51
|
Han LW, Gao C, Mao Q. An update on expression and function of P-gp/ABCB1 and BCRP/ABCG2 in the placenta and fetus. Expert Opin Drug Metab Toxicol 2018; 14:817-829. [PMID: 30010462 DOI: 10.1080/17425255.2018.1499726] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION P-glycoprotein (P-gp)/ABCB1 and breast cancer resistance protein (BCRP)/ABCG2 are highly expressed in the placenta and fetus throughout gestation and can modulate exposure and toxicity of drugs and xenobiotics to the vulnerable fetus during the sensitive times of growth and development. We aim to provide an update on current knowledge on placental and fetal expressions of the two transporters in different species, and to provide insight on interpreting transporter expression and fetal exposure relative to the concept of fraction of drug transported. Areas covered: Comprehensive literature review through PubMed (primarily from July 2010 to February 2018) on P-gp and BCRP expression and function in the placenta and fetus of primarily human, mouse, rat, and guinea pig. Expert opinion: While there are many commonalities in the expression and function of P-gp and BCRP in the placenta and fetal tissues across species, there are distinct differences in expression levels and temporal changes. Further studies are needed to quantify protein abundance of these transporters and functionally assess their activities at various gestational stages. Combining the knowledge of interspecies differences and the concept of fraction of drug transported, we may better predict the magnitude of impact these transporters have on fetal drug exposure.
Collapse
Affiliation(s)
- Lyrialle W Han
- a Department of Pharmaceutics, School of Pharmacy , University of Washington , Seattle , WA , USA
| | - Chunying Gao
- a Department of Pharmaceutics, School of Pharmacy , University of Washington , Seattle , WA , USA
| | - Qingcheng Mao
- a Department of Pharmaceutics, School of Pharmacy , University of Washington , Seattle , WA , USA
| |
Collapse
|
52
|
Sezgin-Bayindir Z, Elcin AE, Parmaksiz M, Elcin YM, Yuksel N. Investigations on clonazepam-loaded polymeric micelle-like nanoparticles for safe drug administration during pregnancy. J Microencapsul 2018; 35:149-164. [PMID: 29493364 DOI: 10.1080/02652048.2018.1447615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Medication during pregnancy is often a necessity for women to treat their acute or chronic diseases. The goal of this study is to evaluate the potential of micelle-like nanoparticles (MNP) for providing safe drug usage in pregnancy and protect both foetus and mother from medication side effects. Clonazepam-loaded MNP were prepared from copolymers [polystyrene-poly(acrylic acid) (PS-PAA), poly(ethylene glycol)-b-poly(lactic acid) (PEG-PLA) and distearyl-sn-glycero-3-phosphoethanolamine-N-[methoxy-poly(ethylene glycol) (PEG-DSPE)] with varying monomer ratios and their drug-loading efficiency, drug release ratio, particle size, surface charge and morphology were characterised. The cellular transport and cytotoxicity experiments were conducted on clonazepam and MNP formulations using placenta-choriocarcinoma-BeWo and brain-endothelial-bEnd3 cells. Clonazepam-loaded PEG5000-PLA4500 MNP reduced the drug transport through BeWo cells demonstrating that MNP may lower foetal drug exposure, thus reduce the drug side effects. However, lipofectamine modified MNP improved the transport of clonazepam and found to be promising for brain and in-utero-specific drug treatment.
Collapse
Affiliation(s)
- Zerrin Sezgin-Bayindir
- a Department of Pharmaceutical Technology , Ankara University , Tandogan, Ankara , Turkey
| | - Ayse Eser Elcin
- b Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Stem Cell Institute , Ankara University , Ankara , Turkey
| | - Mahmut Parmaksiz
- b Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Stem Cell Institute , Ankara University , Ankara , Turkey
| | - Yasar Murat Elcin
- b Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Stem Cell Institute , Ankara University , Ankara , Turkey
| | - Nilufer Yuksel
- a Department of Pharmaceutical Technology , Ankara University , Tandogan, Ankara , Turkey
| |
Collapse
|
53
|
Müller EK, Gräfe C, Wiekhorst F, Bergemann C, Weidner A, Dutz S, Clement JH. Magnetic Nanoparticles Interact and Pass an In Vitro Co-Culture Blood-Placenta Barrier Model. NANOMATERIALS 2018; 8:nano8020108. [PMID: 29443880 PMCID: PMC5853739 DOI: 10.3390/nano8020108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/12/2022]
Abstract
Magnetic nanoparticles are interesting tools for biomedicine. Before application, critical prerequisites have to be fulfilled. An important issue is the contact and interaction with biological barriers such as the blood-placenta barrier. In order to study these processes in detail, suitable in vitro models are needed. For that purpose a blood-placenta barrier model based on the trophoblast-like cell line BeWo and primary placenta-derived pericytes was established. This model was characterized by molecular permeability, transepithelial electrical resistance and cell-cell-contact markers. Superparamagnetic iron oxide nanoparticles (SPIONs) with cationic, anionic or neutral surface charge were applied. The localization of the nanoparticles within the cells was illustrated by histochemistry. The time-dependent passage of the nanoparticles through the BeWo/pericyte barrier was measured by magnetic particle spectroscopy and atomic absorption spectroscopy. Cationically coated SPIONs exhibited the most extensive interaction with the BeWo cells and remained primarily in the BeWo/pericyte cell layer. In contrast, SPIONs with neutral and anionic surface charge were able to pass the cell layer to a higher extent and could be detected beyond the barrier after 24 h. This study showed that the mode of SPION interaction with and passage through the in vitro blood-placenta barrier model depends on the surface charge and the duration of treatment.
Collapse
Affiliation(s)
- Elena K Müller
- Department Hematology and Oncology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Christine Gräfe
- Department Hematology and Oncology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt Berlin, Abbestr. 2-12, D-10587 Berlin, Germany.
| | | | - Andreas Weidner
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Gustav-Kirchhoff-Strasse 2, D-98693 Ilmenau, Germany.
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, Gustav-Kirchhoff-Strasse 2, D-98693 Ilmenau, Germany.
| | - Joachim H Clement
- Department Hematology and Oncology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| |
Collapse
|
54
|
Pietroiusti A, Vecchione L, Malvindi MA, Aru C, Massimiani M, Camaioni A, Magrini A, Bernardini R, Sabella S, Pompa PP, Campagnolo L. Relevance to investigate different stages of pregnancy to highlight toxic effects of nanoparticles: The example of silica. Toxicol Appl Pharmacol 2018; 342:60-68. [PMID: 29407774 DOI: 10.1016/j.taap.2018.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/27/2018] [Accepted: 01/29/2018] [Indexed: 11/26/2022]
Abstract
Amorphous silica nanoparticles (SiO2NPs) have been recognized as safe nanomaterial, hence their use in biomedical applications has been explored. Data, however, suggest potential toxicity of SiO2 NPs in pregnant individuals. However, no studies relating nanoparticle biokinetic/toxicity to the different gestational stages are currently available. In this respect, we have investigated the possible embryotoxic effects of three-size and two-surface functionalization SiO2NPs in mice. After intravenous administration of different concentrations at different stages of pregnancy, clinical and histopathological evaluations, performed close to parturition, did not show signs of maternal toxicity, nor effects on placental/fetal development, except for amino-functionalized 25 nm NPs. Biodistribution was studied by ICP-AES 24 h after administration, and demonstrates that all particles distributed to placenta and conceptuses/fetuses, although size, surface charge and gestational stage influenced biodistribution. Our data suggest the need of comprehensive toxicological studies, covering the entire gestation to reliably assess the safety of nanoparticle exposure during pregnancy.
Collapse
Affiliation(s)
- Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
| | - Lucia Vecchione
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy; Department of Physics, University of Calabria, Via P. Bucci, Cubo 31 C, Arcavacata di Rende, CS 87036, Italy
| | - Maria Ada Malvindi
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia, Via Barsanti, Arnesano, Lecce 73010, Italy
| | - Cinzia Aru
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
| | - Micol Massimiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
| | - Antonella Camaioni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
| | - Roberta Bernardini
- Animal Technology Station, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Stefania Sabella
- Italian Institute of Technology, D3_Pharma Chemistry, Via Morego, Genova, GE 16146, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia, Via Barsanti, Arnesano, Lecce 73010, Italy; Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy.
| |
Collapse
|
55
|
Russo FM, Mian P, Krekels EH, Van Calsteren K, Tibboel D, Deprest J, Allegaert K. Pregnancy affects the pharmacokinetics of sildenafil and its metabolite in the rabbit. Xenobiotica 2018; 49:98-105. [PMID: 29278046 DOI: 10.1080/00498254.2017.1422217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. There is growing interest in the use of sildenafil during pregnancy for various maternal and fetal conditions. This study aims to investigate the effect of pregnancy on the maternal pharmacokinetics (PK) of sildenafil and its main metabolite desmethylsildenafil in rabbits. Using NONMEM, population PK modeling was performed based on plasma samples from 31 rabbits of whom 15 were pregnant and 16 were not. All received a single subcutaneous sildenafil dose of 10 mg/kg. One sample was obtained per rabbit at either 30, 60, 120, 360, 720 or 1320 min after sildenafil administration. 2. A two- and one-compartment PK-model best described the data for sildenafil and desmethylsildenafil, respectively. Compared to non-pregnant rabbits, the central and peripheral volume of distribution and inter-compartmental clearance of sildenafil were lower in pregnant rabbits [32.1 versus 12.2 L, 110 versus 44.4 L and 25.5 versus 12.1 L/h; all p < 0.05]. The formation clearance from sildenafil to desmethylsildenafil was also reduced during pregnancy [13.3 versus 7.8 L/h; p < 0.05]. 3. In contrast, the elimination clearance of desmethylsildenafil, was higher in pregnancy [73.5 versus 116. 9; p < 0.05]. In rabbits, pregnancy impacts PK parameters of sildenafil and its metabolite, leading to an increased peak concentration and 24 h exposure for sildenafil and a decreased 24 h exposure for desmethylsildenafil.
Collapse
Affiliation(s)
- Francesca M Russo
- a Cluster Woman and Child, Department of Development and Regeneration, Biomedical Sciences, KU Leuven , Leuven , Belgium.,b Department of Obstetrics and Gynecology , University Hospitals Leuven , Leuven , Belgium
| | - Paola Mian
- c Intensive Care and Department of Paediatric Surgery , Erasmus MC Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Elke H Krekels
- d Division of Pharmacology , Leiden Academic Centre for Drug Research, Leiden University , Leiden , The Netherlands , and
| | - Kristel Van Calsteren
- a Cluster Woman and Child, Department of Development and Regeneration, Biomedical Sciences, KU Leuven , Leuven , Belgium.,b Department of Obstetrics and Gynecology , University Hospitals Leuven , Leuven , Belgium
| | - Dick Tibboel
- c Intensive Care and Department of Paediatric Surgery , Erasmus MC Sophia Children's Hospital , Rotterdam , The Netherlands
| | - Jan Deprest
- a Cluster Woman and Child, Department of Development and Regeneration, Biomedical Sciences, KU Leuven , Leuven , Belgium.,b Department of Obstetrics and Gynecology , University Hospitals Leuven , Leuven , Belgium.,e Department of Obstetrics and Gynecology , Institute of Women's Health, University College London , London , UK
| | - Karel Allegaert
- a Cluster Woman and Child, Department of Development and Regeneration, Biomedical Sciences, KU Leuven , Leuven , Belgium.,c Intensive Care and Department of Paediatric Surgery , Erasmus MC Sophia Children's Hospital , Rotterdam , The Netherlands
| |
Collapse
|
56
|
Blundell C, Yi YS, Ma L, Tess ER, Farrell MJ, Georgescu A, Aleksunes LM, Huh D. Placental Drug Transport-on-a-Chip: A Microengineered In Vitro Model of Transporter-Mediated Drug Efflux in the Human Placental Barrier. Adv Healthc Mater 2018; 7:10.1002/adhm.201700786. [PMID: 29121458 PMCID: PMC5793852 DOI: 10.1002/adhm.201700786] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/22/2017] [Indexed: 12/16/2022]
Abstract
The current lack of knowledge about the effect of maternally administered drugs on the developing fetus is a major public health concern worldwide. The first critical step toward predicting the safety of medications in pregnancy is to screen drug compounds for their ability to cross the placenta. However, this type of preclinical study has been hampered by the limited capacity of existing in vitro and ex vivo models to mimic physiological drug transport across the maternal-fetal interface in the human placenta. Here the proof-of-principle for utilizing a microengineered model of the human placental barrier to simulate and investigate drug transfer from the maternal to the fetal circulation is demonstrated. Using the gestational diabetes drug glyburide as a model compound, it is shown that the microphysiological system is capable of reconstituting efflux transporter-mediated active transport function of the human placental barrier to limit fetal exposure to maternally administered drugs. The data provide evidence that the placenta-on-a-chip may serve as a new screening platform to enable more accurate prediction of drug transport in the human placenta.
Collapse
Affiliation(s)
- Cassidy Blundell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, PA
| | - Yoon-Suk Yi
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, PA
| | - Lin Ma
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, PA
| | - Emily R. Tess
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, PA
| | - Megan J. Farrell
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, PA
| | - Andrei Georgescu
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, PA
| | - Lauren M. Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ
| | - Dongeun Huh
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, PA
| |
Collapse
|
57
|
Valero L, Alhareth K, Gil S, Simasotchi C, Roques C, Scherman D, Mignet N, Fournier T, Andrieux K. Assessment of dually labelled PEGylated liposomes transplacental passage and placental penetration using a combination of two ex-vivo human models: the dually perfused placenta and the suspended villous explants. Int J Pharm 2017; 532:729-737. [DOI: 10.1016/j.ijpharm.2017.07.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
|
58
|
Kim SC, Lee JE, Kang SS, Yang HS, Kim SS, An BS. The regulation of oxytocin and oxytocin receptor in human placenta according to gestational age. J Mol Endocrinol 2017; 59:235-243. [PMID: 28694300 DOI: 10.1530/jme-16-0223] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 01/03/2023]
Abstract
Oxytocin (OXT) is a peptide hormone that plays a central role in the regulation of parturition and lactation. OXT signaling is mediated by OXT receptor (OXTR), which shows species- and tissue-specific expressions and gene regulation. In the present study, we examined the synthesis of OXT and OXTR in human placenta tissue according to gestational age. A total of 48 placentas were divided into early preterm, late preterm and term groups depending on gestational age, and expression of OXT and OXTR was evaluated. First, OXT and OXTR mRNA and protein were detected in normal placenta tissue via Q-PCR, Dot-blot and Western blot assay. Both OXT and OXTR levels in normal placenta increased gradually in the late stage of pregnancy, suggesting that local OXT may play a critical role in the function of the placenta. To determine the regulatory mechanism of OXT, placental BeWo cells were administrated estrogen (E2) or progesterone (P4), and expression of OXT and OXTR was tested. The mRNA and protein levels of OXT and OXTR were upregulated by E2 but blocked by co-treatment with P4 In order to confirm the estrogen receptor (ESR)-mediated signaling, we administrated ESR antagonists together with E2 to BeWo cells. As a result, both OXT and OXTR were significantly altered by ESR1 antagonist (MPP) while moderately regulated by ESR2 antagonist (PHTPP). These results suggest that OXT and OXTR are controlled mainly by E2 in the placenta via ESR1 and thus may play physiological functions in the human placenta during the late stage of pregnancy.
Collapse
Affiliation(s)
- Seung-Chul Kim
- Department of Obstetrics and GynecologyBiomedical Research Institute, Pusan National University School of Medicine, Pusan, Korea
| | - Jae-Eon Lee
- Department of Biomaterials ScienceCollege of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Pusan, Korea
| | - Seong Soo Kang
- Department of Veterinary SurgeryCollege of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Hoe-Saeng Yang
- Department of Obstetrics and GynecologyMedical College, Dongguk University, Jung-gu, Korea
| | - Sun Suk Kim
- Department of Obstetrics and GynecologyBiomedical Research Institute, Pusan National University School of Medicine, Pusan, Korea
| | - Beum-Soo An
- Department of Biomaterials ScienceCollege of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Pusan, Korea
| |
Collapse
|
59
|
Souza CA, Silva JF, Silva CL, Ocarino NM, Serakides R. Thyroid hormones affect decidualization and angiogenesis in the decidua and metrial gland of rats. PESQUISA VETERINARIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017000900017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ABSTRACT: This study aimed to evaluate the effects of thyroid hormone on the decidua and metrial gland of rats and to examine the expression of angiogenic factors. 72 adult, female rats were divided into hypothyroid, T4-treated2, and control groups. At 10, 14 and 19 days of gestation (DG), the decidua and metrial gland were collected for histomorphometric and immunohistochemical evaluation of the expression of VEGF, Flk-1 and Tie-2. Hypothyroidism reduced the area of the decidua at 10 and 19 DG. Furthermore, VEGF was increased at 10 and 14 DG, and Flk-1 only at 14 DG, but both was reduced at 19 DG in the metrial gland without significantly changing the area occupied by blood vessels. Rats treated with T4 showed an increase in the decidua blood vessels at 10 and 19 DG. However, at 10 DG, excess T4 resulted in increased of Flk-1 in the decidua and metrial gland. Hypothyroidism increased the Tie-2 at 10 and 19 DG in the decidua and metrial gland. In conclusion, hypothyroidism reduces the area of the decidua and increases the expression of VEGF, Tie-2 and Flk-1. The excess of T4 promotes tissue angiogenesis by increasing the number of vessels in the decidua because of the increased expression of Flk-1.
Collapse
|
60
|
Bidarimath M, Tayade C. Pregnancy and spontaneous fetal loss: A pig perspective. Mol Reprod Dev 2017; 84:856-869. [PMID: 28661560 DOI: 10.1002/mrd.22847] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Pigs have a unique, non-invasive epitheliochorial placenta where maternal and fetal layers lay in apposition. Indentation of fetal capillaries into the trophoblasts and maternal capillaries into the uterine epithelium reduce the distance between the fetal and maternal blood, ensuring nutrient transfer for proper conceptus development. Another unique feature of pig pregnancy is conceptus-mediated immune cell enrichment during the early stages of conceptus attachment (around gestation Day 15). This period coincides with the development of vasculature networks at the maternal-fetal interface, which is critical for successful conceptus growth. Specific chemokines, their receptors, and chemokine decoy receptor networks coordinate this immune cell enrichment and the positioning at the maternal-fetal interface. The recruited immune cells, in turn, adopt a specialized phenotype to support key processes of maternal-fetal adaptations, including tolerance to the semi-allogeneic fetus and supporting vascularization. Disturbance in coordinated cross talk between the conceptus and maternal endometrium is an important mechanism associated with spontaneous fetal loss. The exact mechanism of fetal loss is still not yet identified, although research in the last two decades point to various factors including genetics, nutrition, uterine capacity, placental efficiency, and imbalanced immune factors at the maternal-fetal interface. In this review, we summarize some of the recent advances in endometrial immune cell functions and their regulation. We also provide insights into endometrial/placental transcriptome, microRNA biology, and extravesicular transport across the maternal-fetal interface, as well as their potential implications in porcine pregnancy success or failure.
Collapse
Affiliation(s)
- Mallikarjun Bidarimath
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
61
|
Whitworth KM, Prather RS. Gene editing as applied to prevention of reproductive porcine reproductive and respiratory syndrome. Mol Reprod Dev 2017; 84:926-933. [DOI: 10.1002/mrd.22811] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/23/2017] [Accepted: 04/03/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | - Randall S. Prather
- Division of Animal Science; University of Missouri-Columbia; Columbia Missouri
| |
Collapse
|
62
|
Mikkelsen E, Lauridsen H, Nielsen PM, Qi H, Nørlinger T, Andersen MD, Uldbjerg N, Laustsen C, Sandager P, Pedersen M. The chinchilla as a novel animal model of pregnancy. ROYAL SOCIETY OPEN SCIENCE 2017; 4:161098. [PMID: 28484627 PMCID: PMC5414264 DOI: 10.1098/rsos.161098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Several parameters are important when choosing the most appropriate animal to model human obstetrics, including gestation period, number of fetuses per gestation and placental structure. The domesticated long-tailed chinchilla (Chinchilla lanigera) is a well-suited and appropriate animal model of pregnancy that often will carry only one offspring and has a long gestation period of 105-115 days. Furthermore, the chinchilla placenta is of the haemomonochorial labyrinthine type and is therefore comparable to the human villous haemomonochorial placenta. This proof-of-concept study demonstrated the feasibility in laboratory settings, and demonstrated the potential of the pregnant chinchilla as an animal model for obstetric research and its potential usefulness for non-invasive measurements in the placenta. We demonstrate measurements of the placental and fetal metabolism (demonstrated in vivo by hyperpolarized MRI and in vitro by qPCR analyses), placental vessels (demonstrated ex vivo by contrast-enhanced CT angiography) and overall anatomy (demonstrated in vivo by whole-body CT).
Collapse
Affiliation(s)
- Emmeli Mikkelsen
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Henrik Lauridsen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Thomas Nørlinger
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Maria Dahl Andersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Niels Uldbjerg
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Puk Sandager
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
63
|
Colostrum proinflammatory cytokines as biomarkers of bovine immune response to bovine tuberculosis (bTB). Microb Pathog 2017; 103:57-64. [DOI: 10.1016/j.micpath.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 11/21/2022]
|
64
|
Changes in the mRNA expression of structural proteins, hormone synthesis and secretion from bovine placentome sections after DDT and DDE treatment. Toxicology 2017; 375:1-9. [DOI: 10.1016/j.tox.2016.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/14/2016] [Accepted: 11/25/2016] [Indexed: 01/27/2023]
|
65
|
Korten I, Ramsey K, Latzin P. Air pollution during pregnancy and lung development in the child. Paediatr Respir Rev 2017; 21:38-46. [PMID: 27665510 DOI: 10.1016/j.prrv.2016.08.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/11/2016] [Indexed: 01/19/2023]
Abstract
Air pollution exposure has increased extensively in recent years and there is considerable evidence that exposure to particulate matter can lead to adverse respiratory outcomes. The health impacts of exposure to air pollution during the prenatal period is especially concerning as it can impair organogenesis and organ development, which can lead to long-term complications. Exposure to air pollution during pregnancy affects respiratory health in different ways. Lung development might be impaired by air pollution indirectly by causing lower birth weight, premature birth or disturbed development of the immune system. Exposure to air pollution during pregnancy has also been linked to decreased lung function in infancy and childhood, increased respiratory symptoms, and the development of childhood asthma. In addition, impaired lung development contributes to infant mortality. The mechanisms of how prenatal air pollution affects the lungs are not fully understood, but likely involve interplay of environmental and epigenetic effects. The current epidemiological evidence on the effect of air pollution during pregnancy on lung function and children's respiratory health is summarized in this review. While evidence for the adverse effects of prenatal air pollution on lung development and health continue to mount, rigorous actions must be taken to reduce air pollution exposure and thus long-term respiratory morbidity and mortality.
Collapse
Affiliation(s)
- Insa Korten
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Switzerland; University Children's Hospital (UKBB), Basel
| | - Kathryn Ramsey
- Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, USA; Telethon Kids Institute, University of Western Australia, Australia
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Switzerland.
| |
Collapse
|
66
|
da Anunciação ARA, Mess AM, Orechio D, Aguiar BA, Favaron PO, Miglino MA. Extracellular matrix in epitheliochorial, endotheliochorial and haemochorial placentation and its potential application for regenerative medicine. Reprod Domest Anim 2016; 52:3-15. [DOI: 10.1111/rda.12868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- ARA da Anunciação
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - AM Mess
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - D Orechio
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - BA Aguiar
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - PO Favaron
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| | - MA Miglino
- School of Veterinary Medicine and Animal Science; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
67
|
Gather T, Walter S, Todt D, Pfaender S, Brown RJP, Postel A, Becher P, Moritz A, Hansmann F, Baumgaertner W, Feige K, Steinmann E, Cavalleri JMV. Vertical transmission of hepatitis C virus-like non-primate hepacivirus in horses. J Gen Virol 2016; 97:2540-2551. [PMID: 27461949 DOI: 10.1099/jgv.0.000561] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-primate hepacivirus (NPHV), a recently discovered hepatotropic virus infecting horses, is phylogenetically the closest known homologue of hepatitis C virus (HCV). The main route for acquiring HCV infection in childhood is vertical transmission. However, nothing is known about the natural mode of transmission for NPHV. To investigate the possibility of vertically transmitted NPHV infection in horses, 20 Thoroughbred broodmares and their foals were monitored during foaling season 2015 until 6 months post-partum. Prepartal serum was taken from the mares, and during foaling umbilical cord blood and colostrum samples were collected. Postnatal serum samples were taken from the foals after delivery. In addition, serum was taken at 3 and 6 months after foaling from all mares and foals. Samples were analysed for the presence of NPHV RNA by quantitative real-time PCR and for the presence of anti-NPHV NS3 antibodies by luciferase immunoprecipitation system. Identified NPHV isolates were sequenced and phylogenetic analysis of the viral glycoproteins was used to track the course of naturally occurring infections and the circulation of distinct isolates within the herd. At parturition, 16 mares were seropositive, including four viraemic mares. Vertical transmission occurred in one of these four mare-foal pairs. Interestingly, NPHV isolates of newly infected foals and mares after 3 and 6 months cluster in their respective pasture herds suggesting another horizontal route of transmission.
Collapse
Affiliation(s)
- Theresa Gather
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany
| | - Stephanie Walter
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Daniel Todt
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Stephanie Pfaender
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Richard J P Brown
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Alexander Postel
- Department of Infectious Diseases, Institute for Virology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | - Paul Becher
- Department of Infectious Diseases, Institute for Virology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | - Andreas Moritz
- Small Animal Clinic, Department of Veterinary Clinical Sciences, Justus-Liebig-University, Frankfurter Straße 108, 35392 Giessen, Germany
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | - Wolfgang Baumgaertner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany
| | - Eike Steinmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Jessika-M V Cavalleri
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany
| |
Collapse
|
68
|
Valentino SA, Tarrade A, Aioun J, Mourier E, Richard C, Dahirel M, Rousseau-Ralliard D, Fournier N, Aubrière MC, Lallemand MS, Camous S, Guinot M, Charlier M, Aujean E, Al Adhami H, Fokkens PH, Agier L, Boere JA, Cassee FR, Slama R, Chavatte-Palmer P. Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits. Part Fibre Toxicol 2016; 13:39. [PMID: 27460165 PMCID: PMC4962477 DOI: 10.1186/s12989-016-0151-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Airborne pollution is a rising concern in urban areas. Epidemiological studies in humans and animal experiments using rodent models indicate that gestational exposure to airborne pollution, in particular diesel engine exhaust (DE), reduces birth weight, but effects depend on exposure duration, gestational window and nanoparticle (NP) concentration. Our aim was to evaluate the effects of gestational exposure to diluted DE on feto-placental development in a rabbit model. Pregnant females were exposed to diluted (1 mg/m(3)), filtered DE (NP diameter ≈ 69 nm) or clean air (controls) for 2 h/day, 5 days/week by nose-only exposure (total exposure: 20 days in a 31-day gestation). RESULTS DE exposure induced early signs of growth retardation at mid gestation with decreased head length (p = 0.04) and umbilical pulse (p = 0.018). Near term, fetal head length (p = 0.029) and plasma insulin and IGF1 concentrations (p = 0.05 and p = 0.019) were reduced. Placental function was also affected, with reduced placental efficiency (fetal/placental weight) (p = 0.049), decreased placental blood flow (p = 0.009) and fetal vessel volume (p = 0.002). Non-aggregated and "fingerprint" NP were observed at various locations, in maternal blood space, in trophoblastic cells and in the fetal blood, demonstrating transplacental transfer. Adult female offspring were bred with control males. Although fetoplacental biometry was not affected near term, second generation fetal metabolism was modified by grand-dam exposure with decreased plasma cholesterol (p = 0.008) and increased triglyceride concentrations (p = 0.015). CONCLUSIONS Repeated daily gestational exposure to DE at levels close to urban pollution can affect feto-placental development in the first and second generation.
Collapse
Affiliation(s)
- Sarah A. Valentino
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Anne Tarrade
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Josiane Aioun
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Eve Mourier
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Christophe Richard
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Michèle Dahirel
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Delphine Rousseau-Ralliard
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Natalie Fournier
- UFR de Pharmacie, Univ Paris-Sud, EA 4041/4529 Lip (Sys), Châtenay-Malabry, France
- Hôpital Européen Georges Pompidou (AP-HP), Laboratoire de Biochimie, UF Cardio-Vasculaire, Paris, France
| | - Marie-Christine Aubrière
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Marie-Sylvie Lallemand
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Sylvaine Camous
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Marine Guinot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Madia Charlier
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy en Josas, France
| | - Etienne Aujean
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy en Josas, France
| | - Hala Al Adhami
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| | - Paul H. Fokkens
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Lydiane Agier
- Inserm and Univ. Grenoble Alpes, U823, IAB Research Center, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - John A. Boere
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Flemming R. Cassee
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Institute of Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Rémy Slama
- Inserm and Univ. Grenoble Alpes, U823, IAB Research Center, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Pascale Chavatte-Palmer
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
- PremUp Foundation, Paris, France
| |
Collapse
|
69
|
Muoth C, Aengenheister L, Kucki M, Wick P, Buerki-Thurnherr T. Nanoparticle transport across the placental barrier: pushing the field forward! Nanomedicine (Lond) 2016; 11:941-57. [PMID: 26979802 DOI: 10.2217/nnm-2015-0012] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The human placenta is a multifunctional organ constituting the barrier between maternal and fetal tissues. Nanoparticles can cross the placental barrier, and there is increasing evidence that the extent of transfer is dependent on particle characteristics and functionalization. While translocated particles may pose risks to the growing fetus particles may also be engineered to enable new particle-based therapies in pregnancy. In both cases, a comprehensive understanding of nanoparticle uptake, accumulation and translocation is indispensable and requires predictive placental transfer models. We examine and evaluate the current literature to draw first conclusions on the possibility to steer translocation of nanoparticles. In addition, we discuss if current placental models are suitable for nanoparticle transfer studies and suggest strategies to improve their predictability.
Collapse
Affiliation(s)
- Carina Muoth
- Empa-Swiss Federal Laboratories for Materials Science & Technology, St. Gallen, Switzerland
| | - Leonie Aengenheister
- Empa-Swiss Federal Laboratories for Materials Science & Technology, St. Gallen, Switzerland
| | - Melanie Kucki
- Empa-Swiss Federal Laboratories for Materials Science & Technology, St. Gallen, Switzerland
| | - Peter Wick
- Empa-Swiss Federal Laboratories for Materials Science & Technology, St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Empa-Swiss Federal Laboratories for Materials Science & Technology, St. Gallen, Switzerland
| |
Collapse
|
70
|
Grafmueller S, Manser P, Diener L, Diener PA, Maeder-Althaus X, Maurizi L, Jochum W, Krug HF, Buerki-Thurnherr T, von Mandach U, Wick P. Bidirectional Transfer Study of Polystyrene Nanoparticles across the Placental Barrier in an ex Vivo Human Placental Perfusion Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:1280-6. [PMID: 25956008 PMCID: PMC4671239 DOI: 10.1289/ehp.1409271] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 05/05/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Nanoparticle exposure in utero might not be a major concern yet, but it could become more important with the increasing application of nanomaterials in consumer and medical products. Several epidemiologic and in vitro studies have shown that nanoparticles can have potential toxic effects. However, nanoparticles also offer the opportunity to develop new therapeutic strategies to treat specifically either the pregnant mother or the fetus. Previous studies mainly addressed whether nanoparticles are able to cross the placental barrier. However, the transport mechanisms underlying nanoparticle translocation across the placenta are still unknown. OBJECTIVES In this study we examined which transport mechanisms underlie the placental transfer of nanoparticles. METHODS We used the ex vivo human placental perfusion model to analyze the bidirectional transfer of plain and carboxylate modified polystyrene particles in a size range between 50 and 300 nm. RESULTS We observed that the transport of polystyrene particles in the fetal to maternal direction was significantly higher than for the maternal to fetal direction. Regardless of their ability to cross the placental barrier and the direction of perfusion, all polystyrene particles accumulated in the syncytiotrophoblast of the placental tissue. CONCLUSIONS Our results indicate that the syncytiotrophoblast is the key player in regulating nanoparticle transport across the human placenta. The main mechanism underlying this translocation is not based on passive diffusion, but is likely to involve an active, energy-dependent transport pathway. These findings will be important for reproductive toxicology as well as for pharmaceutical engineering of new drug carriers.
Collapse
|
71
|
Modeling maternal fetal RSV F vaccine induced antibody transfer in guinea pigs. Vaccine 2015; 33:6488-92. [DOI: 10.1016/j.vaccine.2015.08.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 12/23/2022]
|
72
|
Abstract
Pregnancy is a complex state where changes in maternal physiology have evolved to favor the development and growth of the placenta and the fetus. These adaptations may affect preexisting disease or result in pregnancy-specific disorders. Similarly, variations in physiology may alter the pharmacokinetics or pharmacodynamics that determines drug dosing and effect. It follows that detailed pharmacologic information is required to adjust therapeutic treatment strategies during pregnancy. Understanding both pregnancy physiology and the gestation-specific pharmacology of different agents is necessary to achieve effective treatment and limit maternal and fetal risk. Unfortunately, most drug studies have excluded pregnant women based on often-mistaken concerns regarding fetal risk. Furthermore, over two-thirds of women receive prescription drugs while pregnant, with treatment and dosing strategies based on data from healthy male volunteers and non-pregnant women, and with little adjustment for the complex physiology of pregnancy and its unique disease states. This review will describe basic concepts in pharmacokinetics and their clinical relevance and highlight the variations in pregnancy that may impact the pharmacokinetic properties of medications.
Collapse
Affiliation(s)
- Maisa Feghali
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Magee Womens Hospital of UPMC, University of Pittsburgh, 300 Halket St, Pittsburgh, PA 15213.
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Steve Caritis
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Magee Womens Hospital of UPMC, University of Pittsburgh, 300 Halket St, Pittsburgh, PA 15213
| |
Collapse
|
73
|
Pozor M. Equine placenta - A clinician's perspective. Part 1: Normal placenta - Physiology and evaluation. EQUINE VET EDUC 2015. [DOI: 10.1111/eve.12499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Pozor
- Department of Large Animal Clinical Sciences; University of Florida College of Veterinary Medicine; Gainesville USA
| |
Collapse
|
74
|
Díaz P, Harris J, Rosario FJ, Powell TL, Jansson T. Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1569-77. [PMID: 26491104 DOI: 10.1152/ajpregu.00385.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
Obesity in pregnancy is associated with increased fetal growth and adiposity, which, in part, is determined by transplacental nutrient supply. Trophoblast uptake and intracellular trafficking of lipids are dependent on placental fatty acid transport proteins (FATP), translocase (FAT/CD36), and fatty acid binding proteins (FABP). We hypothesized that maternal obesity in mice leads to increased placental expression of FAT/CD36, FATPs, and FABPs, and lipid accumulation in the fetal liver. C57/BL6J female mice were fed either a control (C; n = 10) or an obesogenic (OB; n = 10) high-fat, high-sugar diet before mating and throughout pregnancy. At E18.5, placentas and fetal livers were collected. Trophoblast plasma membranes (TPM) were isolated from placental homogenates. Expression of FAT/CD36 and FATP (TPM) and FABP (homogenates) was determined by immunoblotting. Gene expression was assessed by RT-quantitative PCR. Sections of fetal livers were stained for Oil Red O, and lipid droplets were quantified. TPM protein expression of FAT/CD36, FATP 2, and FATP 4 was comparable between C and OB groups. Conversely, TPM FATP 6 expression was increased by 35% in OB compared with C placentas without changes in mRNA expression. FABPs 1, 3-5 and PPARγ were expressed in homogenates, and FABP 3 expression increased 27% in OB compared with C placentas; however, no changes were observed in mRNA expression. Lipid droplet accumulation was 10-fold higher in the livers of fetuses from OB compared with C group. We propose that increased lipid transport capacity in obese mice promotes transplacental fatty acid transport and contributes to excess lipid accumulation in the fetal liver.
Collapse
Affiliation(s)
- Paula Díaz
- Department of Pediatrics, Section of Neonatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Jessica Harris
- Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| | - Theresa L Powell
- Department of Pediatrics, Section of Neonatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| |
Collapse
|
75
|
Placentation, maternal-fetal interface, and conceptus loss in swine. Theriogenology 2015; 85:135-44. [PMID: 26324112 DOI: 10.1016/j.theriogenology.2015.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 12/20/2022]
Abstract
Pregnancy is a delicate yet complex physiological process that requires fine-tuning of many factors (hormones, growth factors, cytokines, and receptors) between the mother and the conceptus to ensure the survival of the conceptus(es) to term. Any disturbance in the maternal-conceptus dialog can have detrimental effects on the affected conceptus or even the outcome of pregnancy as a whole. Being a litter-bearing species, such disruptions can lead to a loss of up to 45% of the totally healthy offspring during early (periattachment) and midgestation to late gestation in pigs. Although the exact mechanism is not entirely understood, several factors have been associated with the fetal loss including but not limited to uterine capacity, placental efficiency, genetics, nutrition, and deficits in vascularization at the maternal-fetal interface. Over the years, we investigated how immune cells are recruited to the porcine maternal-fetal interface and whether they contribute to vascularization. We also delineated how cytokines, chemokines, and cytokine destabilizing factors fine-tune inflammation and whether the cytokine shift from early to midpregnancy exists at the porcine maternal-fetal interface. Finally, we evaluated the role of microRNAs in regulating immune cell recruitment and their angiogenic functions during pregnancy. Collectively our research points out that the immune-angiogenesis axis at the porcine maternal interface is significantly involved in promoting new blood vessel development, regulating inflammatory responses and ultimately contributing to pregnancy success. In this review, we summarized current knowledge on spontaneous fetal loss in swine, with special attention to the mechanisms in immune reactivity and interplay at the maternal-fetal interface.
Collapse
|
76
|
Lopalco A, Ali H, Denora N, Rytting E. Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood-brain barrier and human placental trophoblast. Int J Nanomedicine 2015; 10:1985-96. [PMID: 25792832 PMCID: PMC4362902 DOI: 10.2147/ijn.s77498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Encapsulation of antiepileptic drugs (AEDs) into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid) [PLGA] with or without surfactant and PEGylated PLGA [Resomer® RGPd5055]). The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood–brain barrier (hCMEC/D3 cells) and human placental trophoblast cells (BeWo b30 cells). Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140–170 nm, polydispersity indices below 0.3, and zeta potential values below -34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe) values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6) demonstrated increased permeability of surfactant-coated nanoparticles. Future developments in enzyme-prodrug therapy and targeted delivery are expected to provide improved options for pregnant patients with epilepsy.
Collapse
Affiliation(s)
- Antonio Lopalco
- Department of Obstretrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA ; Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA ; Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Hazem Ali
- Department of Obstretrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nunzio Denora
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Erik Rytting
- Department of Obstretrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA ; Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA ; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
77
|
Vitamin C supplementation ameliorates the adverse effects of nicotine on placental hemodynamics and histology in nonhuman primates. Am J Obstet Gynecol 2015; 212:370.e1-8. [PMID: 25725660 DOI: 10.1016/j.ajog.2014.12.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/04/2014] [Accepted: 12/29/2014] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We previously demonstrated that prenatal nicotine exposure decreases neonatal pulmonary function in nonhuman primates, and maternal vitamin C supplementation attenuates these deleterious effects. However, the effect of nicotine on placental perfusion and development is not fully understood. This study utilizes noninvasive imaging techniques and histological analysis in a nonhuman primate model to test the hypothesis that prenatal nicotine exposure adversely effects placental hemodynamics and development but is ameliorated by vitamin C. STUDY DESIGN Time-mated macaques (n = 27) were divided into 4 treatment groups: control (n = 5), nicotine only (n = 4), vitamin C only (n = 9), and nicotine plus vitamin C (n = 9). Nicotine animals received 2 mg/kg per day of nicotine bitartrate (approximately 0.7 mg/kg per day free nicotine levels in pregnant human smokers) from days 26 to 160 (term, 168 days). Vitamin C groups received ascorbic acid at 50, 100, or 250 mg/kg per day with or without nicotine. All underwent placental dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) at 135-140 days and Doppler ultrasound at 155 days to measure uterine artery and umbilical vein velocimetry and diameter to calculate uterine artery volume blood flow and placental volume blood flow. Animals were delivered by cesarean delivery at 160 days. A novel DCE-MRI protocol was utilized to calculate placental perfusion from maternal spiral arteries. Placental tissue was processed for histopathology. RESULTS Placental volume blood flow was significantly reduced in nicotine-only animals compared with controls and nicotine plus vitamin C groups (P = .03). Maternal placental blood flow was not different between experimental groups by DCE-MRI, ranging from 0.75 to 1.94 mL/mL per minute (P = .93). Placental histology showed increased numbers of villous cytotrophoblast cell islands (P < .05) and increased syncytiotrophoblast sprouting (P < .001) in nicotine-only animals, which was mitigated by vitamin C. CONCLUSION Prenatal nicotine exposure significantly decreased fetal blood supply via reduced placental volume blood flow, which corresponded with placental histological findings previously associated with cigarette smoking. Vitamin C supplementation mitigated the harmful effects of prenatal nicotine exposure on placental hemodynamics and development, suggesting that its use may limit some of the adverse effects associated with smoking during pregnancy.
Collapse
|
78
|
Jasoni CL, Sanders TR, Kim DW. Do all roads lead to Rome? The role of neuro-immune interactions before birth in the programming of offspring obesity. Front Neurosci 2015; 8:455. [PMID: 25691854 PMCID: PMC4315034 DOI: 10.3389/fnins.2014.00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
The functions of the nervous system can be powerfully modulated by the immune system. Although traditionally considered to be quite separate, neuro-immune interactions are increasingly recognized as critical for both normal and pathological nervous system function in the adult. However, a growing body of information supports a critical role for neuro-immune interactions before birth, particularly in the prenatal programming of later-life neurobehavioral disease risk. This review will focus on maternal obesity, as it represents an environment of pathological immune system function during pregnancy that elevates offspring neurobehavioral disease risk. We will first delineate the normal role of the immune system during pregnancy, including the role of the placenta as both a barrier and relayer of inflammatory information between the maternal and fetal environments. This will be followed by the current exciting findings of how immuno-modulatory molecules may elevate offspring risk of neurobehavioral disease by altering brain development and, consequently, later life function. Finally, by drawing parallels with pregnancy complications other than obesity, we will suggest that aberrant immune activation, irrespective of its origin, may lead to neuro-immune interactions that otherwise would not exist in the developing brain. These interactions could conceivably derail normal brain development and/or later life function, and thereby elevate risk for obesity and other neurobehavioral disorders later in the offspring's life.
Collapse
Affiliation(s)
- Christine L Jasoni
- Department of Anatomy, Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, University of Otago Dunedin, New Zealand
| | - Tessa R Sanders
- Department of Anatomy, Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, University of Otago Dunedin, New Zealand
| | - Dong Won Kim
- Department of Anatomy, Centre for Neuroendocrinology, Gravida: National Centre for Growth and Development, University of Otago Dunedin, New Zealand
| |
Collapse
|
79
|
Serman L, Zunic I, Vrsaljko N, Grbesa D, Gjurcevic E, Matasin Z, Nikuseva Martic T, Bulic Jakus F, Tlak Gajger I, Serman A. Structural changes in the rat placenta during the last third of gestation discovered by stereology. Bosn J Basic Med Sci 2015; 15:21-5. [PMID: 25725140 DOI: 10.17305/bjbms.2015.1.244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
Structural changes in the rat placenta during the last third of gestation were for the first time assessed by stereology. Fischer female rats were euthanized on the day 16 or day 19 of gestation, and 35 placentas were collected. Three randomly selected placentas from each group were stereologically analyzed for the absolute volume. The proportion of the glycogenic cells and the trophoblast giant cells (TGC) in the basal part of the placenta was calculated using volume density. The absolute volume of the rat placenta on the day 16 of gestation was determined as 0.0638 cm3. The labyrinth comprised 0.0274 cm3, the basal plate 0.0271 cm3 and the decidua 0.0093 cm3. On the day 19 of gestation, the absolute volume of the placenta was 0.1627 cm3, the labyrinth occupied 0.0922 cm3, the basal plate 0.0596 cm3 and the decidua 0.0109 cm3. The volume density of trophoblast giant cells was 0.174 cm0 on the day 16 and 0.107 cm0 on the day 19 of gestation. The glycogenic cells comprised 0.379 percentage of the basal plate on the day 16 and 0.236 on the day 19 of gestation. We conclude that the absolute volume of the whole placenta and the labyrinth has increased from day 16 to the day 19 of gestation. In contrast, the volume density of glycogenic cells and trophoblast giant cells was higher on the day 16 than on the day 19 of gestation, probably due to the intensive trophoblast invasion during that time.
Collapse
Affiliation(s)
- Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Maternal T-lymphocytes in equine colostrum express a primarily inflammatory phenotype. Vet Immunol Immunopathol 2014; 161:141-50. [PMID: 25174977 DOI: 10.1016/j.vetimm.2014.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 01/02/2023]
Abstract
The purpose of this study was to characterize maternal immune cells in colostrum of mares. Cell phenotypes and cytokine secretion from mare peripheral blood mononuclear cells (PBMC) and cells from colostrum were analyzed by flow cytometry and by multiplex cytokine analysis. Equine colostral leukocytes were composed of mainly CD8(+) and CD4(+) lymphocytes. CD8(+) cells were significantly enriched in colostrum compared to PBMC (n=35). Colostral T-cells (n=13) responded to stimulation with PMA/ionomycin with a significantly higher magnitude of IL-17 (p=0.037) and similar IFN-γ concentrations (p=0.305), while IL-4 (p=0.0002) and IL-10 (p=0.0002) production was decreased compared to PBMC. CD4(+) and CD8(+) T-cells in colostrum produced IFN-γ (n=4). The findings show that colostrum T-cells can produce all four cytokines investigated here but most cells are polarized toward IL-17 and IFN-γ production and an inflammatory phenotype. Maternal T-cells likely migrate to the colostrum in a selective manner and may have specific roles in neonatal immune development.
Collapse
|
81
|
Furukawa S, Kuroda Y, Sugiyama A. A comparison of the histological structure of the placenta in experimental animals. J Toxicol Pathol 2014; 27:11-8. [PMID: 24791062 PMCID: PMC4000068 DOI: 10.1293/tox.2013-0060] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/20/2013] [Indexed: 01/17/2023] Open
Abstract
The primary function of the placenta is to act as an interface between the dam and fetus. The anatomic structure of the chorioallantoic placenta in eutherian mammals varies between different animal species. The placental types in eutherian mammals are classified from various standpoints based on the gross shape, the histological structure of the materno-fetal interface, the type of materno-fetal interdigitation, etc. Particularly, the histological structure is generally considered one of the most useful and instructive classifications for functionally describing placental type. In this system, three main types are recognized according to the cell layers comprising the interhemal area: (1) epitheliochorial type (horses, pigs and ruminants), (2) endotheliochorial type (carnivores) and (3) hemochorial type (primates, rodents and rabbits). The number of cell layers in the interhemal area is considered to modify the transfer of nutrients between maternal and fetal blood and is one of the important factors with respect to the difference in placental permeability between animal species. Therefore, in reproductive and developmental toxicity studies, careful attention should be paid to the histological structure of the interhemal area when extrapolating information concerning placental transfer characteristics to different animal species.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Biological Research Laboratories, Nissan Chemical Industries, Ltd., 1470 Shiraoka-cho, Shiraoka, Saitama 349-0294, Japan
| | - Yusuke Kuroda
- Biological Research Laboratories, Nissan Chemical Industries, Ltd., 1470 Shiraoka-cho, Shiraoka, Saitama 349-0294, Japan
| | - Akihiko Sugiyama
- Courses of Veterinary Laboratory Medicine, School of Veterinary Medicine, Faculty of Agriculture, Tottori University,4-101 Koyama-cho Minami, Tottori 680-8553, Japan
| |
Collapse
|
82
|
Frias AE, Schabel MC, Roberts VHJ, Tudorica A, Grigsby PL, Oh KY, Kroenke CD. Using dynamic contrast-enhanced MRI to quantitatively characterize maternal vascular organization in the primate placenta. Magn Reson Med 2014; 73:1570-8. [PMID: 24753177 DOI: 10.1002/mrm.25264] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE The maternal microvasculature of the primate placenta is organized into 10-20 perfusion domains that are functionally optimized to facilitate nutrient exchange to support fetal growth. This study describes a dynamic contrast-enhanced magnetic resonance imaging method for identifying vascular domains and quantifying maternal blood flow in them. METHODS A rhesus macaque on the 133rd day of pregnancy (G133, term = 165 days) underwent Doppler ultrasound procedures, dynamic contrast-enhanced magnetic resonance imaging and Cesarean-section delivery. Serial T1 -weighted images acquired throughout intravenous injection of a contrast reagent bolus were analyzed to obtain contrast reagent arrival time maps of the placenta. RESULTS Watershed segmentation of the arrival time map identified 16 perfusion domains. The number and location of these domains corresponded to anatomical cotyledonary units observed following delivery. Analysis of the contrast reagent wave front through each perfusion domain enabled determination of volumetric flow, which ranged from 9.03 to 44.9 mL/s (25.2 ± 10.3 mL/s). These estimates are supported by Doppler ultrasound results. CONCLUSIONS The dynamic contrast-enhanced magnetic resonance imaging analysis described here provides quantitative estimates of the number of maternal perfusion domains in a primate placenta and estimates flow within each domain. Anticipated extensions of this technique are to the study placental function in non-human primate models of obstetric complications.
Collapse
Affiliation(s)
- Antonio E Frias
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon, USA; Division of Developmental and Reproductive Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA; Department of Obstetrics and Gynecology, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Bazer FW, Johnson GA. Pig blastocyst–uterine interactions. Differentiation 2014; 87:52-65. [DOI: 10.1016/j.diff.2013.11.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 11/27/2022]
|
84
|
Borghesi J, Mario LC, Rodrigues MN, Favaron PO, Miglino MA. Immunoglobulin Transport during Gestation in Domestic Animals and Humans—A Review. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojas.2014.45041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
85
|
Hirata A, Miyazaki A, Sakai H, Imada N, Kitani R, Nikami H, Yanai T. Choriocarcinoma-like tumor in a potbellied pig (Sus scrofa). J Vet Diagn Invest 2013; 26:163-6. [DOI: 10.1177/1040638713515481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A uterine tumor, with histological and immunohistochemical features consistent with those of human choriocarcinoma, was identified in a 10-year-old unmated female pot-bellied pig ( Sus scrofa). The tumor showed biphasic proliferation of cytotrophoblast-like cells and syncytiotrophoblast-like cells. Immunohistochemically, the syncytiotrophoblast-like cells were positive for human chorionic gonadotropin, and both types of cells were positive for cytokeratin and negative for vimentin, octamer-binding transcription factor 4, and α-fetoprotein. Because syncytiotrophoblasts are absent in the normal porcine placenta, the tumor was diagnosed as a choriocarcinoma-like tumor.
Collapse
Affiliation(s)
- Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center (Hirata, Nikami), Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences (Miyazaki, Sakai, Yanai), Gifu University, Gifu, Japan
- Toyohashi Zoo and Botanical Park, Aichi, Japan (Imada, Kitani)
| | - Aya Miyazaki
- Division of Animal Experiment, Life Science Research Center (Hirata, Nikami), Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences (Miyazaki, Sakai, Yanai), Gifu University, Gifu, Japan
- Toyohashi Zoo and Botanical Park, Aichi, Japan (Imada, Kitani)
| | - Hiroki Sakai
- Division of Animal Experiment, Life Science Research Center (Hirata, Nikami), Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences (Miyazaki, Sakai, Yanai), Gifu University, Gifu, Japan
- Toyohashi Zoo and Botanical Park, Aichi, Japan (Imada, Kitani)
| | - Nanae Imada
- Division of Animal Experiment, Life Science Research Center (Hirata, Nikami), Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences (Miyazaki, Sakai, Yanai), Gifu University, Gifu, Japan
- Toyohashi Zoo and Botanical Park, Aichi, Japan (Imada, Kitani)
| | - Ryohei Kitani
- Division of Animal Experiment, Life Science Research Center (Hirata, Nikami), Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences (Miyazaki, Sakai, Yanai), Gifu University, Gifu, Japan
- Toyohashi Zoo and Botanical Park, Aichi, Japan (Imada, Kitani)
| | - Hideki Nikami
- Division of Animal Experiment, Life Science Research Center (Hirata, Nikami), Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences (Miyazaki, Sakai, Yanai), Gifu University, Gifu, Japan
- Toyohashi Zoo and Botanical Park, Aichi, Japan (Imada, Kitani)
| | - Tokuma Yanai
- Division of Animal Experiment, Life Science Research Center (Hirata, Nikami), Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Faculty of Applied Biological Sciences (Miyazaki, Sakai, Yanai), Gifu University, Gifu, Japan
- Toyohashi Zoo and Botanical Park, Aichi, Japan (Imada, Kitani)
| |
Collapse
|
86
|
Pavek P, Smutny T. Nuclear receptors in regulation of biotransformation enzymes and drug transporters in the placental barrier. Drug Metab Rev 2013; 46:19-32. [PMID: 24020384 DOI: 10.3109/03602532.2013.835819] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the past 20 years, the toxicological and protective roles of the placental barrier with respect to drug detoxification and transporter-controlled protection of the fetus have been intensively examined. Several cytochrome P450 enzymes are expressed in placental trophoblast at different stages of pregnancy, though only a few of these have functional activity to metabolize xenobiotics. Drug transporters such as P-glycoprotein/MDR1 or breast cancer resistance protein (BCRP) are highly expressed in the placenta, and their functional activities have been demonstrated in the placenta both in vitro and in vivo. In addition, several studies have reported on ligand-activated transcription factors and nuclear receptors referred to as "xenosensors" in the placenta. The xenosensors control transcriptional regulation of both xenobiotic-metabolizing enzymes and drug transporters in different organs. Their ligands include toxic compounds and environmental pollutants, drugs, as well as herbal, dietary or vitamin supplements. Nevertheless, it remains debatable whether the placental barrier adapts to toxic injuries coming either from maternal medication or environmental contamination and whether the placenta contains a mechanism to respond dynamically in protecting the developing fetus. In the present paper, we summarize current knowledge about the activity and expression of major ligand-activated transcriptional mechanisms involved in biotransformation enzymes and transporters regulation in human placenta. In particular, we highlight the emerging roles of aryl hydrocarbon (AHR), vitamin D (VDR), glucocorticoid (GR) and pregnane X (PXR) receptors in that regulation. We show that the placenta constitute a unique metabolizing organ with significant overlap of exogenous and endogenous compounds metabolism controlled by nuclear receptors.
Collapse
Affiliation(s)
- Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Centre for Drug Development, Charles University in Prague , Hradec Kralove , Czech Republic
| | | |
Collapse
|
87
|
Malek A. Role of IgG antibodies in association with placental function and immunologic diseases in human pregnancy. Expert Rev Clin Immunol 2013; 9:235-49. [PMID: 23445198 DOI: 10.1586/eci.12.99] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During human pregnancy, the maternal immune system develops and changes, providing protection for the growing placenta and fetus. These protective changes provide mechanisms allowing two genetically different individuals to interact with each other without allograft rejection. In addition to normal pregnancy, some pregnancies may develop under immunologic diseases, during which specific monitoring and medical treatments are essential. The aim of this current review is to provide information regarding the development of human placental function during pregnancy, the immunology of human pregnancy and the role of the placenta in providing the fetal tissue with antibodies (IgG and its subclasses 1-4), which are required for the passive immunization of the newborn. In addition, the available methods for the determination of placental function will be explored. Furthermore, immunologic diseases observed during pregnancy and the possible therapies for these diseases will be assessed.
Collapse
Affiliation(s)
- Antoine Malek
- Department of Obstetrics, University Hospital Zurich, Research Division, Frauenklinikstrasse 10, 8091 Zurich, Switzerland.
| |
Collapse
|
88
|
Montiel JF, Kaune H, Maliqueo M. Maternal-fetal unit interactions and eutherian neocortical development and evolution. Front Neuroanat 2013; 7:22. [PMID: 23882189 PMCID: PMC3715729 DOI: 10.3389/fnana.2013.00022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/25/2013] [Indexed: 11/25/2022] Open
Abstract
The conserved brain design that primates inherited from early mammals differs from the variable adult brain size and species-specific brain dominances observed across mammals. This variability relies on the emergence of specialized cerebral cortical regions and sub-compartments, triggering an increase in brain size, areal interconnectivity and histological complexity that ultimately lies on the activation of developmental programs. Structural placental features are not well correlated with brain enlargement; however, several endocrine pathways could be tuned with the activation of neuronal progenitors in the proliferative neocortical compartments. In this article, we reviewed some mechanisms of eutherians maternal-fetal unit interactions associated with brain development and evolution. We propose a hypothesis of brain evolution where proliferative compartments in primates become activated by "non-classical" endocrine placental signals participating in different steps of corticogenesis. Changes in the inner placental structure, along with placenta endocrine stimuli over the cortical proliferative activity would allow mammalian brain enlargement with a concomitant shorter gestation span, as an evolutionary strategy to escape from parent-offspring conflict.
Collapse
Affiliation(s)
- Juan F. Montiel
- Centre for Biomedical Research, Facultad de Medicina, Universidad Diego PortalesSantiago, Chile.
| | - Heidy Kaune
- Centre for Biomedical Research, Facultad de Medicina, Universidad Diego PortalesSantiago, Chile.
- Nuffield Department of Obstetrics and Gynaecology, University of OxfordOxford, UK.
| | - Manuel Maliqueo
- Laboratorio de Endocrinología y Metabolismo, Departamento de Medicina Occidente, Facultad de Medicina, Universidad de ChileSantiago, Chile.
| |
Collapse
|
89
|
Grafmüller S, Manser P, Krug HF, Wick P, von Mandach U. Determination of the transport rate of xenobiotics and nanomaterials across the placenta using the ex vivo human placental perfusion model. J Vis Exp 2013. [PMID: 23851364 DOI: 10.3791/50401] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Decades ago the human placenta was thought to be an impenetrable barrier between mother and unborn child. However, the discovery of thalidomide-induced birth defects and many later studies afterwards proved the opposite. Today several harmful xenobiotics like nicotine, heroin, methadone or drugs as well as environmental pollutants were described to overcome this barrier. With the growing use of nanotechnology, the placenta is likely to come into contact with novel nanoparticles either accidentally through exposure or intentionally in the case of potential nanomedical applications. Data from animal experiments cannot be extrapolated to humans because the placenta is the most species-specific mammalian organ (1). Therefore, the ex vivo dual recirculating human placental perfusion, developed by Panigel et al. in 1967 (2) and continuously modified by Schneider et al. in 1972 (3), can serve as an excellent model to study the transfer of xenobiotics or particles. Here, we focus on the ex vivo dual recirculating human placental perfusion protocol and its further development to acquire reproducible results. The placentae were obtained after informed consent of the mothers from uncomplicated term pregnancies undergoing caesarean delivery. The fetal and maternal vessels of an intact cotyledon were cannulated and perfused at least for five hours. As a model particle fluorescently labelled polystyrene particles with sizes of 80 and 500 nm in diameter were added to the maternal circuit. The 80 nm particles were able to cross the placental barrier and provide a perfect example for a substance which is transferred across the placenta to the fetus while the 500 nm particles were retained in the placental tissue or maternal circuit. The ex vivo human placental perfusion model is one of few models providing reliable information about the transport behavior of xenobiotics at an important tissue barrier which delivers predictive and clinical relevant data.
Collapse
Affiliation(s)
- Stefanie Grafmüller
- Department of Obstetrics, Perinatal Pharmacology, University Hospital Zurich
| | | | | | | | | |
Collapse
|
90
|
Campagnolo L, Massimiani M, Palmieri G, Bernardini R, Sacchetti C, Bergamaschi A, Vecchione L, Magrini A, Bottini M, Pietroiusti A. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part Fibre Toxicol 2013; 10:21. [PMID: 23742083 PMCID: PMC3679973 DOI: 10.1186/1743-8977-10-21] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/31/2013] [Indexed: 01/03/2023] Open
Abstract
Background Single wall carbon nanotubes (SWCNTs) are considered promising nanoparticles for industrial and biomedical applications; however their potential toxicity in several biological systems, including the feto-placental unit, has been demonstrated. Functionalization of SWCNTs with polyethylene glycol chains (PEG-SWCNTs) dramatically reduces their toxicity, and for this reason PEG-SWCNTs are candidates for biomedical applications. However, no data are available on their safety for the developing embryo, in spite of the clinical and social relevance of this topic. The purpose of this study is therefore to investigate the safety of PEG-SWCNTs for their use as biomedical carriers in pregnancy. Methods For toxicological studies, amino-functionalized PEG-SWCNT were intravenously injected in CD1 pregnant mice at different doses (range 0.1-30 μg/mouse), in single or multiple administrations. For biodistribution studies, fluorescently labeled PEG-SWCNTs were obtained by acylation of terminal PEG amino groups with near infrared emitting fluorochromes (PEG-SWCNT-750) and injected at the dosage of 10 μg/mouse, at either day 5.5 (when the placenta is still developing) or day 14.5 of gestation (when the maturation of the placenta is complete). Results We found no adverse effects both on embryos and dams up to the dose of 10 μg/mouse. At the dose of 30 μg/mouse, occasional teratogenic effects, associated with placental damage, were detected both when administered as a single bolus (1 out of 10 dams; 1 malformed embryo) or as multiple doses (2 out of 10 dams; 5 malformed embryos). The difference in the prevalence of dams with malformed embryos between the 30 μg exposed group and controls approached the statistical significance (p = 0.06). Hepatic damage in dams was seen only in the multiple exposure group (4 out of 10; p = 0.04 when compared with the single exposure group or controls). PEG-SWCNT-750 reached the conceptus when administered early in pregnancy. At later stages, PEG-SWCNT-750 were detected in the placenta and the yolk sac, but not in the embryo. Conclusions PEG-SWCNTs may cause occasional teratogenic effects in mice beyond a threshold dose. Such effect might depend on their ability to reach the feto-placenta unit. Although not automatically transferable to humans, these data should be considered if exposing women during pregnancy.
Collapse
|
91
|
Shim J, Seo H, Choi Y, Yoo I, Lee CK, Hyun SH, Lee E, Ka H. Analysis of legumain and cystatin 6 expression at the maternal-fetal interface in pigs. Mol Reprod Dev 2013; 80:570-80. [PMID: 23686917 DOI: 10.1002/mrd.22192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/08/2013] [Indexed: 11/06/2022]
Abstract
Cathepsins (CTSs), a family of lysosomal cysteine proteases, and their inhibitors, cystatins (CSTs), play a critical role in endometrial and placental tissue remodeling during the establishment and maintenance of pregnancy in many species including rodents, sheep, cow, and pigs. In this study, we determined expression of legumain (LGMN), a cathepsinmember, and its inhibitor, CST6, at the maternal-fetal interface in pigs. Expression of both LGMN and CST6 mRNAs increased during mid- to late pregnancy in the uterine endometrium. LGMN and CST6 mRNAs localized to luminal epithelial cells (LE) and glandular epithelial cells (GE) and to the chorionic membrane (CM), with a strong intensity in GE and the CM for LGMN and in the CM for CST6 during pregnancy. LGMN protein was detected at molecular weights (MW) of approximately 50,000 and 37,000, and the abundance of the37,000-MW LGMN protein increased during mid- to latepregnancy. CST6 protein was also highly expressed in the uterine endometrium in mid- to latepregnancy. LGMN protein localized to LE, GE, and the CM during pregnancy. LGMN and CST6 were aberrantly expressed in the uterine endometrium from gilts with somatic cell nuclear transfer-derived conceptuses at term compared to those of gilts carrying conceptuses derived from natural mating. These results demonstrated that LGMN and CST6 were expressed in the uterine endometrium in a cell-type and stage-specific manner, suggesting that the LGMN and CST6 system at the maternal-fetal interface may play an important role in the establishment and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Jangsoo Shim
- Division of Biological Science and Technology, IPAID and Institute of Biomaterials, Yonsei University, Wonju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Esnault C, Cornelis G, Heidmann O, Heidmann T. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV syncytin, captured for a function in placentation. PLoS Genet 2013; 9:e1003400. [PMID: 23555306 PMCID: PMC3610889 DOI: 10.1371/journal.pgen.1003400] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/06/2013] [Indexed: 01/25/2023] Open
Abstract
Syncytins are envelope genes of retroviral origin that have been co-opted for a role in placentation. They promote cell–cell fusion and are involved in the formation of a syncytium layer—the syncytiotrophoblast—at the materno-fetal interface. They were captured independently in eutherian mammals, and knockout mice demonstrated that they are absolutely required for placenta formation and embryo survival. Here we provide evidence that these “necessary” genes acquired “by chance” have a definite lifetime with diverse fates depending on the animal lineage, being both gained and lost in the course of evolution. Analysis of a retroviral envelope gene, the envV gene, present in primate genomes and belonging to the endogenous retrovirus type V (ERV-V) provirus, shows that this captured gene, which entered the primate lineage >45 million years ago, behaves as a syncytin in Old World monkeys, but lost its canonical fusogenic activity in other primate lineages, including humans. In the Old World monkeys, we show—by in situ analyses and ex vivo assays—that envV is both specifically expressed at the level of the placental syncytiotrophoblast and fusogenic, and that it further displays signs of purifying selection based on analysis of non-synonymous to synonymous substitution rates. We further show that purifying selection still operates in the primate lineages where the gene is no longer fusogenic, indicating that degeneracy of this ancestral syncytin is a slow, lineage-dependent, and multi-step process, in which the fusogenic activity would be the first canonical property of this retroviral envelope gene to be lost. Syncytins are “new” genes encoding the envelope protein of captured endogenous retroviral elements. Their unambiguous status of “cellular gene” was recently demonstrated by knocking them out in genetically modified mice, showing their absolute requirement for placenta formation and embryo survival, via formation by cell–cell fusion of the feto-maternal syncytium interface. These genes are remarkable, as they are “necessary” for a basic function in placental mammals and yet they were acquired “by chance” on multiple occasions and independently in diverse mammalian species. We proposed that syncytins have been pivotal for the emergence of animals with a placenta from those laying eggs via the capture of a founding retroviral env gene, then subsequently replaced in the diverse mammalian lineages upon successive and independent germline infections by new retroviruses and co-optation of their env gene, each new gene providing its host with a positive selective advantage. This hypothesis would account for the diversity of the captured syncytins that can be currently found, concomitant with the diversity of placental architectures. A consequence of this paradigm is that evidence for “decaying syncytins” in eutherian mammals should exist, and this is precisely what we sought—and found—in this study.
Collapse
Affiliation(s)
- Cécile Esnault
- Unité des Rétrovirus Endogènes et Éléments Rétroïdes des Eucaryotes Supérieurs, Unité Mixte de Recherche 8122, Centre National de la Recherche Scientifique, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Guillaume Cornelis
- Unité des Rétrovirus Endogènes et Éléments Rétroïdes des Eucaryotes Supérieurs, Unité Mixte de Recherche 8122, Centre National de la Recherche Scientifique, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- Université Paris Diderot, Paris Sorbonne Cité, Paris, France
| | - Odile Heidmann
- Unité des Rétrovirus Endogènes et Éléments Rétroïdes des Eucaryotes Supérieurs, Unité Mixte de Recherche 8122, Centre National de la Recherche Scientifique, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Thierry Heidmann
- Unité des Rétrovirus Endogènes et Éléments Rétroïdes des Eucaryotes Supérieurs, Unité Mixte de Recherche 8122, Centre National de la Recherche Scientifique, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- * E-mail:
| |
Collapse
|
93
|
Dilworth MR, Sibley CP. Review: Transport across the placenta of mice and women. Placenta 2013; 34 Suppl:S34-9. [PMID: 23153501 DOI: 10.1016/j.placenta.2012.10.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/12/2023]
Affiliation(s)
- M R Dilworth
- Maternal and Fetal Health Research Centre, Institute of Human Development, Manchester Academic Health Sciences Centre, University of Manchester, St Mary's Hospital, Central Manchester University Hospitals, NHS Foundation Trust, Manchester, UK.
| | | |
Collapse
|
94
|
Bonney EA. Demystifying animal models of adverse pregnancy outcomes: touching bench and bedside. Am J Reprod Immunol 2013; 69:567-84. [PMID: 23448345 DOI: 10.1111/aji.12102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/28/2013] [Indexed: 01/21/2023] Open
Abstract
This represents an overview of the use of animal models to study the adverse pregnancy outcomes seen in humans. The purpose is to entice clinicians to utilize some of this information to seek out the literature and have more meaningful and profitable discussions with their academic colleagues and enhance transdisciplinary research in reproductive health.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA.
| |
Collapse
|
95
|
Yang H, Sun C, Fan Z, Tian X, Yan L, Du L, Liu Y, Chen C, Liang XJ, Anderson GJ, Keelan JA, Zhao Y, Nie G. Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Sci Rep 2012; 2:847. [PMID: 23150793 PMCID: PMC3496197 DOI: 10.1038/srep00847] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/29/2012] [Indexed: 12/24/2022] Open
Abstract
Nanoparticle exposure in pregnancy may result in placental damage and fetotoxicity; however, the factors that determine fetal nanoparticle exposure are unclear. Here we have assessed the effect of gestational age and nanoparticle composition on fetal accumulation of maternally-administered nanomaterials in mice. We determined the placental and fetal uptake of 13 nm gold nanoparticles with different surface modifications (ferritin, PEG and citrate) following intravenous administration at E5.5-15.5. We showed that prior to E11.5, all tested nanoparticles could be visualized and detected in fetal tissues in significant amounts; however, fetal gold levels declined dramatically post-E11.5. In contrast, Au-nanoparticle accumulation in the extraembryonic tissues (EET) increased 6–15 fold with gestational age. Fetal and EET accumulation of ferritin- and PEG-modified nanoparticles was considerably greater than citrate-capped nanoparticles. No signs of toxicity were observed. Fetal exposure to nanoparticles in murine pregnancy is, therefore, influenced by both stage of embryonic/placental maturation and nanoparticle surface composition.
Collapse
Affiliation(s)
- Hui Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Staud F, Cerveny L, Ceckova M. Pharmacotherapy in pregnancy; effect of ABC and SLC transporters on drug transport across the placenta and fetal drug exposure. J Drug Target 2012; 20:736-63. [PMID: 22994411 DOI: 10.3109/1061186x.2012.716847] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pharmacotherapy during pregnancy is often inevitable for medical treatment of the mother, the fetus or both. The knowledge of drug transport across placenta is, therefore, an important topic to bear in mind when deciding treatment in pregnant women. Several drug transporters of the ABC and SLC families have been discovered in the placenta, such as P-glycoprotein, breast cancer resistance protein, or organic anion/cation transporters. It is thus evident that the passage of drugs across the placenta can no longer be predicted simply on the basis of their physical-chemical properties. Functional expression of placental drug transporters in the trophoblast and the possibility of drug-drug interactions must be considered to optimize pharmacotherapy during pregnancy. In this review we summarize current knowledge on the expression and function of ABC and SLC transporters in the trophoblast. Furthermore, we put this data into context with medical conditions that require maternal and/or fetal treatment during pregnancy, such as gestational diabetes, HIV infection, fetal arrhythmias and epilepsy. Proper understanding of the role of placental transporters should be of great interest not only to clinicians but also to pharmaceutical industry for future drug design and development to control the degree of fetal exposure.
Collapse
Affiliation(s)
- Frantisek Staud
- Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Czech Republic.
| | | | | |
Collapse
|
97
|
Ezashi T, Telugu BPVL, Roberts RM. Model systems for studying trophoblast differentiation from human pluripotent stem cells. Cell Tissue Res 2012; 349:809-24. [PMID: 22427062 PMCID: PMC3429771 DOI: 10.1007/s00441-012-1371-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
This review focuses on a now well-established model for generating cells of the trophoblast (TB) lineage by treating human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) with the growth factor BMP4. We first discuss the opposing roles of FGF2 and BMP4 in directing TB formation and the need to exclude the former from the growth medium to minimize the co-induction of mesoderm and endoderm. Under these conditions, there is up-regulation of several transcription factors implicated in TB lineage emergence within 3 h of BMP4 exposure and, over a period of days and especially under a high O(2) gas atmosphere, gradual appearance of cell types carrying markers for more differentiated TB cell types, including extravillous TB and syncytioTB. We describe the potential value of including low molecular weight pharmaceutical agents that block activin A (INHBA) and FGF2 signaling to support BMP4-directed differentiation. We contend that the weight of available evidence supports the contention that BMP4 converts human ESC and iPSC of the so-called epiblast type unidirectionally to TB. We also consider the argument that BMP4 treatment of human ESC in the absence of exogenous FGF2 leads only to the emergence of mesoderm derivatives to be seriously flawed. Instead, we propose that, when signaling networks supporting pluripotency ESC or iPSC become unsustainable and when specification towards extra-embryonic mesoderm and endoderm are rendered inoperative, TB emerges as a major default state to pluripotency.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Division of Animal Sciences & Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Bhanu Prakash V. L. Telugu
- Department of Animal and Avian Sciences, College Park, MD 20742 & Animal Biosciences and Biotechnology Laboratory, ANRI, ARS, USDA, University of Maryland, Beltsville, MD 20705 USA
| | - R. Michael Roberts
- Division of Animal Sciences & Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211 USA
- 240b Bond Life Sciences Center, 1201 E. Rollins Street, Columbia, MO 65211-7310 USA
| |
Collapse
|
98
|
Proietti E, Röösli M, Frey U, Latzin P. Air pollution during pregnancy and neonatal outcome: a review. J Aerosol Med Pulm Drug Deliv 2012; 26:9-23. [PMID: 22856675 DOI: 10.1089/jamp.2011.0932] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is increasing evidence of the adverse impact of prenatal exposure to air pollution. This is of particular interest, as exposure during pregnancy--a crucial time span of important biological development--may have long-term implications. The aims of this review are to show current epidemiological evidence of known effects of prenatal exposure to air pollution and present possible mechanisms behind this process. Harmful effects of exposure to air pollution during pregnancy have been shown for different birth outcomes: higher infant mortality, lower birth weight, impaired lung development, increased later respiratory morbidity, and early alterations in immune development. Although results on lower birth weight are somewhat controversial, evidence for higher infant mortality is consistent in studies published worldwide. Possible mechanisms include direct toxicity of particles due to particle translocation across tissue barriers or particle penetration across cellular membranes. The induction of specific processes or interaction with immune cells in either the pregnant mother or the fetus may be possible consequences. Indirect effects could be oxidative stress and inflammation with consequent hemodynamic alterations resulting in decreased placental blood flow and reduced transfer of nutrients to the fetus. The early developmental phase of pregnancy is thought to be very important in determining long-term growth and overall health. So-called "tracking" of somatic growth and lung function is believed to have a huge impact on long-term morbidity, especially from a public health perspective. This is particularly important in areas with high levels of outdoor pollution, where it is practically impossible for an individual to avoid exposure. Especially in these areas, good evidence for the association between prenatal exposure to air pollution and infant mortality exists, clearly indicating the need for more stringent measures to reduce exposure to air pollution.
Collapse
Affiliation(s)
- Elena Proietti
- Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
99
|
Fischer B, Chavatte-Palmer P, Viebahn C, Navarrete Santos A, Duranthon V. Rabbit as a reproductive model for human health. Reproduction 2012; 144:1-10. [DOI: 10.1530/rep-12-0091] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The renaissance of the laboratory rabbit as a reproductive model for human health is closely related to the growing evidence of periconceptional metabolic programming and its determining effects on offspring and adult health. Advantages of rabbit reproduction are the exact timing of fertilization and pregnancy stages, high cell numbers and yield in blastocysts, relatively late implantation at a time when gastrulation is already proceeding, detailed morphologic and molecular knowledge on gastrulation stages, and a hemochorial placenta structured similarly to the human placenta. To understand, for example, the mechanisms of periconceptional programming and its effects on metabolic health in adulthood, these advantages help to elucidate even subtle changes in metabolism and development during the pre- and peri-implantation period and during gastrulation in individual embryos. Gastrulation represents a central turning point in ontogenesis in which a limited number of cells program the development of the three germ layers and, hence, the embryo proper. Newly developed transgenic and molecular tools offer promising chances for further scientific progress to be attained with this reproductive model species.
Collapse
|
100
|
Abduljalil K, Furness P, Johnson TN, Rostami-Hodjegan A, Soltani H. Anatomical, Physiological and Metabolic Changes with Gestational Age during Normal Pregnancy. Clin Pharmacokinet 2012; 51:365-96. [DOI: 10.2165/11597440-000000000-00000] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|