enzymol 2002; 352:248-57. [PMID: 12125351 DOI: 10.1016/s0076-6879(02)52023-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sonja I Gringhuis
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
61
|
Zhang L, Camerini V, Bender TP, Ravichandran KS. A nonredundant role for the adapter protein Shc in thymic T cell development. Nat Immunol 2002; 3:749-55. [PMID: 12101399 DOI: 10.1038/ni820] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Signaling via the pre-T cell receptor (pre-TCR) regulates survival, proliferation, allelic exclusion and differentiation of thymocytes. The role played by the adapter protein Shc in T cells has remained controversial, and its role in pre-TCR signaling has not been addressed. We examined Shc function in thymic T cell development using two genetic approaches. Cre-loxP-mediated inducible expression in transgenic mice of a phosphorylation-defective mutant of Shc impaired signaling through the pre-TCR as well as subsequent proliferation and differentiation. Conditional deletion of the Shc locus in thymocytes also affected thymic maturation at the same pre-TCR developmental stage. Thus, both Shc expression and its tyrosine phosphorylation play an essential and nonredundant role in thymic T cell development.
Collapse
Affiliation(s)
- Li Zhang
- Beirne B. Carter Center for Immunology Research and Department of Microbiology University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
62
|
Abstract
Costimulatory signals complement or modify the signals provided to a lymphocyte through antigen receptors. For productive T-cell activation, the CD28 molecule is apparently the most important, although not the only, costimulatory receptor. CD28 can provide a signal that is at least partially distinct from that delivered by the T cell receptor (TCR)-CD3 complex. Several lines of evidence indicate that the nuclear factor (NF)-kappaB pathway is perhaps the most relevant biochemical or transcriptional target for the costimulatory activity of CD28. Although many questions remain, recent years have witnessed significant progress in understanding the signal transduction pathways leading from the TCR and CD28 to Rel/NF-kappaB-dependent transcription.
Collapse
Affiliation(s)
- Lawrence P Kane
- Dept of Medicine, The Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 9143-0795, USA
| | | | | |
Collapse
|
63
|
Gugasyan R, Quilici C, I STT, Grail D, Verhagen AM, Roberts A, Kitamura T, Dunn AR, Lock P. Dok-related protein negatively regulates T cell development via its RasGTPase-activating protein and Nck docking sites. J Cell Biol 2002; 158:115-25. [PMID: 12093790 PMCID: PMC2173016 DOI: 10.1083/jcb.200112066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Downstream of kinase (Dok)-related protein (DokR, also known as p56(dok)/FRIP/Dok-R) is implicated in cytokine and immunoreceptor signaling in myeloid and T cells. Tyrosine phosphorylation induces DokR to bind the signal relay molecules, RasGTPase-activating protein (RasGAP) and Nck. Here, we have examined the function of DokR during hematopoietic development and the requirement for RasGAP and Nck binding sites in its biological function. Retroviral-mediated expression of DokR in bone marrow cells dramatically inhibited their capacity to form colonies in vitro in response to the cytokines macrophage colony-stimulating factor and stem cell factor, whereas responses to interleukin-3 and granulocyte macrophage colony-stimulating factor were only weakly affected. When introduced into lethally irradiated mice, hematopoietic cells expressing DokR showed a drastically reduced capacity to repopulate lymphoid tissues. Most notably, DokR dramatically reduced repopulation of the thymus, in part by reducing the number of T cell precursors seeding in the thymus, but equally, through inhibiting the transition of CD4(-)CD8(-) to CD4(+)CD8(+) T cells. Consequently, the number of mature peripheral T cells was markedly reduced. In contrast, a minimal effect on B cell and myeloid lineage development was observed. Importantly, functional RasGAP and Nck binding sites were found to be essential for the biological effects of DokR in vitro and in vivo.
Collapse
Affiliation(s)
- Raffi Gugasyan
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Kono H, Suzuki T, Yamamoto K, Okada M, Yamamoto T, Honda ZI. Spatial raft coalescence represents an initial step in Fc gamma R signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:193-203. [PMID: 12077245 DOI: 10.4049/jimmunol.169.1.193] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Characterization of lipid rafts as separated membrane microdomains consist of heterogeneous proteins suggesting that lateral assembly of rafts after Ag receptor cross-linking represents the earliest signal generating process. In line with the concept, cross-linked Ag receptors have been shown to associate with detergent-insoluble raft fraction without the aid of Src family kinases. However, it has not been established whether spatial raft coalescence could also precede Src family kinase activation. In this study, we showed that spatial raft coalescence after low-affinity FcgammaR cross-linking in RAW264.7 macrophages is independent of Src family kinase activity. The lateral raft assembly was found to be ascribed to the action of ligand-binding subunits, rather than to immunoreceptor tyrosine-based activation motif-bearing signal subunits, because monomeric murine FcgammaRIIb expressed in rat basophilic leukemia cells successfully induced spatial raft reorganization after cross-linking. We also showed that extracellular and transmembrane region of FcgammaRIIb is sufficient for raft stabilization. Moreover, this receptor fragment triggers rapid calcium mobilization and linker for activation of T cells phosphorylation, in a manner sensitive to Src family kinase inhibition and to cholesterol depletion. Presence of immunoreceptor tyrosine-based inhibitory motif and addition of immunoreceptor tyrosine-based activation motif to the receptor fragment abolished and enhanced the responses, respectively, but did not affect raft stabilization. These findings support the concept that ligand-binding subunit is responsible for raft coalescence, and that this event triggers initial biochemical signaling.
Collapse
Affiliation(s)
- Hajime Kono
- Department of Allergy and Rheumatology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
65
|
Abstract
Engagement of the T cell antigen receptor (TCR) leads to a complex series of molecular changes at the plasma membrane, in the cytoplasm, and at the nucleus that lead ultimately to T cell effector function. Activation at the TCR of a set of protein tyrosine kinases (PTKs) is an early event in this process. This chapter reviews some of the critical substrates of these PTKs, the adapter proteins that, following phosphorylation on tyrosine residues, serve as binding sites for many of the critical effector enzymes and other adapter proteins required for T cell activation. The role of these adapters in binding various proteins, the interaction of adapters with plasma membrane microdomains, and the function of adapter proteins in control of the cytoskeleton are discussed.
Collapse
Affiliation(s)
- Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 1E24, Bethesda, Maryland, 20892-4255, USA.
| |
Collapse
|
66
|
Werlen G, Palmer E. The T-cell receptor signalosome: a dynamic structure with expanding complexity. Curr Opin Immunol 2002; 14:299-305. [PMID: 11973126 DOI: 10.1016/s0952-7915(02)00339-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Signal transduction in T cells is a dynamic process involving a large number of membrane and cytosolic proteins. The TCR macromolecular complex (signalosome) is initiated by receptor occupancy and becomes more elaborate over time. This review describes how 'vertical' displacement mechanisms and lateral coalescence of lipid-raft-associated scaffold proteins combine to form distinct signalosomes, which control signal specificity.
Collapse
Affiliation(s)
- Guy Werlen
- Laboratory of Transplantation Immunology and Nephrology, Department of Research, University Hospital-Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland.
| | | |
Collapse
|
67
|
Burack WR, Cheng AM, Shaw AS. Scaffolds, adaptors and linkers of TCR signaling: theory and practice. Curr Opin Immunol 2002; 14:312-6. [PMID: 11973128 DOI: 10.1016/s0952-7915(02)00347-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Four non-enzymatic proteins form the structural core of the TCR signaling machinery, linking antigen-receptor activation to signaling. These four proteins, each with well defined protein-protein interaction domains, include three 'scaffolds' (LAT, SLP-76 and SLAP-130/Fyb/ADAP and a 'pure adaptor' (GADS). The biological functions of many distinct protein-protein interaction domains have been dissected through a methodological series of knockout and reconstitution experiments. In reviewing these recent advances, we attempt to address two questions often asked by immunologists not familiar with the field: what do scaffolds/adaptors/linkers do; and what do these terms mean?
Collapse
Affiliation(s)
- W Richard Burack
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
68
|
Ghadimi MP, Sanzenbacher R, Thiede B, Wenzel J, Jing Q, Plomann M, Borkhardt A, Kabelitz D, Janssen O. Identification of interaction partners of the cytosolic polyproline region of CD95 ligand (CD178). FEBS Lett 2002; 519:50-8. [PMID: 12023017 DOI: 10.1016/s0014-5793(02)02709-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CD95/Fas/Apo-1 ligand (CD95L, CD178) induces apoptosis through the death receptor CD95. CD95L was also described as a co-stimulatory receptor for T-cell activation in mice in vivo. The molecular basis for the bidirectional signaling capacity and directed expression of CD95L is unknown. In the present study we identify proteins that precipitate from T-cell lysates with constructs containing fragments of the CD95L cytosolic tail. The determined peptide mass fingerprints correspond to Grb2, actin, beta-tubulin, formin binding protein 17 (FBP17) and PACSIN2. Grb2 had been identified as a putative mediator of T-cell receptor-to-CD95L signaling before. FBP17 and PACSIN2 may be associated with expression and trafficking of CD95L. When overexpressed, CD95L co-precipitates with FBP17 and PACSIN. Protein-protein interactions are mediated via Src homology 3 (SH3) domain binding to the polyproline region of CD95L and can be abolished by mutation or deletion of the respective SH3 domain.
Collapse
|
69
|
Ticchioni M, Charvet C, Noraz N, Lamy L, Steinberg M, Bernard A, Deckert M. Signaling through ZAP-70 is required for CXCL12-mediated T-cell transendothelial migration. Blood 2002; 99:3111-8. [PMID: 11964272 DOI: 10.1182/blood.v99.9.3111] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transendothelial migration of activated lymphocytes from the blood into the tissues is an essential step for immune functions. The housekeeping chemokine CXCL12 (or stroma cell-derived factor-1alpha), a highly efficient chemoattractant for T lymphocytes, drives lymphocytes to sites where they are highly likely to encounter antigens. This suggests that cross-talk between the T-cell receptor (TCR) and CXCR4 (the CXCL12 receptor) might occur within these sites. Here we show that the zeta-associated protein 70 (ZAP-70), a key element in TCR signaling, is required for CXCR4 signal transduction. The pharmacologic inhibition of ZAP-70, or the absence of ZAP-70 in Jurkat T cells and in primary CD4(+) T cells obtained from a patient with ZAP deficiency, resulted in an impairment of transendothelial migration that was rescued by the transfection of ZAP-70. Moreover, the overexpression of mutated forms of ZAP-70, whose kinase domain was inactivated, also abrogated the migratory response of Jurkat T cells to CXCL12. In contrast, no involvement of ZAP-70 in T-cell arrest on inflammatory endothelium under flow conditions or in CXCL12-induced actin polymerization was observed. Furthermore, CXCL12 induced time-dependent phosphorylation of ZAP-70, Vav1, and extracellular signal-regulated kinases (ERKs); the latter were reduced in the absence of functional ZAP-70. However, though a dominant-negative Vav1 mutant (Vav1 L213A) blocked CXCL12-induced T-cell migration, pharmacologic inhibition of the ERK pathway did not affect migration, suggesting that ERK activation is dispensable for T-cell chemotaxis. We conclude that cross-talk between the ZAP-70 signaling pathway and the chemokine receptor CXCR4 is required for T-cell migration.
Collapse
Affiliation(s)
- Michel Ticchioni
- INSERM U343 and Laboratoire d'Immunologie, Hôpital de l'Archet, Nice, France
| | | | | | | | | | | | | |
Collapse
|
70
|
Xie ZH, Ambudkar I, Siraganian RP. The adapter molecule Gab2 regulates Fc epsilon RI-mediated signal transduction in mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4682-91. [PMID: 11971018 DOI: 10.4049/jimmunol.168.9.4682] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recently cloned scaffolding molecule Gab2 can assemble multiple molecules involved in signaling pathways. Bone marrow-derived mast cells isolated from Gab2(-/-) mice have defective signaling probably due to the lack of the activation of phosphatidylinositol-3 kinase (PI3-kinase). In this study, we investigated the role of Gab2 using the rat basophilic leukemia 2H3 cell line mast cells. Fc epsilon RI aggregation induced the tyrosine phosphorylation of Gab2 and translocation of a significant fraction of it from the cytosol to the plasma membrane. As in other cells, Gab2 was found to associate with several signaling molecules including Src homology 2-containing protein tyrosine phosphatase 2, Grb2, Lyn, and phospholipase C gamma (PLC gamma). The association of Gab2 with Lyn and PLC gamma were enhanced after receptor aggregation. Overexpression of Gab2 in rat basophilic leukemia 2H3 cell line cells inhibited the Fc epsilon RI-induced tyrosine phosphorylation of the subunits of the receptor, and the phosphorylation and/or activation of Syk and mitogen-activated protein kinase. Downstream events such as calcium mobilization, degranulation, and induction of TNF-alpha and IL-6 gene transcripts were decreased in Gab2 overexpressing cells, although Akt phosphorylation as a measure of PI3-kinase activation was unaffected. These results suggest that in addition to the positive effects mediated by PI3-kinase that are apparent in Gab2(-/-) mast cells, Gab2 by interacting with Lyn and PLC gamma may have negative regulatory effects on Fc epsilon RI-induced mast cell signaling and functions.
Collapse
Affiliation(s)
- Zhi-Hui Xie
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
71
|
Iwashima M, Takamatsu M, Yamagishi H, Hatanaka Y, Huang YY, McGinty C, Yamasaki S, Koike T. Genetic evidence for Shc requirement in TCR-induced c-Rel nuclear translocation and IL-2 expression. Proc Natl Acad Sci U S A 2002; 99:4544-9. [PMID: 11917142 PMCID: PMC123684 DOI: 10.1073/pnas.082647499] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Indexed: 01/20/2023] Open
Abstract
Shc, a prototypic adapter molecule, has been implicated in T cell receptor (TCR) signal transduction, but its role has not been identified clearly. Here we report that Shc is essential for TCR-induced IL-2 production but is dispensable for CD69 or CD25 expression. Engagement of TCR in mutant Jurkat T cells lacking Shc fails to produce IL-2 because of impaired mitogen-activated protein kinase activation. Activation of c-Rel, a transcription factor essential for IL-2 expression, was impaired also. In contrast, activation of nuclear factor of activated T cell and expression of CD69/CD25 were comparable between the mutant and wild-type Jurkat cells. These defects were rescued by expression of exogenous Shc. Activation of c-Rel using the estrogen receptor fusion protein restored the activation of the IL-2 promoter in an estrogen-dependent manner. These results show that Shc plays an essential role in the TCR-induced activation of c-Rel and the IL-2 promoter.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/genetics
- Biological Transport
- Cell Nucleus/metabolism
- DNA-Binding Proteins/metabolism
- Humans
- Interleukin-2/biosynthesis
- Interleukin-2/genetics
- Jurkat Cells
- Lectins, C-Type
- Mitogen-Activated Protein Kinases/physiology
- NF-kappa B/metabolism
- NFATC Transcription Factors
- Nuclear Proteins
- Promoter Regions, Genetic
- Proteins/physiology
- Proto-Oncogene Proteins c-rel/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Interleukin-2/genetics
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transcription Factor AP-1/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Makio Iwashima
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2600, USA.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Judd BA, Myung PS, Obergfell A, Myers EE, Cheng AM, Watson SP, Pear WS, Allman D, Shattil SJ, Koretzky GA. Differential requirement for LAT and SLP-76 in GPVI versus T cell receptor signaling. J Exp Med 2002; 195:705-17. [PMID: 11901197 PMCID: PMC2193740 DOI: 10.1084/jem.20011583] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mice deficient in the adaptor Src homology 2 domain-containing leukocyte phosphoprotein of 76 kD (SLP-76) exhibit a bleeding disorder and lack T cells. Linker for activation of T cells (LAT)-deficient mice exhibit a similar T cell phenotype, but show no signs of hemorrhage. Both SLP-76 and LAT are important for optimal platelet activation downstream of the collagen receptor, GPVI. In addition, SLP-76 is involved in signaling mediated by integrin alphaIIbbeta3. Because SLP-76 and LAT function coordinately in T cell signal transduction, yet their roles appear to differ in hemostasis, we investigated in detail the functional consequences of SLP-76 and LAT deficiencies in platelets. Previously we have shown that LAT(-/-) platelets exhibit defective responses to the GPVI-specific agonist, collagen-related peptide (CRP). Consistent with this, we find that surface expression of P-selectin in response to high concentrations of GPVI ligands is reduced in both LAT- and SLP-76-deficient platelets. However, platelets from LAT(-/-) mice, but not SLP-76(-/-) mice, aggregate normally in response to high concentrations of collagen and convulxin. Additionally, unlike SLP-76, LAT is not tyrosine phosphorylated after fibrinogen binding to integrin alphaIIbbeta3, and collagen-stimulated platelets deficient in LAT spread normally on fibrinogen-coated surfaces. Together, these findings indicate that while LAT and SLP-76 are equally required for signaling via the T cell antigen receptor (TCR) and pre-TCR, platelet activation downstream of GPVI and alphaIIbbeta3 shows a much greater dependency on SLP-76 than LAT.
Collapse
Affiliation(s)
- Barbi A Judd
- Program in Molecular Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Su TT, Rawlings DJ. Transitional B lymphocyte subsets operate as distinct checkpoints in murine splenic B cell development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2101-10. [PMID: 11859095 DOI: 10.4049/jimmunol.168.5.2101] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling through the Ag receptor is required for peripheral B lymphocyte maturation and maintenance. Defects in components of the B cell receptor (BCR) signalosome result in developmental blocks at the transition from immature (heat-stable Ag (HSA)(high)) to mature (HSA(low)) B cells. Recent studies have subdivided the immature, or transitional, splenic B cells into two subsets, transitional 1 (T1) and transitional 2 (T2) cells. T1 and T2 cells express distinct surface markers and are located in distinct anatomic locations. In this report, we evaluated the BCR signaling capacity of T1 and T2 B cell subsets. In response to BCR engagement, T2 cells rapidly entered cell cycle and resisted cell death. In contrast, T1 cells did not proliferate and instead died after BCR stimulation. Correlating with these results, T2 cells robustly induced expression of the cell cycle regulator cyclin D2 and the antiapoptotic factors A1/Bfl-1 and Bcl-x(L) and exhibited activation of Akt. In contrast, T1 cells failed to up-regulate these markers. BCR stimulation of T2 cells also led to down-regulation of CD21 and CD24 (HSA) expression, resulting in a mature B cell phenotype. In addition, T2 cells from Bruton's tyrosine kinase-deficient Xid mice failed to generate these proliferative and survival responses, suggesting a requirement for the BCR signalosome specifically at the T2 stage. Taken together, these data clearly demonstrate that T2 immature B cells comprise a discrete developmental subset that mediates BCR-dependent proliferative, prosurvival, and differentiation signals. Their distinct BCR-dependent responses suggest unique roles for T1 vs T2 cells in peripheral B cell selection.
Collapse
Affiliation(s)
- Thomas T Su
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
74
|
Billadeau DD, Leibson PJ. ITAMs versus ITIMs: striking a balance during cell regulation. J Clin Invest 2002. [DOI: 10.1172/jci0214843] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
75
|
Hermiston ML, Xu Z, Majeti R, Weiss A. Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J Clin Invest 2002. [DOI: 10.1172/jci0214794] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
76
|
Hermiston ML, Xu Z, Majeti R, Weiss A. Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J Clin Invest 2002; 109:9-14. [PMID: 11781344 PMCID: PMC150828 DOI: 10.1172/jci14794] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Michelle L Hermiston
- Department of Pediatrics, The Howard Hughes Medical Institute, University of California, San Francisco, California 94143-0795, USA
| | | | | | | |
Collapse
|
77
|
Billadeau DD, Leibson PJ. ITAMs versus ITIMs: striking a balance during cell regulation. J Clin Invest 2002; 109:161-8. [PMID: 11805126 PMCID: PMC150845 DOI: 10.1172/jci14843] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Daniel D Billadeau
- Division of Developmental Oncology Research, Mayo Graduate and Medical Schools, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
78
|
Wenzel J, Sanzenbacher R, Ghadimi M, Lewitzky M, Zhou Q, Kaplan DR, Kabelitz D, Feller SM, Janssen O. Multiple interactions of the cytosolic polyproline region of the CD95 ligand: hints for the reverse signal transduction capacity of a death factor. FEBS Lett 2001; 509:255-62. [PMID: 11741599 DOI: 10.1016/s0014-5793(01)03174-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The CD95/Fas/Apo-1 ligand is expressed on activated lymphocytes, NK cells, platelets, certain immune-privileged cells and some tumor cells and induces apoptosis through the death receptor CD95/Fas/Apo-1. In murine T cells, membrane-bound CD95L (Fas ligand) also acts as a costimulatory receptor to coordinate activation and function in vivo. The molecular basis for this reverse signal transduction is yet unknown. In the present report, we identify individual interaction domains of enzymes and adapter molecules that selectively interact with full-length CD95L from transfectants and human T cells. These results may help to explain the costimulatory capacity of CD95L.
Collapse
Affiliation(s)
- J Wenzel
- Institute for Immunology, Christian-Albrechts-University, Michaelisstrasse 5, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Chuang SS, Kumaresan PR, Mathew PA. 2B4 (CD244)-mediated activation of cytotoxicity and IFN-gamma release in human NK cells involves distinct pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6210-6. [PMID: 11714782 DOI: 10.4049/jimmunol.167.11.6210] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
2B4 (CD244), a member of the CD2 subset of the Ig superfamily receptors, is expressed on all human NK cells, a subpopulation of T cells, basophils and monocytes. 2B4 activates NK cell mediated cytotoxicity, induces secretion of IFN-gamma and matrix metalloproteinases, and NK cell invasiveness. Although there have been several molecules shown to interact with 2B4, the signaling mechanism of 2B4-mediated activation of NK cells is still unknown. In this study, we found cross-linking of 2B4 on YT cells, a human NK cell line, results in the increased DNA binding activity of activator protein-1 (AP-1), an important regulator of nuclear gene expression in leukocytes. We investigated the possible role of various signaling molecules that may be involved in the activation of lytic function of YT cells via 2B4. Treatment of YT cells with various specific inhibitors indicate that 2B4-stimulation of YT cells in spontaneous and Ab-dependent cytotoxicity is Ras/Raf dependent and involves multiple MAPK signaling pathways (ERK1/2 and p38). However, only inhibitors of transcription and p38 inhibited 2B4-mediated IFN-gamma release indicating distinct pathways are involved in cytotoxicity and cytokine release. In this study we also show that 2B4 constitutively associates with the linker for activation of T cells (LAT) and that 2B4 may mediate NK cell activation via a LAT-dependent signaling pathway. These results indicate that 2B4-mediated activation of NK cells involves complex interactions involving LAT, Ras, Raf, ERK and p38 and that cytolytic function and cytokine production may be regulated by distinct pathways.
Collapse
Affiliation(s)
- S S Chuang
- Department of Molecular Biology and Immunology and Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | |
Collapse
|
80
|
Holland SJ, Liao XC, Mendenhall MK, Zhou X, Pardo J, Chu P, Spencer C, Fu A, Sheng N, Yu P, Pali E, Nagin A, Shen M, Yu S, Chan E, Wu X, Li C, Woisetschlager M, Aversa G, Kolbinger F, Bennett MK, Molineaux S, Luo Y, Payan DG, Mancebo HS, Wu J. Functional cloning of Src-like adapter protein-2 (SLAP-2), a novel inhibitor of antigen receptor signaling. J Exp Med 2001; 194:1263-76. [PMID: 11696592 PMCID: PMC2195979 DOI: 10.1084/jem.194.9.1263] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2001] [Revised: 08/20/2001] [Accepted: 09/06/2001] [Indexed: 11/04/2022] Open
Abstract
In an effort to identify novel therapeutic targets for autoimmunity and transplant rejection, we developed and performed a large-scale retroviral-based functional screen to select for proteins that inhibit antigen receptor-mediated activation of lymphocytes. In addition to known regulators of antigen receptor signaling, we identified a novel adaptor protein, SLAP-2 which shares 36% sequence similarity with the known Src-like adaptor protein, SLAP. Similar to SLAP, SLAP-2 is predominantly expressed in hematopoietic cells. Overexpression of SLAP-2 in B and T cell lines specifically impaired antigen receptor-mediated signaling events, including CD69 surface marker upregulation, nuclear factor of activated T cells (NFAT) promoter activation and calcium influx. Signaling induced by phorbol myristate acetate (PMA) and ionomycin was not significantly reduced, suggesting SLAP-2 functions proximally in the antigen receptor signaling cascade. The SLAP-2 protein contains an NH2-terminal myristoylation consensus sequence and SH3 and SH2 Src homology domains, but lacks a tyrosine kinase domain. In antigen receptor-stimulated cells, SLAP-2 associated with several tyrosine phosphorylated proteins, including the ubiquitin ligase Cbl. Deletion of the COOH terminus of SLAP-2 blocked function and abrogated its association with Cbl. Mutation of the putative myristoylation site of SLAP-2 compromised its inhibitory activity and impaired its localization to the membrane compartment. Our identification of the negative regulator SLAP-2 demonstrates that a retroviral-based screening strategy may be an efficient way to identify and characterize the function of key components of many signal transduction systems.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- Base Sequence
- Calcium/metabolism
- Cell Line
- Cloning, Molecular
- DNA, Complementary
- DNA-Binding Proteins/genetics
- Humans
- Jurkat Cells
- Lectins, C-Type
- Molecular Sequence Data
- Myristic Acid/metabolism
- NFATC Transcription Factors
- Nuclear Proteins
- Phosphorylation
- Promoter Regions, Genetic
- Proto-Oncogene Proteins pp60(c-src)/genetics
- Proto-Oncogene Proteins pp60(c-src)/immunology
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/immunology
- Sequence Homology, Amino Acid
- Signal Transduction/immunology
- Tetracycline/pharmacology
- Trans-Activators
- Transcription Factors/genetics
- Transcriptional Activation
- Tyrosine/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- S J Holland
- Rigel, Incorporated, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Wonerow P, Watson SP. The transmembrane adapter LAT plays a central role in immune receptor signalling. Oncogene 2001; 20:6273-83. [PMID: 11607829 DOI: 10.1038/sj.onc.1204770] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transmembrane adapter LAT (linker for activation of T cells) plays a central role in signalling by ITAM bearing receptors expressed on T cells, natural killer cells, mast cells and platelets. Receptor engagement leads to the phosphorylation of tyrosine residues present in the intracellular domain of LAT and formation of a multiprotein complex with other adapter molecules and enzymes including Grb2, Gads/SLP-76 and PLCgamma isoforms. These signalling events predominantly take place in glycolipid-enriched membrane domains. The constitutive presence of LAT in GEMs enables its function as the main scaffolding protein for the organization of GEM-localized signalling. The study of LAT-deficient mice and LAT-deficient cell lines further emphasizes the importance of LAT for these signalling cascades but also defines the existence of LAT-independent events downstream of the Syk-family kinase-ITAM complex.
Collapse
Affiliation(s)
- P Wonerow
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | | |
Collapse
|
82
|
Wilde JI, Watson SP. Regulation of phospholipase C gamma isoforms in haematopoietic cells: why one, not the other? Cell Signal 2001; 13:691-701. [PMID: 11602179 DOI: 10.1016/s0898-6568(01)00191-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phospholipase C gamma (PLCgamma) isoforms are critical for the generation of calcium signals in haematopoietic systems in response to the stimulation of immune receptors. PLCgamma is unique amongst phospholipases in that it is tightly regulated by the action of a number of tyrosine kinases. It is itself directly phosphorylated on a number of tyrosines and contains several domains through which it can interact with other signalling proteins and lipid products such as phosphatidylinositol 3,4,5-trisphosphate. Through this network of interactions, PLCgamma is activated and recruited to its substrate, phosphatidylinositol 4,5-bisphosphate, at the membrane. Both isoforms of PLCgamma, PLCgamma1 and PLCgamma2, are present in haematopoietic cells. The signalling cascade involved in the regulation of these two isoforms varies between cells, though the systems are similar for both PLCgamma1 and PLCgamma2. We will compare these cascades for both PLCgamma1 and PLCgamma2 and discuss possible reasons as to why one form of PLCgamma and not the other is required for signalling in specific haematopoietic cells, including T lymphocytes, B lymphocytes, platelets, and mast cells.
Collapse
Affiliation(s)
- J I Wilde
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | | |
Collapse
|
83
|
Nakamura H, Zarycki J, Sullivan JL, Jung JU. Abnormal T cell receptor signal transduction of CD4 Th cells in X-linked lymphoproliferative syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2657-65. [PMID: 11509608 DOI: 10.4049/jimmunol.167.5.2657] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular basis of X-linked lymphoproliferative (XLP) disease has been attributed to mutations in the signaling lymphocytic activation molecule-associated protein (SAP), an src homology 2 domain-containing intracellular signaling molecule known to interact with the lymphocyte-activating surface receptors signaling lymphocytic activation molecule and 2B4. To investigate the effect of SAP defects on TCR signal transduction, herpesvirus saimiri-immortalized CD4 Th cells from XLP patients and normal healthy individuals were examined for their response to TCR stimulation. CD4 T cells of XLP patients displayed elevated levels of tyrosine phosphorylation compared with CD4 T cells from healthy individuals. In addition, downstream serine/threonine kinases are constitutively active in CD4 T cells of XLP patients. In contrast, TCR-mediated activation of Akt, c-Jun-NH(2)-terminal kinases, and extracellular signal-regulated kinases in XLP CD4 T cells was transient and rapidly diminished when compared with that in control CD4 T cells. Consequently, XLP CD4 T cells exhibited severe defects in up-regulation of IL-2 and IFN-gamma cytokine production upon TCR stimulation and in MLRs. Finally, SAP specifically interacted with a 75-kDa tyrosine-phosphorylated protein upon TCR stimulation. These results demonstrate that CD4 T cells from XLP patients exhibit aberrant TCR signal transduction and that the defect in SAP function is likely responsible for this phenotype.
Collapse
Affiliation(s)
- H Nakamura
- Department of Microbiology and Molecular Genetics, New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA
| | | | | | | |
Collapse
|
84
|
Yu J, Riou C, Davidson D, Minhas R, Robson JD, Julius M, Arnold R, Kiefer F, Veillette A. Synergistic regulation of immunoreceptor signaling by SLP-76-related adaptor Clnk and serine/threonine protein kinase HPK-1. Mol Cell Biol 2001; 21:6102-12. [PMID: 11509653 PMCID: PMC87327 DOI: 10.1128/mcb.21.18.6102-6112.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, the identification of Clnk, a third member of the SLP-76 family of adaptors expressed exclusively in cytokine-stimulated hemopoietic cells, has been reported by us and by others. Like SLP-76 and Blnk, Clnk was shown to act as a positive regulator of immunoreceptor signaling. Interestingly, however, it did not detectably associate with known binding partners of SLP-76, including Vav, Nck, and GADS. In contrast, it became complexed in activated T cells and myeloid cells with an as yet unknown tyrosine-phosphorylated polypeptide of approximately 92 kDa (p92). In order to understand better the function of Clnk, we sought to identify the Clnk-associated p92. Using a yeast two-hybrid screen and cotransfection experiments with Cos-1 cells, evidence was adduced that p92 is HPK-1, a serine/threonine-specific protein kinase expressed in hemopoietic cells. Further studies showed that Clnk and HPK-1 were also associated in hemopoietic cells and that their interaction was augmented by immunoreceptor stimulation. A much weaker association was detected between HPK-1 and SLP-76. Transient transfections in Jurkat T cells revealed that Clnk and HPK-1 cooperated to increase immunoreceptor-mediated activation of the interleukin 2 (IL-2) promoter. Moreover, the ability of Clnk to stimulate IL-2 promoter activity could be blocked by expression of a kinase-defective version of HPK-1. Lastly we found that in spite of the differential ability of Clnk and SLP-76 to bind cellular proteins, Clnk was apt at rescuing immunoreceptor signaling in a Jurkat T-cell variant lacking SLP-76. Taken together, these results show that Clnk physically and functionally interacts with HPK-1 in hemopoietic cells. Moreover, they suggest that Clnk is capable of functionally substituting for SLP-76 in immunoreceptor signaling, albeit by using a distinct set of intracellular effectors.
Collapse
Affiliation(s)
- J Yu
- Laboratory of Molecular Oncology, IRCM, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Magnan A, Di Bartolo V, Mura AM, Boyer C, Richelme M, Lin YL, Roure A, Gillet A, Arrieumerlou C, Acuto O, Malissen B, Malissen M. T cell development and T cell responses in mice with mutations affecting tyrosines 292 or 315 of the ZAP-70 protein tyrosine kinase. J Exp Med 2001; 194:491-505. [PMID: 11514605 PMCID: PMC2193493 DOI: 10.1084/jem.194.4.491] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
After stimulation of the T cell receptor (TCR), the tyrosine residues 292 and 315 in interdomain B of the protein tyrosine kinase ZAP-70 become phosphorylated and plausibly function as docking sites for Cbl and Vav1, respectively. The two latter proteins have been suggested to serve as substrates for ZAP-70 and to fine-tune its function. To address the role of these residues in T cell development and in the function of primary T cells, we have generated mice that express ZAP-70 molecules with Tyr to Phe substitution at position 292 (Y292F) or 315 (Y315F). When analyzed in a sensitized TCR transgenic background, the ZAP-70 Y315F mutation reduced the rate of positive selection and delayed the occurrence of negative selection. Furthermore, this mutation unexpectedly affected the constitutive levels of the CD3-zeta p21 phosphoisoform. Conversely, the ZAP-70 Y292F mutation upregulated proximal events in TCR signaling and allowed more T cells to produce interleukin 2 and interferon gamma in response to a given dose of antigen. The observation that ZAP-70 Y292F T cells have a slower rate of ligand-induced TCR downmodulation suggests that Y292 is likely involved in regulating the duration activated TCR reside at the cell surface. Furthermore, we showed that Y292 and Y315 are dispensable for the TCR-induced tyrosine phosphorylation of Cbl and Vav1, respectively. Therefore, other molecules present in the TCR signaling cassette act as additional adaptors for Cbl and Vav1. The present in vivo analyses extend previous data based on transformed T cell lines and suggest that residue Y292 plays a role in attenuation of TCR signaling, whereas residue Y315 enhances ZAP-70 function.
Collapse
Affiliation(s)
- Antoine Magnan
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | | | - Anne-Marie Mura
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Claude Boyer
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Mireille Richelme
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Yea-Lih Lin
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Agnès Roure
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Anne Gillet
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Cécile Arrieumerlou
- Laboratoire d'Immuno-Pharmacologie, CNRS UPR 415, Institute Cochin de Génètique Moléculaire, 75014 Paris, France
| | - Oreste Acuto
- Molecular Immunology Unit, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
86
|
Lin J, Weiss A. Identification of the minimal tyrosine residues required for linker for activation of T cell function. J Biol Chem 2001; 276:29588-95. [PMID: 11395491 DOI: 10.1074/jbc.m102221200] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The linker for activation of T cells (LAT) is essential for signaling through the T cell receptor (TCR). Following TCR stimulation, LAT becomes tyrosine-phosphorylated, creating docking sites for other signaling proteins such as phospholipase C-gamma(1) (PLC-gamma(1)), Grb2, and Gads. In this study, we have attempted to identify the critical tyrosine residues in LAT that mediate TCR activation-induced mobilization of intracellular Ca(2+) and activation of the MAP kinase Erk2. By using the LAT-deficient Jurkat derivative, J.CaM2, stable cell lines were established expressing various tyrosine mutants of LAT. We show that three specific tyrosine residues (Tyr(132), Tyr(171), and Tyr(191)) are necessary and sufficient to achieve a Ca(2+) flux following TCR stimulation. These tyrosine residues function by reconstituting PLC-gamma(1) phosphorylation and recruitment to LAT. However, these same tyrosines can only partially reconstitute Erk activation. Full reconstitution of Erk requires two additional tyrosine residues (Tyr(110) and Tyr(226)), both of which have the Grb2-binding motif YXN. This reconstitution of Erk activation requires that the critical tyrosine residues be on the same molecule of LAT, suggesting that a single LAT molecule nucleates multiple protein-protein interactions required for optimal signal transduction.
Collapse
Affiliation(s)
- J Lin
- Department of Medicine, Biomedical Sciences Graduate Program, Howard Hughes Medical Institute, University of California, San Francisco, California 94143-0795, USA
| | | |
Collapse
|
87
|
Jumaa H, Mitterer M, Reth M, Nielsen PJ. The absence of SLP65 and Btk blocks B cell development at the preB cell receptor-positive stage. Eur J Immunol 2001; 31:2164-9. [PMID: 11449370 DOI: 10.1002/1521-4141(200107)31:7<2164::aid-immu2164>3.0.co;2-s] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mice deficient for the adapter protein SLP65 (BLNK) show a partial block in early B cell development, reduced numbers of mature B cells in the periphery, an absence of B1 cells and a reduction of IgM and IgG3 serum immunoglobulin levels. A strikingly similar phenotype is observed in Btk-deficient mice. To investigate the consequences of mutations in both SLP65 and Btk, we generated SLP65/ Btk double-mutant mice by crossing the single-mutant mice. Analysis of the double-mutant mice reveals a much more severe defect in B cell development. B cells in the SLP65/Btk double-mutant mice are arrested at the preB cell stage and, surprisingly, express the preB cell receptor. Normally, preB cell receptor expression in wild-type mice is restricted to a very small fraction of B cells making it difficult to identify these cells in the bone marrow. Together, the data demonstrate the synergistic role of SLP65 and Btk in B cell development and describe a situation where large numbers of preB cell receptor-positive cells accumulate in the bone marrow and spleen.
Collapse
Affiliation(s)
- H Jumaa
- Molecular Immunology, Biologie III, University of Freiburg and Max Planck Institute for Immunobiology, Freiburg, Germany.
| | | | | | | |
Collapse
|
88
|
Huynh T, Würch A, Bruyns E, Korinek V, Schraven B, Eichmann K. Developmentally regulated expression of the transmembrane adaptor protein trim in fetal and adult T cells. Scand J Immunol 2001; 54:146-54. [PMID: 11439161 DOI: 10.1046/j.1365-3083.2001.00953.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
TRIM is a recently identified transmembrane adaptor protein which is exclusively expressed in T cells and natural killer (NK) cells. In peripheral blood T cells TRIM has been reported to coprecipitate, comodulate, and cocap with the T-cell receptor (TCR), suggesting that it is an integral component of the TCR/CD3/zeta complex. Here we investigate the expression of TRIM mRNAs and proteins in developing thymocytes. Two splicing isoforms with open reading frames are observed, namely a full length (TRIM) and a truncated version (DeltaTM-TRIM). The latter lacks the extracellular and transmembrane domains as well as the first 10 cytoplasmic aminoacids and is significantly expressed only as mRNA in early fetal thymocytes. TRIM mRNA is detected in all mainstream thymocyte subsets in adult mice. TRIM protein, in contrast, first appears in the DN2 (CD44+ CD25+) subset of adult double negative (DN) cells. In fetal thymocyte development, TRIM mRNA is seen from dg 14.5 onwards whereas TRIM protein appears first on dg 16.5. In contrast to the adult, the TRIM protein was seen in a subset of fetal DN1 cells. In fetal and adult thymocytes, TRIM protein expression was highest in DN2, DN3 (CD44-25+) and in DP cells, compatible with a functional role at or around phases of thymic selection.
Collapse
Affiliation(s)
- T Huynh
- Max-Planck-Institut für Immunbiologie, D-79108 Freiburg, Immunomodulation Laboratory, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Pfrepper KI, Marie-Cardine A, Simeoni L, Kuramitsu Y, Leo A, Spicka J, Hilgert I, Scherer J, Schraven B. Structural and functional dissection of the cytoplasmic domain of the transmembrane adaptor protein SIT (SHP2-interacting transmembrane adaptor protein). Eur J Immunol 2001; 31:1825-36. [PMID: 11433379 DOI: 10.1002/1521-4141(200106)31:6<1825::aid-immu1825>3.0.co;2-v] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
SIT (SHP2-interacting transmembrane adaptor protein) is a recently identified transmembrane adaptor protein, which is expressed in lymphocytes. Its structural properties, in particular the presence of five potential tyrosine phosphorylation sites, suggest involvement of SIT in TCR-mediated recruitment of SH2 domain-containing intracellular signaling molecules to the plasma membrane. Indeed, it has recently been demonstrated that SIT inducibly interacts with the SH2-containing protein tyrosine phosphatase 2 (SHP2) via an immunoreceptor tyrosine-based inhibition motif (ITIM). Moreover, SIT is capable to inhibit TCR-mediated signals proximal of activation of protein kinase C. However, inhibition of T cell activation by SIT occurs independently of SHP2 binding. The present study was performed to further characterize the molecular interaction between SIT and intracellular effector molecules and to identify the protein(s) mediating its inhibitory function. We demonstrate that SIT not only interacts with SHP2 but also with the adaptor protein Grb2 via two consensus YxN motifs. However, mutation of both Grb2-binding sites also does not influence the inhibitory function of SIT. In contrast, mutation of the tyrosine-based signaling motif Y(168) ASV completely abrogates the ability of SIT to inhibit T cell activation. Co-precipitation experiments revealed that the tyrosine kinase p50(csk) could represent the negative regulatory effector molecule that binds to this motif.
Collapse
Affiliation(s)
- K I Pfrepper
- Immunomodulation Laboratory of the Institute for Immunology, Ruprecht-Karls University Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Adapter proteins are well recognised as important molecular switches connecting immunoreceptors with intracellular signalling pathways. However, recent data suggest that homeostasis within the lymphatic system also depends on the coordinated activities of negative regulatory adapter proteins. These prevent activation of lymphocytes in the absence of externally applied signals and regulate termination/limitation of ongoing immune responses via different mechanisms.
Collapse
Affiliation(s)
- A Leo
- Blood Bank and Immunomodulation Laboratory, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.
| | | |
Collapse
|
91
|
Abstract
The function of leukocytes is regulated by the integration of positive and negative signals received through cell surface receptors. Related receptors with similar extracellular domains and often binding the same ligands can transmit either inhibitory or activating signals. Studies are beginning to reveal how these 'paired receptors' control immune functions.
Collapse
Affiliation(s)
- L L Lanier
- Department of Microbiology and Immunology and the Cancer Research Institute, University of California (San Francisco), 513 Parnassus Avenue, Box 0414, 94143-0414, San Francisco, CA, USA.
| |
Collapse
|
92
|
Baker JE, Majeti R, Tangye SG, Weiss A. Protein tyrosine phosphatase CD148-mediated inhibition of T-cell receptor signal transduction is associated with reduced LAT and phospholipase Cgamma1 phosphorylation. Mol Cell Biol 2001; 21:2393-403. [PMID: 11259588 PMCID: PMC86872 DOI: 10.1128/mcb.21.7.2393-2403.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigate the role of the receptor-like protein tyrosine phosphatase CD148 in T-cell activation. Overexpression of CD148 in the Jurkat T-cell line inhibited activation of the transcription factor nuclear factor of activated T cells following T-cell receptor (TCR) stimulation but not following stimulation through a heterologously expressed G protein-coupled receptor, the human muscarinic receptor subtype 1. Using a tetracycline-inducible expression system, we show that the TCR-mediated activation of both the Ras and calcium pathways was inhibited by expression of CD148 at levels that approximate those found in activated primary T cells. These effects were dependent on the phosphatase activity of CD148. Analysis of TCR-induced protein tyrosine phosphorylation demonstrated that most phosphoproteins were unaffected by CD148 expression. However, phospholipase Cgamma1 (PLCgamma1) and LAT were strikingly hypophosphorylated in CD148-expressing cells following TCR stimulation, whereas the phosphorylation levels of Slp-76 and Itk were modestly reduced. Based on these results, we propose that CD148 negatively regulates TCR signaling by interfering with the phosphorylation and function of PLCgamma1 and LAT.
Collapse
Affiliation(s)
- J E Baker
- Department of Medicine and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143-0795, USA
| | | | | | | |
Collapse
|