51
|
Daniele LL, Sauer B, Gallagher SM, Pugh EN, Philp NJ. Altered visual function in monocarboxylate transporter 3 (Slc16a8) knockout mice. Am J Physiol Cell Physiol 2008; 295:C451-7. [PMID: 18524945 DOI: 10.1152/ajpcell.00124.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To meet the high-energy demands of photoreceptor cells, the outer retina metabolizes glucose through glycolytic and oxidative pathways, resulting in large-scale production of lactate and CO(2). Mct3, a proton-coupled monocarboxylate transporter, is critically positioned to facilitate transport of lactate and H(+) out of the retina and could therefore play a role in pH and ion homeostasis of the outer retina. Mct3 is preferentially expressed in the basolateral membrane of the retinal pigment epithelium and forms a heteromeric complex with the accessory protein CD147. To examine the physiological role of Mct3 in the retina, we generated mice with a targeted deletion in Mct3 (slc16A8). The overall retinal histology of 4- to 36-wk-old Mct3(-/-) mice appeared normal. In the absence of Mct3, expression of CD147 was lost from the basolateral but not apical RPE. The saturated a-wave amplitude (a(max)) of the scotopic electroretinogram (ERG) was reduced by approximately twofold in Mct3(-/-) mice relative to wild-type mice. A fourfold increase in lactate in the retina suggested a decrease in outer-retinal pH. In single-cell recordings from superfused retinal slices, saturating amplitudes of single rod photocurrents (J(max)) were comparable indicating that Mct3(-/-) mouse photoreceptor cells were inherently healthy. Based on these data, we hypothesize that disruption of Mct3 leads to a potentially reversible decrease in subretinal space pH, thereby reducing the magnitude of the light suppressible photoreceptor current.
Collapse
Affiliation(s)
- Lauren L Daniele
- F.M. Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
52
|
Morris ME, Felmlee MA. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid. AAPS JOURNAL 2008; 10:311-21. [PMID: 18523892 DOI: 10.1208/s12248-008-9035-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/01/2008] [Indexed: 11/30/2022]
Abstract
The transport of monocarboxylates, such as lactate and pyruvate, is mediated by the SLC16A family of proton-linked membrane transport proteins known as monocarboxylate transporters (MCTs). Fourteen MCT-related genes have been identified in mammals and of these seven MCTs have been functionally characterized. Despite their sequence homology, only MCT1-4 have been demonstrated to be proton-dependent transporters of monocarboxylic acids. MCT6, MCT8 and MCT10 have been demonstrated to transport diuretics, thyroid hormones and aromatic amino acids, respectively. MCT1-4 vary in their regulation, tissue distribution and substrate/inhibitor specificity with MCT1 being the most extensively characterized isoform. Emerging evidence suggests that in addition to endogenous substrates, MCTs are involved in the transport of pharmaceutical agents, including gamma-hydroxybuytrate (GHB), 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins), salicylic acid, and bumetanide. MCTs are expressed in a wide range of tissues including the liver, intestine, kidney and brain, and as such they have the potential to impact a number of processes contributing to the disposition of xenobiotic substrates. GHB has been extensively studied as a pharmaceutical substrate of MCTs; the renal clearance of GHB is dose-dependent with saturation of MCT-mediated reabsorption at high doses. Concomitant administration of GHB and L: -lactate to rats results in an approximately two-fold increase in GHB renal clearance suggesting that inhibition of MCT1-mediated reabsorption of GHB may be an effective strategy for increasing renal and total GHB elimination in overdose situations. Further studies are required to more clearly define the role of MCTs on drug disposition and the potential for MCT-mediated detoxification strategies in GHB overdose.
Collapse
Affiliation(s)
- Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, New York 14260, USA.
| | | |
Collapse
|
53
|
Pierre K, Parent A, Jayet PY, Halestrap AP, Scherrer U, Pellerin L. Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice. J Physiol 2007; 583:469-86. [PMID: 17599960 PMCID: PMC2277016 DOI: 10.1113/jphysiol.2007.138594] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Monocarboxylate transporters (MCTs) are membrane carriers for lactate and ketone bodies. Three isoforms, MCT1, MCT2 and MCT4, have been described in the central nervous system but little information is available about the regulation of their expression in relation to altered metabolic and/or nutritional conditions. We show here that brains of mice fed on a high fat diet (HFD) up to 12 weeks as well as brains of genetically obese (ob/ob) or diabetic (db/db) mice exhibit an increase of MCT1, MCT2 and MCT4 expression as compared to brains of control mice fed a standard diet. Enhanced expression of each transporter was visible throughout the brain but most prominently in the cortex and in the hippocampus. Using immunohistochemistry, we observed that neurons (expressing mainly MCT2 but also sometimes low levels of MCT1 under normal conditions) were immunolabelled for all three transporters in HFD mice as well as in ob/ob and db/db mice. At the subcellular level, changes were most remarkable in neuronal cell bodies. Western blotting performed on brain structure extracts allowed us to confirm quantitatively the enhancement of MCT1 and MCT2 expression. Our data demonstrate that the expression of cerebral MCT isoforms can be modulated by alterations of peripheral metabolism, suggesting that the adult brain is sensitive and adapts to new metabolic states. This observation could be relevant in the context of obesity development and its consequences for brain function.
Collapse
Affiliation(s)
- Karin Pierre
- Departement de Physiologie, Universite de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
54
|
Bergersen LH. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 2007; 145:11-9. [PMID: 17218064 DOI: 10.1016/j.neuroscience.2006.11.062] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 11/08/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
Intercellular monocarboxylate transport is important, particularly in tissues with high energy demands, such as brain and muscle. In skeletal muscle, it is well established that glycolytic fast twitch muscle fibers produce lactate, which is transported out of the cell through the monocarboxylate transporter (MCT) 4. Lactate is then taken up and oxidized by the oxidative slow twitch muscle fibers, which express MCT1. In the brain it is still questioned whether lactate produced in astrocytes is taken up and oxidized by neurons upon activation. Several studies have reported that astrocytes express MCT4, whereas neurons express MCT2. By comparing the localizations of MCTs in oxidative and glycolytic compartments I here give support to the idea that there is a lactate shuttle in the brain similar to that in muscle. This conclusion is based on studies in rodents using high resolution immunocytochemical methods at the light and electron microscopical levels.
Collapse
Affiliation(s)
- L H Bergersen
- Centre for Molecular Biology and Neuroscience, and Department of Anatomy, IBM, University of Oslo, Domus Medica, Room 1293, Songsvannsveien 9, POB 1105 Blindern, N-0317 Oslo, Norway.
| |
Collapse
|
55
|
Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 2006; 58:1136-63. [PMID: 17081648 DOI: 10.1016/j.addr.2006.07.024] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 07/31/2006] [Indexed: 12/12/2022]
Abstract
Corneal epithelium and blood-retina barrier (i.e. retinal capillaries and retinal pigment epithelium (RPE)) are the key membranes that regulate the access of xenobiotics into the ocular tissues. Corneal epithelium limits drug absorption from the lacrimal fluid into the anterior chamber after eyedrop administration, whereas blood-retina barrier restricts the entry of drugs from systemic circulation to the posterior eye segment. Like in general pharmacokinetics, the role of transporters has been considered to be quite limited as compared to the passive diffusion of drugs across the membranes. As the functional role of transporters is being revealed it has become evident that the transporters are widely important in pharmacokinetics. This review updates the current knowledge about the transporters in the corneal epithelium and blood-retina barrier and demonstrates that the information is far from complete. We also show that quite many ocular drugs are known to interact with transporters, but the studies about the expression and function of those transporters in the eye are still sparse. Therefore, the transporters probably have greater role in ocular pharmacokinetics than we currently realise.
Collapse
Affiliation(s)
- Eliisa Mannermaa
- Department of Pharmaceutics, University of Kuopio, FIN-70211 Kuopio, Finland
| | | | | |
Collapse
|
56
|
Bonen A, Heynen M, Hatta H. Distribution of monocarboxylate transporters MCT1-MCT8 in rat tissues and human skeletal muscle. Appl Physiol Nutr Metab 2006; 31:31-9. [PMID: 16604139 DOI: 10.1139/h05-002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the past decade, a family of monocarboxylate transporters (MCTs) have been identified that can potentially transport lactate, pyruvate, ketone bodies, and branched-chain ketoacids. Currently, 14 such MCTs are known. However, many orphan transporters exist that have transport capacities that remain to be determined. In addition, the tissue distribution of many of these MCTs is not well defined. Such a cataloging can, at times, begin to suggest the metabolic role of a particular MCT. Recently, a number of antibodies against selected MCTs (MCT1, -2, -4, and -5 to -8) have become commercially available. Therefore, we examined the protein expression of these MCTs in a large number of rat tissues (heart, skeletal muscle, skin, brain, testes, vas deferens, adipose tissue, liver, kidney, spleen, and pancreas), as well as in human skeletal muscle. Unexpectedly, many tissues coexpressed 4-5 MCTs. In particular, in rat skeletal muscle MCT1, MCT2, MCT4, MCT5, and MCT6 were observed. In human muscle, these same MCTs were present. We also observed a pronounced MCT7 signal in human muscle, whereas a very faint signal occurred for MCT8. In rat heart, which is an important metabolic sink for lactate, we confirmed that MCT1 and -2 were expressed. In addition, MCT6 and -8 were also prominently expressed in this tissue, although it is known that MCT8 does not transport aromatic amino acids or lactate. This catalog of MCTs in skeletal muscle and other tissues has revealed an unexpected complexity of coexpression, which makes it difficult to associate changes in monocarboxylate transport with the expression of a particular MCT. The differences in transport kinetics for lactate and pyruvate are only known for MCT1, -2 and -4. Transport kinetics remain to be established for many other MCTs. In conclusion, this study suggests that in skeletal muscle, as well as other tissues, lactate and pyruvate transport rates may not only involve MCT1 and -4, as other monocarboxylate transporters are also expressed in rat (MCT2, -5, -6) and human skeletal muscle (MCT2, -5, -6, -7).
Collapse
Affiliation(s)
- Arend Bonen
- Department of Human Health and Nutritional Sciences, University of Tokyo, Japan.
| | | | | |
Collapse
|
57
|
Bonilha VL, Rayborn ME, Saotome I, McClatchey AI, Hollyfield JG. Microvilli defects in retinas of ezrin knockout mice. Exp Eye Res 2006; 82:720-9. [PMID: 16289046 DOI: 10.1016/j.exer.2005.09.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/14/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
Ezrin, a member of the ezrin/moesin/radixin (ERM) family, localizes to microvilli of epithelia in vivo, where it functions as a bridge between actin filaments and plasma membrane proteins. In the eye, ezrin has been localized to both apical microvilli of Müller cells and retinal pigment epithelium (RPE) apical microvilli and basal infoldings. In the present study, we analyze these structures in the eyes of early postnatal ezrin knockout mice. This analysis indicates that the loss of ezrin leads to substantial reductions in the apical microvilli and basal infoldings in RPE cells and in the Müller cell apical microvilli. The absence of apical microvilli in the RPE is accompanied by the presence of microvilli-like inclusions (MIs) in the RPE cytoplasm. Finally, photoreceptors in the ezrin knockout animals show substantial retardation in development as compared to their wild type littermates.
Collapse
Affiliation(s)
- Vera L Bonilha
- Department of Ophthalmic Research, The Cole Eye Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | |
Collapse
|
58
|
Frenzel J, Richter J, Eschrich K. Pyruvate protects glucose-deprived Müller cells from nitric oxide-induced oxidative stress by radical scavenging. Glia 2006; 52:276-88. [PMID: 16001426 DOI: 10.1002/glia.20244] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cellular defense of Müller cells against oxidative and nitrosative stress was examined after the addition of the nitric oxide donor papanonoate. Glucose concentrations of > or = 550 microM efficiently protected the Müller cells from cell death by maintaining high ATP and glutathione and allowing only a moderate increase of free radicals. Fluorescence-activated cell sorting (FACS) analysis showed that 22% of the cells underwent apoptosis whereas necrosis was strongly suppressed. Under glucose deprivation, the intracellular concentration of ATP declined to 15% after 1 h; glutathione dropped to 50% within 2 h after papanonoate addition. Both the number of cells containing excess free radicals and the mean concentration of free radicals increased twofold at 0.5-2 h of incubation with papanonoate. Cell death switched from prevailing apoptosis to massive necrosis and cell viability decreased drastically. Several metabolites of glycolysis, gluconeogenesis, and the pentose phosphate pathway were tested with respect to their capability to protect the stressed Müller cells. 2 mM pyruvate was found to enhance cell viability 1.6-fold predominantly by reducing the necrotic cell demise. It could be shown that pyruvate did not act by improving the energy status of Müller cells but by scavenging excess free radicals. Inhibition of the monocarboxylate transporters in Müller cells by alpha-cyano-4-hydroxycinnamate abolished this effect. Other 2-ketoacids, like oxalacetate, 2-ketoglutarate and 2-ketobutyrate had a similar protecting effect as pyruvate. Lactate, glutamate, 2-deoxyglucose, and ribose 5-phosphate did not protect Müller cells against oxidative and nitrosative stress.
Collapse
Affiliation(s)
- Jochen Frenzel
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
59
|
Bergersen LH, Thomas M, Jóhannsson E, Waerhaug O, Halestrap A, Andersen K, Sejersted OM, Ottersen OP. Cross-reinnervation changes the expression patterns of the monocarboxylate transporters 1 and 4: An experimental study in slow and fast rat skeletal muscle. Neuroscience 2006; 138:1105-13. [PMID: 16446038 DOI: 10.1016/j.neuroscience.2005.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 12/07/2005] [Indexed: 11/21/2022]
Abstract
The monocarboxylate transporters 1 and 4 are expressed in brain as well as in skeletal muscle and play important roles in the energy metabolism of both tissues. In brain, monocarboxylate transporter 1 occurs in astrocytes, ependymocytes, and endothelial cells while monocarboxylate transporter 4 appears to be restricted to astrocytes. In muscle, monocarboxylate transporter 1 is enriched in oxidative muscle fibers whereas monocarboxylate transporter 4 is expressed in all fibers, with the lowest levels in oxidative fiber types. The mechanisms regulating monocarboxylate transporter 1 and monocarboxylate transporter 4 expression are not known. We hypothesized that the expression of these transporters would be sensitive to long term changes in metabolic activity level. This hypothesis can be tested in rat skeletal muscle, where permanent changes in activity level can be induced by cross-reinnervation. We transplanted motor axons originally innervating the fast-twitch extensor digitorum longus muscle to the slow-twitch soleus muscle and vice versa. Four months later, microscopic analysis revealed transformation of muscle fiber types in the cross-reinnervated muscles. Western blot analysis showed that monocarboxylate transporter 1 was increased by 140% in extensor digitorum longus muscle and decreased by 30% in soleus muscle after cross-reinnervation. In contrast, cross-reinnervation induced a 62% decrease of monocarboxylate transporter 4 in extensor digitorum longus muscle and a 1300% increase in soleus muscle. Our findings show that cross-reinnervation causes pronounced changes in the expression levels of monocarboxylate transporter 1 and monocarboxylate transporter 4, probably as a direct consequence of the new pattern of nerve impulses. The data indicate that the mode of innervation dictates the expression of monocarboxylate transporter proteins in the target cells and that the change in monocarboxylate transporter isoform profile is an integral part of the muscle fiber transformation that occurs after cross-reinnervation. Our findings support the hypothesis that the expression of monocarboxylate transporter 1 and monocarboxylate transporter 4 in excitable tissues is regulated by activity.
Collapse
Affiliation(s)
- L H Bergersen
- Centre for Molecular Biology and Neuroscience, and Department of Anatomy, IMB, University of Oslo, POB 1105 Blindern, N-0317 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Located between vessels of the choriocapillaris and light-sensitive outer segments of the photoreceptors, the retinal pigment epithelium (RPE) closely interacts with photoreceptors in the maintenance of visual function. Increasing knowledge of the multiple functions performed by the RPE improved the understanding of many diseases leading to blindness. This review summarizes the current knowledge of RPE functions and describes how failure of these functions causes loss of visual function. Mutations in genes that are expressed in the RPE can lead to photoreceptor degeneration. On the other hand, mutations in genes expressed in photoreceptors can lead to degenerations of the RPE. Thus both tissues can be regarded as a functional unit where both interacting partners depend on each other.
Collapse
Affiliation(s)
- Olaf Strauss
- Bereich Experimentelle Ophthalmologie, Klinik und Poliklinik fuer Augenheilkunde, Universitaetsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
61
|
Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 2005; 94:1-14. [PMID: 15953344 DOI: 10.1111/j.1471-4159.2005.03168.x] [Citation(s) in RCA: 508] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monocarboxylate transporters (MCTs) are proton-linked membrane carriers involved in the transport of monocarboxylates such as lactate, pyruvate, as well as ketone bodies. They belong to a larger family of transporters composed of 14 members in mammals based on sequence homologies. MCTs are found in various tissues including the brain where three isoforms, MCT1, MCT2 and MCT4, have been described. Each of these isoforms exhibits a distinct regional and cellular distribution in rodent brain. At the cellular level, MCT1 is expressed by endothelial cells of microvessels, by ependymocytes as well as by astrocytes. MCT4 expression appears to be specific for astrocytes. By contrast, the predominant neuronal monocarboxylate transporter is MCT2. Interestingly, part of MCT2 immunoreactivity is located at postsynaptic sites, suggesting a particular role of monocarboxylates and their transporters in synaptic transmission. In addition to variation in expression during development and upon nutritional modifications, new data indicate that MCT expression is regulated at the translational level by neurotransmitters. Understanding how transport of monocarboxylates is regulated could be of particular importance not only for neuroenergetics but also for areas such as functional brain imaging, regulation of food intake and glucose homeostasis, or for central nervous system disorders such as ischaemia and neurodegenerative diseases.
Collapse
Affiliation(s)
- Karin Pierre
- Département de Physiologie, Université de Lausanne, Switzerland
| | | |
Collapse
|
62
|
Wood JPM, Chidlow G, Graham M, Osborne NN. Energy substrate requirements for survival of rat retinal cells in culture: the importance of glucose and monocarboxylates. J Neurochem 2005; 93:686-97. [PMID: 15836627 DOI: 10.1111/j.1471-4159.2005.03059.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The process of metabolic coupling has been described as a means of providing additional fuel for neurons during periods of intense activity. This process has been suggested to occur in the mammalian retina, but whether retinal neurons can metabolise glial-derived monocarboxylates remains uncertain. The present study therefore sought to define the preferred energy substrates for maintenance of different retinal cells in culture, in order to clarify whether metabolic coupling can potentially occur in this tissue. All cells in rat retinal cultures were detrimentally affected by glucose deprivation. The effect on some neurons, however, could be partially reversed by 5 mm pyruvate or lactate. Furthermore, the glycolytic inhibitor, iodoacetic acid, caused a dose-dependent loss of all retinal cells in culture, whereas the mitochondrial inhibitor, 2,4-dinitrophenol, only led to a decrease in the number of neurons. Finally, inhibition of transporters for glucose or monocarboxylates caused the respective loss of glia or neurons from cultures. These data together demonstrate that, although cells do preferentially metabolise glucose, monocarboxylates such as lactate or pyruvate do play an important role in neuronal maintenance. These data therefore give partial support to the notion that metabolic coupling may occur in the retina.
Collapse
Affiliation(s)
- John P M Wood
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
63
|
Nagelhus EA, Mathiisen TM, Bateman AC, Haug FM, Ottersen OP, Grubb JH, Waheed A, Sly WS. Carbonic anhydrase XIV is enriched in specific membrane domains of retinal pigment epithelium, Muller cells, and astrocytes. Proc Natl Acad Sci U S A 2005; 102:8030-5. [PMID: 15901897 PMCID: PMC1142392 DOI: 10.1073/pnas.0503021102] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbonic anhydrases (CAs) are ubiquitous enzymes important to many cell types throughout the body. They help determine levels of H(+) and HCO(-)(3) and thereby regulate intracellular and extracellular pH and volume. CA XIV, an extracellular membrane-bound CA, was recently shown to be present in brain and retina. Here, we analyze the subcellular distribution of CA XIV in retina by high-resolution immunogold cytochemistry and show that the distribution in retina (on glial cells but not neurons) is different from that reported for brain (on neurons but not glia). In addition, CA XIV is strongly expressed on retinal pigment epithelium (RPE). The specific membrane domains that express CA XIV were endfoot and nonendfoot membranes on Muller cells and astrocytes and apical and basolateral membranes of RPE. Gold particle density was highest on microvilli plasma membranes of RPE, where it was twice that of glial endfoot and Muller microvilli membranes and four times that of other glial membrane domains. Neither neurons nor capillary endothelial cells showed detectable labeling for CA XIV. This enrichment of CA XIV on specific membrane domains of glial cells and RPE suggests specialization for buffering pH and volume in retinal neurons and their surrounding extracellular spaces. We suggest that CA XIV is the target of CA inhibitors that enhance subretinal fluid absorption in macular edema. In addition, CA XIV may facilitate CO(2) removal from neural retina and modulate photoreceptor function.
Collapse
Affiliation(s)
- Erlend A Nagelhus
- Nordic Centre for Water Imbalance Related Disorders and Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, N-0317 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Chidlow G, Wood JPM, Graham M, Osborne NN. Expression of monocarboxylate transporters in rat ocular tissues. Am J Physiol Cell Physiol 2005; 288:C416-28. [PMID: 15456695 DOI: 10.1152/ajpcell.00037.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to determine the distribution of monocarboxylate transporter (MCT) subtypes 1-4 in the various structures of the rat eye by using a combination of conventional and real-time RT-PCR, immunoblotting, and immunohistochemistry. Retinal samples expressed mRNAs encoding all four MCTs. MCT1 immunoreactivity was observed in photoreceptor inner segments, Müller cells, retinal capillaries, and the two plexiform layers. MCT2 labeling was concentrated in the inner and outer plexiform layers. MCT4 immunolabeling was present only in the inner retina, particularly in putative Müller cells, and the plexiform layers. No MCT3 labeling could be observed. The retinal pigment epithelium (RPE)/choroid expressed high levels of MCT1 and MCT3 mRNAs but lower levels of MCT2 and MCT4 mRNAs. MCT1 was localized to the apical and MCT3 to the basal membrane of the RPE, whereas MCT2 staining was faint. Although MCT1-MCT4 mRNAs were all detectable in iris and ciliary body samples, only MCT1 and MCT2 proteins were expressed. These were present in the iris epithelium and the nonpigmented epithelium of the ciliary processes. MCT4 was localized to the smooth muscle lining of large vessels in the iris-ciliary body and choroid. In the cornea, MCT1 and MCT2 mRNAs and proteins were detectable in the epithelium and endothelium, whereas evidence was found for the presence of MCT4 and, to a lesser extent, MCT1 in the lens epithelium. The unique distribution of MCT subtypes in the eye is indicative of the pivotal role that these transporters play in the maintenance of ocular function.
Collapse
Affiliation(s)
- Glyn Chidlow
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
65
|
|
66
|
Bui BV, Vingrys AJ, Wellard JW, Kalloniatis M. Monocarboxylate transport inhibition alters retinal function and cellular amino acid levels. Eur J Neurosci 2004; 20:1525-37. [PMID: 15355319 DOI: 10.1111/j.1460-9568.2004.03601.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We assessed the effect of the in vivo application of monocarboxylate transport inhibitors on retinal function and amino acid immunocytochemistry. We wanted to determine the impact that altered aerobic metabolite availability has on retinal function and the characteristics of amino acid shunting into metabolic pools. Electroretinograms were collected from anaesthetized rats at various times after intravitreal injection of the monocarboxylate transport inhibitors alpha-cyano-4-hydroxycinnamate (4-CIN; 2 micro L, 0.1-10 mm) or p-(dipropylsulphamoyl)benzoic acid (probenecid; 1-10 mm). Changes in retinal function were compared with quantitative amino acid immunocytochemical changes in retinas harvested 20 and 40 min after either 4-CIN or vehicle treatment. The injection of 4-CIN resulted in a dose-dependent reduction of the ON-bipolar cell P2 wave amplitude (20-80%) and delay in its implicit time. The phototransduction sensitivity was mildly reduced whereas the ON-bipolar cell P2 sensitivity was unaffected. Probenecid induced functional changes similar to those observed with 4-CIN. We also mapped the amino acid alterations within specific cell classes induced by 4-CIN application. All neurones displayed a reduced glutamate content averaging 48%; reduced GABA (31%) and glycine (28%) were found within amacrine cells and glutamine was reduced in all cell classes except photoreceptor and Müller cells. All cell classes in the retina demonstrated increases in aspartate (57%), whereas leucine (24%) and ornithine (21%) were only significantly increased in photoreceptor and bipolar cells. The reduction in glutamate immunolabelling in specific retinal cell classes was mirrored by an increase in aspartate levels at these locations. In addition, attenuated glutamine immunolabelling also closely matched the spatial pattern observed for glutamate. Our immunocytochemical analysis provides evidence that monocarboxylate transport inhibition induces a shift in the equilibrium of glutamate transamination reactions involving aspartate throughout the retina whereas photoreceptor and bipolar cells also use glutamate transamination reactions involving ornithine and leucine. The distribution pattern of glutamine secondary to monocarboxylate inhibition suggests that this amino acid is a major precursor for glutamate throughout the retina.
Collapse
Affiliation(s)
- Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
67
|
Sarthy VP, Dudley VJ, Tanaka K. Retinal glucose metabolism in mice lacking the L-glutamate/aspartate transporter. Vis Neurosci 2004; 21:637-43. [PMID: 15579226 DOI: 10.1017/s0952523804214122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Indexed: 11/06/2022]
Abstract
The conventional view that glucose is the substrate for neuronal energy metabolism has been recently challenged by the "lactate shuttle" hypothesis in which glutamate cycling in glial cells drives all neuronal glucose metabolism. According to this view, glutamate released by activated retinal neurons is transported into Müller (glial) cells where it triggers glycolysis. The lactate released by Müller cells serves as the energy substrate for neuronal metabolism. Because the L-Glutamate/aspartate transporter (GLAST) is the predominant, Na+-dependent, glutamate transporter expressed by Müller cells, we have used GLAST-knockout (GLAST -/-) mice to examine the relationship between lactate release and GLAST activity in the retina. We found that glucose uptake and lactate production by the GLAST -/- mouse retina was similar to that observed in the wild type mouse retina. Furthermore, addition of 1 mM glutamate and NH4Cl to the incubation medium did not further stimulate glucose uptake in either case. When lactate release was measured in the presence of the lactate uptake inhibitor, alpha-cyano-4-hydroxycinnamate, there was no significant change in the amount of lactate released by retinas from GLAST -/- mice compared to the wild type. Finally, lactate release was similar under both dark and light conditions. These results show that lactate production and release is not altered in retinas of GLAST -/- mice, which suggests that metabolic coupling between photoreceptors and Müller cells is not mediated by the glial glutamate transporter, GLAST.
Collapse
Affiliation(s)
- Vijay P Sarthy
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
68
|
Bonilha VL, Bhattacharya SK, West KA, Sun J, Crabb JW, Rayborn ME, Hollyfield JG. Proteomic characterization of isolated retinal pigment epithelium microvilli. Mol Cell Proteomics 2004; 3:1119-27. [PMID: 15367653 DOI: 10.1074/mcp.m400106-mcp200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polarized epithelial cells are characterized by displaying compartmentalized functions associated with differential distribution of transporters, structural proteins, and signaling molecules on their apical and basolateral surfaces. Their apical surfaces frequently elaborate microvilli, which vary in structure according to the specific type and function of each epithelium. The molecular basis of this heterogeneity is poorly understood. However, differences in function will undoubtedly be reflected in the specific molecular composition of the apical surface in each epithelial subtype. We have exploited a method for isolating microvilli from the mouse eye using wheat germ agglutinin (WGA)-agarose beads to begin to understand the specific molecular composition of apical microvilli of the retinal pigment epithelium (RPE) and expand our knowledge of the potential function of this interface. Initially, apical RPE plasma membranes bound to WGA beads were processed for morphological analysis using known apical and basolateral surface markers. The protein composition of the apical microvilli was then established using proteomic analysis. Over 200 proteins were identified, including a number of proteins previously known to be localized to RPE microvilli, as well as others not known to be present at this surface. Localization of novel proteins identified with proteomics was confirmed by immunohistochemistry in both mouse and rat eye tissue. The data generated provides new information on the protein composition of the RPE apical microvilli. The isolation technique used should be amenable for isolating microvilli in other epithelia as well, allowing new insights into additional functions of this important epithelial compartment.
Collapse
Affiliation(s)
- Vera L Bonilha
- The Cole Eye Institute, Department of Ophthalmic Research, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
69
|
Winkler BS, Starnes CA, Sauer MW, Firouzgan Z, Chen SC. Cultured retinal neuronal cells and Müller cells both show net production of lactate. Neurochem Int 2004; 45:311-20. [PMID: 15145547 DOI: 10.1016/j.neuint.2003.08.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Revised: 08/25/2003] [Accepted: 08/28/2003] [Indexed: 12/21/2022]
Abstract
Glucose has long been considered the substrate for energy metabolism in the retina. Recently, an alternative hypothesis (metabolic coupling) suggested that mitochondria in retinal neurons utilize preferentially the lactate produced specifically by Müller cells, the principal glial cell in the retina. These two views of retinal metabolism were examined using confluent cultures of photoreceptor cells, Müller cells, ganglion cells, and retinal pigment epithelial cells incubated in modified Dulbecco's minimal essential medium containing glucose or glucose and lactate. The photoreceptor and ganglion cells represented neural elements, and the Müller and pigment epithelial cells represented non-neural cells. The purpose of the present experiments was two-fold: (1) to determine whether lactate is a metabolic product or substrate in retinal cells, and (2) to examine the evidence that supports the two views of retinal energy metabolism. Measurements were made of lactic acid production, cellular ATP levels, and cellular morphology over 4 h. Results showed that all cell types incubated with 5 mM glucose produced lactate aerobically and anaerobically at linear rates, the anaerobic rate being 2-3-fold higher (Pasteur effect). Cells incubated with both 5 mM glucose and 10 mM lactate produced lactate aerobically and anaerobically at rates similar to those found when cells were incubated with glucose alone. Anaerobic ATP content in the cells was maintained at greater than 50% of the control, aerobic value, and cellular morphology was well preserved under all conditions. The results show that the cultured retinal cells produce lactate, even in the presence of a high starting ambient concentration of lactate. Thus, the net direction of the lactic dehydrogenase reaction is toward lactate formation rather than lactate utilization. It is concluded that retinal cells use glucose, and not glial derived lactate, as their major substrate.
Collapse
Affiliation(s)
- Barry S Winkler
- Eye Research Institute, 406 Dodge Hall, Oakland University, Rochester, MI 48309, USA.
| | | | | | | | | |
Collapse
|
70
|
Pellerin L, Magistretti PJ. Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 2004; 10:53-62. [PMID: 14987448 DOI: 10.1177/1073858403260159] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Classical neuroenergetics states that glucose is the exclusive energy substrate of brain cells and its full oxidation provides all the necessary energy to support brain function. Recent data have revealed a more intricate picture in which astrocytes play a key role in supplying lactate as an additional energy substrate in register with glutamatergic activity.
Collapse
Affiliation(s)
- Luc Pellerin
- Institut de Physiologie, Université de Lausanne, Switzerland.
| | | |
Collapse
|
71
|
Halestrap AP, Meredith D. The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 2004; 447:619-28. [PMID: 12739169 DOI: 10.1007/s00424-003-1067-2] [Citation(s) in RCA: 756] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2003] [Accepted: 03/27/2003] [Indexed: 11/30/2022]
Abstract
The monocarboxylate cotransporter (MCT) family now comprises 14 members, of which only the first four (MCT1-MCT4) have been demonstrated experimentally to catalyse the proton-linked transport of metabolically important monocarboxylates such as lactate, pyruvate and ketone bodies. SLC16A10 (T-type amino-acid transporter-1, TAT1) is an aromatic amino acid transporter whilst the other members await characterization. MCTs have 12 transmembrane domains (TMDs) with intracellular N- and C-termini and a large intracellular loop between TMDs 6 and 7. MCT1 and MCT4 require a monotopic ancillary protein, CD147, for expression of functional protein at the plasma membrane. Lactic acid transport across the plasma membrane is fundamental for the metabolism of and pH regulation of all cells, removing lactic acid produced by glycolysis and allowing uptake by those cells utilizing it for gluconeogenesis (liver and kidney) or as a respiratory fuel (heart and red muscle). The properties of the different MCT isoforms and their tissue distribution and regulation reflect these roles.
Collapse
Affiliation(s)
- Andrew P Halestrap
- Department of Biochemistry, University of Bristol, BS8 1TD, Bristol, UK.
| | | |
Collapse
|
72
|
MacAulay N, Hamann S, Zeuthen T. Water transport in the brain: Role of cotransporters. Neuroscience 2004; 129:1031-44. [PMID: 15561418 DOI: 10.1016/j.neuroscience.2004.06.045] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2004] [Indexed: 11/15/2022]
Abstract
It is generally accepted that cotransporters transport water in addition to their normal substrates, although the precise mechanism is debated; both active and passive modes of transport have been suggested. The magnitude of the water flux mediated by cotransporters may well be significant: both the number of cotransporters per cell and the unit water permeability are high. For example, the Na(+)-glutamate cotransporter (EAAT1) has a unit water permeability one tenth of that of aquaporin (AQP) 1. Cotransporters are widely distributed in the brain and participate in several vital functions: inorganic ions are transported by K(+)-Cl(-) and Na(+)-K(+)-Cl(-) cotransporters, neurotransmitters are reabsorbed from the synaptic cleft by Na(+)-dependent cotransporters located on glial cells and neurons, and metabolites such as lactate are removed from the extracellular space by means of H(+)-lactate cotransporters. We have previously determined water transport capacities for these cotransporters in model systems (Xenopus oocytes, cell cultures, and in vitro preparations), and will discuss their role in water homeostasis of the astroglial cell under both normo- and pathophysiologal situations. Astroglia is a polarized cell with EAAT localized at the end facing the neuropil while the end abutting the circulation is rich in AQP4. The water transport properties of EAAT suggest a new model for volume homeostasis of the extracellular space during neural activity.
Collapse
Affiliation(s)
- N MacAulay
- The Panum Institute, Department of Medical Physiology, University of Copenhagen, Blegdamsvej 3C, DK 2200N Copenhagen, Denmark
| | | | | |
Collapse
|
73
|
Mengual R, El Abida K, Mouaffak N, Rieu M, Beaudry M. Pyruvate shuttle in muscle cells: high-affinity pyruvate transport sites insensitive to trans-lactate efflux. Am J Physiol Endocrinol Metab 2003; 285:E1196-204. [PMID: 12915395 DOI: 10.1152/ajpendo.00034.2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The specificity of the transport mechanisms for pyruvate and lactate and their sensitivity to inhibitors were studied in L6 skeletal muscle cells. Trans- and cis-lactate effects on pyruvate transport kinetic parameters were examined. Pyruvate and lactate were transported by a multisite carrier system, i.e., by two families of sites, one with low affinity and high capacity (type I sites) and the other with high affinity and low capacity (type II). The multisite character of transport kinetics was not modified by either hydroxycinnamic acid (CIN) or p-chloromercuribenzylsulfonic acid (PCMBS), which exert different types of inhibition. The transport efficiency (TE) ratios of maximal velocity to the trans-activation dissociation constant (Kt) showed that lactate and pyruvate were preferentially transported by types I and II sites, respectively. The cis-lactate effect was observed with high Ki values for both sites. The trans-lactate effect on pyruvate transport occurred only on type I sites and exhibited an asymmetric interaction pattern (Kt of inward lactate > Kt of outward lactate). The inability of lactate to trans-stimulate type II sites suggests that intracellular lactate cannot recruit these sites. The high-affinity type II sites act as a specific pyruvate shuttle and constitute an essential relay for the intracellular lactate shuttle.
Collapse
Affiliation(s)
- Raymond Mengual
- Laboratoire de Physiologie des Adaptations, Unité de Formation et de Recherche Cochin Port Royal, Université René Descartes, 75014 Paris, France.
| | | | | | | | | |
Collapse
|
74
|
Hanna SM, Kirk P, Holt OJ, Puklavec MJ, Brown MH, Barclay AN. A novel form of the membrane protein CD147 that contains an extra Ig-like domain and interacts homophilically. BMC BIOCHEMISTRY 2003; 4:17. [PMID: 14606962 PMCID: PMC280649 DOI: 10.1186/1471-2091-4-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 11/07/2003] [Indexed: 11/29/2022]
Abstract
Background CD147 is a broadly distributed integral membrane glycoprotein with two Ig-like domains implicated in a wide range of functions. It is associated at the cell surface with the monocarboxylate transporters MCT1 and 4 but interactions of the extracellular region have not been characterised. Results We report the characterisation of a form of CD147 with an additional membrane-distal Ig-like domain. In contrast to the two domain form, this three domain form of CD147 interacts homophilically. Surface plasmon resonance analysis using recombinant proteins showed that the interaction was of low affinity (KD ~ 40 μM) and this is typical of many interactions between membrane proteins. cDNA for the 3 domain form are rare but have been identified in human and mouse retina. Conclusion The finding that the three domain form of CD147 has an extracellular ligand, that is it interacts homophilically, suggests this interaction may be important in aligning lactate transporters in the retina where lactate is an important metabolite.
Collapse
Affiliation(s)
- S Melanie Hanna
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, United Kingdom
| | - Peter Kirk
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, United Kingdom
| | - Oliver J Holt
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, United Kingdom
| | - Michael J Puklavec
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, United Kingdom
| | - Marion H Brown
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, United Kingdom
| | - A Neil Barclay
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, United Kingdom
| |
Collapse
|
75
|
Melena J, Safa R, Graham M, Casson RJ, Osborne NN. The monocarboxylate transport inhibitor, α-cyano-4-hydroxycinnamate, has no effect on retinal ischemia. Brain Res 2003; 989:128-34. [PMID: 14519520 DOI: 10.1016/s0006-8993(03)03375-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glial-derived monocarboxylate lactate is thought to be an important energy source for neurons during brain activation or in hypoxia-ischemia. Treatment with alpha-cyano-4-hydroxycinnamate (4-CIN), a monocarboxylate transporter inhibitor, has been recently reported to exacerbate delayed neuronal damage in a rat model of cerebral ischemia, an effect ascribed to inhibition of lactate/pyruvate transport. Since monocarboxylate transporters are abundant in the retina, we examined the effect of 4-CIN administration on the outcome of high intraocular pressure-induced retinal ischemia in rats. Retinal ischemic damage was assessed by changes in the electroretinogram (ERG), the retinal localization of choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS) immunoreactivities, and the loss of retinal mRNA for Thy-1. Intraperitoneal or intravitreal administration of 4-CIN had no effect on the ERG or the localization of ChAT and nNOS immunoreactivities in either the control retina or a retina subjected to ischemia/reperfusion. In addition, intravitreal injection of 4-CIN had no effect on ischemia-induced reduction of retinal mRNA levels for Thy-1. These results provide no evidence to support the view that blockade of lactate uptake and/or pyruvate entry into mitochondria for oxidative metabolism has an influence on the outcome of retinal ischemia/reperfusion.
Collapse
Affiliation(s)
- José Melena
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW, UK
| | | | | | | | | |
Collapse
|
76
|
Hamann S, Kiilgaard JF, la Cour M, Prause JU, Zeuthen T. Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells. Exp Eye Res 2003; 76:493-504. [PMID: 12634113 DOI: 10.1016/s0014-4835(02)00329-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The retinal pigment epithelium (RPE) of the eye transports water and lactate ions in the direction from retina to choroid. The water transport is important in maintenance of retinal adhesion and the transport of lactate ions serves to regulate the lactate levels and pH of the subretinal space. This study investigates by means of a non-invasive technique the mechanism of coupling between transport of H(+), lactate ion, and water in the monocarboxylate transporter (MCT1) located in the apical (retinal) membrane of a mammalian RPE. Primary cultures of porcine RPE cells were grown to confluence and placed in a perfusion chamber in which the solution facing the retinal membrane could be changed rapidly. Two types of experiments were performed: Changes in cell water volume were measured by self-quenching of the fluorescent dye Calcein, and changes in intracellular pH were measured ratiometrically using the fluorescent dye BCECF. In lactate-free solutions, mannitol addition to the retinal bath caused intracellular acidification and cell shrinkage, given by a single osmotic water permeability of 1.2+/-0.1 x 10(-4)cmsec(-1) (osmoll(-1))(-1). In solutions containing 50 mmoll(-1) lactate, however, the mannitol-induced cell shrinkage was faster and the cells alkalinized. These effects were not linear functions of the magnitude of the imposed osmotic gradients: Both volume effects and changes in intracellular pH showed apparent saturation with increasing gradients. Abrupt isosmotic replacement of Cl(-) with lactate in the concentration range from 3 to 50 mmoll(-1) caused an immediate cell swelling as well as an immediate intracellular acidification; both effects showed apparent saturation with increasing lactate concentration. The K(m) values were: 11+/-2 mmoll(-1) for the water fluxes and 13+/-4 mmoll(-1) for the H(+) and lactate fluxes. The data suggest that H(2)O is cotransported along with H(+) and lactate ions in MCT1 localized to the retinal membrane. The study emphasizes the importance of this cotransporter in the maintenance of water homeostasis and pH in the subretinal space of a mammalian tissue and supports our previous study performed by an invasive technique in an amphibian tissue.
Collapse
Affiliation(s)
- Steffen Hamann
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
77
|
Abstract
Retinal drug delivery is a challenging area in the field of ophthalmic drug delivery. An ideal drug delivery system for the retina and vitreous humor has not yet been found, despite extensive research. Drug delivery to retinal tissue and vitreous via systemic administration is constrained due to the presence of a blood-retinal barrier (BRB) which regulates permeation of substances from blood to the retina. Although intravitreal administration overcomes this barrier, it is associated with several other problems. In recent years, transporter targeted drug delivery has become a clinically significant drug delivery approach for enhancing the bioavailabilities of drug molecules with poor membrane permeability characteristics. Various nutrient transporters, which include peptide, amino acid, folate, monocarboxylic acid transporters and so on, have been reported to be expressed on the retina and BRB. Prodrug derivatisation of drug molecules which target these transporters could result in enhanced ocular bioavailability. Highlighted in this review are various strategies currently employed for drug delivery to the posterior chamber, and novel opportunities that can be exploited to enhance ocular bioavailability of drugs.
Collapse
Affiliation(s)
- Sridhar Duvvuri
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 5005 Rockhill Road, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
78
|
Tseng MT, Chan SA, Schurr A. Ischemia-induced changes in monocarboxylate transporter 1 reactive cells in rat hippocampus. Neurol Res 2003; 25:83-6. [PMID: 12564131 DOI: 10.1179/016164103101200978] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This study aims to demonstrate the responses of monocarboxylate transporter 1 (MCT1) immunoreactive cells to transient global ischemia in rat hippocampus using confocal and electron microscopy. The MCT1 staining in CA1 pyramidal cells of the sham-operated controls appeared evenly distributed. Most of the MCT1 immunoreactive products were associated with the cell surface; however, some intracellular reaction products are also found. This pattern of stain was not altered in the first three days after an ischemic episode. As the neuronal demise progressed, the MCT1 immunoreactive cells became patchy in the 21-day post-ischemic rats. Besides the neuronal labeling, MCT1 immunoreactivity was found in astroglia, in endothelial cells and in the adjacent ependymal lining. The latter exhibited intense labeling both in the acute and long-term surviving rats. These data suggest that MCT1 plays a role in the initial and long-term neuronal survival in the hippocampus.
Collapse
Affiliation(s)
- Michael T Tseng
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | |
Collapse
|
79
|
Rafiki A, Boulland JL, Halestrap AP, Ottersen OP, Bergersen L. Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 2003; 122:677-88. [PMID: 14622911 DOI: 10.1016/j.neuroscience.2003.08.040] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Monocarboxylate transporters (MCTs) play an important role in the metabolism of all cells. They mediate the transport of lactate and pyruvate but also some other substrates such as ketone bodies. It has been proposed that glial cells release monocarboxylates to fuel neighbouring neurons. A key element in this hypothesis is the existence of neuronal MCTs. Amongst the three MCTs known to be expressed in the brain (MCT1, 2 and 4) only MCT2 has been found in neurons. Here we have studied the expression pattern of MCT2 during postnatal development. By use of immunoperoxidase and double immunofluorescence microscopy we report that neuronal MCT2 occurs in most brain areas, including the hippocampus and cerebellum, from birth to adult. MCT2 is also expressed in specific subpopulations of astrocytes. Neuronal MCT2 is most abundant in the first 3 postnatal weeks and thereafter decreases toward adulthood. In contrast to MCT2, MCT4 is exclusively present in astroglia during all stages of development. Furthermore, MCT4 expression is very low at birth and reaches adult level by P14. Our results are consistent with previous data suggesting that in the immature brain much of the energy demand is met by monocarboxylates and ketone bodies.
Collapse
Affiliation(s)
- A Rafiki
- Centre for Molecular Biology and Neuroscience, University of Oslo, Sognsvannsv. 9, Pb. 1105 Blindern, 0317 Oslo, Norway
| | | | | | | | | |
Collapse
|
80
|
Abstract
The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium and endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling sites between ion and water transport remain undefined. In the retinal pigment epithelium, a H+-lactate cotransporter transports water. This protein could be the site of coupling between salt and water in this epithelium. The distribution of aquaporins does not suggest a role for these proteins in a general model for water transport in ocular epithelia. Some water-transporting membranes contain aquaporins, others do not. The ultrastructure is also variable among the cell layers and cannot be fitted into a general model. On the other hand, the direction of cotransport in symporters complies with the direction of fluid transport in both the corneal epi- and endothelium, as well as the ciliary epithelium and retinal pigment epithelium.
Collapse
Affiliation(s)
- Steffen Hamann
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
81
|
Abi-Saab WM, Maggs DG, Jones T, Jacob R, Srihari V, Thompson J, Kerr D, Leone P, Krystal JH, Spencer DD, During MJ, Sherwin RS. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab 2002; 22:271-9. [PMID: 11891432 DOI: 10.1097/00004647-200203000-00004] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.
Collapse
Affiliation(s)
- Walid M Abi-Saab
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Bergersen L, Rafiki A, Ottersen OP. Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system. Neurochem Res 2002; 27:89-96. [PMID: 11926280 DOI: 10.1023/a:1014806723147] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An efficient exchange of lactate between different cell types (such as astrocytes and neurones) would require that lactate transporters are expressed in contiguous parts of the respective plasma membranes. To settle this issue we explored the subcellular expression pattern of monocarboxylate transporters (MCTs) by use of selective antibodies and high resolution immunogold cytochemistry. We investigated whether the membrane domains containing MCT1, MCT2 and MCT4 are spatially related to each other and to other membrane domains, i.e. those containing glutamate receptors. We used retina and cerebellum as a model for our investigations. We found that MCT1 was localized in the apical membrane of pigment epithelial cells and in the photoreceptor inner segment membrane in the retina. In the brain MCT1 was present in endothelial cells. MCT2 was localized in the postsynaptic membrane of parallel fiber-Purkinje cell synapses and MCT4 was situated in the membrane of glial cells in the cerebellum.
Collapse
Affiliation(s)
- Linda Bergersen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | | | | |
Collapse
|
83
|
Lange K. Role of microvillar cell surfaces in the regulation of glucose uptake and organization of energy metabolism. Am J Physiol Cell Physiol 2002; 282:C1-26. [PMID: 11742794 DOI: 10.1152/ajpcell.2002.282.1.c1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Experimental evidence suggesting a type of glucose uptake regulation prevailing in resting and differentiated cells was surveyed. This type of regulation is characterized by transport-limited glucose metabolism and depends on segregation of glucose transporters on microvilli of differentiated or resting cells. Earlier studies on glucose transport regulation and a recently presented general concept of influx regulation for ions and metabolic substrates via microvillar structures provide the basic framework for this theory. According to this concept, glucose uptake via transporters on microvilli is regulated by changes in the structural organization of the microfilament bundle, which is acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. Both microvilli formation and the switch of glucose metabolism from "metabolic regulation" to "transport limitation" occur during differentiation. The formation of microvillar cell surfaces creates the essential preconditions to establish the characteristic functions of specialized tissue cells including the coordination between glycolysis and oxidative phosphorylation, regulation of cellular functions by external signals, and Ca(2+) signaling. The proposed concept integrates various aspects of glucose uptake regulation into a ubiquitous cellular mechanism involved in regulation of transmembrane ion and substrate fluxes.
Collapse
|
84
|
Abstract
A novel mechanism of cellular volume regulation is presented, which ensues from the recently introduced concept of transport and ion channel regulation via microvillar structures (Lange K, 1999, J Cell Physiol 180:19-35). According to this notion, the activity of ion channels and transporter proteins located on microvilli of differentiated cells is regulated by changes in the structural organization of the bundle of actin filaments in the microvillar shaft region. Cells with microvillar surfaces represent two-compartment systems consisting of the cytoplasm on the one side and the sum of the microvillar tip (or, entrance) compartments on the other side. The two compartments are separated by the microvillar actin filament bundle acting as diffusion barrier ions and other solutes. The specific organization of ion and water channels on the surface of microvillar cell types enables this two-compartment system to respond to hypo- and hyperosmotic conditions by activation of ionic fluxes along electrochemical gradients. Hypotonic exposure results in swelling of the cytoplasmic compartment accompanied by a corresponding reduction in the length of the microvillar diffusion barrier, allowing osmolyte efflux and regulatory volume decrease (RVD). Hypertonic conditions, which cause shortening of the diffusion barrier via swelling of the entrance compartment, allow osmolyte influx for regulatory volume increase (RVI). Swelling of either the cytoplasmic or the entrance compartment, by using membrane portions of the microvillar shafts for surface enlargement, activates ion fluxes between the cytoplasm and the entrance compartment by shortening of microvilli. The pool of available membrane lipids used for cell swelling, which is proportional to length and number of microvilli per cell, represents the sensor system that directly translates surface enlargements into activation of ion channels. Thus, the use of additional membrane components for osmotic swelling or other types of surface-expanding shape changes (such as the volume-invariant cell spreading or stretching) directly regulates influx and efflux activities of microvillar ion channels. The proposed mechanism of ion flux regulation also applies to the physiological main functions of epithelial cells and the auxiliary action of swelling-induced ATP release. Furthermore, the microvillar entrance compartment, as a finely dispersed ion-accessible peripheral space, represents a cellular sensor for environmental ionic/osmotic conditions able to detect concentration gradients with high lateral resolution. Volume regulation via microvillar surfaces is only one special aspect of the general property of mechanosensitivity of microvillar ionic pathways.
Collapse
|
85
|
Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN, Halestrap AP. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J 2000; 19:3896-904. [PMID: 10921872 PMCID: PMC306613 DOI: 10.1093/emboj/19.15.3896] [Citation(s) in RCA: 513] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CD147 is a broadly expressed plasma membrane glycoprotein containing two immunoglobulin-like domains and a single charge-containing transmembrane domain. Here we use co-immunoprecipitation and chemical cross-linking to demonstrate that CD147 specifically interacts with MCT1 and MCT4, two members of the proton-linked monocarboxylate (lactate) transporter family that play a fundamental role in metabolism, but not with MCT2. Studies with a CD2-CD147 chimera implicate the transmembrane and cytoplasmic domains of CD147 in this interaction. In heart cells, CD147 and MCT1 co-localize, concentrating at the t-tubular and intercalated disk regions. In mammalian cell lines, expression is uniform but cross-linking with anti-CD147 antibodies caused MCT1, MCT4 and CD147, but not GLUT1 or MCT2, to redistribute together into 'caps'. In MCT-transfected cells, expressed protein accumulated in a perinuclear compartment, whereas co-transfection with CD147 enabled expression of active MCT1 or MCT4, but not MCT2, in the plasma membrane. We conclude that CD147 facilitates proper expression of MCT1 and MCT4 at the cell surface, where they remain tightly bound to each other. This association may also be important in determining their activity and location.
Collapse
Affiliation(s)
- P Kirk
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|